JP2005299762A - Manufacturing method for laminated rubber supporting body - Google Patents

Manufacturing method for laminated rubber supporting body Download PDF

Info

Publication number
JP2005299762A
JP2005299762A JP2004115074A JP2004115074A JP2005299762A JP 2005299762 A JP2005299762 A JP 2005299762A JP 2004115074 A JP2004115074 A JP 2004115074A JP 2004115074 A JP2004115074 A JP 2004115074A JP 2005299762 A JP2005299762 A JP 2005299762A
Authority
JP
Japan
Prior art keywords
lead
pressure
mpa
plates
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004115074A
Other languages
Japanese (ja)
Inventor
Eisuke Kashiwagi
栄介 柏木
Naoyuki Yamaguchi
直之 山口
Shigeo Fukuda
滋夫 福田
Yoshitaka Muramatsu
佳孝 村松
Naoki Kato
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
SWCC Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Showa Electric Wire and Cable Co filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004115074A priority Critical patent/JP2005299762A/en
Publication of JP2005299762A publication Critical patent/JP2005299762A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a laminated rubber supporting body for obtaining base isolation performance equal to that of a vibration energy absorbing material containing lead or more using a vibration energy absorbing material other than lead. <P>SOLUTION: At least one through hole 13 is formed in the vertical direction in a laminated body 10 composed by laminating a plurality of rubber plates 11 and a plurality of metallic plates 12 alternately in the vertical direction. A non-lead metallic plug 14 is inserted into the through hole 13 by pressure of at least 100 MPa, and then shearing strain is applied to the laminated body 10 in a scope of 25 to 250 % of total wall thickness of the plurality of rubber plates 11 while pressure of at least 15 MPa is applied to a pressure receiving face of the laminated body 10 in which the non-lead metallic plug 14 is inserted. The non-lead metallic plug is a round bar made of metal capable of absorbing vibration energy other than lead. The total wall thickness of the plurality of rubber plates is total wall thickness obtained by adding wall thickness of all the rubber plates except the metallic plates among the metallic plates and the rubber plates constituting the laminated body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、構造物の免震等に用いられる積層ゴム支承体の製造方法に関する。   The present invention relates to a method of manufacturing a laminated rubber bearing used for seismic isolation of a structure.

従来から、建築物、土木構造物、機器等を免震するために、図1及び図2に示すような免震装置が知られている。すなわち、図1及び図2において、複数のゴム板11と複数の鋼板12とを交互に積層してなる積層体10の中心に貫通孔13を設け、この貫通孔13に、鉛からなる丸棒、すなわち鉛プラグ14を挿入している。この積層体10を基礎や構造物に取付けるために、積層体10の両端部に連結鋼板15、16が固設され、この連結鋼板15、16を介してそれぞれフランジ金具17、18を複数の締付ボルト19により固定している。   2. Description of the Related Art Conventionally, seismic isolation devices as shown in FIGS. 1 and 2 are known for isolating buildings, civil engineering structures, equipment, and the like. That is, in FIG.1 and FIG.2, the through-hole 13 is provided in the center of the laminated body 10 formed by alternately laminating the plurality of rubber plates 11 and the plurality of steel plates 12, and a round bar made of lead is formed in the through-hole 13. That is, the lead plug 14 is inserted. In order to attach the laminated body 10 to a foundation or a structure, connecting steel plates 15 and 16 are fixed to both ends of the laminated body 10, and a plurality of flange fittings 17 and 18 are respectively fastened via the connecting steel plates 15 and 16. The bolts 19 are fixed.

このような鉛プラグ入りの免震装置は、建物等を安定に支持しながら地震発生時には水平方向に変形して地震エネルギを低減するという、従来の積層ゴムとダンパの両機能を併せ持っている。さらに、設置スペースを削減することができると共に、施工性も向上するという特色がある(特許文献1、特許文献2参照)。
特公昭61−17984号公報 特開平11−125306号公報
Such a seismic isolation device with a lead plug has both the functions of a conventional laminated rubber and a damper, which are deformed in the horizontal direction and reduce seismic energy when an earthquake occurs while stably supporting a building or the like. Furthermore, the installation space can be reduced and the workability is improved (see Patent Document 1 and Patent Document 2).
Japanese Patent Publication No. 61-17984 JP 11-125306 A

ところで、上記の技術には、次のような解決すべき課題があった。
鉛プラグ入り免震装置は、有害物質である鉛を使用していることから、環境破壊の懸念が指摘されている。製造時の鉛の取扱いのみでなく、今後建物解体時に生じる鉛入り免震装置の廃棄方法等で問題が生じる惧れがあり、鉛に替わる材料の要求が高まっている。
鉛の代替材料として、幾つかの振動エネルギ吸収材料が挙げられるが、従来から鉛以外の材料を使って鉛と同等以上の減衰効果を奏するエネルギ吸収体を備えた免震装置が本格的に製造された例はない。したがって、鉛以外のエネルギ吸収材料を使った免震装置の製造方法も確立されていない。鉛プラグの場合、60MPa程度の圧力を加えれば圧入が可能であるが、錫、アルミニウム等の、鉛以外の金属プラグでは鉛を圧入しうる圧力では充分な圧入ができない。
By the way, the above technique has the following problems to be solved.
Since the seismic isolation device with lead plugs uses lead, which is a hazardous substance, there are concerns about environmental destruction. In addition to handling lead at the time of manufacturing, there is a possibility that problems will arise in the disposal method of seismic isolation equipment containing lead that will be generated at the time of building dismantling, and there is an increasing demand for materials that replace lead.
Several vibration energy absorbing materials can be listed as alternative materials for lead. Conventionally, seismic isolation devices equipped with an energy absorber that exhibits a damping effect equivalent to or better than that of lead using materials other than lead have been manufactured in earnest. There are no examples. Therefore, the manufacturing method of the seismic isolation apparatus using energy absorption materials other than lead is not established. In the case of a lead plug, press-fitting is possible if a pressure of about 60 MPa is applied, but a metal plug other than lead, such as tin or aluminum, cannot be press-fitted sufficiently with a pressure capable of press-fitting lead.

本発明は、鉛以外の振動エネルギ吸収材料を使って鉛入りと同等以上の免震性能が得られる積層ゴム支承体の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the laminated rubber bearing body from which vibration isolation material other than lead is used and the seismic isolation performance equivalent to or more than lead containing is obtained.

本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、上記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、その後、上記非鉛金属プラグを挿入した積層体の受圧面に少なくとも15MPaの圧力を印加した状態で、上記積層体に、上記複数のゴム板の総肉厚の25〜250%の範囲でせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
The present invention adopts the following configuration in order to solve the above points.
<Configuration 1>
At least one through hole is formed in a vertical direction in a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, and a lead-free metal plug is provided in the through hole at least 100 MPa. 25 to 250% of the total thickness of the plurality of rubber plates in the laminated body with a pressure of at least 15 MPa applied to the pressure-receiving surface of the laminated body into which the lead-free metal plug has been inserted. A method for producing a laminated rubber bearing, characterized by applying shear strain in the range of

非鉛金属プラグとは、鉛以外の、振動エネルギを吸収しうる金属からなる丸棒をいう。複数のゴム板の総肉厚とは、積層体を構成する金属板とゴム板のうち、金属板を除き、全てのゴム板の肉厚を積算した合計肉厚をいう。積層体にせん断ひずみを加えるには、例えば、積層体の両端部を保持した状態で、両端部を水平方向に相対的に往復動させる。積層体は傾動してせん断ひずみ、すなわち水平変位が生じる。   A non-lead metal plug refers to a round bar made of a metal that can absorb vibration energy other than lead. The total thickness of the plurality of rubber plates refers to the total thickness obtained by integrating the thicknesses of all the rubber plates, excluding the metal plates, among the metal plates and rubber plates constituting the laminate. In order to apply a shear strain to the laminate, for example, both ends of the laminate are relatively reciprocated in the horizontal direction while both ends of the laminate are held. The laminate is tilted and shear strain, that is, horizontal displacement occurs.

〈構成2〉
複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、上記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、その後、上記非鉛金属プラグを挿入した積層体の受圧面に少なくとも20MPaの圧力を印加した状態で、上記積層体に、上記複数のゴム板の総肉厚の25〜250%の範囲のせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
<Configuration 2>
At least one through hole is formed in a vertical direction in a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, and a lead-free metal plug is provided in the through hole at least 100 MPa. 25 to 250% of the total thickness of the plurality of rubber plates in the laminated body with a pressure of at least 20 MPa applied to the pressure-receiving surface of the laminated body into which the lead-free metal plug has been inserted. A method for producing a laminated rubber bearing, wherein a shear strain in the range of is applied.

積層体に印加する圧力を構成1に比べて大きくするものである。   The pressure applied to the laminated body is increased as compared with Configuration 1.

〈構成3〉
複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、上記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、その後、上記非鉛金属プラグを挿入した積層体の受圧面に少なくとも30MPaの圧力を印加した状態で、上記積層体に、上記複数のゴム板の総肉厚の25〜250%の範囲のせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
<Configuration 3>
At least one through hole is formed in a vertical direction in a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, and a lead-free metal plug is provided in the through hole at least 100 MPa. 25 to 250% of the total thickness of the plurality of rubber plates in the laminated body with a pressure of at least 30 MPa applied to the pressure-receiving surface of the laminated body into which the lead-free metal plug has been inserted. A method for producing a laminated rubber bearing, wherein a shear strain in the range of is applied.

構成2に比べて積層体に印加する圧力を大きくするものである。   Compared with configuration 2, the pressure applied to the laminate is increased.

〈構成4〉
構成1ないし3のいずれかに記載の積層ゴム支承体の製造方法において、上記非鉛金属プラグを、上記貫通孔に、少なくとも200MPaの圧力で挿入することを特徴とする積層ゴム支承体の製造方法。
<Configuration 4>
4. A method for manufacturing a laminated rubber bearing according to any one of claims 1 to 3, wherein the lead-free metal plug is inserted into the through hole with a pressure of at least 200 MPa. .

非鉛金属プラグの材料によって、貫通孔への挿入圧力がより高いことが必要な場合に対応するものである。   This corresponds to a case where a higher insertion pressure into the through hole is required depending on the material of the lead-free metal plug.

〈構成5〉
構成1ないし4のいずれかに記載の積層ゴム支承体の製造方法において、上記非鉛金属プラグが錫、銅、アルミニウム、亜鉛、これらの合金から選択された少なくとも1つからなることを特徴とする積層ゴム支承体の製造方法。
<Configuration 5>
In the method for producing a laminated rubber bearing according to any one of Structures 1 to 4, the lead-free metal plug is made of at least one selected from tin, copper, aluminum, zinc, and alloys thereof. Manufacturing method of laminated rubber bearing.

非鉛金属プラグとして、振動エネルギを効率良く吸収しうる、鉛以外の金属が用いられる。   As the lead-free metal plug, a metal other than lead that can efficiently absorb vibration energy is used.

〈構成6〉
複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、上記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、その後、上記非鉛金属プラグを挿入した積層体の受圧面に、実際の支持荷重より大きい圧力を印加した状態で、上記積層体に、上記複数のゴム板の総肉厚の25〜250%の範囲のせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
<Configuration 6>
At least one through hole is formed in a vertical direction in a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, and a lead-free metal plug is provided in the through hole at least 100 MPa. Inserted with pressure, and then applied a pressure larger than the actual support load to the pressure-receiving surface of the laminate with the lead-free metal plug inserted, the total thickness of the plurality of rubber plates is applied to the laminate. A method for producing a laminated rubber bearing, wherein a shear strain in the range of 25 to 250% is applied.

構成6の方法は、積層ゴム支承体を実際に使用する状況が正確に判明している場合に有効である。   The method of Configuration 6 is effective when the situation in which the laminated rubber bearing is actually used has been accurately determined.

以下、本発明の実施の形態を具体例を用いて説明する。   Hereinafter, embodiments of the present invention will be described using specific examples.

この実施例では、図1、図2に示した構造の積層ゴム支承体を使用している。このような積層ゴム支承体を製作するために、次の工程を実施する。先ず、複数のゴム板11と複数の金属板12とを上下方向に交互に積層し、上下方向に貫通孔13を有する積層体10を形成する。この積層体の貫通孔13に、鉛以外の金属プラグ(非鉛金属プラグ)、例えば、錫プラグ(錫からなる丸棒)14を、少なくとも100MPaの圧力で挿入する。その後、錫プラグ14を挿入した積層体10の受圧面に、少なくとも15MPaの圧力を印加した状態で、積層体10に、ゴム総肉厚の25〜250%の範囲のせん断ひずみを加えることにより、最終的な積層ゴム支承体を製造するものである。   In this embodiment, a laminated rubber bearing having the structure shown in FIGS. 1 and 2 is used. In order to produce such a laminated rubber bearing, the following steps are performed. First, a plurality of rubber plates 11 and a plurality of metal plates 12 are alternately stacked in the vertical direction to form a stacked body 10 having through holes 13 in the vertical direction. A metal plug other than lead (non-lead metal plug), for example, a tin plug (round bar made of tin) 14 is inserted into the through hole 13 of the laminated body at a pressure of at least 100 MPa. Thereafter, by applying a shear strain in the range of 25 to 250% of the total rubber thickness to the laminate 10 with a pressure of at least 15 MPa applied to the pressure-receiving surface of the laminate 10 with the tin plug 14 inserted, The final laminated rubber bearing is manufactured.

非鉛金属プラグ14としては、錫、銅、アルミニウム、亜鉛、これらの合金、すなわち錫合金、銅合金、アルミニウム合金、亜鉛合金のいずれかからなる丸棒が使用され、貫通孔13の内径より若干大きな外径を有している。したがって、非鉛金属プラグ14は、少なくとも100MPaの圧力で貫通孔13内に圧入され、径方向に膨張して貫通孔の内壁に密着される。   As the lead-free metal plug 14, a round bar made of tin, copper, aluminum, zinc, or an alloy thereof, that is, a tin alloy, a copper alloy, an aluminum alloy, or a zinc alloy is used. Has a large outer diameter. Therefore, the lead-free metal plug 14 is press-fitted into the through hole 13 at a pressure of at least 100 MPa, expands in the radial direction, and is in close contact with the inner wall of the through hole.

ゴム総肉厚とは、金属板12を除き、全てのゴム板11の肉厚を積算した合計肉厚をいう。積層体の両端に相対的なせん断力を加えることにより、積層体にせん断ひずみ、すなわち水平変位が生じる。   The total rubber thickness refers to the total thickness obtained by integrating the thicknesses of all the rubber plates 11 except for the metal plate 12. By applying a relative shear force to both ends of the laminate, shear strain, that is, horizontal displacement occurs in the laminate.

本発明においては、金属プラグの金属材料によって積層体の貫通孔13に挿入する圧力を200MPa以上としたり、ゴム総肉厚の25〜250%の範囲のせん断ひずみを加える際に積層体10の受圧面に、20MPa以上の圧力を印加した状態とすることもある。   In the present invention, the pressure inserted into the through-hole 13 of the laminate by the metal material of the metal plug is set to 200 MPa or more, or the shear pressure of the laminate 10 is applied when a shear strain in the range of 25 to 250% of the total rubber wall thickness is applied. A pressure of 20 MPa or more may be applied to the surface.

〔検討〕
ここで、本発明者等は、鉛プラグの代替材料として、錫プラグについて適切な性能が得られる製造条件を検討したので、その説明をする。
〔Consideration〕
Here, since the present inventors examined the manufacturing conditions which can obtain suitable performance about a tin plug as an alternative material of a lead plug, it will be described.

〔試験体の構成〕
試験体として、図1、図2と同様の構成の積層ゴム支承体を下記条件で製作した。
下記条件のゴム板11を33枚、金属板12を32枚使って中心に貫通孔13を有する積層体10を複数製作した。
貫通孔13に、純度99.9%の錫からなる錫プラグを200MPaで圧入してなる錫プラグ入り積層体と、貫通孔13に、純度99.99%の鉛からなる鉛プラグを60MPaで圧入してなる鉛プラグ入り積層体の2種類を製作した。
[Configuration of specimen]
As a test body, a laminated rubber bearing body having the same configuration as in FIGS. 1 and 2 was manufactured under the following conditions.
A plurality of laminates 10 having a through hole 13 at the center were manufactured using 33 rubber plates 11 and 32 metal plates 12 under the following conditions.
A laminated body including a tin plug formed by press-fitting a tin plug made of 99.9% purity tin into the through hole 13 at 200 MPa, and a lead plug made of 99.99% purity lead into the through hole 13 at 60 MPa. Two types of laminates containing lead plugs were manufactured.

これらの各積層体の両端部に、常法によりそれぞれ連結鋼板15、16を固設し、この連結鋼板15、16に、上下のフランジ金具17、18をそれぞれ配置し複数の締付ボルト19により固定してほぼ同じ大きさの錫プラグ入り積層ゴム支承体と鉛プラグ入り積層ゴム支承体とを製作した。   Connected steel plates 15 and 16 are fixed to both ends of each of these laminates by a conventional method, and upper and lower flange fittings 17 and 18 are respectively arranged on the connected steel plates 15 and 16 by a plurality of fastening bolts 19. A laminated rubber bearing with tin plug and a laminated rubber bearing with lead plug of the same size were manufactured.

なお、上記積層体のゴム板11としては、せん断弾性率0.44N/mm2の天然ゴムにより、外径500mm、内径100mm、肉厚3.75mmの円環状に形成したものを使用した。金属板12としては、鋼板により、外径510mm、内径100mm、肉厚3.2mmの円環状に形成されたものを使用した。連結鋼板15、16は、外径520mm、肉厚16mmの円環状をなすものであり、上下のフランジ金具17、18は、外径800mm、肉厚30mmの円板である。積層ゴム支承体の高さは、約310mmである。 In addition, as the rubber plate 11 of the laminated body, a circular rubber having an outer diameter of 500 mm, an inner diameter of 100 mm, and a wall thickness of 3.75 mm made of natural rubber having a shear modulus of 0.44 N / mm 2 was used. As the metal plate 12, a steel plate formed into an annular shape having an outer diameter of 510 mm, an inner diameter of 100 mm, and a wall thickness of 3.2 mm was used. The connecting steel plates 15 and 16 have an annular shape with an outer diameter of 520 mm and a wall thickness of 16 mm, and the upper and lower flange fittings 17 and 18 are disks with an outer diameter of 800 mm and a wall thickness of 30 mm. The height of the laminated rubber support is about 310 mm.

〔試験体への加力〕
上記2種類の各試験体に各種条件で加力し、下記(1)〜(9)の試験を行い、それぞれの荷重・変位の関係を調べた。
なお、試験条件において、例えば、ゴム板の総肉厚の±25%のせん断ひずみを加えるために、積層体の両端部を保持した状態で、積層体を構成する金属板とゴム板のうち、金属板を除いた、全てのゴム板の肉厚を合計した総肉厚の25%のストロークで、両端部にせん断力を加えて水平方向に相対的に往復動させるものとした。他のストロークでせん断ひずみを加える場合もこれに準じている。積層ゴム支承体の受圧面に10MPaの鉛直荷重を加えた状態とは、実際の使用時の建築物等の支持荷重より若干大きい圧力を印加した状態を想定している。
[Applying force to the specimen]
The two types of test specimens were applied under various conditions, and the following tests (1) to (9) were conducted to examine the relationship between the respective loads and displacements.
In addition, in the test conditions, for example, in order to apply a shear strain of ± 25% of the total thickness of the rubber plate, while holding both ends of the laminate, among the metal plate and the rubber plate constituting the laminate, With a stroke of 25% of the total thickness of all the rubber plates excluding the metal plate, a shearing force was applied to both ends to reciprocate relatively in the horizontal direction. The same applies to the case where shear strain is applied by other strokes. The state in which a vertical load of 10 MPa is applied to the pressure-receiving surface of the laminated rubber bearing body assumes a state in which a pressure slightly larger than the support load of a building or the like during actual use is applied.

(1)上記錫プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±25%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図3に示す。 (1) A shearing force of ± 25% of the total thickness of the rubber plate is generated by applying a shearing force to the laminated rubber bearing body with tin plug in a state where a vertical load of 10 MPa is applied to the pressure receiving surfaces at both ends. I let you. This was carried out for 4 cycles. The relationship between load and displacement at this time is shown in FIG.

(2)同様に錫プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±50%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図4に示す。 (2) Similarly, in the state where a vertical load of 10 MPa is applied to the pressure-receiving surfaces at both ends of the laminated rubber bearing body with tin plug, a shearing force is applied to give a shear strain of ± 50% of the total thickness of the rubber plate. Was generated. This was carried out for 4 cycles. FIG. 4 shows the relationship between load and displacement at this time.

(3)同様に錫プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±100%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図5に示す。 (3) Similarly, in a state where a vertical load of 10 MPa is applied to the pressure-receiving surfaces at both ends of the laminated rubber bearing body with tin plug, a shearing force is applied to give a shear strain of ± 100% of the total thickness of the rubber plate. Was generated. This was carried out for 4 cycles. FIG. 5 shows the relationship between load and displacement at this time.

(4)同様に錫プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±150%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図6に示す。 (4) Similarly, in the state where a vertical load of 10 MPa is applied to the pressure-receiving surfaces at both ends of the laminated rubber bearing body with tin plug, a shearing force is applied to give a shear strain of ± 150% of the total thickness of the rubber plate. Was generated. This was carried out for 4 cycles. The relationship between load and displacement at this time is shown in FIG.

(5)同様に錫プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±200%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図7に示す。 (5) Similarly, in a state where a vertical load of 10 MPa is applied to the pressure receiving surfaces at both ends of the laminated rubber bearing body with tin plug, a shearing force is applied to give a shear strain of ± 200% of the total thickness of the rubber plate. Was generated. This was carried out for 4 cycles. The relationship between load and displacement at this time is shown in FIG.

(6)同様に錫プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±250%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図8に示す。 (6) Similarly, in a state where a 10 MPa vertical load is applied to the pressure-receiving surfaces at both ends of the laminated rubber bearing body with tin plug, a shearing force is applied to give a shear strain of ± 250% of the total thickness of the rubber plate. Was generated. This was carried out for 4 cycles. FIG. 8 shows the relationship between load and displacement at this time.

(7)錫プラグ入り積層ゴム支承体に、その両端部の受圧面に20MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±100%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図9に示す。 (7) A shear force of ± 100% of the total thickness of the rubber plate is generated by applying a shearing force to the laminated rubber bearing body with tin plug while applying a vertical load of 20 MPa to the pressure receiving surfaces at both ends. It was. This was carried out for 4 cycles. The relationship between load and displacement at this time is shown in FIG.

(8)上記(7)の加力を実施した錫プラグ入り積層ゴム支承体を試験体として、再度次の条件で試験した。すなわち、この試験体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±100%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図10に示す。 (8) The laminated rubber bearing body with tin plug subjected to the force of (7) above was used as a test body and tested again under the following conditions. That is, a shearing force of ± 100% of the total thickness of the rubber plate was generated by applying a shearing force to the test body in a state where a vertical load of 10 MPa was applied to the pressure receiving surfaces at both ends. This was carried out for 4 cycles. The relationship between load and displacement at this time is shown in FIG.

(9)参考例として、鉛プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態で、せん断力を加えてゴム板の総肉厚の±100%のせん断ひずみを生じさせた。これを4サイクル実施した。このときの荷重・変位の関係を図11に示す。 (9) As a reference example, in a state where a vertical load of 10 MPa is applied to the pressure-receiving surfaces at both ends of the laminated rubber bearing body with lead plugs, a shearing force is applied and a shear of ± 100% of the total thickness of the rubber plate Strain was generated. This was carried out for 4 cycles. The relationship between load and displacement at this time is shown in FIG.

〔各試験の考察〕
図4〜図8に示される荷重・変位関係は、変位ゼロ点付近の荷重が低下した形状を示している。図3、図9、図10、図11に示される荷重・変位関係は、変位ゼロ点付近でも荷重が低下せず、直線状の形状を示している。荷重・変位関係が変位ゼロ点付近でも荷重が低下せず、直線状の形状を示すということは、安定した免震特性を備えていることと考えられる。
[Consideration of each test]
The load / displacement relationship shown in FIGS. 4 to 8 shows a shape in which the load near the zero displacement point is reduced. The load / displacement relationships shown in FIGS. 3, 9, 10, and 11 show a linear shape without a load drop even near the zero displacement point. The fact that the load does not decrease even when the load / displacement relationship is near the zero displacement point and shows a linear shape is considered to have stable seismic isolation characteristics.

上記(1)〜(6)の試験により、積層ゴム支承体の受圧面に、従来から使用されている鉛プラグ入り積層ゴム支承体と同程度の10MPaの鉛直荷重を加えた状態では、せん断ひずみの大きさを変えても免震特性が安定しないことが分る。
上記(7)、(8)の試験により、錫プラグ挿入後に20MPa相当の鉛直荷重を加えた状態でせん断力を加えたことで、荷重・変位関係が変位ゼロ付近においても荷重が低下することのない安定した形状を示すことが分る。すなわち、錫プラグ入り積層ゴム支承体に、その両端部の受圧面に10MPaの鉛直荷重を加えた状態では、せん断力を加えても殆ど影響がなく、変位ゼロ点付近の荷重の低下が生じているのに対し、20MPaの鉛直荷重を加えた状態で、所定のせん断力を加えることによって、上記(9)の試験で図11に示されるような鉛プラグ入り積層ゴム支承体の免震特性と同等の良好な免震特性を有する積層ゴム支承体が得られることが分る。また、上記(8)の試験により、一旦所定の鉛直荷重を加えた状態でせん断力を加えることによって、後に鉛直荷重を減らした状態においても良好な免震特性を有することが分かる。
According to the above tests (1) to (6), when a 10 MPa vertical load similar to that of a conventional laminated rubber bearing body with a lead plug is applied to the pressure receiving surface of the laminated rubber bearing body, the shear strain It can be seen that the seismic isolation characteristics are not stable even if the size of the is changed.
According to the tests of (7) and (8) above, when a shear force was applied in a state where a vertical load equivalent to 20 MPa was applied after the tin plug was inserted, the load decreased even when the load / displacement relationship was near zero displacement. It can be seen that it shows no stable shape. That is, in a state where a vertical load of 10 MPa is applied to the pressure-receiving surfaces at both ends of the laminated rubber bearing body with tin plug, there is almost no effect even if a shear force is applied, and the load near the zero displacement point is reduced. On the other hand, by applying a predetermined shear force in a state where a vertical load of 20 MPa is applied, the seismic isolation characteristics of the laminated rubber bearing body with a lead plug as shown in FIG. It can be seen that a laminated rubber bearing body having equivalent good seismic isolation characteristics can be obtained. Moreover, it can be seen from the test of (8) that by applying a shear force once a predetermined vertical load is applied, it has good seismic isolation characteristics even in a state where the vertical load is reduced later.

以上のことから、鉛プラグの変わりに錫プラグを使用した積層ゴム支承体を製作するには、従来の製造方法とは異なる製造条件が必要であることが明らかである。同様に、鉛より弾性率、引張力の大きな銅、アルミニウム、亜鉛についても、本発明の製造条件を適用することにより安定した免震性能を有する積層ゴム支承体を製造することが可能である。   From the above, it is apparent that manufacturing conditions different from the conventional manufacturing method are necessary to manufacture a laminated rubber bearing using a tin plug instead of a lead plug. Similarly, a laminated rubber bearing having stable seismic isolation performance can be produced by applying the production conditions of the present invention to copper, aluminum, and zinc, which have a larger elastic modulus and tensile force than lead.

積層ゴム支承体を示す縦断面図である。It is a longitudinal cross-sectional view which shows a laminated rubber support body. 積層ゴム支承体を示す斜視図である。It is a perspective view which shows a laminated rubber support body. 錫プラグ入り積層ゴム支承体に10MPa加圧、±25%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view showing a load / displacement relationship when 10 MPa pressure and ± 25% shear strain are applied to a laminated rubber bearing body with a tin plug. 錫プラグ入り積層ゴム支承体に10MPa加圧、±50%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view which shows a load and a displacement relationship when 10 MPa pressurization and the shear strain of +/- 50% are provided to the laminated rubber bearing body containing a tin plug. 錫プラグ入り積層ゴム支承体に10MPa加圧、±100%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view which shows a load and a displacement relationship when 10 MPa pressurization and the shear strain of +/- 100% are provided to the laminated rubber bearing body containing a tin plug. 錫プラグ入り積層ゴム支承体に10MPa加圧、±150%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view showing a load-displacement relationship when a 10 MPa pressure and ± 150% shear strain are applied to a laminated rubber bearing body with a tin plug. 錫プラグ入り積層ゴム支承体に10MPa加圧、±200%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view which shows a load and a displacement relationship when 10 MPa pressurization and the shear strain of +/- 200% are provided to the laminated rubber bearing body containing a tin plug. 錫プラグ入り積層ゴム支承体に10MPa加圧、±250%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view showing a load / displacement relationship when 10 MPa pressure and ± 250% shear strain are applied to a laminated rubber bearing body with a tin plug. 錫プラグ入り積層ゴム支承体に20MPa加圧、±100%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view which shows a load and a displacement relationship when 20 MPa pressurization and the shear strain of +/- 100% are provided to the laminated rubber bearing body containing a tin plug. 錫プラグ入り積層ゴム支承体に20MPa加圧後に10MPa加圧、±100%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。FIG. 6 is a characteristic diagram showing a load / displacement relationship when a laminated rubber bearing body with a tin plug is subjected to a pressure of 10 MPa and a shear strain of ± 100% after applying a pressure of 20 MPa. 鉛プラグ入り積層ゴム支承体に10MPa加圧、±100%のせん断ひずみを付与したときの荷重・変位関係を示す特性図である。It is a characteristic view which shows a load and a displacement relationship when 10 MPa pressurization and the shear strain of +/- 100% are provided to the laminated rubber bearing body containing a lead plug.

符号の説明Explanation of symbols

10 積層体
11 ゴム板
12 金属板
13 貫通孔
14 金属プラグ
17、18 フランジ金具
DESCRIPTION OF SYMBOLS 10 Laminated body 11 Rubber plate 12 Metal plate 13 Through-hole 14 Metal plug 17, 18 Flange bracket

Claims (6)

複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、
前記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、
その後、前記非鉛金属プラグを挿入した積層体の受圧面に少なくとも15MPaの圧力を印加した状態で、前記積層体に、前記複数のゴム板の総肉厚の25〜250%の範囲でせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
In a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, at least one through hole is formed in the vertical direction,
A lead-free metal plug is inserted into the through-hole at a pressure of at least 100 MPa,
Thereafter, in a state where a pressure of at least 15 MPa is applied to the pressure-receiving surface of the laminate in which the lead-free metal plug is inserted, the laminate is subjected to shear strain in a range of 25 to 250% of the total thickness of the plurality of rubber plates. A method for producing a laminated rubber bearing, comprising adding
複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、
前記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、
その後、前記非鉛金属プラグを挿入した積層体の受圧面に少なくとも20MPaの圧力を印加した状態で、前記積層体に、前記複数のゴム板の総肉厚の25〜250%の範囲のせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
In a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, at least one through hole is formed in the vertical direction,
A lead-free metal plug is inserted into the through-hole at a pressure of at least 100 MPa,
Thereafter, in a state where a pressure of at least 20 MPa is applied to the pressure-receiving surface of the laminated body in which the lead-free metal plug is inserted, a shear strain in the range of 25 to 250% of the total thickness of the plurality of rubber plates is applied to the laminated body. A method for producing a laminated rubber bearing, comprising adding
複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、
前記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、
その後、前記非鉛金属プラグを挿入した積層体の受圧面に少なくとも30MPaの圧力を印加した状態で、前記積層体に、前記複数のゴム板の総肉厚の25〜250%の範囲のせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
In a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, at least one through hole is formed in the vertical direction,
A lead-free metal plug is inserted into the through-hole at a pressure of at least 100 MPa,
Then, in a state where a pressure of at least 30 MPa is applied to the pressure-receiving surface of the laminated body in which the lead-free metal plug is inserted, a shear strain in the range of 25 to 250% of the total thickness of the plurality of rubber plates is applied to the laminated body. A method for producing a laminated rubber bearing, comprising adding
請求項1ないし3のいずれかに記載の積層ゴム支承体の製造方法において、
前記非鉛金属プラグを、前記貫通孔に、少なくとも200MPaの圧力で挿入することを特徴とする積層ゴム支承体の製造方法。
In the manufacturing method of the laminated rubber bearing body in any one of Claims 1 thru | or 3,
A method for producing a laminated rubber bearing, wherein the lead-free metal plug is inserted into the through-hole with a pressure of at least 200 MPa.
請求項1ないし4のいずれかに記載の積層ゴム支承体の製造方法において、
前記非鉛金属プラグが錫、銅、アルミニウム、亜鉛、これらの合金から選択された少なくとも1つからなることを特徴とする積層ゴム支承体の製造方法。
In the manufacturing method of the laminated rubber bearing body in any one of Claims 1 thru | or 4,
The method for producing a laminated rubber bearing body, wherein the non-lead metal plug is made of at least one selected from tin, copper, aluminum, zinc, and alloys thereof.
複数のゴム板と複数の金属板とを上下方向に交互に積層してなる積層体に、少なくとも1つの貫通孔を上下方向に形成し、
前記貫通孔に、非鉛金属プラグを、少なくとも100MPaの圧力で挿入し、
その後、前記非鉛金属プラグを挿入した積層体の受圧面に、実際の支持荷重より大きい圧力を印加した状態で、前記積層体に、前記複数のゴム板の総肉厚の25〜250%の範囲のせん断ひずみを加えることを特徴とする積層ゴム支承体の製造方法。
In a laminate formed by alternately laminating a plurality of rubber plates and a plurality of metal plates in the vertical direction, at least one through hole is formed in the vertical direction,
A lead-free metal plug is inserted into the through-hole at a pressure of at least 100 MPa,
Then, in a state where a pressure larger than the actual support load is applied to the pressure-receiving surface of the laminated body in which the lead-free metal plug is inserted, the laminated body has a thickness of 25 to 250% of the total thickness of the plurality of rubber plates. A method for producing a laminated rubber bearing, characterized by applying a shear strain within a range.
JP2004115074A 2004-04-09 2004-04-09 Manufacturing method for laminated rubber supporting body Pending JP2005299762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115074A JP2005299762A (en) 2004-04-09 2004-04-09 Manufacturing method for laminated rubber supporting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115074A JP2005299762A (en) 2004-04-09 2004-04-09 Manufacturing method for laminated rubber supporting body

Publications (1)

Publication Number Publication Date
JP2005299762A true JP2005299762A (en) 2005-10-27

Family

ID=35331541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115074A Pending JP2005299762A (en) 2004-04-09 2004-04-09 Manufacturing method for laminated rubber supporting body

Country Status (1)

Country Link
JP (1) JP2005299762A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127688A (en) * 2007-11-21 2009-06-11 Bridgestone Corp Method of eliminating gas and method of manufacturing stacked support
JP2013211510A (en) * 2012-02-27 2013-10-10 Tokkyokiki Corp Earthquake reduction device for transformer and method of fitting earthquake reduction device for transformer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384232A (en) * 1989-08-25 1991-04-09 Toyo Tire & Rubber Co Ltd Vibration exempting supporter
JPH08504254A (en) * 1992-12-04 1996-05-07 インダストリアル リサーチ リミテッド Energy absorbing device and manufacturing method
JPH1037212A (en) * 1996-05-24 1998-02-10 Bridgestone Corp Vibration-isolation ground
JPH1129986A (en) * 1997-07-10 1999-02-02 Sumitomo Rubber Ind Ltd Laminated rubber bearing body and its manufacture
JPH11159573A (en) * 1997-12-01 1999-06-15 Sumitomo Rubber Ind Ltd Manufacture of laminated rubber support body
JP2000193005A (en) * 1998-12-25 2000-07-14 Showa Electric Wire & Cable Co Ltd Laminated rubber support
JP2000346132A (en) * 1995-08-04 2000-12-12 Oiles Ind Co Ltd Base isolation device
JP2002089080A (en) * 2000-09-21 2002-03-27 Sekisui Chem Co Ltd Base isolation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384232A (en) * 1989-08-25 1991-04-09 Toyo Tire & Rubber Co Ltd Vibration exempting supporter
JPH08504254A (en) * 1992-12-04 1996-05-07 インダストリアル リサーチ リミテッド Energy absorbing device and manufacturing method
JP2000346132A (en) * 1995-08-04 2000-12-12 Oiles Ind Co Ltd Base isolation device
JPH1037212A (en) * 1996-05-24 1998-02-10 Bridgestone Corp Vibration-isolation ground
JPH1129986A (en) * 1997-07-10 1999-02-02 Sumitomo Rubber Ind Ltd Laminated rubber bearing body and its manufacture
JPH11159573A (en) * 1997-12-01 1999-06-15 Sumitomo Rubber Ind Ltd Manufacture of laminated rubber support body
JP2000193005A (en) * 1998-12-25 2000-07-14 Showa Electric Wire & Cable Co Ltd Laminated rubber support
JP2002089080A (en) * 2000-09-21 2002-03-27 Sekisui Chem Co Ltd Base isolation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127688A (en) * 2007-11-21 2009-06-11 Bridgestone Corp Method of eliminating gas and method of manufacturing stacked support
JP2013211510A (en) * 2012-02-27 2013-10-10 Tokkyokiki Corp Earthquake reduction device for transformer and method of fitting earthquake reduction device for transformer

Similar Documents

Publication Publication Date Title
Li et al. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator
Dolce et al. Shaking‐table tests on reinforced concrete frames with different isolation systems
JP3360828B2 (en) Energy absorber and manufacturing method
Li et al. Development of adaptive seismic isolators for ultimate seismic protection of civil structures
JP2009534565A (en) Casting structure connector
Soydan et al. The behavior of a steel connection equipped with the lead extrusion damper
JP2006275212A (en) Energy absorbing device
Peng et al. Shaking table test of seismic isolated structures with sliding hydromagnetic bearings
JP2016080051A (en) Base isolation support device
JP2006275215A (en) Vibrational energy absorbing device and its manufacturing method
JP2006242240A (en) Energy absorbing device
EP3614017A1 (en) Seismic isolation support device
JP2006170233A (en) Base isolator and base isolation structure
JP2005299762A (en) Manufacturing method for laminated rubber supporting body
JP5845130B2 (en) Laminated rubber bearing
JP2013002192A (en) Tension type base-isolation bearing device
JP5911743B2 (en) Damping damper and damping structure
JP6406880B2 (en) Seismic isolation device
JP2006207680A (en) Laminated rubber supporter
CN111043213B (en) Stable-state controllable laminated compression bar and transient vibration suppression structure based on same
JP2006009852A (en) Method of manufacturing laminated rubber bearing body, and laminated rubber bearing body
JP2006242239A (en) Energy absorbing device
JP2007332643A (en) Base isolated building
JP6051325B1 (en) Seismic isolation device with concentric laminated damping material
JP2009002359A (en) Energy absorbing device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090625