JP5590816B2 - Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor - Google Patents

Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor Download PDF

Info

Publication number
JP5590816B2
JP5590816B2 JP2009108307A JP2009108307A JP5590816B2 JP 5590816 B2 JP5590816 B2 JP 5590816B2 JP 2009108307 A JP2009108307 A JP 2009108307A JP 2009108307 A JP2009108307 A JP 2009108307A JP 5590816 B2 JP5590816 B2 JP 5590816B2
Authority
JP
Japan
Prior art keywords
seismic isolation
stamper
powder material
mold
isolation plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009108307A
Other languages
Japanese (ja)
Other versions
JP2010253850A (en
Inventor
秀章 加藤
重信 鈴木
宏典 ▲濱▼▲崎▼
章之 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009108307A priority Critical patent/JP5590816B2/en
Publication of JP2010253850A publication Critical patent/JP2010253850A/en
Application granted granted Critical
Publication of JP5590816B2 publication Critical patent/JP5590816B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

この発明は、免震装置の減衰性能及び変位追従性を向上させ得る免震プラグを製造する方法、並びにかかる製造方法を実施するための製造装置に関する。   The present invention relates to a method for manufacturing a seismic isolation plug capable of improving the damping performance and displacement followability of a seismic isolation device, and a manufacturing apparatus for carrying out such a manufacturing method.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震構造体が、免震装置の支承等として使用されている。このような免震構造体の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、該中空部に免震プラグが圧入されたものがある。   2. Description of the Related Art Conventionally, seismic isolation structures in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked have been used as bearings for seismic isolation devices. Among such seismic isolation structures, for example, there is a structure in which a hollow portion is formed at the center of a laminated body made of a soft plate and a hard plate, and a seismic isolation plug is press-fitted into the hollow portion.

上記免震プラグとしては、全体が鉛からなるものが使用されることが多く、地震の発生に伴って積層体が剪断変形する際に、かかる免震プラグが塑性変形することで振動のエネルギーを吸収する。しかしながら、鉛は、環境負荷が大きく、また、廃却時等に要するコストが大きい。そのため、鉛の代替材料を用いても、充分な減衰性能、変位追従性等を有する免震プラグの開発が試みられている。   The seismic isolation plug is often made of lead as a whole, and when the laminated body undergoes shear deformation due to the occurrence of an earthquake, the seismic isolation plug plastically deforms to reduce vibration energy. Absorb. However, lead has a large environmental load and a high cost for disposal. Therefore, the development of a seismic isolation plug having sufficient damping performance, displacement followability and the like has been attempted even when a lead substitute material is used.

例えば、特許文献1には、鉛免震プラグに代えて、積層体の中空部に塑性流動材及び硬質充填材からなり、硬質充填材の隙間を塑性流動材で充填するようにした粉体材料を封入した免震装置が提案されている。かかる免震プラグは、鉛免震プラグと同様、長期の使用に際しても、その減衰性能及び変位追従性が安定して確保される。なお、塑性流動材としては、天然ゴムやアクリルゴムなどがあり、硬質充填材としては、ステンレス鋼粉、鉄粉などの金属粉体などがある。かかる免震プラグは、金型内に充填された粉体材料を加圧方向に直交する平面状の加圧面を有するスタンパにより所定の面圧にて加圧成形することで製造される。   For example, Patent Document 1 discloses a powder material in which a hollow portion of a laminate is made of a plastic fluid material and a hard filler instead of a lead seismic isolation plug, and a gap between the hard fillers is filled with the plastic fluid material. A seismic isolation device in which is enclosed is proposed. Such a seismic isolation plug, like a lead seismic isolation plug, ensures stable damping performance and displacement follow-up even during long-term use. Examples of the plastic fluid material include natural rubber and acrylic rubber, and examples of the hard filler include metal powder such as stainless steel powder and iron powder. Such a seismic isolation plug is manufactured by press-molding a powder material filled in a mold at a predetermined surface pressure with a stamper having a flat pressure surface perpendicular to the pressing direction.

特開2006−316990号公報JP 2006-316990 A

特許文献1に記載の免震プラグを具える免震装置は、鉛からなる免震プラグを使用することなく、減衰特性及び変位追従性が長期にわたり安定して確保されているものの、近年の建設物の大型化、高層化を背景に、免震装置の更なる性能向上が求められており、そのことから、免震装置の減衰特性及び変位追従性の更なる向上が希求されている。また、特許文献1には、この免震プラグの製造方法についても言及されているが、一般的な粉体材料の加圧成形法の域を出るものではない。   Although the seismic isolation device including the seismic isolation plug described in Patent Document 1 has stable damping characteristics and displacement followability for a long time without using a seismic isolation plug made of lead, construction in recent years Against the background of the increase in size and height of objects, further improvement in the performance of the seismic isolation device is required. For this reason, further improvement in the damping characteristics and displacement followability of the seismic isolation device is desired. Patent Document 1 also mentions a method for manufacturing this seismic isolation plug, but it does not leave the range of a general powder material pressure forming method.

そこで、この発明の目的は、これまで充分に着目、検討されてこなかった免震プラグの製造方法について改良を図ることにより、材料に鉛を使用することなく、免震装置の減衰性能及び変位追従性を更に向上させ得る免震プラグを有利に製造する方法を提供することにある。また、この発明の更なる目的は、かかる製造方法を実施し得る免震プラグの製造装置を提供することにある。   Therefore, the object of the present invention is to improve the manufacturing method of the seismic isolation plug that has not been sufficiently focused and studied so far, so that the damping performance and displacement tracking of the seismic isolation device can be achieved without using lead as a material. It is an object of the present invention to provide a method for advantageously manufacturing a seismic isolation plug capable of further improving the performance. A further object of the present invention is to provide an apparatus for manufacturing a seismic isolation plug capable of implementing such a manufacturing method.

前記目的を達成するため、第一発明は、側壁を形成する中型を有する金型内に充填された粉体材料に、加圧成形を行って免震装置用の免震プラグを成形するに当たり、粉体材料を加圧成形するスタンパを加圧方向に移動させると同時に中型に対して外力を付与して中型を加圧方向とは反対の方向に移動させ、中型と粉体材料との界面においてせん断応力が生じるように加圧成形を行なうことを特徴とする免震プラグの製造方法である。 In order to achieve the above-mentioned object, the first invention is to form a seismic isolation plug for a seismic isolation device by performing pressure molding on a powder material filled in a mold having a middle mold forming a side wall. At the same time as moving the stamper that compresses the powder material in the pressurizing direction, external force is applied to the middle mold and the middle mold is moved in the direction opposite to the pressurizing direction , at the interface between the middle mold and the powder material. A method for manufacturing a seismic isolation plug, wherein pressure forming is performed so that shear stress is generated.

また、第一発明において、スタンパが、加圧方向に対し傾斜した平面状の加圧面を有する傾斜スタンパ、または、中央部が外周部よりも加圧方向へ突出した錐体形状の加圧面を有する錐体スタンパであることが好ましい。 In the first invention, the stamper has an inclined stamper having a flat pressing surface inclined with respect to the pressing direction, or a cone-shaped pressing surface having a central portion protruding in the pressing direction from the outer peripheral portion. A cone stamper is preferred.

発明は、粉体材料が充填され、側壁を形成する中型を有する金型、及び該金型内の粉体材料を加圧成形するスタンパを具える、免震装置用の免震プラグの製造装置において、かかる金型の中型が、スタンパを加圧方向へ移動させて粉体材料を加圧成形する際に加圧方向とは反対の方向に移動可能であることを特徴とする免震プラグの製造装置である。このとき、スタンパは、加圧方向に対し傾斜した平面状の加圧面を有する傾斜スタンパ、または、中央部が外周部よりも加圧方向へ突出した錐体形状の加圧面を有する錐体スタンパであることが好ましい。 A second invention is a seismic isolation plug for a seismic isolation device, comprising a mold having a middle mold filled with a powder material and forming a side wall, and a stamper for pressure molding the powder material in the mold. In the manufacturing apparatus, the middle mold of the mold is movable in the direction opposite to the pressing direction when the stamper is moved in the pressing direction to press the powder material. This is a plug manufacturing apparatus. At this time, the stamper is an inclined stamper having a flat pressing surface inclined with respect to the pressing direction, or a cone stamper having a cone-shaped pressing surface whose central portion protrudes in the pressing direction from the outer peripheral portion. Preferably there is.

この発明によれば、鉛の代替材料である粉体材料を用いて、これを加圧成形する際に、圧縮力を効率的に利用して粉体材料を圧縮して、空気含有率の小さい成形品を得ることができる。従って、免震装置の減衰性能及び変位追従性の向上に大きく寄与する免震プラグを提供することが可能となる。また、空気含有率の小さな免震プラグを製造するために適した製造装置を提供することが可能となる。   According to the present invention, when a powder material that is a substitute material for lead is used and pressed, the powder material is compressed using the compressive force efficiently, and the air content is small. A molded product can be obtained. Therefore, it is possible to provide a seismic isolation plug that greatly contributes to the improvement of the damping performance and displacement followability of the seismic isolation device. In addition, it is possible to provide a manufacturing apparatus suitable for manufacturing a seismic isolation plug having a small air content.

(a)〜(c)は、この発明の実施形態に係る免震プラグの製造工程を示した図である。(A)-(c) is the figure which showed the manufacturing process of the seismic isolation plug which concerns on embodiment of this invention. (a)は、この発明に従って製造された免震プラグを圧入した免震装置の上面図であり、(b)は、かかる免震装置の断面図である。(A) is a top view of the seismic isolation apparatus which press-fit the seismic isolation plug manufactured according to this invention, (b) is sectional drawing of this seismic isolation apparatus. (a)は、充分に圧縮されていない粉体材料の硬質充填材の相互配置を示した図であり、(b)は、充分に圧縮された粉体材料の硬質充填材の相互配置を示した図である。(A) is the figure which showed the mutual arrangement | positioning of the hard filler of the powder material which is not fully compressed, (b) shows the mutual arrangement | positioning of the hard filler of the powder material which was fully compressed. It is a figure. (a)〜(f)は、この発明に従うその他の免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the other seismic isolation plug according to this invention. (a)〜(f)は、この発明に従うその他の免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the other seismic isolation plug according to this invention. (a)〜(h)は、この発明に従うその他の免震プラグの製造工程を示した図である。(A)-(h) is the figure which showed the manufacturing process of the other seismic isolation plug according to this invention.

次に、図面を参照しつつ、この発明の実施形態を説明する。図1(a)〜(c)は、本実施形態に係る免震プラグの製造工程を示した図である。図2(a)は、本実施形態に従って製造された免震プラグを圧入した免震装置の上面図であり、図2(b)は、かかる免震装置の断面図である。図3(a)は、充分に圧縮されていない粉体材料の硬質充填材の相互配置を示した図であり、図3(b)は、充分に圧縮された粉体材料の硬質充填材の相互配置を示した図である。図4(a)〜(f)、図5(a)〜(f)及び図6(a)〜(h)は、本実施形態に係るその他の免震プラグの製造工程を示した図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1A to 1C are views showing a manufacturing process of the seismic isolation plug according to the present embodiment. FIG. 2A is a top view of the seismic isolation device in which the seismic isolation plug manufactured according to the present embodiment is press-fitted, and FIG. 2B is a cross-sectional view of the seismic isolation device. FIG. 3 (a) is a diagram showing the mutual arrangement of hard fillers of powder material that is not sufficiently compressed, and FIG. 3 (b) is an illustration of hard fillers of powder material that is sufficiently compressed. It is the figure which showed mutual arrangement | positioning. 4 (a) to (f), FIGS. 5 (a) to (f), and FIGS. 6 (a) to (h) are diagrams showing manufacturing steps of other seismic isolation plugs according to the present embodiment. .

本実施形態に係る免震プラグの製造装置1は、図1に示すように、塑性流動材A及び硬質充填材Bからなる粉体材料2が充填され、中型が移動可能な円筒形状の金型3、並びにかかる金型3内の粉体材料2を加圧する加圧面4を夫々有するスタンパ5を具える。かかるスタンパ5は、加圧方向に直交する平面状の加圧面4aを有する平面スタンパ5aである。かかる製造装置を用いて、図1(a)〜(c)の製造工程に示すように、金型3内に充填された粉体材料2を、平面スタンパ5aにより加圧することにより免震装置用の免震プラグ6を成形する。以下にその詳細を説明する。   As shown in FIG. 1, the seismic isolation plug manufacturing apparatus 1 according to the present embodiment is filled with a powder material 2 composed of a plastic fluid A and a hard filler B, and a cylindrical mold in which a middle mold is movable. 3 and a stamper 5 having a pressing surface 4 for pressing the powder material 2 in the mold 3. The stamper 5 is a flat stamper 5a having a flat pressing surface 4a orthogonal to the pressing direction. Using such a manufacturing apparatus, as shown in the manufacturing process of FIGS. 1A to 1C, the powder material 2 filled in the mold 3 is pressed by a flat stamper 5 a for the seismic isolation device. The seismic isolation plug 6 is formed. Details will be described below.

はじめに、図1(a)に示すように、金型3内に免震プラグ6の材料となる塑性流動材A及び硬質充填材Bからなる粉体材料2を充填する。次いで、図1(b)に示すように、平面スタンパ5aを矢印αの方向に移動させると同時に、金型3の側壁を形成する中型7を平面スタンパ5aの加圧方向とは反対の方向(矢印βの方向)に移動させる。そうすることで、金型3の中型側にある粉体材料2と金型3の中型7との摩擦力(矢印γ)を利用して、かかる平面スタンパ5aにより圧縮変形する力(矢印Δ)とが組み合わされ、中型と粉体材料2との界面においてせん断応力が生じ、粉体材料2も強く圧縮されることから、空気含有率が全体に小さくなった免震プラグ6が得られる。そして、図1(c)に示すように、免震プラグ6は、金型3から抜き出され、図2に示すように、免震装置8へ圧入される。かかる免震装置8としては、例えば、図2(a)及び図2(b)に示すように、ゴム板9と鋼板10とを交互に積層した積層体11と、その積層体11の中央に配置した免震プラグ6とを具えるものがある。また、図1に示す製造方法では、金型3の中型7を加圧方向とは反対の方向に移動させつつ、加圧成形しているが、金型3の中型7は、上下いずれの方向に移動させても、かかる中型7近傍にある粉体材料2の流動が促され、効果的に圧縮することが可能となることから、図示は省略するが、金型3の中型7を加圧方向と平行な方向に移動させつつ、加圧成形するような製造方法も本願発明に含まれるものである。両者を比較すると、型3の中型7を加圧方向と平行な方向に移動させつつ加圧成形するよりも、金型3の中型7を加圧方向とは反対の方向に移動させつつ加圧成形した方が、中型7と粉体材料2との界面において生じるせん断応力が大きくなることから、粉体材料2の流動が強く促される。従って、効果的に圧縮する観点からは、図1に示すように、金型3の中型7を加圧方向とは反対の方向に移動させつつ、加圧成形するほうが好ましい。
なお、粉体材料の相互配置は、従来の免震プラグの製造装置により製造された免震プラグは、粉体材料が充分に圧縮されないことから、図3(a)に示すように、粉体材料相互間の隙間が大きく、空気の残留し易い配列となっていた。それに対し上記したこの発明に従う免震プラグの製造装置により免震プラグを製造すると、粉体材料間の隙間を小さくして、粉体材料を図3(b)に示すような空気が残留し難い最密配置とすることとなる。
First, as shown in FIG. 1 (a), the mold 3 is filled with a powder material 2 composed of a plastic fluid A and a hard filler B, which are materials for the seismic isolation plug 6. Next, as shown in FIG. 1B, the planar stamper 5a is moved in the direction of the arrow α, and at the same time, the middle mold 7 that forms the side wall of the mold 3 is moved in a direction opposite to the pressing direction of the planar stamper 5a ( (In the direction of arrow β). By doing so, the frictional force (arrow γ) between the powder material 2 on the middle mold side of the mold 3 and the middle mold 7 of the mold 3 is used to compressively deform the flat stamper 5a (arrow Δ). Is combined, and shear stress is generated at the interface between the middle mold and the powder material 2, and the powder material 2 is also strongly compressed, so that the seismic isolation plug 6 having a reduced air content is obtained. And as shown in FIG.1 (c), the seismic isolation plug 6 is extracted from the metal mold | die 3, and is press-fitted into the seismic isolation apparatus 8 as shown in FIG. As the seismic isolation device 8, for example, as shown in FIGS. 2A and 2B, a laminated body 11 in which rubber plates 9 and steel plates 10 are alternately laminated, and a center of the laminated body 11. Some have a seismic isolation plug 6 arranged. In the manufacturing method shown in FIG. 1, the middle mold 7 of the mold 3 is pressure-molded while being moved in the direction opposite to the pressing direction. Even if it is moved, the flow of the powder material 2 in the vicinity of the middle mold 7 is promoted and can be effectively compressed. A manufacturing method in which pressure molding is performed while moving in a direction parallel to the direction is also included in the present invention. Comparing the two, while moving the medium-sized 7 of the die 3 to the pressure direction parallel than to compression molding, while the medium-sized 7 of the die 3 is moved in a direction opposite to the direction of pressure pressurized When the pressure molding is performed, the shear stress generated at the interface between the middle mold 7 and the powder material 2 is increased, so that the flow of the powder material 2 is strongly promoted. Therefore, from the viewpoint of effective compression, it is preferable to perform pressure molding while moving the middle mold 7 of the mold 3 in the direction opposite to the pressure direction, as shown in FIG.
In addition, the mutual arrangement of the powder material is such that the seismic isolation plug manufactured by the conventional seismic isolation plug manufacturing apparatus does not sufficiently compress the powder material. The gap between the materials was large, and the arrangement was such that air remained easily. On the other hand, when the seismic isolation plug is manufactured by the above-described seismic isolation plug manufacturing apparatus according to the present invention, the gap between the powder materials is reduced, and the powder material hardly retains air as shown in FIG. It will be the closest arrangement.

また、図4の製造工程に示すように、加圧方向に対し傾斜した平面状の加圧面4bを有する傾斜スタンパ5bを用いて、加圧成形することが好ましい。この製造工程では、はじめに、図4(a)に示すように、金型3内に粉体材料2を充填し、次いで、図4(b)に示すように、傾斜スタンパ5bを矢印αの方向に移動させると同時に、金型3の中型7をスタンパによる加圧方向とは反対の方向(矢印βの方向)に移動させ、傾斜スタンパ5bの加圧面4bにより、粉体材料2に傾斜スタンパ5bの加圧方向に対して斜めの流動を促しつつ、上述したように、金型3の中型7による摩擦力を利用して粉体材料を強く圧縮することで、粉体材料2の受圧面7の形状を加圧面4bの形状に対応する形状に変形させる。その後、図4(c)に示すように、金型3の中型7を元の位置に移動(矢印β’の方向に移動)させつつ、傾斜スタンパ5bを矢印α’の方向に引き上げてから、傾斜スタンパ5bの軸線Xを中心に、例えば、180°回転させることにより、最初の加圧成形にて与えられた受圧面12に対向する加圧面4bの形状を初回とは異なる形状に変更させる。それから、図4(d)に示すように、再度、傾斜スタンパ5bを矢印αの方向に移動させると同時に、金型3の中型7を傾斜スタンパ5bの加圧方向とは反対の方向(矢印β”の方向)に移動させ、加圧面4bにより粉体材料2の受圧面12を矢印α”の方向に加圧し、粉体材料2の加圧方向に対して斜めの流動を促しつつ、金型3の中型7による摩擦力を利用して粉体材料を強く圧縮することで、粉体材料2の受圧面12の形状を新たな加圧面4bの形状に対応する形状に変形させる。上記工程により、図1に示すような平面スタンパ5aにより粉体材料2を加圧成形する場合に比べ、粉体材料2の流動が促されることから、空気含有率を更に低減した免震プラグ6が得られる。このようにして得られた免震プラグ6は、免震装置8への圧入にそのまま供することも可能であるが、更に、図4(e)〜(f)に示す工程によって成形することが好ましい。すなわち、図4(e)に示すように、粉体材料2を、金型3から抜き出し、図中の点線に沿って、受圧面12の突出した部分を切断することで、粉体材料2の形状を整え(加圧方向に直交する平面状とし)、図4(f)に示すような免震プラグ6の成形が完了する。   Moreover, as shown in the manufacturing process of FIG. 4, it is preferable to pressure-mold using the inclination stamper 5b which has the planar pressurization surface 4b inclined with respect to the pressurization direction. In this manufacturing process, first, as shown in FIG. 4A, the mold material 3 is filled with the powder material 2, and then, as shown in FIG. 4B, the inclined stamper 5b is moved in the direction of the arrow α. At the same time, the middle mold 7 of the mold 3 is moved in the direction opposite to the pressurizing direction by the stamper (in the direction of arrow β), and the inclined stamper 5b is applied to the powder material 2 by the pressing surface 4b of the inclined stamper 5b. The pressure receiving surface 7 of the powder material 2 is strongly compressed by using the frictional force of the middle mold 7 of the mold 3 as described above while promoting the oblique flow with respect to the pressing direction of the powder material 2. Is deformed to a shape corresponding to the shape of the pressing surface 4b. Thereafter, as shown in FIG. 4C, while the middle mold 7 of the mold 3 is moved to the original position (moved in the direction of arrow β ′), the inclined stamper 5b is pulled up in the direction of arrow α ′, By rotating, for example, 180 ° about the axis X of the inclined stamper 5b, the shape of the pressure surface 4b facing the pressure-receiving surface 12 given in the first pressure molding is changed to a shape different from the first time. Then, as shown in FIG. 4 (d), the inclined stamper 5b is moved again in the direction of arrow α, and at the same time, the middle mold 7 of the mold 3 is moved in the direction opposite to the pressurizing direction of the inclined stamper 5b (arrow β ”And pressurizing the pressure receiving surface 12 of the powder material 2 in the direction of the arrow α” by the pressure surface 4b, and promoting the oblique flow with respect to the pressure direction of the powder material 2. By compressing the powder material strongly by using the frictional force of the middle mold 7 of 3, the shape of the pressure receiving surface 12 of the powder material 2 is deformed to a shape corresponding to the shape of the new pressure surface 4b. Compared with the case where the powder material 2 is pressure-molded by the flat stamper 5a as shown in FIG. 1 by the above process, the flow of the powder material 2 is promoted, and therefore the seismic isolation plug 6 further reducing the air content. Is obtained. The seismic isolation plug 6 thus obtained can be directly used for press-fitting into the seismic isolation device 8, but is preferably molded by the steps shown in FIGS. 4 (e) to (f). . That is, as shown in FIG. 4 (e), the powder material 2 is extracted from the mold 3, and the protruding portion of the pressure-receiving surface 12 is cut along the dotted line in the figure. The shape is adjusted (planar shape perpendicular to the pressing direction), and the formation of the seismic isolation plug 6 as shown in FIG.

あるいは、上記した図4(e)〜(f)の工程に替えて、以下の工程により、免震プラグ6の受圧面12の形状を加圧方向に直交する平面状とすることも可能である。すなわち、図示は省略するが、図4(d)に示す工程の後、傾斜スタンパ5bを、スタンパ5の加圧方向に直交する平面状の加圧面4aを有する平面スタンパ5aに置き換え、それを用いて免震プラグ6を加圧し、免震プラグ6の形状を整え(加圧方向に直交する平面状とし)、成形を完了させることもできる。なお、副次的な効果ではあるが、この製造工程では、図4に示す製造工程のように粉体材料2を切断する工程が無いことから、かかる切断により生じる粉体材料2の廃棄部分が無くなり、免震プラグ6の製造に際し、粉体材料を無駄なく使用すること可能となる。このことは、免震プラグ6の生産コストを削減する観点から好ましい。   Alternatively, the shape of the pressure receiving surface 12 of the seismic isolation plug 6 can be made to be a plane shape orthogonal to the pressurizing direction by the following steps instead of the steps shown in FIGS. 4 (e) to 4 (f). . That is, although illustration is omitted, after the step shown in FIG. 4D, the inclined stamper 5b is replaced with a flat stamper 5a having a flat pressing surface 4a orthogonal to the pressing direction of the stamper 5, and this is used. Then, the seismic isolation plug 6 is pressurized, the shape of the seismic isolation plug 6 is adjusted (planar shape orthogonal to the pressing direction), and the molding can be completed. Although this is a secondary effect, in this manufacturing process, there is no step of cutting the powder material 2 as in the manufacturing step shown in FIG. In the production of the seismic isolation plug 6, the powder material can be used without waste. This is preferable from the viewpoint of reducing the production cost of the seismic isolation plug 6.

あるいは、図5の製造工程に示すように、その中央部が外周部よりも加圧方向へ突出した錐体形状の加圧面4cを有する錐体スタンパ5cを用いて、加圧成形することが好ましい。この製造工程では、図5(a)に示すように、金型3内に粉体材料2を充填し、次いで、図5(b)に示すように、錐体スタンパ5cを矢印αの方向に移動させると同時に、金型3の中型7を錐体スタンパ5cによる加圧方向とは反対の方向(矢印βの方向)に移動させ、金型3の中型7による摩擦力を利用して粉体材料を強く圧縮しつつ、錐体形状の加圧面4cにより粉体材料2を加圧成形し、粉体材料2の受圧面12の形状を、金型側の周辺部に比し中央部にて陥没した錐体形状に変形させる。次いで、図5(c)に示すように、金型3の中型7を元の位置に移動(矢印β’の方向に移動)させつつ、錐体スタンパ5cを加圧方向とは反対の方向(矢印α’の方向)に引き上げる。そして、図5(d)に示すように、かかる錐体スタンパ5cを、加圧方向に直交する平面状の加圧面4aを有する平面スタンパ5aと置き換える。次いで、図5(e)に示すように、平面スタンパ5aを矢印α”の方向に移動させると同時に、金型3の中型7を平面スタンパ5aによる加圧方向とは反対の方向(矢印β”の方向)に移動させて、金型3の中型7による摩擦力を利用して粉体材料を強く圧縮しつつ、平面スタンパ5aの加圧面4aにより粉体材料2の受圧面12を加圧成形することにより、粉体材料2の受圧面12の形状を平面状とする。この加圧工程では、前記受圧面12における周辺部12aの変形量が特に大きくなることから、金型3側における粉体材料2の流動が強く促される結果、空気含有率を更に小さくした免震プラグ6が得られる。そして、このように加圧成形された免震プラグ6は、図5(f)に示すように、金型3から抜き出され、免震装置8への圧入に供される。上述したような工程により粉体材料2を加圧成形すると、主に金型側における粉体材料2の流動が促され、粉体材料2間の隙間が小さくなるため、粉体材料2全体が図3(b)に示すような配置に更に近付くこととなる。その結果、免震プラグ6の空気含有率が小さくなり、かかる免震プラグ6を圧入した免震装置は、減衰性能及び変位追従性がともに向上する。   Alternatively, as shown in the manufacturing process of FIG. 5, it is preferable to perform pressure molding using a cone stamper 5c having a cone-shaped pressure surface 4c whose central portion protrudes in the pressure direction from the outer peripheral portion. . In this manufacturing process, as shown in FIG. 5A, the mold material 3 is filled with the powder material 2, and then, as shown in FIG. 5B, the cone stamper 5c is moved in the direction of the arrow α. At the same time, the middle mold 7 of the mold 3 is moved in the direction opposite to the pressurizing direction by the cone stamper 5c (in the direction of the arrow β), and the friction force by the middle mold 7 of the mold 3 is used to make the powder. While the material is strongly compressed, the powder material 2 is pressure-molded by the cone-shaped pressure surface 4c, and the shape of the pressure-receiving surface 12 of the powder material 2 is in the central portion as compared with the peripheral portion on the mold side. Transform into a depressed cone shape. Next, as shown in FIG. 5C, while moving the middle mold 7 of the mold 3 to the original position (moved in the direction of the arrow β ′), the cone stamper 5c is moved in the direction opposite to the pressing direction ( Pull up in the direction of arrow α ′). Then, as shown in FIG. 5D, the cone stamper 5c is replaced with a flat stamper 5a having a flat pressing surface 4a orthogonal to the pressing direction. Next, as shown in FIG. 5E, the planar stamper 5a is moved in the direction of the arrow α ″, and at the same time, the middle mold 7 of the mold 3 is moved in the direction opposite to the pressurizing direction by the planar stamper 5a (arrow β ″). The pressure receiving surface 12 of the powder material 2 is pressed by the pressing surface 4a of the flat stamper 5a while the powder material is strongly compressed using the frictional force of the middle mold 7 of the mold 3. By doing so, the shape of the pressure receiving surface 12 of the powder material 2 is made planar. In this pressurization step, the deformation amount of the peripheral portion 12a on the pressure receiving surface 12 is particularly large, so that the flow of the powder material 2 on the mold 3 side is strongly promoted, and as a result, the seismic isolation with a further reduced air content rate. A plug 6 is obtained. And the seismic isolation plug 6 pressure-molded in this way is extracted from the mold 3 and used for press-fitting into the seismic isolation device 8 as shown in FIG. When the powder material 2 is pressure-molded by the process as described above, mainly the flow of the powder material 2 on the mold side is promoted, and the gap between the powder materials 2 is reduced. It will be closer to the arrangement as shown in FIG. As a result, the air content of the seismic isolation plug 6 is reduced, and the seismic isolation device in which the seismic isolation plug 6 is press-fit improves both the damping performance and the displacement follow-up performance.

なお、粉体材料2を構成する塑性流動材Aに含まれる物質としては、(天然ゴム、ポリブタジエンゴム、アクリルゴム、シリコンゴム、ポリウレタン、ウレタン系エラストマーなどの)エストラマー成分、(ロジン樹脂、フェノール樹脂などの)樹脂、カーボンブラック、(フタル酸、マレイン酸、クエン酸などの)可塑剤、(ヒマシ油、アマニ油、ナタネ油などの)軟化材などが挙げられる。また、硬質充填材Bに含まれる物質としては、銅粉、ステンレス鋼粉、ジルコニウム粉、タングステン粉、青銅粉、アルミニウム粉、ニッケル粉、モリブデン粉、チタン粉、鉄粉などの金属粉体や金属化合物が挙げられる。なお、塑性流動材Aと硬質充填材Bの夫々について選定される材料の組成、含有率、組み合わせ等は、免震プラグ6に所望される性能に応じて適宜変更することができる。また、粉体材料2は、塑性流動材A及び硬質充填材Bからなる構成に限定されるものではなく、その他の種々の粉体材料2を適用することも可能である。   The material contained in the plastic fluid A constituting the powder material 2 includes elastomer components (such as natural rubber, polybutadiene rubber, acrylic rubber, silicon rubber, polyurethane, urethane elastomer), (rosin resin, phenol resin). Resin), carbon black, plasticizers (such as phthalic acid, maleic acid, citric acid), softening materials (such as castor oil, linseed oil, rapeseed oil), and the like. The substance contained in the hard filler B includes metal powder such as copper powder, stainless steel powder, zirconium powder, tungsten powder, bronze powder, aluminum powder, nickel powder, molybdenum powder, titanium powder, iron powder, and metal. Compounds. In addition, the composition of the material selected about each of the plastic fluid material A and the hard filler B, a content rate, a combination, etc. can be suitably changed according to the performance desired for the seismic isolation plug 6. Moreover, the powder material 2 is not limited to the structure which consists of the plastic fluidity material A and the hard filler B, and it is also possible to apply other various powder materials 2.

あるいは、図6の製造工程に示すように、対向する一対のスタンパ(図示例では、傾斜スタンパ5b及び5b’の組み合わせ、並びに、平面スタンパ5a及び5a’の組み合わせ)を用いて、粉体材料2を挟み込むように二方向から加圧成形することが好ましい。図6(a)〜(e)に示すように、加圧面4b、4b’を夫々有する一対の傾斜スタンパ5b、5b’を用いて、金型3の中型7を移動させつつ、段階的に二方向から粉体材料2を加圧成形すると、図4に示すような単一の傾斜スタンパ5bにより一方向から粉体材料2を加圧成形する場合に比べ、粉体材料2を全体に均一に圧縮しつつも、粉体材料2の空気含有率を更に小さくすることが可能となる。そして、図6(f)〜(g)に示すように、平面状の加圧面4a、4a’を夫々有する一対の平面スタンパ5a、5a’を用いて、粉体材料2を加圧することにより、図1に示すような単一の平面スタンパ5aにより一方向から粉体材料2を加圧する場合に比べ、粉体材料2を全体に均一に圧縮しつつも、粉体材料2の受圧面12の形状が平面状に成形されるため、空気含有率を更に小さくした免震プラグ6(図6(h))を製造することが可能となる。かかる免震プラグ6を具える免震装置8は、減衰性能及び変位追従性が更に向上する。また、図1に示すように一方向から加圧成形するよりも、複数方向から加圧成形する方が、粉体材料を所望の空気含有率とすることに要する時間が短縮されるため、免震プラグ6の生産性を向上することとなる。   Alternatively, as shown in the manufacturing process of FIG. 6, the powder material 2 is formed using a pair of opposed stampers (in the illustrated example, a combination of inclined stampers 5 b and 5 b ′ and a combination of flat stampers 5 a and 5 a ′). It is preferable to perform pressure molding from two directions so as to sandwich the film. As shown in FIGS. 6A to 6E, a pair of inclined stampers 5b and 5b ′ having pressurizing surfaces 4b and 4b ′ are used to move the middle mold 7 of the mold 3 in a stepwise manner. When the powder material 2 is pressure-formed from the direction, the powder material 2 is made uniform as a whole as compared with the case where the powder material 2 is pressure-formed from one direction by a single inclined stamper 5b as shown in FIG. The air content of the powder material 2 can be further reduced while being compressed. And as shown to FIG.6 (f)-(g), by pressurizing the powder material 2 using a pair of plane stamper 5a, 5a 'which each has planar pressure surface 4a, 4a', Compared to the case where the powder material 2 is pressed from one direction by a single flat stamper 5a as shown in FIG. 1, the powder material 2 is uniformly compressed as a whole, while the pressure receiving surface 12 of the powder material 2 is compressed. Since the shape is formed into a flat shape, it is possible to manufacture the seismic isolation plug 6 (FIG. 6 (h)) with a further reduced air content. The seismic isolation device 8 including the seismic isolation plug 6 further improves the damping performance and the displacement followability. Also, as shown in FIG. 1, the time required for the powder material to have a desired air content is shortened by pressure molding from a plurality of directions, rather than by pressure molding from one direction. Productivity of the seismic plug 6 will be improved.

なお、異なる形状の加圧面4を有する複数のスタンパ5を並列配置し、この列に沿って金型3を移動させ、かかる複数のスタンパ5を用いて順次粉体材料2を加圧成形することにより、免震プラグ6を製造するような装置構成とすることが可能である。あるいは、逆に、金型3の位置を固定し、前記並列させたスタンパ5を順次移動させて、それらスタンパ5を用いて粉体材料2を連続的に加圧成形することにより、免震プラグ6を製造するような装置構成とすることも可能である。後者の装置構成は省スペース化の観点から好ましい。   A plurality of stampers 5 having differently shaped pressing surfaces 4 are arranged in parallel, the mold 3 is moved along this row, and the powder material 2 is sequentially pressure-formed using the plurality of stampers 5. Thus, it is possible to obtain an apparatus configuration for manufacturing the seismic isolation plug 6. Or, conversely, the position of the mold 3 is fixed, the parallel stampers 5 are sequentially moved, and the powder material 2 is continuously pressure-molded by using the stampers 5, thereby providing a seismic isolation plug. It is also possible to adopt an apparatus configuration that manufactures 6. The latter apparatus configuration is preferable from the viewpoint of space saving.

なお、上述したところは、この発明の実施形態の一部を示したにすぎず、この発明の趣旨を逸脱しない限り、これらの構成を相互に組み合わせたり、種々の変更を加えたりすることができる。例えば、図示例の製造工程では、粉体材料2の受圧面7を異なる形状に1〜3回圧縮変形させて免震プラグ6を製造しているが、所望の空気含有率に応じて、それら圧縮工程を更に繰り返し実施することも可能である。また、図示例の製造工程では、平面スタンパ5a、傾斜スタンパ5b及び錐体スタンパ5cの3種類のスタンパ5を用いて粉体材料2を加圧成形しているが、その他の形状の加圧面4を有するスタンパ5を採用し、スタンパ5の種類を更に増やして加圧成形することも可能である。   Note that the above description shows only a part of the embodiment of the present invention, and these configurations can be combined with each other or various modifications can be made without departing from the gist of the present invention. . For example, in the illustrated manufacturing process, the seismic isolation plug 6 is manufactured by compressing and deforming the pressure-receiving surface 7 of the powder material 2 into different shapes 1 to 3 times, depending on the desired air content. It is also possible to repeat the compression step. Moreover, in the manufacturing process of the illustrated example, the powder material 2 is pressure-molded by using three types of stampers 5 including a flat stamper 5a, an inclined stamper 5b, and a cone stamper 5c. It is also possible to use the stamper 5 having the above, and further press-mold by increasing the types of the stamper 5.

次に、特許文献1に記載の平面スタンパを使用して製造した免震プラグ(比較例免震プラグ)、及び図1に示したところに従うこの発明の製造方法を用いて製造した免震プラグ(実施例免震プラグ)を夫々試作し、それらの性能評価を行ったので、以下に説明する。   Next, a seismic isolation plug (comparative seismic isolation plug) manufactured using the flat stamper described in Patent Document 1 and a seismic isolation plug manufactured using the manufacturing method of the present invention according to the place shown in FIG. Example seismic isolation plugs) were prototyped and their performance was evaluated, which will be described below.

比較例免震プラグは以下に説明する方法により製造した。はじめに、計算比重が5.54g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.6mmの円筒状の金型内に充填し、次いで、かかる粉体材料を、スタンパの加圧方向に直交する平面状の加圧面を有する平面スタンパにより、123.56MPaの面圧にて粉体材料を加圧変形させることで製造した。なお、かようにして製造された免震プラグの直径は43.7mmであり、高さは49.3mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。 The comparative example seismic isolation plug was manufactured by the method described below. First, a powder material made of a plastic fluid material and a hard filler having a calculated specific gravity of 5.54 g / cm 3 and having the composition shown in Table 1 was filled into a cylindrical mold having an inner diameter of 43.6 mm. Then, the powder material was manufactured by pressurizing and deforming the powder material at a surface pressure of 123.56 MPa using a flat stamper having a flat pressure surface perpendicular to the pressing direction of the stamper. In addition, the diameter of the seismic isolation plug manufactured in this way is 43.7 mm, and the height is 49.3 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

また、実施例免震プラグは、以下に説明する方法により製造した。はじめに、図1(a)に示すように、計算比重が5.54g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.6mmの円筒状の金型内に充填する。それから、図1(b)に示すように、金型の中型をスタンパによる加圧方向とは反対の方向に移動させると同時に、平面スタンパにより123.56MPaの面圧にて粉体材料を加圧変形させることで製造した。なお、かようにして製造された免震プラグの直径は43.8mmであり、高さは45.7mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。 Moreover, the example seismic isolation plug was manufactured by the method demonstrated below. First, as shown in FIG. 1 (a), a powder material composed of a plastic fluid and a hard filler having a calculated specific gravity of 5.54 g / cm 3 and the composition shown in Table 1 has an inner diameter of 43.6 mm. In a cylindrical mold. Then, as shown in FIG. 1B, the mold material is moved in a direction opposite to the pressing direction by the stamper, and at the same time, the powder material is pressed by the planar stamper at a surface pressure of 123.56 MPa. Manufactured by deforming. In addition, the diameter of the seismic isolation plug manufactured in this way is 43.8 mm, and the height is 45.7 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

Figure 0005590816
*1 (天然ゴム)
未加硫、RSS#4
*2 (ポリブタジエンゴム(低シス))
未加硫、旭化成製「ジエンNF35R」
*3 カーボンブラック
ISAF、東海カーボン製「シースト6P」
*4 樹脂
日本ゼオン製「ゼオファイン」、新日本石油化学製「日石ネオポリマー140」、丸善石油化学製「マルカレッツM−890A」、「ゼオファイン」:「日石ネオポリマー140」:「マルカレッツM−890A」=40:40:20(質量比)
*5 可塑剤
ジオクチルアジペート(DOA)
*6 その他の配合剤
亜鉛華、ステアリン酸、老化防止剤[住友化学製「アンステージ6C」、ワックス[新日本石油製「プロトワックス1」]、亜鉛華:ステアリン酸:老化防止剤:ワックス=4:5:3:1(質量比)
Figure 0005590816
* 1 (natural rubber)
Unvulcanized, RSS # 4
* 2 (Polybutadiene rubber (low cis))
Unvulcanized, Asahi Kasei "Diene NF35R"
* 3 Carbon Black ISAF, Tokai Carbon "Seast 6P"
* 4 Resins “Zeofine” manufactured by Nippon Zeon, “Nisseki Neopolymer 140” manufactured by Nippon Petrochemical Co., Ltd. “Marcaretz M-890A” manufactured by Maruzen Petrochemical, “Zeofine”: “Nisseki Neopolymer 140”: “Marcaretz M-” 890A "= 40: 40: 20 (mass ratio)
* 5 Plasticizer Dioctyl adipate (DOA)
* 6 Other compounding agents Zinc white, stearic acid, anti-aging agent [“Anstage 6C” manufactured by Sumitomo Chemical, wax [“Proto Wax 1” manufactured by Nippon Oil Corporation], zinc white: stearic acid: anti-aging agent: wax = 4: 5: 3: 1 (mass ratio)

その結果、従来例の免震プラグの実比重が4.733g/cmとなり、その空気含有率が14.5%であったのに対し、実施例の免震プラグの実比重が5.072g/cmとなり、その空気含有率が8.4%まで小さくなっていた。 As a result, the actual specific gravity of the conventional seismic isolation plug was 4.733 g / cm 3 and its air content was 14.5%, whereas the actual specific gravity of the seismic isolation plug of the example was 5.072 g. / Cm 3 , and the air content was reduced to 8.4%.

以上の説明から明らかなように、この発明によって、材料に鉛を使用することなく、免震装置の減衰性能及び変位追従性を向上させ得る免震プラグの製造方法、並びにかかる製造方法を実施し得る免震プラグの製造装置を提供することが可能となった。   As is apparent from the above description, according to the present invention, a method for manufacturing a seismic isolation plug that can improve the damping performance and displacement followability of the seismic isolation device without using lead as a material, and such a manufacturing method are implemented. It has become possible to provide a seismic isolation plug manufacturing device.

1 免震プラグの製造装置
2 粉体材料
3 金型
4 加圧面
4a、4a’ 平面スタンパの加圧面
4b、4b’ 傾斜スタンパの加圧面
4c 錐体スタンパの加圧面
5 スタンパ
5a、5a’ 平面スタンパ
5b、5b’ 傾斜スタンパ
5c 錐体スタンパ
6 免震プラグ
7 金型の中型
8 免震装置
9 ゴム板
10 鋼板
11 積層体
12、12’ 受圧面
12a 粉体材料の突出した部分
A 塑性流動材
B 硬質充填材
DESCRIPTION OF SYMBOLS 1 Seismic isolation plug manufacturing apparatus 2 Powder material 3 Mold 4 Pressurization surface 4a, 4a 'Pressurization surface 4b of plane stamper 4b' Pressurization surface 4c of inclined stamper Pressurization surface 5 of conical stamper 5 Stamper 5a, 5a 'Planar stamper 5b, 5b ′ Inclined stamper 5c Conical stamper 6 Seismic isolation plug 7 Mold middle mold 8 Seismic isolation device 9 Rubber plate 10 Steel plate 11 Laminate 12, 12 ′ Pressure receiving surface 12a Projected portion A of powder material A Plastic fluidizing material B Hard filler

Claims (4)

側壁を形成する中型を有する金型内に充填された粉体材料に、加圧成形を行って免震装置用の免震プラグを成形するに当たり、
前記粉体材料を加圧成形するスタンパを加圧方向に移動させると同時に前記中型に対して外力を付与して前記中型を前記加圧方向とは反対の方向に移動させ、前記中型と前記粉体材料との界面においてせん断応力が生じるように加圧成形を行なうことを特徴とする免震プラグの製造方法。
In forming a seismic isolation plug for a seismic isolation device by performing pressure molding on a powder material filled in a mold having a middle mold forming a side wall,
The stamper for pressing the powder material is moved in the pressing direction, and at the same time, an external force is applied to the middle mold to move the middle mold in a direction opposite to the pressing direction. A method of manufacturing a seismic isolation plug, wherein pressure molding is performed so that shear stress is generated at an interface with a body material.
前記スタンパが、加圧方向に対し傾斜した平面状の加圧面を有する傾斜スタンパ、または、中央部が外周部よりも加圧方向へ突出した錐体形状の加圧面を有する錐体スタンパである、請求項1に記載の免震プラグの製造方法。 The stamper is an inclined stamper having a flat pressing surface inclined with respect to the pressing direction, or a cone stamper having a cone-shaped pressing surface whose central portion protrudes in the pressing direction from the outer peripheral portion. The manufacturing method of the seismic isolation plug of Claim 1. 粉体材料が充填され、側壁を形成する中型を有する金型、及び該金型内の粉体材料を加圧成形するスタンパを具える、免震装置用の免震プラグの製造装置において、
前記金型の中型が、スタンパを加圧方向へ移動させて粉体材料を加圧成形する際に加圧方向とは反対の方向に移動可能であることを特徴とする免震プラグの製造装置。
In an apparatus for manufacturing a seismic isolation plug for a seismic isolation apparatus, comprising a mold having a middle mold that is filled with a powder material and forming a side wall, and a stamper that press-molds the powder material in the mold.
The seismic isolation plug manufacturing apparatus, wherein the middle mold of the mold is movable in a direction opposite to the pressurizing direction when the stamper is moved in the pressurizing direction to press the powder material. .
前記スタンパが、加圧方向に対し傾斜した平面状の加圧面を有する傾斜スタンパ、または、中央部が外周部よりも加圧方向へ突出した錐体形状の加圧面を有する錐体スタンパである、請求項3に記載の免震プラグの製造装置。The stamper is an inclined stamper having a flat pressing surface inclined with respect to the pressing direction, or a cone stamper having a cone-shaped pressing surface whose central portion protrudes in the pressing direction from the outer peripheral portion. The manufacturing apparatus of the seismic isolation plug of Claim 3.
JP2009108307A 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor Expired - Fee Related JP5590816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108307A JP5590816B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108307A JP5590816B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Publications (2)

Publication Number Publication Date
JP2010253850A JP2010253850A (en) 2010-11-11
JP5590816B2 true JP5590816B2 (en) 2014-09-17

Family

ID=43315339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108307A Expired - Fee Related JP5590816B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JP5590816B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11084906B2 (en) 2011-08-19 2021-08-10 Akron Polymer Systems, Inc. Thermally stable, low birefringent copolyimide films
JP5977599B2 (en) * 2012-06-22 2016-08-24 株式会社ブリヂストン Manufacturing method of seismic isolation plug

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974806B2 (en) * 2007-08-14 2012-07-11 株式会社ブリヂストン Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor

Also Published As

Publication number Publication date
JP2010253850A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5345888B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5404161B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
KR101637139B1 (en) Press molding method
JP5590816B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5345881B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5250467B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN105945149A (en) Stamping die for U-shaped plates
JP5442464B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN201427147Y (en) Precision extrusion die for magnesium alloy shell part
JP5366639B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN207057393U (en) Prevent the mould of scraps-bounce
CN202498145U (en) Flanging die
JP2011011225A (en) Method of sizing sintered part
US6403025B2 (en) Method and a device for compacting of powder metal bodies
JP2012193846A (en) Manufacturing method of base isolation plug for base isolation device and its manufacturing device
JP2011158033A (en) Manufacturing method of seismic isolation plug for seismic isolation device, and seismic isolation plug manufactured by the method
JP5862927B2 (en) Green compact mold equipment for curved plate parts
JP2016008347A (en) Method and apparatus for producing sintering diffusion joining member
WO2022004222A1 (en) Workpiece production apparatus
JP2007075844A (en) Hydrostatic bulged product, and its hydrostatic bulging method
JP2012215213A (en) Method and device for manufacturing plug and the plug
CN220781989U (en) Stretching die
JP2010274288A (en) Method for pressing powder compact
US20220371135A1 (en) Core removal punch and hole forming method
JP6023477B2 (en) Seismic isolation plug manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5590816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees