JP4974806B2 - Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor - Google Patents

Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor Download PDF

Info

Publication number
JP4974806B2
JP4974806B2 JP2007211281A JP2007211281A JP4974806B2 JP 4974806 B2 JP4974806 B2 JP 4974806B2 JP 2007211281 A JP2007211281 A JP 2007211281A JP 2007211281 A JP2007211281 A JP 2007211281A JP 4974806 B2 JP4974806 B2 JP 4974806B2
Authority
JP
Japan
Prior art keywords
plug body
mold
end surface
hollow
surface forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007211281A
Other languages
Japanese (ja)
Other versions
JP2009047194A (en
Inventor
宏典 濱崎
重信 鈴木
秀章 加藤
裕一郎 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2007211281A priority Critical patent/JP4974806B2/en
Publication of JP2009047194A publication Critical patent/JP2009047194A/en
Application granted granted Critical
Publication of JP4974806B2 publication Critical patent/JP4974806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、剛性を有する剛性板と弾性を有する弾性板とを高さ方向に交互に積層してなる積層体を有するとともに、この積層体の高さ方向両端に開口する中空部が設けられ、この中空部内に、粘弾性体および剛体粉末を混合させた塑性変形材料よりなるプラグ体を配置してなる積層免震ベアリングを製造する方法およびそれに用いられるプラグ体成形装置に関し、特に、プラグ体内に含まれる空隙を大幅に減少させることのできるものに関する。   The present invention has a laminate formed by alternately laminating a rigid plate having rigidity and an elastic plate having elasticity in the height direction, and provided with hollow portions that open at both ends in the height direction of the laminate, In particular, the present invention relates to a method of manufacturing a laminated seismic isolation bearing in which a plug body made of a plastically deformable material in which a viscoelastic body and a rigid powder are mixed and a plug body molding apparatus used therefor. The present invention relates to a material that can significantly reduce the contained voids.

図1に示すように、剛性を有する剛性板1と弾性を有する弾性板2とを高さ方向に交互に積層してなる積層体3を有するとともに、積層体3の高さ方向両端に開口する中空部5が設けられ、この中空部5内に、粘弾性体、および、例えば金属よりなる剛体粉末を混合させた塑性変形材料よりなるプラグ体4を配置してなる積層免震ベアリング10が知られている(例えば、特許文献1参照。)。   As shown in FIG. 1, the laminate 3 is formed by alternately laminating a rigid plate 1 having rigidity and an elastic plate 2 having elasticity in the height direction, and opens at both ends in the height direction of the laminate 3. A hollow seismic isolation bearing 10 is known in which a hollow portion 5 is provided, and a plug body 4 made of a plastically deformable material in which a viscoelastic body and a rigid powder made of metal, for example, are mixed is arranged in the hollow portion 5. (For example, refer to Patent Document 1).

このプラグ体4は、積層免震ベアリング10が支持する建物等が揺動した際の変形エネルギーを吸収して揺動を減衰させるよう機能し、そのため、高い減衰特性を有するよう構成されていて、従来、このような積層免震ベアリング10は、積層体3を準備したあと、その中空部5に、直接、前記塑性変形材料の粒状体を充填することによって形成されている。
特開2006−316990号公報
This plug body 4 functions to absorb the deformation energy when the building or the like supported by the laminated seismic isolation bearing 10 swings to attenuate the swinging, and is thus configured to have high damping characteristics. Conventionally, such a laminated seismic isolation bearing 10 is formed by directly filling the hollow portion 5 with the granular material of the plastically deformable material after preparing the laminated body 3.
JP 2006-316990 A

しかしながら、この方法によると、前記塑性変形材料の粒状体は、積層体3に収容されているため、これを高圧で加圧することができず、原材料中に含まれている空隙の他、充填時に空気を巻き込んで発生した空隙は、除去されないまま残ってしまい、所定体積内に含まれる塑性変形材料の質量が減少することによって所望の減衰特性を発揮させることができないという問題があった。   However, according to this method, since the granular material of the plastically deformable material is accommodated in the laminate 3, it cannot be pressurized at a high pressure, and in addition to the voids contained in the raw material, There is a problem that voids generated by entraining air remain without being removed, and a desired damping characteristic cannot be exhibited due to a decrease in the mass of the plastically deformable material contained in the predetermined volume.

本発明は、このような問題点を鑑みてなされたものであり、プラグ体内に含まれる空隙を大幅に減少させることのできる積層免震ベアリングの製造方法およびそれに用いられるプラグ体成形装置を提供することを目的とする。   The present invention has been made in view of such problems, and provides a method of manufacturing a laminated seismic isolation bearing capable of greatly reducing the gaps included in the plug body and a plug body molding apparatus used therefor. For the purpose.

請求項1に記載された発明は、剛性を有する剛性板と弾性を有する弾性板とを高さ方向に交互に積層してなる積層体を有するとともに、この積層体の高さ方向両端に開口する中空部が設けられ、この中空部内に、粘弾性体および剛体粉末を混合させた塑性変形材料よりなるプラグ体を配置してなる積層免震ベアリングを製造する際に、前記塑性変形材料を金型に収容したあとこれを加圧成形して前記プラグ体を形成する工程と、前記中空部にこのプラグ体を挿入する工程とを具える積層免震ベアリングの製造方法に用いられるプラグ体成形装置であって、
両端で開口する中空部を有する中空型と、前記中空部に収容された、前記塑性変形材料の粒状体を前記中空部の両側から加圧成形する一対の端面形成型とを具え、前記端面形成型の両方を、前記中空型に対して相対変位させるよう構成されてなり、
前記端面形成型の一方をベースに固定し、前記端面形成型の他方を、前記一方の端面形成型に対して離隔接近させる端面形成型変位機構を設けるとともに、前記中空型を、前記他方の端面形成型の変位する方向と平行に変位できるよう、加勢手段を介して前記ベースに固定してなるプラグ体成形装置である。
The invention described in claim 1 has a laminate formed by alternately laminating a rigid plate having rigidity and an elastic plate having elasticity in the height direction, and opens at both ends in the height direction of the laminate. When manufacturing a laminated seismic isolation bearing in which a hollow body is provided and a plug body made of a plastically deformable material mixed with a viscoelastic body and a rigid powder is disposed in the hollow part, the plastically deformable material is molded into a mold. A plug body forming apparatus used in a method of manufacturing a laminated seismic isolation bearing, comprising: a step of forming the plug body by pressure forming after being housed in the housing; and a step of inserting the plug body into the hollow portion. There,
A hollow mold having hollow portions that are open at both ends; and a pair of end surface forming molds that press-mold the granular material of the plastically deformable material contained in the hollow portion from both sides of the hollow portion. Both molds are configured to be displaced relative to the hollow mold,
An end surface forming mold displacement mechanism is provided that fixes one of the end surface forming molds to a base and moves the other end surface forming mold away from and close to the one end surface forming mold, and the hollow mold is connected to the other end surface. It is a plug body forming device that is fixed to the base via a biasing means so that it can be displaced parallel to the direction in which the forming mold is displaced .

請求項2に記載された発明は、請求項1において、前記剛体粉末を金属よりなるものとするプラグ体成形装置である。
The invention described in claim 2 is the plug body forming apparatus according to claim 1, wherein the rigid powder is made of metal.

請求項1に記載された発明によれば、前記塑性変形材料を金型に収容したあとこれを加圧成形して前記プラグ体を形成する工程と、前記中空部にこのプラグ体を挿入する工程とを具えることにより、プラグ体中に残存する空隙の割合、すなわち、空隙率を大幅に減少させることができ、所定体積内に含まれる塑性変形材料の質量を確保して所望の減衰特性を実現させることができる積層免震ベアリングの製造方法に用いられるプラグ体成形装置において、両端で開口する中空部を有する中空型と、前記中空部に収容された、前記塑性変形材料の粒状体を前記中空部の両側から加圧成形する一対の端面形成型とを具えるので、プラグ体を効率よく作成することができ、しかも、前記端面形成型の両方を、前記中空型に対して相対変位させるよう構成したので、詳細を後述するように、前記端面形成型の一方だけを、前記中空型に対して相対変位させる場合に対比して、圧縮代を高めることができ、その結果、空隙率を一層減少させることができる。また、前記端面形成型の一方をベースに固定し、前記端面形成型の他方を、前記一方の端面形成型に対して離隔接近させる端面形成型変位機構を設けるとともに、前記中空型を、前記他方の端面形成型の変位する方向と平行に変位できるよう、加勢手段を介して前記ベースに固定したので、端面形成型の一方だけを駆動させればよく、装置を極めて簡素に構成することができる。
According to the invention described in claim 1, the step of forming the plug body by press-molding the plastically deformable material in a mold and the step of inserting the plug body into the hollow portion by comprising the bets, the percentage of voids remaining in the plug body, i.e., it is possible to reduce the porosity significantly, the desired damping characteristics to ensure the mass of plastic deformation material contained in a given volume In a plug body molding apparatus used in a method of manufacturing a laminated seismic isolation bearing that can be realized , a hollow mold having a hollow portion that opens at both ends, and a granular body of the plastically deformable material housed in the hollow portion Since it includes a pair of end surface forming molds that are pressure-molded from both sides of the hollow portion, a plug body can be efficiently produced, and both the end surface forming molds are displaced relative to the hollow mold. Like Thus, as will be described in detail later, compared with the case where only one of the end face forming molds is relatively displaced with respect to the hollow mold, the compression allowance can be increased, and as a result, the porosity can be further increased. Can be reduced. In addition, an end surface forming mold displacement mechanism is provided that fixes one of the end surface forming molds to a base, and moves the other of the end surface forming molds to be spaced apart from the one end surface forming mold. Since it is fixed to the base via the urging means so that it can be displaced in parallel with the direction of displacement of the end face forming mold, only one of the end face forming molds needs to be driven, and the apparatus can be configured very simply. .

請求項2に記載された発明によれば、前記剛体粉末を金属よりなるものとするので、プラグ体の変形エネルギーに対する減衰特性を高めることができる。   According to the second aspect of the present invention, since the rigid powder is made of metal, it is possible to improve the attenuation characteristic with respect to the deformation energy of the plug body.

本発明の実施形態について図を参照して説明する。図2は、本発明に係る実施形態のプラグ体成形装置を模式的に示す部分断面図であり、また、図3は、図2のA−A矢視に対応する断面図であり、プラグ体成形装置20は、両端で開口する中空部23を有する中空型22と、中空部23に収容された、塑性変形材料の粒状体Mを中空部23の両側から加圧成形する一対の端面形成型24、25とを具える。ここで、中空型22と一対の端面形成型24、25とは、塑性変形材料を加圧成形する金型を構成する。   Embodiments of the present invention will be described with reference to the drawings. 2 is a partial cross-sectional view schematically showing a plug body forming apparatus according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view corresponding to the arrow AA in FIG. The molding apparatus 20 includes a hollow mold 22 having a hollow portion 23 that opens at both ends, and a pair of end face forming molds that press-mold the granular material M of a plastically deformable material accommodated in the hollow portion 23 from both sides of the hollow portion 23. 24, 25. Here, the hollow mold 22 and the pair of end face forming molds 24 and 25 constitute a mold for pressure-molding a plastically deformable material.

一方の端面形成型24はベース21に固定され、端面形成型変位機構26が設けられ、他方の端面形成型25を、一方の端面形成型24に対して離隔接近させるよう機能する。また、中空型22は、他方の端面形成型25の変位する方向と平行に変位できるよう、例えばバネ等よりなる加勢手段27を介してベース21に固定されている。   One end surface forming die 24 is fixed to the base 21, and an end surface forming die displacement mechanism 26 is provided to function so that the other end surface forming die 25 is spaced apart from one end surface forming die 24. The hollow mold 22 is fixed to the base 21 via a biasing means 27 made of, for example, a spring so that the hollow mold 22 can be displaced in parallel with the direction in which the other end face forming mold 25 is displaced.

このようなプラグ体成形装置20を用いて、プラグ体を成形するには、端面形成型変位機構26を作動させて他方の端面形成型25を一方の端面形成型24から離隔させる方向に駆動し、中空部23の一方の端部を開放した状態とし、次いで、手動で、もしくは別途の手段により、予め準備した所定量の塑性変形材料の粒状体Mを、中空部23に投入して図4に示す状態にする。   In order to form a plug body using such a plug body forming apparatus 20, the end face forming die displacement mechanism 26 is operated to drive the other end face forming die 25 away from the one end face forming die 24. Then, one end of the hollow portion 23 is opened, and then a predetermined amount of a granular material M of a plastically deformable material prepared in advance is manually or separately supplied into the hollow portion 23 as shown in FIG. Set to the state shown in.

そのあと、端面形成型変位機構26を作動させて他方の端面形成型25を一方の端面形成型24に接近させる方向に駆動して、図2に示すように、端面形成型25が塑性変形材料の粒状体Mの上面に当接する位置まで変位させる。その後、引き続いて、塑性変形材料の粒状体Mを加圧すべく、端面形成型変位機構26を高出力で作動させて端面形成型25、26をさらに接近させる。その結果、粒状体M内の空隙は排除されて圧縮代μだけ圧縮され、可動側の端面形成型25は固定側の端面形成型24に接近すると同時に、中空型22に対しても相対変位するが、中空型22に対してはそれ以上相対変位できなくなる。   Thereafter, the end surface forming die 25 is actuated to drive the other end surface forming die 25 in a direction to approach the one end surface forming die 24, so that the end surface forming die 25 is plastically deformed as shown in FIG. To a position where it abuts against the upper surface of the granular material M. Thereafter, in order to pressurize the granular material M of the plastically deformable material, the end face forming mold displacement mechanism 26 is operated at a high output to bring the end face forming molds 25 and 26 closer. As a result, the voids in the granular material M are eliminated and compressed by the compression allowance μ, and the movable side end surface forming die 25 approaches the fixed side end surface forming die 24 and at the same time is also displaced relative to the hollow die 22. However, the hollow mold 22 cannot be displaced further.

これは、粒状体Mが圧縮される際、端面形成型25に近い部分から圧縮され始め、圧縮を開始した部分がそれ以上圧縮されなくなくなり固まったときこの圧縮済みの部分がそれに隣接する未圧縮部分を圧縮するというプロセスが進行することによって、圧縮済み部分が順次広がってゆくが、この圧縮によって同時に、粒状体Mが中空型22を内側から押し広げようとする圧力も高まり、圧縮済み粒状体Mの高さ領域がその限界値νに達したとき、圧縮済み部分と中空型22とはその摩擦力により相対変位できなくなり、その結果、他方の端面形成型25もそれ以上、中空型22に対して相対変位できなくなってしまうからである。   This is because when the granular material M is compressed, it starts to be compressed from a portion close to the end face forming mold 25, and when the portion where the compression is started is no longer compressed and solidifies, the compressed portion is adjacent to the uncompressed portion. As the process of compressing the portion progresses, the compressed portion gradually expands. At the same time, the pressure that the granule M tries to spread the hollow mold 22 from the inside increases, and the compressed granule When the height region of M reaches the limit value ν, the compressed portion and the hollow mold 22 cannot be displaced relative to each other by the frictional force, and as a result, the other end surface forming mold 25 is further changed into the hollow mold 22. This is because relative displacement becomes impossible.

他方の端面形成型25を一方の端面形成型24にさらに接近させようとすると、中空型22はベース21に対して加勢手段27を介して支持されているので、中空型22は、加勢手段27の抗力に逆らって、ベース21に接近する。その結果、固定されている一方の端面形成型24が中空型22に相対変位し、図5に示す状態となる。そして、この相対変位は、先に、可動側である一方の端面形成型25と中空型22との相対変位について説明したのと同様に、相対変位量がμとなり、圧縮済み粒状体Mの高さ領域νを生成する。   If the other end surface forming die 25 is further brought closer to the one end surface forming die 24, the hollow die 22 is supported by the base 21 via the biasing means 27. The base 21 is approached against the drag force. As a result, the fixed one end face forming die 24 is relatively displaced to the hollow die 22 to be in the state shown in FIG. This relative displacement is equal to the relative displacement between the one end surface forming mold 25 on the movable side and the hollow mold 22, and the relative displacement is μ, and the compressed granular material M has a high height. A region ν is generated.

以上のように作動させた結果、端面形成型24、25は2μだけ接近し、加圧前の粒状体Mの高さをλとしたとき、粒状体Mの圧縮率は(2μ/λ)となり、また、合計高さ領域2νの圧縮済み粒状体Mを生成することができる。そして、合計の相対変位量が大きければ大きいほど、また、これに相関して、合計の圧縮済み粒状体Mの高さ領域が高ければ高いほど、その分、最初に残存していた空隙を多く排除できたことを意味し、高い空隙率を得ることができる。   As a result of the operation as described above, the end face forming dies 24 and 25 approach each other by 2μ, and when the height of the granular material M before pressing is λ, the compression rate of the granular material M is (2μ / λ). In addition, a compressed granular material M having a total height region 2ν can be generated. Then, the larger the total relative displacement amount, and the higher the height region of the total compressed granular material M, the larger the amount of voids remaining at the beginning. This means that it can be eliminated, and a high porosity can be obtained.

なお、以上の説明においては、説明を分かりやすくする都合上、他方の端面形成型25が中空型22に対して相対変位する工程と、一方の端面形成型25が中空型22に対して相対変位する工程とを相前後するものとして説明したが、実際には、これらは同時進行、もしくは僅かの時間差をもって進行することになる。   In the above description, for the sake of easy understanding, the other end surface forming mold 25 is relatively displaced with respect to the hollow mold 22, and the one end surface forming mold 25 is relatively displaced with respect to the hollow mold 22. However, in actuality, these steps proceed simultaneously or with a slight time difference.

以上のように、粒状体Mを端面形成型24、25で加圧することによって、これを加圧しなかった場合に対しては大幅に空隙率を低下させることができ、また、上記のように、両方の端面形成型24、25を中空型22に対して相対変位させるよう構成されたプラグ体成形装置20は、図6に示すように、一方の端面形成型24を固定し、他方の端面形成型25だけを中空型22に対して相対変位させるよう構成されたプラグ体成形装置90に対比して、概ね2倍の空隙を排除できることになる。   As described above, by pressurizing the granular material M with the end face forming dies 24 and 25, the porosity can be significantly reduced as compared with the case where the granular material M is not pressurized, and as described above, As shown in FIG. 6, the plug body forming apparatus 20 configured to displace both end surface forming dies 24 and 25 relative to the hollow die 22 fixes one end surface forming die 24 and forms the other end surface. Compared with the plug body forming apparatus 90 configured to displace only the mold 25 relative to the hollow mold 22, approximately twice as many voids can be eliminated.

そして、粒状体Mを加圧成形したあと、他方の端面形成型25を一方の端面形成型24から離隔させる方向に変位させて中空部23の一端を開放し、成形された粒状体Mを中空部23から取り出すことによりプラグ体4を形成することができる。このあと、図1に示す積層免震ベアリング10を形成するには、このプラグ体4を、積層体3に設けられた中空部5に配置すればよい。   Then, after pressure-molding the granular material M, the other end surface forming mold 25 is displaced in a direction away from the one end surface forming mold 24 to open one end of the hollow portion 23, and the molded granular material M is hollowed out. The plug body 4 can be formed by taking out from the portion 23. Thereafter, in order to form the laminated seismic isolation bearing 10 shown in FIG. 1, the plug body 4 may be disposed in the hollow portion 5 provided in the laminated body 3.

図7は、他の態様のプラグ体成形装置30を示す部分断面図であり、プラグ体成形装置30は、両端で開口する中空部33を有する中空型32と、中空部32に収容された、塑性変形材料の粒状体Mを中空部23の両側から加圧成形する一対の端面形成型34、35とを具える。   FIG. 7 is a partial cross-sectional view showing another embodiment of the plug body molding apparatus 30. The plug body molding apparatus 30 is accommodated in a hollow mold 32 having a hollow portion 33 that opens at both ends, and the hollow portion 32. A pair of end surface forming dies 34 and 35 for pressure-molding the granular material M of the plastically deformable material from both sides of the hollow portion 23 are provided.

両方の端面形成型24、25は、それぞれ、ともにベース21に固定された端面形成型変位機構37、36によって相互に離隔接近するよう駆動され、その結果、中空部33に収容された粒状体Mを、先に説明した態様のプラグ体成形装置20と同様に、2μだけ圧縮して、空隙率を減少させることができ、この点では、プラグ体成形装置20と同様の効果を得ることができるが、装置を簡易に構成できる点においては、端面形成型変位機構を一個で済ませることができる点において、先に説明した態様のプラグ体成形装置20は優れている。   Both end surface forming molds 24 and 25 are driven to approach each other by end surface forming type displacement mechanisms 37 and 36 fixed to the base 21 respectively. As a result, the granular material M housed in the hollow portion 33 is driven. As with the plug body forming apparatus 20 of the embodiment described above, the void ratio can be reduced by compressing by 2 μm. In this respect, the same effect as the plug body forming apparatus 20 can be obtained. However, the plug body forming apparatus 20 having the above-described aspect is superior in that the apparatus can be simply configured in that one end face forming displacement mechanism can be used.

図2に示したプラグ体成形装置20を実施例とし、図6に示すプラグ体成形装置90を比較例として、これらを用いて形成されたプラグ体の空隙率を比較した。結果を表1に示す。   The plug body forming apparatus 20 shown in FIG. 2 was used as an example, and the plug body forming apparatus 90 shown in FIG. 6 was used as a comparative example, and the porosity of plug bodies formed using them was compared. The results are shown in Table 1.

なお、実施例、比較例のいずれの場合も、塑性変形材料の粒状体Mとして、未加硫ゴムと鉄粉とを混合分散して形成された平均粒径40μmの粒状体を用い、中空部の径を、44mm、中空部内への初期の粒状体Mの充填高さは110mmとし、また、粒状体Mを加圧する力は20tonfとした。
また、表1に置いて、空隙率は空気の重量をゼロと仮定し、予め求めた前記粒状体の比重と、加圧成形後のプラグ体の体積および重量より求めた比重とを比較して算出した。加圧成形後のプラグ体の体積は、ノギスによる測定をもとに算出し、重量は秤にて測定した。
In both the examples and the comparative examples, as the granular material M of the plastically deformable material, a granular material having an average particle diameter of 40 μm formed by mixing and dispersing unvulcanized rubber and iron powder is used. The diameter was 44 mm, the initial filling height of the granular material M into the hollow portion was 110 mm, and the pressure for pressing the granular material M was 20 tons.
In Table 1, the porosity is assumed that the weight of air is zero, and the specific gravity of the granular material obtained in advance is compared with the specific gravity obtained from the volume and weight of the plug body after pressure molding. Calculated. The volume of the plug body after the pressure molding was calculated based on measurement with a caliper, and the weight was measured with a scale.

Figure 0004974806
Figure 0004974806

表1から明らかなように、実施例のものは、比較例のものに対して空隙率を半分近くに減少させられることがわかる。   As is clear from Table 1, it can be seen that the porosity of the example can be reduced to nearly half that of the comparative example.

本発明に係る積層免震ベアリング示す断面図である。It is sectional drawing which shows the laminated seismic isolation bearing which concerns on this invention. 本発明に係る実施形態のプラグ体成形装置を示す部分断面図である。It is a fragmentary sectional view which shows the plug body shaping | molding apparatus of embodiment which concerns on this invention. 図2のA−A矢視に対応する断面図である。It is sectional drawing corresponding to the AA arrow of FIG. プラグ体成形装置を用いてプラグ体を形成する際の一つの工程における状態を示すプラグ体成形装置の断面図である。It is sectional drawing of the plug body shaping | molding apparatus which shows the state in one process at the time of forming a plug body using a plug body shaping | molding apparatus. 図4に続く工程における状態を示すプラグ体成形装置の断面図である。It is sectional drawing of the plug body shaping | molding apparatus which shows the state in the process following FIG. 比較例としてのプラグ体成形装置を示す部分断面図である。It is a fragmentary sectional view which shows the plug body shaping | molding apparatus as a comparative example. 本発明に係る他の実施形態のプラグ体成形装置を示す部分断面図である。It is a fragmentary sectional view which shows the plug body shaping | molding apparatus of other embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 剛性板
2 弾性板
3 積層体
4 プラグ体
5 積層体の中空部
10 積層免震ベアリング
20 プラグ体成形装置
21 ベース
22 中空型
23 中空部
24 一方の端面形成型
25 他方の端面形成型
26 端面形成型変位機構
27 加勢手段
30 プラグ体成形装置
32 中空型
33 中空部
34 一方の端面形成型
35 他方の端面形成型
DESCRIPTION OF SYMBOLS 1 Rigid board 2 Elastic board 3 Laminated body 4 Plug body 5 Hollow part of laminated body 10 Laminated seismic isolation bearing 20 Plug body shaping | molding apparatus 21 Base 22 Hollow mold 23 Hollow part 24 One end surface formation type 25 Other end surface formation type 26 End surface Forming-type displacement mechanism 27 Energizing means 30 Plug body forming device 32 Hollow mold 33 Hollow portion 34 One end face forming mold 35 The other end face forming mold

Claims (2)

剛性を有する剛性板と弾性を有する弾性板とを高さ方向に交互に積層してなる積層体を有するとともに、この積層体の高さ方向両端に開口する中空部が設けられ、この中空部内に、粘弾性体および剛体粉末を混合させた塑性変形材料よりなるプラグ体を配置してなる積層免震ベアリングを製造する際に、前記塑性変形材料を金型に収容したあとこれを加圧成形して前記プラグ体を形成する工程と、前記中空部にこのプラグ体を挿入する工程とを具える積層免震ベアリングの製造方法に用いられるプラグ体成形装置であって、
両端で開口する中空部を有する中空型と、前記中空部に収容された、前記塑性変形材料の粒状体を前記中空部の両側から加圧成形する一対の端面形成型とを具え、前記端面形成型の両方を、前記中空型に対して相対変位させるよう構成されてなり、
前記端面形成型の一方をベースに固定し、前記端面形成型の他方を、前記一方の端面形成型に対して離隔接近させる端面形成型変位機構を設けるとともに、前記中空型を、前記他方の端面形成型の変位する方向と平行に変位できるよう、加勢手段を介して前記ベースに固定してなるプラグ体成形装置。
A laminate having a rigid plate having rigidity and an elastic plate having elasticity alternately laminated in the height direction is provided, and hollow portions are provided at both ends in the height direction of the laminate, and the hollow portion is provided in the hollow portion. When manufacturing a laminated seismic isolation bearing in which a plug body made of a plastically deformable material mixed with a viscoelastic body and a rigid powder is placed , the plastically deformable material is accommodated in a mold and then pressed. A plug body forming device used in a method of manufacturing a laminated seismic isolation bearing comprising the steps of forming the plug body and inserting the plug body into the hollow portion ,
A hollow mold having hollow portions that are open at both ends; and a pair of end surface forming molds that press-mold the granular material of the plastically deformable material contained in the hollow portion from both sides of the hollow portion. Both molds are configured to be displaced relative to the hollow mold,
An end surface forming mold displacement mechanism is provided that fixes one of the end surface forming molds to a base and moves the other end surface forming mold away from and close to the one end surface forming mold, and the hollow mold is connected to the other end surface. A plug body forming apparatus that is fixed to the base via a biasing means so that the forming mold can be displaced in parallel with a direction in which the forming mold is displaced.
前記剛体粉末を金属よりなるものとする請求項1に記載のプラグ体成形装置。
The plug body forming apparatus according to claim 1, wherein the rigid powder is made of metal .
JP2007211281A 2007-08-14 2007-08-14 Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor Expired - Fee Related JP4974806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211281A JP4974806B2 (en) 2007-08-14 2007-08-14 Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211281A JP4974806B2 (en) 2007-08-14 2007-08-14 Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2009047194A JP2009047194A (en) 2009-03-05
JP4974806B2 true JP4974806B2 (en) 2012-07-11

Family

ID=40499597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211281A Expired - Fee Related JP4974806B2 (en) 2007-08-14 2007-08-14 Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4974806B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345881B2 (en) * 2009-03-25 2013-11-20 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5250467B2 (en) * 2009-04-10 2013-07-31 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5345888B2 (en) * 2009-04-27 2013-11-20 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5366639B2 (en) * 2009-04-27 2013-12-11 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5404161B2 (en) * 2009-04-27 2014-01-29 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5590816B2 (en) * 2009-04-27 2014-09-17 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5436026B2 (en) * 2009-04-27 2014-03-05 株式会社ブリヂストン Seismic isolation device plug and method of manufacturing the same
JP5442464B2 (en) * 2010-01-12 2014-03-12 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615639B2 (en) * 1987-07-27 1997-06-04 株式会社ブリヂストン Seismic isolation structure
US6797314B2 (en) * 2001-07-03 2004-09-28 Eastman Kodak Company Method of handling organic material in making an organic light-emitting device
JP2004211745A (en) * 2002-12-27 2004-07-29 Tokai Rubber Ind Ltd Highly damped supporting device
JP2004232380A (en) * 2003-01-31 2004-08-19 Tokai Rubber Ind Ltd Base isolation device
JP2006233262A (en) * 2005-02-24 2006-09-07 Bridgestone Corp Damping alloy and seismic isolation device
JP4704946B2 (en) * 2005-04-14 2011-06-22 株式会社ブリヂストン Laminated support
JP2007055094A (en) * 2005-08-24 2007-03-08 Toshiba Corp Method and apparatus for tablet-making compression molding resin

Also Published As

Publication number Publication date
JP2009047194A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP4974806B2 (en) Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor
US20160297114A1 (en) Press molding apparatus and press molding method
MY148027A (en) Compression molding method and device therefor
CN100471664C (en) Mallet and rotary compression forming machine using the same
HRP20160534T1 (en) A pressing assembly and method for forming a depression within a moving, wet gypsum board
TW202228995A (en) A method for edge-forming cellulose products in a forming mould system, and a forming mould system for forming edges of cellulose products
JP2009540225A5 (en)
WO2011001868A1 (en) Compression molding method for powder and device therefor
JP6308195B2 (en) Method for controlling powder molding apparatus
JP5481112B2 (en) Powder compression molding method and apparatus
US6669891B1 (en) Method and apparatus for producing brake lining material
US6167802B1 (en) Sliding frame press
CN208644975U (en) A kind of grinding device of household electrical appliances spare part mould processing
JP4454004B2 (en) Forming method of thin plate compact
JP3917815B2 (en) Powder molding equipment
JPH04319099A (en) Molding method for green compact having stepped shape and molding device therefor
JP5098567B2 (en) Mold for powder molding
JP5590378B2 (en) Powder molding apparatus and powder molding method using the same
JP3173398B2 (en) Powder molding method
JP3649368B2 (en) Molding method of green compact
CN205997247U (en) A kind of sponge bricks die
JP2006326648A (en) Powder compacting die and powder compacting method
JP2011105970A (en) Sizing method for sintered compact
JP4668877B2 (en) Two-stage pressure molding method and mold apparatus used in the method
JP2011073019A (en) Method for forming compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Ref document number: 4974806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees