JP2009127688A - Method of eliminating gas and method of manufacturing stacked support - Google Patents

Method of eliminating gas and method of manufacturing stacked support Download PDF

Info

Publication number
JP2009127688A
JP2009127688A JP2007301553A JP2007301553A JP2009127688A JP 2009127688 A JP2009127688 A JP 2009127688A JP 2007301553 A JP2007301553 A JP 2007301553A JP 2007301553 A JP2007301553 A JP 2007301553A JP 2009127688 A JP2009127688 A JP 2009127688A
Authority
JP
Japan
Prior art keywords
molded body
mixture
hollow portion
laminated
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007301553A
Other languages
Japanese (ja)
Inventor
Shigenobu Suzuki
重信 鈴木
Hironori Hamazaki
宏典 濱崎
Hideaki Kato
秀章 加藤
Akiyuki Arai
章之 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007301553A priority Critical patent/JP2009127688A/en
Publication of JP2009127688A publication Critical patent/JP2009127688A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a stacked support having a molded body, which is made of the mixture of a plastic flow material and a hard filler and has a low gas content, in the hollow part of the stacked elastic body. <P>SOLUTION: A plurality of mixture pieces 56A are put in the hollow part 28 of the elastic body, pressurized, and formed integrally with each other to mold the molded body 56. The hollow part 28 of the elastic body is closed by closing plates 24 to seal the molded body 56 in the hollow part 28 of the elastic body. The molded body 56 is shear-deformed to extrude the gas mixed in the molded body 56 for forming the gaps between the molded body 56 and the hollow part 28 of the elastic body. The mixture pieces 56A are additionally put in the gaps, pressurized, and shear-deformed to form the molded body 56 with a low air content in the hollow part 28 of the elastic body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、塑性流動材料と硬質充填材の混合物から混合物中の気体を除去する気体除去方法、及び積層弾性体の積層方向に形成された中空部に塑性流動材料と硬質充填材の混合物からなる成型体を有する積層支持体の製造方法に関する。   The present invention comprises a gas removal method for removing gas in a mixture from a mixture of a plastic fluid material and a hard filler, and a mixture of a plastic fluid material and a hard filler in a hollow portion formed in the lamination direction of a laminated elastic body. The present invention relates to a method for producing a laminated support having a molded body.

従来から、ゴムなどの弾性板と金属などの剛性板とを交互に積層した積層支持体が、免震装置の支承等として使用されている。このような積層支持体には、例えば、中心に中空部を形成し、この中空部内に金属製のコアを圧入して構成されたものがある。このような構成により、積層支持体がせん断変形するときに、コアが塑性変形することで、ダンパとして機能するようになっている。   Conventionally, a laminated support in which elastic plates such as rubber and rigid plates such as metal are alternately laminated has been used as a support for seismic isolation devices. Such laminated supports include, for example, a structure in which a hollow portion is formed at the center and a metal core is press-fitted into the hollow portion. With such a configuration, when the laminated support body undergoes shear deformation, the core plastically deforms to function as a damper.

ところで、コアとしては、塑性変形の挙動が安定している鉛製のもの(鉛プラグ)が使用されることが多い。しかし、鉛プラグは、廃却時等に要するコストが大きいため、鉛プラグに替えて、塑性流動材料と硬質充填材の混合物が用いられたコアもある(特許文献1参照)。   By the way, as a core, the thing made from lead (lead plug) whose behavior of plastic deformation is stable is often used. However, since the cost of lead plugs is high when they are discarded, there is also a core using a mixture of a plastic fluid material and a hard filler instead of the lead plug (see Patent Document 1).

一般的に、塑性流動材料と硬質充填材の混練はニーダーを用いて行われる。ニーダーによって混練された塑性流動材料と硬質充填材の混合物片100Aは、図11(A)に示すような複数の不定形の塊状に形成され、これを成型機102に投入して必要に応じて加熱しながら加圧して(図11(B)及び図11(C))、コアの形状に成型(成型体)する。   Generally, the kneading of the plastic fluid material and the hard filler is performed using a kneader. A mixture piece 100A of a plastic fluid material and a hard filler kneaded by a kneader is formed into a plurality of irregularly shaped lumps as shown in FIG. 11 (A). It pressurizes, heating (FIG. 11 (B) and FIG. 11 (C)), and shape | molds (molded body) in the shape of a core.

ここで、ニーダーによる塑性流動材料と硬質充填材との混練時に気体が混入して混合物片100A内に気体が含有されることがある。このような混合物片100Aを用いてコアを成型すると、コア内に気体が混入してしまう。また、複数の塊状の混合物片100Aを成型機102に投入するときに、混合物片100A同士の間に隙間ができることから、この状態で混合物片100Aを加圧成型しても、成型されたコア内に空気(気体)が混入してしまう。コア内の空気含有率が多くなると、コアの塑性変形時の力学特性が不安定になり、安定した減衰性能が得られなくなる。
特開2006−316990号公報
Here, when the plastic fluid material and the hard filler are kneaded by the kneader, a gas may be mixed and the gas may be contained in the mixture piece 100A. When the core is molded using such a mixture piece 100A, gas is mixed in the core. Further, when a plurality of lump-like mixture pieces 100A are put into the molding machine 102, a gap is formed between the mixture pieces 100A. Therefore, even if the mixture pieces 100A are pressure-molded in this state, Air (gas) is mixed in. If the air content in the core increases, the mechanical properties at the time of plastic deformation of the core become unstable, and stable damping performance cannot be obtained.
JP 2006-316990 A

本発明は上記事実を考慮し、塑性流動材料と硬質充填材を混合した混合物から混合物中の気体を除去して、気体含有率が低い成型品を得るための気体除去方法、及び積層弾性体の中空部に塑性流動材料と硬質充填材の混合物からなる気体含有率が低い成型体を有する積層支持体を製造するための製造方法を提供することを課題とする。   In consideration of the above facts, the present invention removes gas in a mixture from a mixture of a plastic fluid material and a hard filler to obtain a molded product having a low gas content, and a laminated elastic body. It is an object of the present invention to provide a production method for producing a laminated support having a molded body having a low gas content, which is made of a mixture of a plastic fluid material and a hard filler, in a hollow portion.

請求項1に記載の気体除去方法は、塑性流動材料と硬質充填材を混合した混合物から前記混合物中の気体を除去する気体除去方法であって、せん断変形が可能な加圧室に前記混合物を投入する工程と、前記加圧室に投入された前記混合物を加圧する工程と、加圧された前記混合物を前記加圧室に封じ、前記加圧室をせん断変形させて、封じられた前記混合物をせん断変形させる工程と、を備えることを特徴としている。   The gas removal method according to claim 1, wherein the gas in the mixture is removed from a mixture obtained by mixing the plastic fluid material and the hard filler, and the mixture is placed in a pressure chamber capable of shear deformation. A step of charging, a step of pressurizing the mixture charged into the pressurizing chamber, and the pressurized mixture is sealed in the pressurizing chamber, the pressurizing chamber is shear-deformed, and the sealed mixture is sealed And a step of shearing and deforming.

請求項1に記載の気体除去方法では、せん断変形が可能な加圧室に塑性流動材料と硬質充填材の1乃至複数の混合物が投入され、加圧される。次いで、加圧された混合物を加圧室に封じ、加圧室をせん断変形させて、封じられた混合物をせん断変形させる。このせん断変形によって、混合物に含有された気体及び複数の混合物間の気体(複数の混合物が投入された場合のみ)が外部へと押し出される。これにより、気体が除去された、すなわち気体含有率が低減された混合物からなる成型品が得られる。   In the gas removing method according to the first aspect, one or more mixtures of the plastic fluid material and the hard filler are put into a pressurizing chamber capable of shear deformation and pressurized. Next, the pressurized mixture is sealed in a pressurizing chamber, the pressurizing chamber is shear-deformed, and the sealed mixture is shear-deformed. By this shear deformation, the gas contained in the mixture and the gas between the plurality of mixtures (only when a plurality of mixtures are introduced) are pushed out to the outside. Thereby, the molded product which consists of a mixture from which gas was removed, ie, the gas content rate was reduced, is obtained.

請求項2に記載の積層支持体の製造方法は、剛性板と、前記剛性板よりも弾性率が低い弾性部材とが交互に積層され、且つ積層方向に中空部が形成された積層弾性体と、前記中空部に設けられた塑性流動材料と硬質充填材の混合物からなる成型体とを有する積層支持体の製造方法であって、前記中空部に塑性流動材料と硬質充填材を混合した複数の混合物片を投入する投入工程と、前記中空部に投入された前記複数の混合物片を加圧し、一体化させて成型体を成型する成型工程と、前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させるせん断変形工程と、前記せん断変形工程後、前記成型体と前記中空部との間に形成される隙間に前記混合物片を追加投入する追加投入工程と、前記追加投入工程後、前記中空部の前記成型体と追加した前記混合物片とを加圧し、一体化させる再成型工程と、前記再成型工程後、前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させる再せん断変形工程と、を備え、前記追加投入工程、前記再成型工程、及び前記再せん断変形工程を1サイクルとして1乃至複数回繰り返すことを特徴としている。   The method for producing a laminated support according to claim 2, wherein the rigid plate and the elastic member having an elastic modulus lower than that of the rigid plate are alternately laminated, and the laminated elastic body is formed with a hollow portion in the lamination direction. A method for producing a laminated support having a molded body made of a mixture of a plastic fluid material and a hard filler provided in the hollow portion, wherein a plurality of the plastic fluid material and the hard filler are mixed in the hollow portion. A charging step of charging a mixture piece, a molding step of pressurizing and integrating the plurality of mixture pieces charged into the hollow portion, and molding the molded body; and sealing the molded body in the hollow portion; The elastic body is shear-deformed in a direction crossing the laminating direction, and the sealed molded body is subjected to shear deformation, and after the shear deformation process, the elastic body is formed between the molded body and the hollow portion. Add the mixture piece to the gap Additional charging step, after the additional charging step, pressurizing and integrating the molded body of the hollow part and the added mixture piece, and after the remolding step, the molded body is hollowed A re-shear deformation step of shearing and deforming the sealed molded body by shear deformation in a direction intersecting the lamination direction, and the additional charging step, the re-molding step, The re-shear deformation step is repeated one or more times as one cycle.

請求項2に記載の積層支持体の製造方法では、投入工程で中空部内に塑性流動材料と硬質充填材を混合した複数の混合物片が投入される。次に、成型工程で中空部に投入された複数の混合物片が加圧され、一体化されて成型体が成型される。次に、せん断変形工程で成型体を中空部に封じ積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた成型体をせん断変形させる。このせん断変形によって成型体に混入した気体が成型体の外部へと押し出され、中空部と成型体との間に隙間が形成される。次に、追加投入工程で成型体と中空部との間に形成された隙間に混合物片が追加投入される。次に、再成型工程で中空部の成型体と追加した混合物片とを加圧し、一体化させる。そして、再せん断変形工程で成型体を中空部に封じ、積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた成型体をせん断変形させる。このせん断変形によって中空部と成型体との間に隙間が形成された場合には、追加投入工程、再成型工程、及び再せん断変形工程を1サイクルとして1乃至複数回繰り返す。この繰り返し作業は、中空部と成型体との間の隙間がなくなるまで繰り返される。これにより、気体が除去され、気体含有率が低くなった成型体が積層弾性体の中空部に設けられる。結果、積層支持体の中空部には気体含有率が低く、十分な強度を有する成型体が設けられるため、この積層支持体の製造方法で製造された積層支持体は安定した減衰性能を発揮することができる。   In the manufacturing method of the laminated support body of Claim 2, the several mixture piece which mixed the plastic fluid material and the hard filler is injected | thrown-in in a hollow part at the injection | throwing-in process. Next, the plurality of mixture pieces charged into the hollow part in the molding step are pressurized and integrated to form a molded body. Next, the molded body is sealed in a hollow portion in a shear deformation process, and the laminated elastic body is subjected to shear deformation in a direction intersecting the lamination direction, and the sealed molded body is subjected to shear deformation. By this shear deformation, the gas mixed in the molded body is pushed out of the molded body, and a gap is formed between the hollow portion and the molded body. Next, the mixture piece is additionally charged into the gap formed between the molded body and the hollow part in the additional charging step. Next, the molded body of the hollow part and the added mixture piece are pressurized and integrated in the remolding step. Then, in the re-shear deformation step, the molded body is sealed in the hollow portion, and the laminated elastic body is subjected to shear deformation in a direction crossing the lamination direction, so that the sealed molded body is subjected to shear deformation. When a gap is formed between the hollow portion and the molded body by this shear deformation, the additional charging process, the re-molding process, and the re-shear deformation process are repeated one or more times as one cycle. This repeating operation is repeated until there is no gap between the hollow portion and the molded body. Thereby, gas is removed and the molded object with which the gas content rate became low is provided in the hollow part of a laminated elastic body. As a result, since the hollow portion of the laminated support is provided with a molded body having a low gas content and sufficient strength, the laminated support produced by this production method of the laminated support exhibits stable damping performance. be able to.

請求項3に記載の積層支持体の製造方法は、剛性板と、前記剛性板よりも弾性率が低い弾性部材とが交互に積層され、且つ積層方向に中空部が形成された積層弾性体と、前記中空部に設けられた塑性流動材料と硬質充填材の混合物からなる成型体とを有する積層支持体の製造方法であって、塑性流動材料と硬質充填材を混合した複数の混合物片を加圧し、一体化させて成型された前記中空部と同形状の成型体を前記中空部内に圧入する圧入工程と、前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させるせん断変形工程と、前記せん断変形工程後、前記成型体と前記中空部との間に形成される隙間に前記混合物片を追加投入する追加投入工程と、前記追加投入工程後、前記中空部の前記成型体と追加した前記混合物片とを加圧し、一体化させる再成型工程と、前記再成型工程後、前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させる再せん断変形工程と、を備え、前記追加投入工程、前記再成形工程、及び前記再せん断変形工程を1サイクルとして1乃至複数回繰り返すことを特徴としている。   The method for producing a laminated support according to claim 3 includes a laminated elastic body in which a rigid plate and an elastic member having an elastic modulus lower than that of the rigid plate are alternately laminated, and a hollow portion is formed in the lamination direction. A method of manufacturing a laminated support having a molded body made of a mixture of a plastic fluid material and a hard filler provided in the hollow portion, wherein a plurality of mixture pieces obtained by mixing the plastic fluid material and the hard filler are added. A press-fitting step of press-fitting and molding a molded body having the same shape as the hollow part formed by pressing into the hollow part; and a direction in which the molded elastic body is sealed in the hollow part and the laminated elastic body intersects the laminating direction. A shear deformation step of shearing and deforming the sealed molded body, and after the shear deformation step, the mixture piece is additionally charged into a gap formed between the molded body and the hollow portion. Additional injection process and the additional investment After the step, the molded body of the hollow part and the added mixture piece are pressurized and integrated, and after the re-molding process, the molded body is sealed in the hollow part, and the laminated elastic body is A re-shear deformation step that shears and deforms the sealed molded body by shear deformation in a direction crossing the stacking direction, and the additional charging step, the re-forming step, and the re-shear deformation step are performed in one cycle. It is characterized by repeating 1 to several times.

請求項3に記載の積層支持体の製造方法では、塑性流動材料と硬質充填材を混合した複数の混合物片を加圧し、一体化させて成型された中空部と同形状の成型体が圧入工程で圧入される。次に、せん断変形工程で成型体を中空部に封じ積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた成型体をせん断変形させる。このせん断変形によって成型体に混入した気体が成型体の外部へと押し出され、中空部と成型体との間に隙間が形成される。次に、追加投入工程で成型体と中空部との間に形成された隙間に混合物片が追加投入される。次に、再成型工程で中空部の成型体と追加した混合物片とを加圧し、一体化させる。そして、再せん断変形工程で成型体を中空部に封じ、積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた成型体をせん断変形させる。このせん断変形によって中空部と成型体との間に隙間が形成された場合には、追加投入工程、再成型工程、及び再せん断変形工程を1サイクルとして1乃至複数回繰り返す。この繰り返し作業は、中空部と成型体との間の隙間がなくなるまで繰り返される。これにより、気体が除去され、気体含有率が低くなった成型体が積層弾性体の中空部に設けられる。結果、積層支持体の中空部には気体含有率が低く、十分な強度を有する成型体が設けられるため、この積層支持体の製造方法で製造された積層支持体は安定した減衰性能を発揮することができる。   In the manufacturing method of the laminated support body of Claim 3, the molded object of the same shape as the hollow part shape | molded by pressurizing and integrating the several mixture piece which mixed the plastic fluid material and the hard filler is press-fitting process. It is press-fitted with. Next, the molded body is sealed in a hollow portion in a shear deformation process, and the laminated elastic body is subjected to shear deformation in a direction intersecting the lamination direction, and the sealed molded body is subjected to shear deformation. By this shear deformation, the gas mixed in the molded body is pushed out of the molded body, and a gap is formed between the hollow portion and the molded body. Next, the mixture piece is additionally charged into the gap formed between the molded body and the hollow part in the additional charging step. Next, the molded body of the hollow part and the added mixture piece are pressurized and integrated in the remolding step. Then, in the re-shear deformation step, the molded body is sealed in the hollow portion, and the laminated elastic body is subjected to shear deformation in a direction crossing the lamination direction, so that the sealed molded body is subjected to shear deformation. When a gap is formed between the hollow portion and the molded body by this shear deformation, the additional charging process, the re-molding process, and the re-shear deformation process are repeated one or more times as one cycle. This repeating operation is repeated until there is no gap between the hollow portion and the molded body. Thereby, gas is removed and the molded object with which the gas content rate became low is provided in the hollow part of a laminated elastic body. As a result, since the hollow portion of the laminated support is provided with a molded body having a low gas content and sufficient strength, the laminated support produced by this production method of the laminated support exhibits stable damping performance. be able to.

本発明の気体除去方法は上記構成としたので、塑性流動材料と硬質充填材を混合した混合物から混合物中の気体が除去され、気体含有率が低い成型品を得ることができる。
また、本発明の積層支持体の製造方法は上記構成としたので、積層弾性体の中空部に塑性流動材料と硬質充填材の混合物からなる気体含有率が低い成型体を有する積層支持体を製造することができる。
Since the gas removal method of the present invention has the above-described configuration, the gas in the mixture is removed from the mixture obtained by mixing the plastic fluid material and the hard filler, and a molded product having a low gas content can be obtained.
Moreover, since the manufacturing method of the lamination | stacking support body of this invention was set as the said structure, it manufactures the lamination | stacking support body which has the molding with a low gas content rate which consists of a mixture of a plastic fluid material and a hard filler in the hollow part of a lamination | stacking elastic body. can do.

図1には、本発明の第1実施形態に係る積層支持体の製造方法を用いて製造された積層支持体12が示されている。積層支持体12は、複数枚の円盤状の金属板18と、同じく複数枚の円盤状のゴム板20とを厚み方向に交互に積層した(以下この積層方向を「X方向」という)積層弾性体16を備えている。   FIG. 1 shows a laminated support 12 manufactured using the method for manufacturing a laminated support according to the first embodiment of the present invention. The laminated support 12 is a laminated elastic material in which a plurality of disk-shaped metal plates 18 and a plurality of disk-shaped rubber plates 20 are alternately laminated in the thickness direction (hereinafter, this lamination direction is referred to as “X direction”). A body 16 is provided.

積層弾性体16のX方向両端面には、フランジ板14が固定されている。フランジ板14は、積層弾性体16よりも側方に張り出すフランジ部14Fを備えており、このフランジ部14Fに形成された図示しないボルト孔にボルトを挿通して、積層支持体12が、図示しない支持部材(たとえば、建物基礎、土台、地盤等)及び図示しない被支持部材(たとえば、オフィスビル、病院、集合住宅、美術館、公会堂、学校、庁舎、神社仏閣、橋梁等)に取り付けられる。取付け状態では、被支持部材が積層支持体12を介して支持部材に支持される。   Flange plates 14 are fixed to both end surfaces of the laminated elastic body 16 in the X direction. The flange plate 14 includes a flange portion 14F that protrudes to the side of the laminated elastic body 16, and a bolt is inserted into a bolt hole (not shown) formed in the flange portion 14F so that the laminated support body 12 is illustrated. It is attached to non-supporting members (for example, building foundations, foundations, grounds, etc.) and non-illustrated supported members (for example, office buildings, hospitals, apartment houses, museums, public halls, schools, government buildings, shrines and temples, bridges, etc.). In the attached state, the supported member is supported by the support member via the laminated support 12.

積層弾性体16を構成する金属板18とゴム板20とは加硫接着により(あるいは接着剤により)強固に張り合わされており、これらが不用意に分離したり位置ズレしたりしないようになっている。そして、積層支持体12が水平方向のせん断力を受けると、積層弾性体16も弾性的にせん断変形する。   The metal plate 18 and the rubber plate 20 constituting the laminated elastic body 16 are firmly bonded to each other by vulcanization adhesion (or by an adhesive) so that they are not inadvertently separated or misaligned. Yes. When the laminated support body 12 receives a horizontal shearing force, the laminated elastic body 16 is also elastically sheared.

したがって、支持部材と被支持部材とが水平方向に相対移動(振動)すると、積層弾性体16が全体として弾性的にせん断変形する。ここで、上記のように、金属板18とゴム板20とを交互に積層したことで、積層方向に荷重が作用しても、積層弾性体16の圧縮変形(すなわちゴム板20の圧縮)を抑制することができる。   Accordingly, when the supporting member and the supported member are relatively moved (vibrated) in the horizontal direction, the laminated elastic body 16 is elastically sheared and deformed as a whole. Here, as described above, by alternately laminating the metal plates 18 and the rubber plates 20, even when a load acts in the laminating direction, the laminated elastic body 16 is compressed and deformed (that is, the rubber plate 20 is compressed). Can be suppressed.

積層弾性体16はさらに、金属板18とゴム板20の外側端面を周囲から被覆する被覆材22を有している。被覆材22によって金属板18及びゴム板20に外部から雨や光が作用しなくなり、酸素やオゾン、紫外線などによる劣化が防止される。また、被覆材22は、厚さが一定とされており、その強度にばらつきがでないようにされている。   The laminated elastic body 16 further includes a covering material 22 that covers the outer end faces of the metal plate 18 and the rubber plate 20 from the periphery. The coating material 22 prevents rain and light from acting on the metal plate 18 and the rubber plate 20 from the outside, thereby preventing deterioration due to oxygen, ozone, ultraviolet rays, or the like. Further, the covering material 22 has a constant thickness so that there is no variation in its strength.

なお、被覆材22はゴム板20と同一の材料によって形成することができる。この場合、ゴム板20と被覆材22とを別体で形成しておき、後工程で加硫接着等によって一体化させることが可能である。あるいは、被覆材22とゴム板20を接着剤等で接着してもよい。   The covering material 22 can be formed of the same material as the rubber plate 20. In this case, the rubber plate 20 and the covering material 22 can be formed separately and integrated by vulcanization adhesion or the like in a subsequent process. Alternatively, the covering material 22 and the rubber plate 20 may be bonded with an adhesive or the like.

積層弾性体16の中央部には、積層弾性体16をX方向に貫通する弾性体中空部28が形成されている。弾性体中空部28は、本実施形態では円柱状の空間とされているが、形状は円柱状に限定されない。   An elastic hollow portion 28 that penetrates the laminated elastic body 16 in the X direction is formed at the center of the laminated elastic body 16. The elastic hollow portion 28 is a cylindrical space in the present embodiment, but the shape is not limited to a cylindrical shape.

弾性体中空部28には、塑性流動材料と硬質充填材を混合した混合物からなる成型体56である円筒状のコア30(コア30は積層支持体12が製品となったときの成型体56を示す。)が設けられている。また、弾性体中空部28の端部には閉塞板24が配置されている。閉塞板24は、弾性体中空部28のX方向の端部を閉塞できるように、弾性体中空部28よりも大径の円盤状に形成されている。閉塞板24をフランジ板14に固定することで、弾性体中空部28を密閉することができる。このような構成とされた第1実施形態の積層支持体12では、支持部材と被支持部材との水平方向への相対移動(振動)により、図2に示されるように積層弾性体16が弾性的にせん断変形し、エネルギーを吸収する。   In the elastic body hollow portion 28, a cylindrical core 30 which is a molded body 56 made of a mixture of a plastic fluid material and a hard filler (the core 30 is a molded body 56 obtained when the laminated support 12 is a product). Is shown). A closing plate 24 is disposed at the end of the elastic body hollow portion 28. The closing plate 24 is formed in a disk shape having a larger diameter than the elastic body hollow portion 28 so that the end of the elastic body hollow portion 28 in the X direction can be closed. By fixing the closing plate 24 to the flange plate 14, the elastic body hollow portion 28 can be sealed. In the laminated support body 12 of the first embodiment having such a configuration, the laminated elastic body 16 is elastic as shown in FIG. 2 due to relative movement (vibration) between the support member and the supported member in the horizontal direction. Shears and absorbs energy.

次に、上記構成の積層支持体12を製造する工程について説明する。
(フランジ付き積層弾性体成形工程)
図3に示されるように、複数枚の円盤状の金属板18と、複数枚の円盤状の未加硫のゴム板20とを厚み方向に交互に積層し、X方向に貫通する弾性体中空部28が形成された未加硫の積層弾性体16を成形する。次に未加硫の積層弾性体16のX方向両端面にフランジ板14を固定し、未加硫の積層弾性体16の外周面を被覆材22で被覆した後で、加硫する。これにより、フランジ付き積層弾性体13が成形される。
Next, the process of manufacturing the laminated support 12 having the above configuration will be described.
(Flanged laminated elastic body molding process)
As shown in FIG. 3, a plurality of disk-shaped metal plates 18 and a plurality of disk-shaped unvulcanized rubber plates 20 are alternately stacked in the thickness direction, and an elastic hollow body penetrating in the X direction. The unvulcanized laminated elastic body 16 in which the portion 28 is formed is molded. Next, the flange plates 14 are fixed to both end surfaces in the X direction of the unvulcanized laminated elastic body 16, and the outer peripheral surface of the unvulcanized laminated elastic body 16 is covered with the covering material 22 and then vulcanized. Thereby, the laminated elastic body 13 with a flange is shape | molded.

(投入工程)
次に、図4に示されるように、フランジ付き積層弾性体13の弾性体中空部28のX方向の一方の端部(図4では下側の端部)を閉塞板24で閉塞し、この弾性体中空部28に塑性流動材料と硬質充填材を混合した不定形且つブロック状の混合物片56Aを投入する。なお、この混合物片56Aは、予めニーダーを用いて塑性流動材料と硬質充填材を混練することで形成している。
(Input process)
Next, as shown in FIG. 4, one end (the lower end in FIG. 4) of the elastic hollow portion 28 of the flanged laminated elastic body 13 in the X direction is closed with a closing plate 24. An indeterminate and block-like mixture piece 56A in which a plastic fluid material and a hard filler are mixed is put into the elastic hollow portion 28. The mixture piece 56A is formed by kneading the plastic fluid material and the hard filler in advance using a kneader.

(成型工程)
次に、図5に示されるように、フランジ付き積層弾性体13の弾性体中空部28に投入された複数の混合物片56Aを加圧するための加圧部材44を弾性体中空部28に挿入し、複数の混合物片56Aを加圧する。この加圧により、混合物片56Aに含有された気体及び複数の混合物片56Aの間の気体がある程度除去され、複数の混合物片56Aが一体化し、弾性体中空部28に成型体56が成型される。なお、成型体56の矢印X方向の長さが所定量よりも小さい場合には、再度混合物片56Aを投入し、加圧して、矢印X方向の長さを調整する。なお、本実施形態の加圧部材44の駆動源の一例としては油圧アクチュエータ、電動モーターなどを用いてもよいが、この一例に限定される必要もない。
(Molding process)
Next, as shown in FIG. 5, a pressurizing member 44 for pressurizing the plurality of mixture pieces 56 </ b> A introduced into the elastic body hollow portion 28 of the flanged laminated elastic body 13 is inserted into the elastic body hollow portion 28. The plurality of mixture pieces 56A are pressurized. By this pressurization, the gas contained in the mixture piece 56 </ b> A and the gas between the plurality of mixture pieces 56 </ b> A are removed to some extent, the plurality of mixture pieces 56 </ b> A are integrated, and the molded body 56 is molded into the elastic body hollow portion 28. . When the length of the molded body 56 in the arrow X direction is smaller than a predetermined amount, the mixture piece 56A is again charged and pressurized to adjust the length in the arrow X direction. In addition, as an example of the drive source of the pressure member 44 of the present embodiment, a hydraulic actuator, an electric motor, or the like may be used, but it is not necessary to be limited to this example.

(せん断変形工程)
次に、弾性体中空部28の他端部に閉塞板24を取り付けて、弾性体中空部28に成型体56を封じる。そして、一方のフランジ板14を図示しない支持体に固定し、他方のフランジを支持装置と水平方向(矢印X方向と直交する方向)に相対移動する図示しない被支持体に固定する。次に、図6に示されるように、被支持体を支持体に対して水平方向に相対移動させることで、フランジ付き積層弾性体13が弾性的にせん断変形する。このフランジ付き積層弾性体13のせん断変形に伴って、弾性体中空部28内の成型体56もせん断変形する。このとき、成型工程での加圧時に除去しきれなかった成型体56に混入した気体が、成型体56の外部へと押し出され、成型体56と弾性体中空部28との間に隙間(気体溜まり)が形成される。なお、フランジ付き積層弾性体13は、複数回せん断変形させてもよいものとする。
(Shear deformation process)
Next, the closing plate 24 is attached to the other end portion of the elastic body hollow portion 28, and the molded body 56 is sealed in the elastic body hollow portion 28. One flange plate 14 is fixed to a support body (not shown), and the other flange is fixed to a support body (not shown) that moves relative to the support device in the horizontal direction (direction orthogonal to the arrow X direction). Next, as shown in FIG. 6, the flanged laminated elastic body 13 is elastically shear-deformed by moving the supported body relative to the support in the horizontal direction. With the shear deformation of the flanged laminated elastic body 13, the molded body 56 in the elastic body hollow portion 28 also undergoes shear deformation. At this time, the gas mixed in the molded body 56 that could not be removed at the time of pressurization in the molding process is pushed out of the molded body 56, and a gap (gas) is formed between the molded body 56 and the elastic body hollow portion 28. A pool) is formed. The flanged laminated elastic body 13 may be subjected to shear deformation a plurality of times.

(追加投入工程)
次に、図7に示されるように、弾性体中空部28の他端部から閉塞板24を取り外し、成型体56と弾性体中空部28との隙間に混合物片56Aを追加投入する。
(再成型工程)
隙間に混合物片56Aを追加投入した後、加圧部材44を用いて、追加した混合物片56Aと成型体56を加圧し、一体化させる。このとき、図7の下側に位置する隙間(気体溜まり)は、この加圧(図7の上側からの加圧)によって除去される。
(再せん断変形工程)
そして、弾性体中空部28の他端部に閉塞板24を取り付けて弾性体中空部28に成型体56を封じ、各フランジ板14を支持体、及び被支持体に固定してフランジ付き積層弾性体13を再度せん断変形させ、成型体56をせん断変形させる。
(Additional input process)
Next, as shown in FIG. 7, the closing plate 24 is removed from the other end portion of the elastic body hollow portion 28, and the mixture piece 56 </ b> A is additionally introduced into the gap between the molded body 56 and the elastic body hollow portion 28.
(Remolding process)
After the mixture piece 56A is additionally charged into the gap, the added mixture piece 56A and the molded body 56 are pressurized and integrated using the pressure member 44. At this time, the gap (gas reservoir) located on the lower side of FIG. 7 is removed by this pressurization (pressurization from the upper side of FIG. 7).
(Re-shear deformation process)
Then, the closing plate 24 is attached to the other end of the elastic body hollow portion 28, the molded body 56 is sealed in the elastic body hollow portion 28, and each flange plate 14 is fixed to the support body and the supported body to provide laminated elastic with flange. The body 13 is subjected to shear deformation again, and the molded body 56 is subjected to shear deformation.

このせん断変形によって弾性体中空部28と成型体56との間に再度隙間が形成された場合には、追加投入工程、再成型工程、及び再せん断変形工程を1サイクルとして1乃至複数回繰り返す。この繰り返し作業は、弾性体中空部28と成型体56との間の隙間がなくなるまで繰り返し行う。これにより、気体が除去され、気体含有率が低くなった成型体56が弾性体中空部28に形成される。結果、積層支持体12の弾性体中空部28には気体含有率が低く、十分な強度を有する成型体56が設けられるため、この積層支持体12の製造方法で製造された積層支持体12は安定した減衰性能を発揮することができる。   When a gap is formed again between the elastic hollow portion 28 and the molded body 56 by this shear deformation, the additional charging process, the re-molding process, and the re-shear deformation process are repeated one or more times as one cycle. This repeating operation is repeated until there is no gap between the elastic body hollow portion 28 and the molded body 56. Thereby, the gas is removed, and the molded body 56 having a low gas content is formed in the elastic body hollow portion 28. As a result, the elastic hollow portion 28 of the laminated support 12 is provided with a molded body 56 having a low gas content and sufficient strength. Stable damping performance can be demonstrated.

なお、混合物片56Aに混合される塑性流動材料としては、たとえば、せん断降伏応力が0.1MPa〜10MPaである未加硫ゴム、熱可塑性エラストマー等を挙げることができるが、これらに限定される必要はない。未加硫ゴムの主成分(ポリマー)としては、天然ゴム(NR)、スチレン・ブタジエンゴム(SBR)、スチレン・プロピレンゴム(EPM、EPDM)、シリコーンゴム(Q)等が挙げられる。さらに、未加硫ゴムや熱可塑性エラストマー等にカーボンブラック、炭酸カルシウム、オイル・樹脂等の配合剤を配合したものでもよい。   Examples of the plastic fluid material mixed in the mixture piece 56A include, but are not limited to, unvulcanized rubber and thermoplastic elastomer having a shear yield stress of 0.1 MPa to 10 MPa. There is no. Examples of the main component (polymer) of the unvulcanized rubber include natural rubber (NR), styrene / butadiene rubber (SBR), styrene / propylene rubber (EPM, EPDM), and silicone rubber (Q). Further, a compounding agent such as carbon black, calcium carbonate, oil or resin may be blended with unvulcanized rubber or thermoplastic elastomer.

なお、塑性流動材料のせん断降伏応力が0.1MPaよりも小さいと、塑性流動材料の流動抵抗力が小さいため、大きな減衰力が得られず、塑性流動材料のせん断降伏応力が10MPaよりも大きいと、塑性流動材料を大きく塑性変形させることができない。そこで、せん断降伏応力が0.1MPa〜10MPaである塑性流動材料に硬質充填材を混合(混錬)させることで、塑性変形の挙動が安定した成型体56が得られる。   If the shear yield stress of the plastic fluid material is less than 0.1 MPa, the flow resistance force of the plastic fluid material is small, so that a large damping force cannot be obtained, and the shear yield stress of the plastic fluid material is greater than 10 MPa. The plastic flow material cannot be greatly plastically deformed. Therefore, by mixing (kneading) a hard filler with a plastic fluid material having a shear yield stress of 0.1 MPa to 10 MPa, a molded body 56 having a stable plastic deformation behavior can be obtained.

また、混合物片56Aに混合される硬質充填材は、塑性流動材料に対して剛体とみなせる程度の硬さを有する材料であればよい。たとえば、金属、セラミックやエンジニアリングプラスチック等を適用することができるが、これらに限定されない。金属の具体例としては、純鉄、あるいは炭素鋼やステンレス鋼などの鉄を主成分とした粉体を挙げることができる。   Moreover, the hard filler mixed with the mixture piece 56A should just be a material which has the hardness which can be regarded as a rigid body with respect to a plastic fluid material. For example, metals, ceramics, engineering plastics, and the like can be applied, but are not limited thereto. Specific examples of the metal include pure iron, and powder mainly composed of iron such as carbon steel and stainless steel.

そして、加圧部材44で、弾性体中空部28内の混合物片56A、成型体56に作用させる圧力は、単位面積当たり10MPa〜200MPaとすることが好ましい。加圧部材44で加圧することにより、複数の混合物片56Aを一体化させることができるとともに、成型体56に含有される気体を成型体56の外部へ押し出すこともできる。   The pressure applied to the mixture piece 56A and the molded body 56 in the elastic body hollow portion 28 by the pressing member 44 is preferably 10 MPa to 200 MPa per unit area. By applying pressure with the pressing member 44, the plurality of mixture pieces 56 </ b> A can be integrated, and the gas contained in the molded body 56 can be pushed out of the molded body 56.

なお、混合物片56Aを単位面積当たり10MPaより小さい力で加圧すると、混合物片56Aに対する加圧力が不十分であることから成型体56(コア30)に含有された気体の除去が不十分となってしまう。また、混合物片56Aを単位面積当たり200MPaより大きい力で加圧すると、混合物片56Aに対する加圧力が過剰となって、成型体56の物性が変化してしまう。したがって、単位面積当たり10MPa〜200MPaの力で混合物片56Aまたは成型体56を加圧することで、物性を変化させることなく、気体を除去した成型体56を得ることができる。また、加圧室内の混合物片56Aを加圧する際の温度は、40°C〜120°Cとする。なお、この温度を40°Cよりも低くすると、成型体56の流動性が十分に得られず、120°Cよりも高くすると、成型体56の物性が変化してしまう。   When the mixture piece 56A is pressurized with a force smaller than 10 MPa per unit area, the pressure contained in the mixture piece 56A is insufficient, so that the gas contained in the molded body 56 (core 30) is not sufficiently removed. End up. Further, when the mixture piece 56A is pressurized with a force larger than 200 MPa per unit area, the pressure applied to the mixture piece 56A becomes excessive, and the physical properties of the molded body 56 change. Therefore, by pressing the mixture piece 56A or the molded body 56 with a force of 10 MPa to 200 MPa per unit area, the molded body 56 from which the gas is removed can be obtained without changing the physical properties. Moreover, the temperature at the time of pressurizing the mixture piece 56A in a pressurization chamber shall be 40 degreeC-120 degreeC. If the temperature is lower than 40 ° C., the fluidity of the molded body 56 cannot be obtained sufficiently. If the temperature is higher than 120 ° C., the physical properties of the molded body 56 change.

(その他の実施形態)
第1の実施形態では、複数の混合物片56Aを弾性体中空部28に投入(投入工程)し加圧し、一体化させて成型体56を成形し(成型工程)ているが、本発明はこの構成に限定される必要はなく、図8に示されるように、複数の混合物片56Aを予め弾性体中空部28と同じ形状の中空部を有する金型に投入し加圧し、一体化させて成型体56を成形しておき、この成型体56をフランジ付き積層弾性体13の弾性体中空部28に圧入して(圧入工程)から、成型体56をせん断変形させる(せん断変形工程)構成であってもよいものとする。このような構成とすることで、積層支持体12の製造工程を短縮することができる。
(Other embodiments)
In the first embodiment, the plurality of mixture pieces 56A are charged into the elastic body hollow portion 28 (charging step), pressurized and integrated to form the molded body 56 (molding step). There is no need to be limited to the configuration, and as shown in FIG. 8, a plurality of mixture pieces 56A are previously put in a mold having a hollow portion having the same shape as the elastic body hollow portion 28, pressed and integrated to form. The body 56 is molded, and this molded body 56 is press-fitted into the elastic body hollow portion 28 of the laminated elastic body 13 with flange (press-in process), and then the molded body 56 is subjected to shear deformation (shear deformation process). It may be. By setting it as such a structure, the manufacturing process of the laminated support body 12 can be shortened.

また、上述の実施形態では、せん断変形工程後の弾性体中空部28と成型体56との隙間に混合物片56Aを追加投入する構成としたが、本発明はこの構成に限定される必要はなく、図9に示されるように、混合物片56Aを予め弾性体中空部28の矢印X方向の長さを短くした中空部を有する金型に投入し加圧し、一体化させて薄い(短い)成型体56Bを成形しておき、弾性体中空部28と成型体56との隙間に成型体56Bを圧入してもよいものとする。   In the above-described embodiment, the mixture piece 56A is additionally introduced into the gap between the elastic body hollow portion 28 and the molded body 56 after the shear deformation step. However, the present invention is not necessarily limited to this configuration. As shown in FIG. 9, the mixture piece 56 </ b> A is put in a mold having a hollow portion whose length in the arrow X direction of the elastic body hollow portion 28 is shortened in advance, and is pressed and integrated to form a thin (short) molding. The body 56B is formed in advance, and the molded body 56B may be press-fitted into the gap between the elastic body hollow portion 28 and the molded body 56.

またさらに、上述の実施形態では、製品となる積層支持体12のフランジ付き積層弾性体13の弾性体中空部28に成型体56を直接成形したが、本発明はこの構成に限定される必要はなく、フランジ付き積層弾性体13と同じ部材で構成される成型装置を用いてもよいものとする。この成型装置80としては、例えば、図10に示されるように、フランジ付き積層弾性体13を矢印X方向と直交する方向に分割できるようにした成型装置80が考えられる。この成型装置80を用いて成型体56を成型した場合には、気体含有率が低く、十分な強度を有する成型体56が得られ、この成型体56を積層弾性体16に圧入するだけで、安定した減衰性能を発揮する積層支持体12を製造することができる。   Furthermore, in the above-described embodiment, the molded body 56 is directly molded in the elastic body hollow portion 28 of the flanged laminated elastic body 13 of the laminated support body 12 to be a product. However, the present invention is not necessarily limited to this configuration. Instead, a molding apparatus composed of the same members as the flanged laminated elastic body 13 may be used. As this molding apparatus 80, for example, as shown in FIG. 10, a molding apparatus 80 that can divide the laminated elastic body 13 with a flange in a direction orthogonal to the arrow X direction is conceivable. When the molded body 56 is molded using the molding apparatus 80, a molded body 56 having a low gas content and sufficient strength is obtained. By simply press-fitting the molded body 56 into the laminated elastic body 16, The laminated support 12 that exhibits stable damping performance can be manufactured.

以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。   The embodiments of the present invention have been described above with reference to the embodiments. However, these embodiments are merely examples, and various modifications can be made without departing from the scope of the invention. It goes without saying that the scope of rights of the present invention is not limited to these embodiments.

本発明の実施形態の積層支持体をせん断変形前において示す断面図である。It is sectional drawing which shows the laminated support body of embodiment of this invention before a shear deformation | transformation. 本発明の実施形態の積層支持体をせん断変形後において示す断面図である。It is sectional drawing which shows the laminated support body of embodiment of this invention after a shear deformation | transformation. 本発明の実施形態の積層支持体の製造方法のフランジ付き積層弾性体成形工程を示す断面図である。It is sectional drawing which shows the lamination | stacking elastic body formation process with a flange of the manufacturing method of the lamination | stacking support body of embodiment of this invention. 本発明の実施形態の積層支持体の製造方法の投入工程を示す断面図である。It is sectional drawing which shows the injection | throwing-in process of the manufacturing method of the laminated support body of embodiment of this invention. 本発明の実施形態の積層支持体の製造方法の成型工程を示す断面図である。It is sectional drawing which shows the shaping | molding process of the manufacturing method of the laminated support body of embodiment of this invention. 本発明の実施形態の積層支持体の製造方法のせん断変形工程を示す断面図である。It is sectional drawing which shows the shear deformation process of the manufacturing method of the laminated support body of embodiment of this invention. 本発明の実施形態の積層支持体の製造方法の追加投入工程、再成型工程を示す断面図である。It is sectional drawing which shows the addition addition process of the manufacturing method of the laminated support body of embodiment of this invention, and a remolding process. 本発明の実施形態の積層支持体の製造方法の変形例を示す断面図である。It is sectional drawing which shows the modification of the manufacturing method of the laminated support body of embodiment of this invention. 本発明の実施形態の積層支持体の製造方法の変形例を示す断面図である。It is sectional drawing which shows the modification of the manufacturing method of the laminated support body of embodiment of this invention. 本発明の積層支持体の成型体を成型するための成型装置を示す断面図である。It is sectional drawing which shows the shaping | molding apparatus for shape | molding the molded object of the lamination | stacking support body of this invention. 従来の製造方法を示す断面図である。It is sectional drawing which shows the conventional manufacturing method.

符号の説明Explanation of symbols

12 積層支持体
16 積層弾性体
18 金属板(剛性板)
20 ゴム板(弾性部材)
28 弾性体中空部(中空部)
30 コア
56 成型体
56A 混合物片
12 Laminated Support 16 Laminated Elastic 18 Metal Plate (Rigid Plate)
20 Rubber plate (elastic member)
28 Elastic body hollow part (hollow part)
30 core 56 molded body 56A mixture piece

Claims (3)

塑性流動材料と硬質充填材を混合した混合物から前記混合物中の気体を除去する気体除去方法であって、
せん断変形が可能な加圧室に前記混合物を投入する工程と、
前記加圧室に投入された前記混合物を加圧する工程と、
加圧された前記混合物を前記加圧室に封じ、前記加圧室をせん断変形させて、封じられた前記混合物をせん断変形させる工程と、
を備えることを特徴とする気体除去方法。
A gas removal method for removing gas in the mixture from a mixture of a plastic fluid material and a hard filler,
Introducing the mixture into a pressure chamber capable of shear deformation;
Pressurizing the mixture charged into the pressurizing chamber;
Sealing the pressurized mixture in the pressurizing chamber, shearing the pressurizing chamber, and shearing deforming the sealed mixture;
A gas removal method comprising:
剛性板と、前記剛性板よりも弾性率が低い弾性部材とが交互に積層され、且つ積層方向に中空部が形成された積層弾性体と、前記中空部に設けられた塑性流動材料と硬質充填材の混合物からなる成型体とを有する積層支持体の製造方法であって、
前記中空部に塑性流動材料と硬質充填材を混合した複数の混合物片を投入する投入工程と、
前記中空部に投入された前記複数の混合物片を加圧し、一体化させて成型体を成型する成型工程と、
前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させるせん断変形工程と、
前記せん断変形工程後、前記成型体と前記中空部との間に形成される隙間に前記混合物片を追加投入する追加投入工程と、
前記追加投入工程後、前記中空部の前記成型体と追加した前記混合物片とを加圧し、一体化させる再成型工程と、
前記再成型工程後、前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させる再せん断変形工程と、
を備え、前記追加投入工程、前記再成型工程、及び前記再せん断変形工程を1サイクルとして1乃至複数回繰り返すことを特徴とする積層支持体の製造方法。
A laminated elastic body in which a rigid plate and an elastic member having an elastic modulus lower than that of the rigid plate are alternately laminated and a hollow portion is formed in the lamination direction, and a plastic fluid material provided in the hollow portion and hard filling A method for producing a laminated support having a molded body made of a mixture of materials,
A charging step of charging a plurality of mixture pieces obtained by mixing a plastic fluid material and a hard filler into the hollow portion;
A molding step of pressurizing and integrating the plurality of mixture pieces charged into the hollow portion, and molding a molded body,
Sealing the molded body in the hollow part, shearing the laminated elastic body in a direction crossing the laminating direction, and shearing deforming the sealed molded body; and
After the shear deformation step, an additional charging step of additionally charging the mixture piece into a gap formed between the molded body and the hollow portion;
After the additional charging step, pressurize the molded body of the hollow portion and the added mixture piece, and remolding step to integrate them,
After the re-molding step, the molded body is sealed in the hollow portion, the laminated elastic body is shear-deformed in a direction crossing the laminating direction, and the sealed molded body is shear-deformed,
And the additional charging step, the remolding step, and the re-shear deformation step are repeated one or more times as one cycle.
剛性板と、前記剛性板よりも弾性率が低い弾性部材とが交互に積層され、且つ積層方向に中空部が形成された積層弾性体と、前記中空部に設けられた塑性流動材料と硬質充填材の混合物からなる成型体とを有する積層支持体の製造方法であって、
塑性流動材料と硬質充填材を混合した複数の混合物片を加圧し、一体化させて成型された前記中空部と同形状の成型体を前記中空部内に圧入する圧入工程と、
前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させるせん断変形工程と、
前記せん断変形工程後、前記成型体と前記中空部との間に形成される隙間に前記混合物片を追加投入する追加投入工程と、
前記追加投入工程後、前記中空部の前記成型体と追加した前記混合物片とを加圧し、一体化させる再成型工程と、
前記再成型工程後、前記成型体を前記中空部に封じ、前記積層弾性体を積層方向と交差する方向にせん断変形させて、封じられた前記成型体をせん断変形させる再せん断変形工程と、
を備え、前記追加投入工程、前記再成形工程、及び前記再せん断変形工程を1サイクルとして1乃至複数回繰り返すことを特徴とする積層支持体の製造方法。
A laminated elastic body in which a rigid plate and an elastic member having an elastic modulus lower than that of the rigid plate are alternately laminated and a hollow portion is formed in the lamination direction, and a plastic fluid material provided in the hollow portion and hard filling A method for producing a laminated support having a molded body made of a mixture of materials,
A press-fitting step of press-fitting a plurality of mixture pieces obtained by mixing a plastic fluid material and a hard filler, and press-fitting a molded body having the same shape as the hollow part formed into a single piece into the hollow part, and
Sealing the molded body in the hollow part, shearing the laminated elastic body in a direction crossing the laminating direction, and shearing deforming the sealed molded body; and
After the shear deformation step, an additional charging step of additionally charging the mixture piece into a gap formed between the molded body and the hollow portion;
After the additional charging step, pressurize the molded body of the hollow portion and the added mixture piece, and remolding step to integrate them,
After the re-molding step, the molded body is sealed in the hollow portion, the laminated elastic body is shear-deformed in a direction crossing the laminating direction, and the sealed molded body is shear-deformed,
And the additional charging step, the re-molding step, and the re-shear deformation step are repeated one or more times as one cycle.
JP2007301553A 2007-11-21 2007-11-21 Method of eliminating gas and method of manufacturing stacked support Pending JP2009127688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007301553A JP2009127688A (en) 2007-11-21 2007-11-21 Method of eliminating gas and method of manufacturing stacked support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007301553A JP2009127688A (en) 2007-11-21 2007-11-21 Method of eliminating gas and method of manufacturing stacked support

Publications (1)

Publication Number Publication Date
JP2009127688A true JP2009127688A (en) 2009-06-11

Family

ID=40818837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007301553A Pending JP2009127688A (en) 2007-11-21 2007-11-21 Method of eliminating gas and method of manufacturing stacked support

Country Status (1)

Country Link
JP (1) JP2009127688A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6111208A (en) * 1984-06-28 1986-01-18 Nippon Funmatsu Gokin Kk Manufacture of composite flywheel
JPS6136466A (en) * 1984-05-11 1986-02-21 デイベロツプメント フアイナンス コ−ポレイシヨン オブ ニユ−ジ−ランド Cyclic shearing energy absorbing apparatus
JPH02101242A (en) * 1988-10-06 1990-04-13 Takenaka Komuten Co Ltd Vibration-proofing device using granular material
JPH0463867A (en) * 1990-07-02 1992-02-28 Bridgestone Corp Damping material
JPH11159573A (en) * 1997-12-01 1999-06-15 Sumitomo Rubber Ind Ltd Manufacture of laminated rubber support body
JP2004332339A (en) * 2003-05-06 2004-11-25 Yoshio One Quake-absorbing bearing device of hardened coarse granule
JP2005105127A (en) * 2003-09-30 2005-04-21 Inoac Corp Gel with low bleeding property
JP2005299762A (en) * 2004-04-09 2005-10-27 Sumitomo Metal Mining Co Ltd Manufacturing method for laminated rubber supporting body
JP2006052328A (en) * 2004-08-12 2006-02-23 Toyo Tire & Rubber Co Ltd Highly damping rubber composition and seismic isolation structure using the same
JP2006275213A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Mining Co Ltd Method of manufacturing energy absorbing device
JP2006316990A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Laminated support
JP2007247833A (en) * 2006-03-17 2007-09-27 Bridgestone Corp Base isolation device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136466A (en) * 1984-05-11 1986-02-21 デイベロツプメント フアイナンス コ−ポレイシヨン オブ ニユ−ジ−ランド Cyclic shearing energy absorbing apparatus
JPS6111208A (en) * 1984-06-28 1986-01-18 Nippon Funmatsu Gokin Kk Manufacture of composite flywheel
JPH02101242A (en) * 1988-10-06 1990-04-13 Takenaka Komuten Co Ltd Vibration-proofing device using granular material
JPH0463867A (en) * 1990-07-02 1992-02-28 Bridgestone Corp Damping material
JPH11159573A (en) * 1997-12-01 1999-06-15 Sumitomo Rubber Ind Ltd Manufacture of laminated rubber support body
JP2004332339A (en) * 2003-05-06 2004-11-25 Yoshio One Quake-absorbing bearing device of hardened coarse granule
JP2005105127A (en) * 2003-09-30 2005-04-21 Inoac Corp Gel with low bleeding property
JP2005299762A (en) * 2004-04-09 2005-10-27 Sumitomo Metal Mining Co Ltd Manufacturing method for laminated rubber supporting body
JP2006052328A (en) * 2004-08-12 2006-02-23 Toyo Tire & Rubber Co Ltd Highly damping rubber composition and seismic isolation structure using the same
JP2006275213A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Mining Co Ltd Method of manufacturing energy absorbing device
JP2006316990A (en) * 2005-04-14 2006-11-24 Bridgestone Corp Laminated support
JP2007247833A (en) * 2006-03-17 2007-09-27 Bridgestone Corp Base isolation device

Similar Documents

Publication Publication Date Title
JP6726458B2 (en) Composite molded article and manufacturing method thereof
US20100255233A1 (en) Composition for plug in base-isolated structure, plug for base-isolated structure and base-isolated structure
WO2009023369A8 (en) Fluid-filled chambers with foam tensile members and methods for manufacturing the chambers
MX2011011657A (en) Controlled geometry composite micro pellets for use in compression molding.
JP2020073823A (en) Seismic isolation device
JP4851425B2 (en) Laminated support
CN109790926B (en) Gasket and method for producing same
JP2010255782A (en) Plug for seismic isolator and manufacturing method thereof
JP5345888B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP2009127688A (en) Method of eliminating gas and method of manufacturing stacked support
JP5404161B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP2009008181A (en) Manufacturing method for base isolation device embedded with plug
JP2009126003A (en) Gas removing method, gas removing apparatus, manufacturing method of core, manufacturing apparatus of core, and laminated support
JP2008200889A (en) Degassing method, degassing apparatus, core manufacturing method and laminated support
JP2008142927A (en) Air removing method, air removing device, manufacturing method of kneading material and laminate support
JP2008202658A (en) Vibration control damper device, and manufacturing method of vibration control damper device
JP5345881B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5590816B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5891078B2 (en) Manufacturing method of seismic isolation device
JP2010249154A (en) Manufacturing method of base isolation plug for base isolation device and manufacturing device of the same
JP2010101383A (en) Plug for base isolation structure, and base isolation structure
JP5869860B2 (en) Method for manufacturing composition for plug of base isolation structure and method for manufacturing plug for base isolation structure
JP2006316955A (en) Base isolation rubber supporting body and its manufacturing method
JP5366639B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5390252B2 (en) Seismic isolation plug manufacturing method and isolation plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228