JP5345888B2 - Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor - Google Patents

Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor Download PDF

Info

Publication number
JP5345888B2
JP5345888B2 JP2009108255A JP2009108255A JP5345888B2 JP 5345888 B2 JP5345888 B2 JP 5345888B2 JP 2009108255 A JP2009108255 A JP 2009108255A JP 2009108255 A JP2009108255 A JP 2009108255A JP 5345888 B2 JP5345888 B2 JP 5345888B2
Authority
JP
Japan
Prior art keywords
seismic isolation
powder material
manufacturing
isolation plug
stamper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009108255A
Other languages
Japanese (ja)
Other versions
JP2010253848A (en
Inventor
重信 鈴木
宏典 ▲濱▼▲崎▼
秀章 加藤
章之 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009108255A priority Critical patent/JP5345888B2/en
Publication of JP2010253848A publication Critical patent/JP2010253848A/en
Application granted granted Critical
Publication of JP5345888B2 publication Critical patent/JP5345888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a base isolation plug capable of enhancing damping performance and displacement followability of a base isolation device, without using lead as a material, and a device for manufacturing the base isolation plug capable of carrying out the manufacturing method. <P>SOLUTION: In this manufacturing method, a powder material 2 is press-molded into a shape recessed in the central part, compared with the peripheral part thereof, when molding the base isolation plug 6 for the base isolation device 8, by press-molding the powder material 2 filled in a molding die 3, and then press-molds a pressure reception face 7 of the press-molded powder material 2 into a planar shape orthogonal to a pressing direction. The base isolation plug 6 is manufactured using the manufacturing method. The manufacturing device is provided with the molding die 3 and a stamper 5 for carrying out the manufacturing method. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、免震装置の減衰性能及び変位追従性を向上させ得る免震プラグを製造する方法、並びにかかる製造方法を実施するための製造装置に関する。   The present invention relates to a method for manufacturing a seismic isolation plug capable of improving the damping performance and displacement followability of a seismic isolation device, and a manufacturing apparatus for implementing such a manufacturing method.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震構造体が、免震装置の支承等として使用されている。このような免震構造体の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、該中空部の内部に免震プラグが圧入されたものがある。   2. Description of the Related Art Conventionally, seismic isolation structures in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked have been used as bearings for seismic isolation devices. Among such seismic isolation structures, for example, there is a structure in which a hollow portion is formed at the center of a laminate made of a soft plate and a hard plate, and a seismic isolation plug is press-fitted into the hollow portion.

上記免震プラグとしては、全体が鉛からなるものが使用されることが多く、地震の発生に伴って積層体が剪断変形する際に、かかる免震プラグが塑性変形することで振動のエネルギーを吸収する。しかしながら、鉛は、環境負荷が大きく、また、廃却時等に要するコストが大きい。そのため、鉛の代替材料を用いても、充分な減衰性能、変位追従性等を有する免震プラグの開発が試みられている。   The seismic isolation plug is often made of lead as a whole, and when the laminated body undergoes shear deformation due to the occurrence of an earthquake, the seismic isolation plug plastically deforms to reduce vibration energy. Absorb. However, lead has a large environmental load and a high cost for disposal. Therefore, the development of a seismic isolation plug having sufficient damping performance, displacement followability and the like has been attempted even when a lead substitute material is used.

例えば、特許文献1には、鉛免震プラグに代えて、積層体の中空部に塑性流動材及び硬質充填材からなり、硬質充填材の隙間を塑性流動材で充填するようにした粉体材料を封入した免震装置が提案されている。かかる免震プラグは、鉛免震プラグと同様、長期の使用に際しても、その減衰性能及び変位追従性が安定して確保される。なお、塑性流動材としては、天然ゴムやアクリルゴムなどがあり、硬質充填材としては、ステンレス鋼粉、鉄粉などの金属粉体などがある。かかる免震プラグは、金型内に充填された粉体材料を加圧方向に直交する平面状の加圧面を有するスタンパにより所定の面圧にて加圧成形することで製造される。   For example, Patent Document 1 discloses a powder material in which a hollow portion of a laminate is made of a plastic fluid material and a hard filler instead of a lead seismic isolation plug, and a gap between the hard fillers is filled with the plastic fluid material. A seismic isolation device in which is enclosed is proposed. Such a seismic isolation plug, like a lead seismic isolation plug, ensures stable damping performance and displacement follow-up even during long-term use. Examples of the plastic fluid material include natural rubber and acrylic rubber, and examples of the hard filler include metal powder such as stainless steel powder and iron powder. Such a seismic isolation plug is manufactured by press-molding a powder material filled in a mold at a predetermined surface pressure with a stamper having a flat pressure surface perpendicular to the pressing direction.

特開2006−316990号公報JP 2006-316990 A

特許文献1に記載の免震プラグを具える免震装置は、鉛からなる免震プラグを使用することなく、減衰特性及び変位追従性が長期にわたり安定して確保されているものの、近年の建設物の大型化、高層化を背景に、免震装置の更なる性能向上が求められており、そのことから、免震装置の減衰特性及び変位追従性の更なる向上が希求されている。また、特許文献1には、この免震プラグの製造方法についても言及されているが、一般的な粉体材料の加圧成形法の域を出るものではない。   Although the seismic isolation device including the seismic isolation plug described in Patent Document 1 has stable damping characteristics and displacement followability for a long time without using a seismic isolation plug made of lead, construction in recent years Against the background of the increase in size and height of objects, further improvement in the performance of the seismic isolation device is required. For this reason, further improvement in the damping characteristics and displacement followability of the seismic isolation device is desired. Patent Document 1 also mentions a method for manufacturing this seismic isolation plug, but it does not leave the range of a general powder material pressure forming method.

そこで、この発明の目的は、これまで充分に着目、検討されてこなかった免震プラグの製造方法について改良を図ることにより、材料に鉛を使用することなく、免震装置の減衰性能及び変位追従性を更に向上させ得る免震プラグを有利に製造する方法を提供することにある。また、この発明の更なる目的は、かかる製造方法を実施し得る免震プラグの製造装置を提供することにある。   Therefore, the object of the present invention is to improve the manufacturing method of the seismic isolation plug that has not been sufficiently focused and studied so far, so that the damping performance and displacement tracking of the seismic isolation device can be achieved without using lead as a material. It is an object of the present invention to provide a method for advantageously manufacturing a seismic isolation plug capable of further improving the performance. A further object of the present invention is to provide an apparatus for manufacturing a seismic isolation plug capable of implementing such a manufacturing method.

前記目的を達成するため、第一発明は、金型内に充填された粉体材料に加圧成形を行って免震装置用の免震プラグを成形するに当たり、粉体材料を、周辺部に比し中央部が陥没した形状に加圧成形し、次いで、該加圧成形された粉体材料の受圧面を平面状に加圧成形することを特徴とする免震プラグの製造方法である。   In order to achieve the above-mentioned object, the first invention is to perform pressure molding on a powder material filled in a mold to form a seismic isolation plug for a seismic isolation device. In contrast, the present invention provides a method for manufacturing a seismic isolation plug, which is formed by pressure-molding into a shape in which a central portion is depressed, and then pressure-molding the pressure-receiving surface of the pressure-molded powder material into a flat shape.

また、第一発明において、粉体材料の受圧面は錐体形状であることが好ましい。なお、ここでいう「錐体形状」とは、円錐形状や角錘形状を含む形状をいう。   In the first invention, the pressure receiving surface of the powder material preferably has a cone shape. Here, the “conical shape” means a shape including a conical shape or a pyramid shape.

更に、第一発明において、粉体材料を二方向から挟んで加圧成形することが好ましい。   Furthermore, in the first invention, it is preferable to perform pressure molding by sandwiching the powder material from two directions.

更にまた、第一発明において、粉体材料は、塑性流動材及び硬質充填材からなることが好ましい。   Furthermore, in the first invention, the powder material is preferably made of a plastic fluidized material and a hard filler.

発明は、粉体材料が充填される金型、及び該金型内の粉体材料を加圧成形させる複数のスタンパを具える免震装置用の免震プラグの製造装置において、かかる複数のスタンパは、スタンパの中央部が外周部よりも突出した形状の加圧面を有する傾斜スタンパ、及び加圧方向に直交する平面状の加圧面を有する平面スタンパを具えることを特徴とする免震プラグの製造装置である。 A second invention relates to a seismic isolation plug manufacturing apparatus for a seismic isolation device comprising a mold filled with a powder material and a plurality of stampers for pressing the powder material in the mold. The stamper includes an inclined stamper having a pressurizing surface in which the central portion of the stamper protrudes from the outer peripheral portion, and a flat stamper having a flat pressurizing surface orthogonal to the pressurizing direction. This is a plug manufacturing apparatus.

また、第発明において、傾斜スタンパの加圧面は錐体形状を有することが好ましい。 In the second invention, the pressure surface of the inclined stamper preferably has a cone shape.

更に、第発明において、スタンパは、対向する一対のスタンパであることが好ましい。このとき、対向する一対のスタンパの加圧面は、点対称形状であることが好ましい。なお、ここでいう「点対称形状」とは、スタンパの軸線上の位置であって、対向する加圧面間の中間位置(中点)を中心とした点対称の形状をいう。 Furthermore, in the second invention, the stamper is preferably a pair of opposed stampers. At this time, it is preferable that the pressing surfaces of the pair of stampers facing each other have a point-symmetric shape. The “point-symmetrical shape” herein refers to a point-symmetrical shape that is a position on the axial line of the stamper and that is centered on an intermediate position (midpoint) between the opposing pressing surfaces.

この発明によれば、鉛の代替材料である粉体材料を用いて、これを加圧成形する際に、特に金型側における該粉体材料の流動が強制されるために、空気含有率の小さい成形品を得ることができる。従って、免震装置の減衰性能及び変位追従性の向上に大きく寄与する免震プラグを提供することが可能となる。また、空気含有率の小さな免震プラグを製造するために適した製造装置を提供することが可能となる。   According to the present invention, when a powder material that is an alternative material for lead is used and pressure-molded, the flow of the powder material is forced particularly on the mold side. A small molded product can be obtained. Therefore, it is possible to provide a seismic isolation plug that greatly contributes to the improvement of the damping performance and displacement followability of the seismic isolation device. In addition, it is possible to provide a manufacturing apparatus suitable for manufacturing a seismic isolation plug having a small air content.

(a)〜(f)は、この発明に従う免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the seismic isolation plug according to this invention. (a)は、この発明に従って製造された免震プラグを圧入した免震装置の上面図であり、(b)は、かかる免震装置の断面図である。(A) is a top view of the seismic isolation apparatus which press-fit the seismic isolation plug manufactured according to this invention, (b) is sectional drawing of this seismic isolation apparatus. (a)は、充分に圧縮されていない粉体材料の硬質充填材の相互配置を示した図であり、(b)は、充分に圧縮された粉体材料の硬質充填材の相互配置を示した図である。(A) is the figure which showed the mutual arrangement | positioning of the hard filler of the powder material which is not fully compressed, (b) shows the mutual arrangement | positioning of the hard filler of the powder material which was fully compressed. It is a figure. (a)〜(c)は、この発明に従うその他の免震プラグの製造工程にて使用される種々の形状の加圧面を有するスタンパを示した図である。(A)-(c) is the figure which showed the stamper which has the pressurization surface of various shapes used in the manufacturing process of the other seismic isolation plug according to this invention. (a)〜(f)は、この発明に従うその他の免震プラグの製造工程を示した図である。(A)-(f) is the figure which showed the manufacturing process of the other seismic isolation plug according to this invention.

次に、図面を参照しつつ、この発明の実施形態を説明する。図1(a)〜(f)は、本実施形態に係る免震プラグの製造工程を示した図である。図2(a)は、本実施形態に従って製造された免震プラグを圧入した免震装置の上面図であり、図2(b)は、かかる免震装置の断面図である。図3(a)は、充分に圧縮されていない粉体材料の硬質充填材の相互配置を示した図であり、図3(b)は、充分に圧縮された粉体材料の硬質充填材の相互配置を示した図である。図4(a)〜(c)は、本実施形態に係るその他の免震プラグの製造工程にて使用される種々の形状の加圧面を有するスタンパを示した図である。図5(a)〜(f)は、本実施形態に係るその他の免震プラグの製造工程を示した図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1A to 1F are views showing a manufacturing process of the seismic isolation plug according to the present embodiment. FIG. 2A is a top view of the seismic isolation device in which the seismic isolation plug manufactured according to the present embodiment is press-fitted, and FIG. 2B is a cross-sectional view of the seismic isolation device. FIG. 3 (a) is a diagram showing the mutual arrangement of hard fillers of powder material that is not sufficiently compressed, and FIG. 3 (b) is an illustration of hard fillers of powder material that is sufficiently compressed. It is the figure which showed mutual arrangement | positioning. FIGS. 4A to 4C are views showing stampers having pressurizing surfaces of various shapes used in the manufacturing process of other seismic isolation plugs according to the present embodiment. FIG. 5A to FIG. 5F are diagrams showing manufacturing steps of other seismic isolation plugs according to the present embodiment.

本実施形態に係る免震プラグの製造装置1は、図1に示すように、塑性流動材A及び硬質充填材Bからなる粉体材料2が充填される円筒形状の金型3、並びにかかる金型3内の粉体材料2を加圧する加圧面4a、4bを夫々有する2種のスタンパ5a、5bを具える。まず、図1(a)〜(c)に示すスタンパ5aは、その中央部が外周部よりも加圧方向へ突出した錐体形状の加圧面4aを有する傾斜スタンパ5aである。また、図1(d)〜(e)に示す別のスタンパ5bは、加圧方向に直交する平面状の加圧面4bを有する平面スタンパ5bである。かかる製造装置を用いて、図1(a)〜(f)の製造工程に示すように、金型3内に充填された粉体材料2を、傾斜スタンパ5a及び平面スタンパ5bにより順次加圧することで免震装置用の免震プラグ6を成形する。以下にその詳細を説明する。   As shown in FIG. 1, a seismic isolation plug manufacturing apparatus 1 according to the present embodiment includes a cylindrical mold 3 filled with a powder material 2 composed of a plastic fluid A and a hard filler B, and the mold. Two stampers 5a and 5b having pressurizing surfaces 4a and 4b for pressing the powder material 2 in the mold 3 are provided. First, the stamper 5a shown in FIGS. 1 (a) to 1 (c) is an inclined stamper 5a having a conical-shaped pressurizing surface 4a whose central portion protrudes in the pressurizing direction from the outer peripheral portion. Further, another stamper 5b shown in FIGS. 1D to 1E is a flat stamper 5b having a flat pressing surface 4b orthogonal to the pressing direction. Using such a manufacturing apparatus, as shown in the manufacturing steps of FIGS. 1A to 1F, the powder material 2 filled in the mold 3 is sequentially pressed by the inclined stamper 5a and the flat stamper 5b. The seismic isolation plug 6 for the seismic isolation device is formed by Details will be described below.

まず、図1(a)に示すように、金型3内に免震プラグ6の材料となる塑性流動材A及び硬質充填材Bからなる粉体材料2を充填する。次いで、図1(b)に示すように、傾斜スタンパ5aを矢印の方向に移動させて、錐体形状の加圧面4aにより粉体材料2を加圧成形し、粉体材料2の受圧面7の形状を、金型側の周辺部に比し中央部にて陥没した錐体形状に変形させる。次いで、図1(c)に示すように、傾斜スタンパ5aの加圧方向とは反対の方向に引き上げてから、図1(d)に示すように、かかる傾斜スタンパ5aを、加圧方向に直交する平面状の加圧面4bを有する平面スタンパ5bと置き換える。次いで、図1(e)に示すように、平面スタンパ5bを矢印の方向に移動させて、平面スタンパ5bの加圧面4bにより粉体材料2の受圧面7を加圧成形することにより、粉体材料2の受圧面7の形状を平面状とする。この加圧工程では、前記受圧面7における周辺部7aの変形量が特に大きくなることから、金型3側における粉体材料2の流動が強く促される結果、空気含有率を小さくした免震プラグ6が得られる。そして、このように加圧成形された免震プラグ6は、図1(f)に示すように、金型3から抜き出され、免震装置8への圧入に供される。かかる免震装置8としては、例えば、図2(a)及び図2(b)に示すような、ゴム板と鋼板とを交互に積層した積層体を具え、装置中央に免震プラグを配置した構造を有する免震装置8がある。   First, as shown in FIG. 1 (a), a mold 3 is filled with a powder material 2 composed of a plastic fluid A and a hard filler B, which are materials for the seismic isolation plug 6. Next, as shown in FIG. 1 (b), the inclined stamper 5 a is moved in the direction of the arrow, and the powder material 2 is pressure-molded by the cone-shaped pressure surface 4 a, and the pressure-receiving surface 7 of the powder material 2. The shape is deformed into a conical shape that is depressed in the central portion as compared with the peripheral portion on the mold side. Next, as shown in FIG. 1 (c), the inclined stamper 5a is pulled up in a direction opposite to the pressing direction of the inclined stamper 5a, and then the inclined stamper 5a is orthogonal to the pressing direction as shown in FIG. 1 (d). It replaces with a flat stamper 5b having a flat pressing surface 4b. Next, as shown in FIG. 1 (e), the flat stamper 5b is moved in the direction of the arrow, and the pressure receiving surface 7 of the powder material 2 is pressure-formed by the pressing surface 4b of the flat stamper 5b. The shape of the pressure receiving surface 7 of the material 2 is a planar shape. In this pressurizing step, the deformation amount of the peripheral portion 7a on the pressure receiving surface 7 is particularly large, so that the flow of the powder material 2 on the mold 3 side is strongly encouraged. 6 is obtained. And the seismic isolation plug 6 pressure-molded in this way is extracted from the mold 3 and used for press-fitting into the seismic isolation device 8 as shown in FIG. As such a seismic isolation device 8, for example, as shown in FIGS. 2 (a) and 2 (b), a laminated body in which rubber plates and steel plates are alternately laminated is provided, and a seismic isolation plug is arranged in the center of the device. There is a seismic isolation device 8 having a structure.

一般に、免震プラグの減衰性能及び変位追従性を向上させるには、プラグ内の空気含有率を小さくすることが有効である。しかし、粉体材料が、ゴムなどの粘性を有する塑性流動材を含む場合、粉体材料の流動性が低下し、粉体材料内の空気が抜けにくい。従来の免震プラグの製造方法では、加圧方向に直交する平面状の加圧面を有するスタンパにより粉体材料を所定の面圧にて加圧して免震プラグを成形していたことから、受圧面から離間するほどに、粉体材料に負荷される圧縮力が小さくなる。そのことに伴い、受圧面から離間するほどに、粉体材料の空気含有率が大きくなっていた。また、粉体材料と金型の壁面との摩擦により、金型側にある粉体材料ほど、その動きが拘束され、粉体材料の流動が抑制される。そのことから、スタンパにより加圧しても金型側の粉体材料が充分に圧縮されずに、金型の壁面に近いほどに、粉体材料の空気含有率が大きくなっていた。すなわち、粉体材料の相互配置は、粉体材料が充分に流動しないことから、図3(a)に示すように、粉体材料相互間の隙間が大きく、空気の残留し易い配列となっていた。このことから、発明者は、金型側の粉体材料の流動を促し、粉体材料間の隙間を小さくして、粉体材料を図3(b)に示すような空気が残留し難い最密配置とすることにより、免震プラグの空気含有率を小さくし得ることを見出した。
粉体材料の金型側における流動を促し、免震プラグの空気含有率を小さくすることを達成する手段として、上述の製造方法を採用した。上述したような工程により粉体材料2を加圧成形すると、主に金型側における粉体材料2の流動が促され、粉体材料2間の隙間が小さくなるため、粉体材料2全体が図3(b)に示すような配置となる。その結果、免震プラグ6の空気含有率が小さくなり、かかる免震プラグ6を圧入した免震装置は、減衰性能及び変位追従性がともに向上する。なお、スタンパ5の加圧面4の形状は、中央部が外周部よりも加圧方向に突出した形状である限りは、特に形状を限定する必要は無く、例えば、図4(a)に示すように、加圧面4aを半球状としたり、あるいは、図4(b)及び(c)に示すように、加圧面4をその先端に向かって段階的に縮径するような階段形状とすることが可能である。
In general, it is effective to reduce the air content in the plug in order to improve the damping performance and displacement followability of the seismic isolation plug. However, when the powder material includes a plastic fluid material having viscosity such as rubber, the fluidity of the powder material is lowered, and the air in the powder material is difficult to escape. In the conventional method of manufacturing a seismic isolation plug, since the powder material was pressed at a predetermined surface pressure with a stamper having a flat pressing surface perpendicular to the pressing direction, the seismic isolation plug was molded. The further away from the surface, the smaller the compressive force applied to the powder material. As a result, the air content of the powder material increases as the distance from the pressure receiving surface increases. Further, due to the friction between the powder material and the wall surface of the mold, the movement of the powder material on the mold side is restricted, and the flow of the powder material is suppressed. For this reason, the powder material on the mold side is not sufficiently compressed even when pressed by a stamper, and the air content of the powder material increases as it approaches the wall surface of the mold. That is, the mutual arrangement of the powder materials does not flow sufficiently, so that the gap between the powder materials is large and the air tends to remain as shown in FIG. It was. From this, the inventor promoted the flow of the powder material on the mold side, made the gap between the powder materials small, and the air as shown in FIG. It has been found that the air content of the seismic isolation plug can be reduced by dense arrangement.
As a means for promoting the flow of powder material on the mold side and reducing the air content of the seismic isolation plug, the above manufacturing method was adopted. When the powder material 2 is pressure-molded by the process as described above, mainly the flow of the powder material 2 on the mold side is promoted, and the gap between the powder materials 2 is reduced. The arrangement is as shown in FIG. As a result, the air content of the seismic isolation plug 6 is reduced, and the seismic isolation device in which the seismic isolation plug 6 is press-fit improves both the damping performance and the displacement follow-up performance. Note that the shape of the pressing surface 4 of the stamper 5 is not particularly limited as long as the central portion protrudes in the pressing direction from the outer peripheral portion. For example, as shown in FIG. In addition, the pressurizing surface 4a may be hemispherical, or as shown in FIGS. 4B and 4C, the pressurizing surface 4 may have a stepped shape that gradually decreases in diameter toward the tip. Is possible.

なお、粉体材料2を構成する塑性流動材Aに含まれる物質としては、(天然ゴム、ポリブタジエンゴム、アクリルゴム、シリコンゴム、ポリウレタン、ウレタン系エラストマーなどの)エストラマー成分、(ロジン樹脂、フェノール樹脂などの)樹脂、カーボンブラック、(フタル酸、マレイン酸、クエン酸などの)可塑剤、(ヒマシ油、アマニ油、ナタネ油などの)軟化材などが挙げられる。また、硬質充填材Bに含まれる物質としては、銅粉、ステンレス鋼粉、ジルコニウム粉、タングステン粉、青銅粉、アルミニウム粉、ニッケル粉、モリブデン粉、チタン粉、鉄粉などの金属粉体や金属化合物が挙げられる。なお、塑性流動材Aと硬質充填材Bの夫々について選定される材料の組成、含有率、組み合わせ等は、免震プラグ6に所望される性能に応じて適宜変更することができる。また、粉体材料2は、塑性流動材A及び硬質充填材Bからなる構成に限定されるものではなく、その他の種々の粉体材料2を適用することも可能である。   The substances contained in the plastic fluid A constituting the powder material 2 include elastomer components (such as natural rubber, polybutadiene rubber, acrylic rubber, silicon rubber, polyurethane, urethane elastomer), (rosin resin, phenol resin). Resin), carbon black, plasticizers (such as phthalic acid, maleic acid, citric acid), softening materials (such as castor oil, linseed oil, rapeseed oil), and the like. The substance contained in the hard filler B includes metal powder such as copper powder, stainless steel powder, zirconium powder, tungsten powder, bronze powder, aluminum powder, nickel powder, molybdenum powder, titanium powder, iron powder, and metal. Compounds. In addition, the composition of the material selected about each of the plastic fluid material A and the hard filler B, a content rate, a combination, etc. can be suitably changed according to the performance desired for the seismic isolation plug 6. Moreover, the powder material 2 is not limited to the structure which consists of the plastic fluidity material A and the hard filler B, and it is also possible to apply other various powder materials 2.

また、図5の製造工程に示すように、対向する一対のスタンパ(図示例では、傾斜スタンパ5a及び5a’の組み合わせ、並びに、平面スタンパ5b及び5b’の組み合わせ)を用いて、粉体材料2を挟み込むように二方向から加圧成形することが好ましい。図5(a)〜(c)に示すように、中央部が外周部よりも加圧方向に突出した錐体形状の加圧面4a、4a’を夫々に有し、対向する一対の傾斜スタンパ5a、5’aを用いて、粉体材料2を二方向から加圧すると、図1に示すような単一の傾斜スタンパ5aにより一方向から粉体材料2を加圧する場合に比べ、粉体材料2に対し圧力が効率良く負荷されるので、粉体材料2の空気含有率を更に小さくすることができる。次いで、図5(d)〜(e)に示すように、加圧方向に直交する平面状の加圧面4b、4b’を夫々に有し、対向する一対の平面スタンパ5b、5b’を用いて、粉体材料2を加圧することにより、図1に示すような単一の平面スタンパ5bにより一方向から粉体材料2を加圧する場合に比べ、粉体材料2の金型側における流動が更に促され、かつ、粉体材料2の受圧面7の形状が平面状に成形されるため、空気含有率が更に小さい免震プラグ6(図5(f))を製造することが可能となる。かかる免震プラグ6を具える免震装置8は、減衰性能及び変位追従性が更に向上する。また、図1に示すように一方向から加圧するよりも、複数方向から加圧する方が、粉体材料を所望の空気含有率とすることに要する時間は短縮されるため、免震プラグ6の生産性を向上させることが可能となる。   Further, as shown in the manufacturing process of FIG. 5, the powder material 2 is formed using a pair of opposing stampers (in the illustrated example, a combination of inclined stampers 5a and 5a ′ and a combination of flat stampers 5b and 5b ′). It is preferable to perform pressure molding from two directions so as to sandwich the film. As shown in FIGS. 5A to 5C, a pair of inclined stampers 5a facing each other having cone-shaped pressurizing surfaces 4a and 4a ′ whose central portions protrude in the pressurizing direction from the outer peripheral portion. When the powder material 2 is pressed from two directions using 5'a, the powder material 2 is pressed compared to the case where the powder material 2 is pressed from one direction by a single inclined stamper 5a as shown in FIG. Since the pressure is efficiently applied to 2, the air content of the powder material 2 can be further reduced. Next, as shown in FIGS. 5D to 5E, each of the flat pressing surfaces 4b and 4b ′ perpendicular to the pressing direction is used, and a pair of opposing flat stampers 5b and 5b ′ are used. By pressing the powder material 2, the flow of the powder material 2 on the mold side is further increased as compared with the case where the powder material 2 is pressed from one direction by a single flat stamper 5b as shown in FIG. In addition, since the shape of the pressure receiving surface 7 of the powder material 2 is formed into a flat shape, it is possible to manufacture the seismic isolation plug 6 (FIG. 5 (f)) having an even smaller air content. The seismic isolation device 8 including the seismic isolation plug 6 further improves the damping performance and the displacement followability. In addition, as shown in FIG. 1, the time required to obtain the desired air content of the powder material is shortened by applying pressure from a plurality of directions rather than applying pressure from one direction. Productivity can be improved.

なお、異なる形状の加圧面4を有する複数のスタンパ5を並列配置し、この列に沿って金型3を移動させ、かかる複数のスタンパ5を用いて順次粉体材料2を加圧成形することにより、免震プラグ6を製造するような装置構成とすることが可能である。あるいは、逆に、金型3の位置を固定し、前記並列させたスタンパ5を順次移動させて、それらスタンパ5を用いて粉体材料2を連続的に加圧成形することにより、免震プラグ6を製造するような装置構成とすることも可能である。後者の装置構成は省スペース化の観点から好ましい。   A plurality of stampers 5 having differently shaped pressing surfaces 4 are arranged in parallel, the mold 3 is moved along this row, and the powder material 2 is sequentially pressure-formed using the plurality of stampers 5. Thus, it is possible to obtain an apparatus configuration for manufacturing the seismic isolation plug 6. Or, conversely, the position of the mold 3 is fixed, the parallel stampers 5 are sequentially moved, and the powder material 2 is continuously pressure-molded by using the stampers 5, thereby providing a seismic isolation plug. It is also possible to adopt an apparatus configuration that manufactures 6. The latter apparatus configuration is preferable from the viewpoint of space saving.

なお、上述したところは、この発明の実施形態の一部を示したにすぎず、この発明の趣旨を逸脱しない限り、これらの構成を相互に組み合わせたり、種々の変更を加えたりすることができる。例えば、図示例では、粉体材料2の受圧面7を異なる形状に2回圧縮変形させて免震プラグ6を製造しているが、所望の空気含有率に応じて、かかる圧縮工程を更に繰り返し実施することも可能である。   Note that the above description shows only a part of the embodiment of the present invention, and these configurations can be combined with each other or various modifications can be made without departing from the gist of the present invention. . For example, in the illustrated example, the seismic isolation plug 6 is manufactured by compressing and deforming the pressure-receiving surface 7 of the powder material 2 into different shapes twice, but this compression process is further repeated according to the desired air content. It is also possible to implement.

次に、特許文献1に記載の平面状のスタンパを使用して製造した免震プラグ(比較例免震プラグ)、及び図に示したところに従うこの発明の製造方法を用いて製造した免震プラグ(実施例免震プラグ)を夫々試作し、それらの性能評価を行ったので、以下に説明する。 Next, the seismic isolation plug (Comparative Example seismic isolation plug) that was prepared using the planar stamper disclosed in Patent Document 1, and seismic isolation manufactured by using the manufacturing method of the present invention according to the place shown in FIG. 5 Plugs (example seismic isolation plugs) were prototyped and their performance was evaluated, which will be described below.

比較例免震プラグは以下に説明する方法により製造した。はじめに、計算比重が5.536g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.6mmの円筒状の金型内に充填し、次いで、かかる粉体材料を、スタンパの加圧方向に直交する平面状の加圧面を有する平面スタンパにより、88.2MPaの面圧にて粉体材料を加圧変形させることで製造した。なお、かようにして製造された免震プラグの直径は43.6mmであり、高さは56.7mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。 The comparative example seismic isolation plug was manufactured by the method described below. First, a powder material made of a plastic fluid material and a hard filler having a calculated specific gravity of 5.536 g / cm 3 and having the composition shown in Table 1 was filled into a cylindrical mold having an inner diameter of 43.6 mm. Then, the powder material was manufactured by pressurizing and deforming the powder material at a surface pressure of 88.2 MPa using a flat stamper having a flat pressure surface perpendicular to the pressing direction of the stamper. In addition, the diameter of the seismic isolation plug manufactured in this way is 43.6 mm, and the height is 56.7 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

また、実施例免震プラグは、以下に説明する方法により製造した。はじめに、計算比重が5.536g/cmであり、表1に示す組成を有する塑性流動材及び硬質充填材からなる粉体材料を、内径が43.6mmの円筒状の金型内に充填する。次いで、図(b)に示すように、スタンパの軸線を中心として、スタンパの軸線方向に対し60°にて傾斜してなる錐体形状の加圧面を有する傾斜スタンパであって、対向する一対の傾斜スタンパを用いて、かかる粉体材料を、夫々のスタンパにて44.1MPaの面圧(併せて、88.2MPa)で挟み込んで加圧変形する。次いで、かかる傾斜スタンパを、加圧方向に直交する平面状の加圧面を有する平面スタンパと交換し、かかる平面スタンパを用いて粉体材料を加圧し、粉体材料の受圧面を平面化させることで製造した。なお、かようにして製造された免震プラグの直径は43.6mmであり、高さは55.7mmである。製造された免震プラグの空気含有率は、金型内に充填される粉体材料の計算比重に対する、製造された免震プラグの実比重から算出した。 Moreover, the example seismic isolation plug was manufactured by the method demonstrated below. First, a powder material made of a plastic fluid material and a hard filler having a calculated specific gravity of 5.536 g / cm 3 and having the composition shown in Table 1 is filled into a cylindrical mold having an inner diameter of 43.6 mm. . Next, as shown in FIG. 5 (b), there are inclined stampers each having a cone-shaped pressurizing surface that is inclined at 60 ° with respect to the axial direction of the stamper with the axial line of the stamper as a center. These powder materials are sandwiched with a surface pressure of 44.1 MPa (combined with 88.2 MPa) by each stamper and are subjected to pressure deformation. Next, the inclined stamper is replaced with a flat stamper having a flat pressing surface orthogonal to the pressing direction, and the powder material is pressed using the flat stamper to flatten the pressure receiving surface of the powder material. Manufactured with. In addition, the diameter of the seismic isolation plug manufactured in this way is 43.6 mm, and the height is 55.7 mm. The air content of the manufactured seismic isolation plug was calculated from the actual specific gravity of the manufactured seismic isolation plug relative to the calculated specific gravity of the powder material filled in the mold.

Figure 0005345888
Figure 0005345888

*1 (天然ゴム)
未加硫、RSS#4
*2 (ポリブタジエンゴム(低シス))
未加硫、旭化成製「ジエンNF35R」
*3 カーボンブラック
ISAF、東海カーボン製「シースト6P」
*4 樹脂
日本ゼオン製「ゼオファイン」、新日本石油化学製「日石ネオポリマー140」、丸善石油化学製「マルカレッツM−890A」、「ゼオファイン」:「日石ネオポリマー140」:「マルカレッツM−890A」=40:40:20(質量比)
*5 可塑剤
ジオクチルアジペート(DOA)
*6 その他の配合剤
亜鉛華、ステアリン酸、老化防止剤[住友化学製「アンステージ6C」、ワックス[新日本石油製「プロトワックス1」]、亜鉛華:ステアリン酸:老化防止剤:ワックス=4:5:3:1(質量比)
* 1 (natural rubber)
Unvulcanized, RSS # 4
* 2 (Polybutadiene rubber (low cis))
Unvulcanized, Asahi Kasei "Diene NF35R"
* 3 Carbon Black ISAF, Tokai Carbon "Seast 6P"
* 4 Resins “Zeofine” manufactured by Nippon Zeon, “Nisseki Neopolymer 140” manufactured by Nippon Petrochemical Co., Ltd. “Marcaretz M-890A” manufactured by Maruzen Petrochemical, “Zeofine”: “Nisseki Neopolymer 140”: “Marcaretz M-” 890A "= 40: 40: 20 (mass ratio)
* 5 Plasticizer Dioctyl adipate (DOA)
* 6 Other compounding agents Zinc white, stearic acid, anti-aging agent [“Anstage 6C” manufactured by Sumitomo Chemical, wax [“Proto Wax 1” manufactured by Nippon Oil Corporation], zinc white: stearic acid: anti-aging agent: wax = 4: 5: 3: 1 (mass ratio)

その結果、従来例の免震プラグの実比重が5.009g/cmとなり、その空気含有率が9.5%であったのに対し、実施例の免震プラグの実比重が5.098g/cmとなり、その空気含有率が7.9%まで小さくなっていた。 As a result, the actual specific gravity of the conventional seismic isolation plug was 5.009 g / cm 3 and its air content was 9.5%, whereas the actual specific gravity of the seismic isolation plug of the example was 5.098 g. / Cm 3 , and the air content was as low as 7.9%.

以上の説明から明らかなように、この発明によって、材料に鉛を使用することなく、免震装置の減衰性能及び変位追従性を向上させ得る免震プラグの製造方法、並びにかかる製造方法を実施し得る免震プラグの製造装置を提供することが可能となった。   As is apparent from the above description, according to the present invention, a method for manufacturing a seismic isolation plug that can improve the damping performance and displacement followability of the seismic isolation device without using lead as a material, and such a manufacturing method are implemented. It has become possible to provide a seismic isolation plug manufacturing device.

1 免震プラグの製造装置
2 粉体材料
3 金型
4、4a、4a’、4b、4b’ 加圧面
5 スタンパ
5a、5a’ 傾斜スタンパ
5b、5b’ 平面スタンパ
6 免震プラグ
7 受圧面
7a 受圧面の周辺部
8 免震装置
A 塑性流動材
B 硬質充填材
DESCRIPTION OF SYMBOLS 1 Seismic isolation plug manufacturing apparatus 2 Powder material 3 Mold 4, 4a, 4a ', 4b, 4b' Pressure surface 5 Stamper 5a, 5a 'Inclined stamper 5b, 5b' Planar stamper 6 Seismic isolation plug 7 Pressure receiving surface 7a Pressure receiving Surface periphery 8 Seismic isolation device A Plastic fluid material B Hard filler

Claims (8)

金型内に充填された粉体材料に加圧成形を行って免震装置用の免震プラグを成形するに当たり、粉体材料を、周辺部に比し中央部が陥没した形状に加圧成形し、次いで、該加圧成形された粉体材料の受圧面を平面状に加圧成形することを特徴とする免震プラグの製造方法。   When forming a seismic isolation plug for a seismic isolation device by performing pressure molding on the powder material filled in the mold, the powder material is pressure molded into a shape in which the central part is depressed compared to the peripheral part. Then, a method for manufacturing a seismic isolation plug, wherein the pressure-receiving surface of the pressure-formed powder material is pressed into a flat shape. 前記粉体材料の受圧面は、錐体形状である、請求項1に記載の免震プラグの製造方法。   The seismic isolation plug manufacturing method according to claim 1, wherein the pressure receiving surface of the powder material has a cone shape. 前記粉体材料を二方向から挟んで加圧成形する、請求項1又は2に記載の免震プラグの製造方法。   The manufacturing method of the seismic isolation plug of Claim 1 or 2 which press-molds by pressing the said powder material from two directions. 前記粉体材料は、塑性流動材及び硬質充填材からなる、請求項1〜3のいずれか一項に記載の免震プラグの製造方法。   The said powder material is a manufacturing method of the seismic isolation plug as described in any one of Claims 1-3 which consists of a plastic fluid material and a hard filler. 粉体材料が充填される金型、及び該金型内の粉体材料を加圧成形させる複数のスタンパを具える免震装置用の免震プラグの製造装置において、
前記複数のスタンパは、スタンパの中央部が外周部よりも突出した形状の加圧面を有する傾斜スタンパ、及び加圧方向に直交する平面状の加圧面を有する平面スタンパを具えることを特徴とする免震プラグの製造装置。
In a seismic isolation plug manufacturing apparatus for a seismic isolation device comprising a mold filled with a powder material, and a plurality of stampers for press-molding the powder material in the mold,
The plurality of stampers include an inclined stamper having a pressurizing surface in which a central portion of the stamper protrudes from an outer peripheral portion, and a planar stamper having a flat pressurizing surface orthogonal to the pressurizing direction. Seismic isolation plug manufacturing equipment.
前記傾斜スタンパの加圧面は、錐体形状を有する、請求項に記載の免震プラグの製造装置。 The seismic isolation plug manufacturing apparatus according to claim 5 , wherein the pressing surface of the inclined stamper has a cone shape. 前記スタンパは、対向する一対のスタンパである、請求項5又は6に記載の免震プラグの製造装置。 The said stamper is a manufacturing apparatus of the seismic isolation plug of Claim 5 or 6 which is a pair of stamper which opposes. 前記対向する一対のスタンパの加圧面は、点対称形状である、請求項に記載の免震プラグの製造装置。 The seismic isolation plug manufacturing apparatus according to claim 7 , wherein the pressing surfaces of the pair of stampers facing each other have a point-symmetric shape.
JP2009108255A 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor Expired - Fee Related JP5345888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108255A JP5345888B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108255A JP5345888B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Publications (2)

Publication Number Publication Date
JP2010253848A JP2010253848A (en) 2010-11-11
JP5345888B2 true JP5345888B2 (en) 2013-11-20

Family

ID=43315337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108255A Expired - Fee Related JP5345888B2 (en) 2009-04-27 2009-04-27 Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor

Country Status (1)

Country Link
JP (1) JP5345888B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5442464B2 (en) * 2010-01-12 2014-03-12 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5927826B2 (en) 2011-09-28 2016-06-01 日産自動車株式会社 Contactless power supply
JP6023477B2 (en) * 2012-06-22 2016-11-09 株式会社ブリヂストン Seismic isolation plug manufacturing method and manufacturing apparatus
WO2014021085A1 (en) * 2012-07-30 2014-02-06 日産自動車株式会社 Non-contact power supply device
CN102909811B (en) * 2012-10-25 2016-03-23 国家电网公司 The forming method of the high-temperature-resistant phenolic plastic insulation part in a kind of electric connector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153803A (en) * 1983-02-17 1984-09-01 Tamagawa Kikai Kk Molding method of collared powder molding
JP4974806B2 (en) * 2007-08-14 2012-07-11 株式会社ブリヂストン Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor

Also Published As

Publication number Publication date
JP2010253848A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5345888B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5404161B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5345881B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN106734626B (en) The mold pack arrangement of metal tank stretching-machine
JP5250467B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5442464B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5590816B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
WO2004110668A1 (en) Method of manufacturing disk member
JP5366639B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN202498145U (en) Flanging die
JP2011158033A (en) Manufacturing method of seismic isolation plug for seismic isolation device, and seismic isolation plug manufactured by the method
JP2012193846A (en) Manufacturing method of base isolation plug for base isolation device and its manufacturing device
JP2012215213A (en) Method and device for manufacturing plug and the plug
US6403025B2 (en) Method and a device for compacting of powder metal bodies
JP2009108198A (en) Elastomer composition for plug in base isolation structure, composition for plug in base isolation structure, plug in base isolation structure, and base isolation structure
JP5164783B2 (en) Seismic isolation structure
US10252338B2 (en) Method of manufacturing sintering diffusion joining member and manufacturing apparatus of the same
JP5350773B2 (en) Manufacturing method of seismic isolation structure plug
JP2010274288A (en) Method for pressing powder compact
JP2010255776A (en) Base isolation structure
JP5628651B2 (en) Seismic isolation plug manufacturing method and manufacturing apparatus
JP5745564B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug, seismic isolation structure, and method of manufacturing seismic isolation structure plug
JP5869860B2 (en) Method for manufacturing composition for plug of base isolation structure and method for manufacturing plug for base isolation structure
JP2013018045A (en) Molding die device of green compact of curved plate-like component
JP6023477B2 (en) Seismic isolation plug manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130815

R150 Certificate of patent or registration of utility model

Ref document number: 5345888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees