JP5628651B2 - Seismic isolation plug manufacturing method and manufacturing apparatus - Google Patents

Seismic isolation plug manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP5628651B2
JP5628651B2 JP2010276262A JP2010276262A JP5628651B2 JP 5628651 B2 JP5628651 B2 JP 5628651B2 JP 2010276262 A JP2010276262 A JP 2010276262A JP 2010276262 A JP2010276262 A JP 2010276262A JP 5628651 B2 JP5628651 B2 JP 5628651B2
Authority
JP
Japan
Prior art keywords
pusher
powder material
seismic isolation
wedge
isolation plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010276262A
Other languages
Japanese (ja)
Other versions
JP2012121308A (en
Inventor
裕二 小林
裕二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2010276262A priority Critical patent/JP5628651B2/en
Publication of JP2012121308A publication Critical patent/JP2012121308A/en
Application granted granted Critical
Publication of JP5628651B2 publication Critical patent/JP5628651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、免震装置の支承等として使用される免震構造体用の免震プラグの製造方法およびその製造装置に関するものである。 The present invention relates to a method for manufacturing a seismic isolation plug for a seismic isolation structure used as a support for a seismic isolation device, and a manufacturing apparatus therefor.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震構造体が、免震装置の支承等として使用されている。そして、このような免震構造体の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、そして該中空部の内部に、均一組成となるように成形したプラグを圧入したものがある。   2. Description of the Related Art Conventionally, seismic isolation structures in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked have been used as bearings for seismic isolation devices. In such a seismic isolation structure, for example, a hollow portion is formed at the center of a laminate composed of a soft plate and a hard plate, and the hollow portion is molded so as to have a uniform composition. Some plugs are pressed.

ここで、軟質板と硬質板とからなる積層体に圧入される上記プラグは、地震の発生に伴って積層体がせん断変形する際に塑性変形することで、振動のエネルギーを吸収する。そして、該プラグとしては、全体が鉛からなるプラグが用いられることが多かった。しかしながら、鉛は、環境負荷が大きく、また廃棄時等に要するコストが大きい。そのため、近年では、鉛の代替材料を用いて、十分な減衰性能、変位追従性等を有する免震プラグを開発することが試みられている。   Here, the plug that is press-fitted into the laminate composed of the soft plate and the hard plate absorbs vibration energy by plastic deformation when the laminate undergoes shear deformation in response to the occurrence of an earthquake. As the plug, a plug made entirely of lead is often used. However, lead has a large environmental load and a high cost for disposal. Therefore, in recent years, an attempt has been made to develop a seismic isolation plug having sufficient damping performance, displacement followability, etc., using a lead substitute material.

具体的には、鉛の代替材料を用いた免震プラグとして、ゴム等の塑性流動材と、金属粉体等の硬質充填材とを含有する粉体材料を加圧成形してなる免震プラグが提案されている(例えば、特許文献1参照)。   Specifically, as a seismic isolation plug using an alternative material for lead, a seismic isolation plug formed by pressure molding a powder material containing a plastic fluid material such as rubber and a hard filler such as metal powder. Has been proposed (see, for example, Patent Document 1).

ここで、塑性流動材と硬質充填材とを含有する粉体材料を加圧成形して免震プラグを製造する際には、通常、金型内に投入した粉体材料を、加圧方向に直交する平面を加圧面として有する平面プッシャーで加圧して免震プラグを製造する。しかし、塑性流動材を含む粉体材料は流動性が低いため、平面プッシャーのみを用いて免震プラグを製造した場合、加圧成形時に金型内で粉体材料が十分に流動せず、粉体材料中に混入している空気が十分に抜けずに免震プラグの空気含有率が高くなり、所望の減衰性能や変位追従性等を得ることができないことがある。   Here, when manufacturing a seismic isolation plug by pressing a powder material containing a plastic fluid and a hard filler, the powder material put into the mold is usually placed in the pressing direction. A seismic isolation plug is manufactured by applying pressure with a plane pusher having an orthogonal plane as a pressing surface. However, since powder materials including plastic fluid materials have low fluidity, when a seismic isolation plug is manufactured using only a flat pusher, the powder material does not flow sufficiently in the mold at the time of pressure molding. In some cases, air mixed in the body material does not sufficiently escape and the air content of the seismic isolation plug increases, so that desired damping performance, displacement followability, and the like cannot be obtained.

そこで、加圧成形時に金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜き、空気含有率が低くて所望の減衰性能や変位追従性等を得ることができる免震プラグを製造する方法として、中央部が外周部よりも加圧方向に突出した錐体形状を加圧面側の一端に有するプッシャーを用いる方法が提案されている。(例えば、特許文献2参照)。具体的には、図7(a)〜(b)に示すように、加圧面側の一端に円錐形状72aを有する円錐プッシャー72を用いて円筒状の金型71内の粉体材料73を中央部が陥没した形状に加圧成形した後、図7(c)〜(d)に示すように、中央部が陥没した形状に加圧成形された粉体材料73を平面プッシャー74で再び加圧成形して円柱形状の免震プラグ80を製造する方法が提案されている。そして、この免震プラグの製造方法によれば、円錐プッシャーを用いて中央部が陥没した形状に加圧成形した粉体材料を平面プッシャーで再び加圧成形しているので、粉体材料の流動が促されて粉体材料中の空気が抜け、低空気含有率の免震プラグを得ることができる。   Therefore, it is possible to forcibly flow the powder material in the mold during pressure molding to remove the air mixed in the powder material, and to obtain the desired damping performance and displacement followability with a low air content. As a method of manufacturing a seismic isolation plug that can be used, a method is proposed that uses a pusher having a conical shape whose central portion protrudes in the pressing direction from the outer peripheral portion at one end on the pressing surface side. (For example, refer to Patent Document 2). Specifically, as shown in FIGS. 7A and 7B, the powder material 73 in the cylindrical mold 71 is centered using a conical pusher 72 having a conical shape 72a at one end on the pressing surface side. After the pressure forming to the shape in which the part is depressed, as shown in FIGS. 7 (c) to 7 (d), the powder material 73 that has been pressure formed to the shape in which the central part is depressed is pressed again by the flat pusher 74. A method for manufacturing a cylindrical seismic isolation plug 80 by molding has been proposed. According to this method of manufacturing a seismic isolation plug, since the powder material that has been pressure-molded into a shape in which the central portion is depressed using a conical pusher is pressure-molded again with a flat pusher, the flow of the powder material The air in the powder material escapes and a seismic isolation plug with a low air content can be obtained.

特開2006−316990号公報JP 2006-316990 A 特開2010−253848号公報JP 2010-253848 A

しかし、上記従来の円錐プッシャーおよび平面プッシャーを用いた免震プラグの製造方法では、中央部が陥没した形状に加圧成形した粉体材料を平面プッシャーで再び加圧成形して免震プラグの両端を平面状に加圧成形しているので、図7(e)に示すように、製造された免震プラグ80の端面81の中央部に凹部82が残ってしまうことがあった。即ち、円錐プッシャーおよび平面プッシャーを用いた従来の免震プラグの製造方法では、免震プラグの端面が平坦にならず、成形不良が生じて所望の減衰性能や変位追従性等を有する免震プラグを得ることができないことがあった。   However, in the conventional method for manufacturing a seismic isolation plug using a conical pusher and a flat pusher, the powder material that has been press-molded into a shape in which the central portion is depressed is pressed again with a flat pusher, and both ends of the seismic isolation plug are 7 is pressed into a flat shape, the recess 82 may remain in the center of the end surface 81 of the manufactured seismic isolation plug 80 as shown in FIG. That is, in the conventional method of manufacturing a seismic isolation plug using a conical pusher and a flat pusher, the end face of the seismic isolation plug does not become flat, a molding defect occurs, and desired damping performance, displacement followability, etc. There were times when I could not get.

そこで、本発明は、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる免震プラグの製造方法および製造装置を提供することを目的とする。また、本発明は、端面が平坦で空気含有率が低い、減衰性能や変位追従性に優れる免震プラグを提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method and manufacturing apparatus of a seismic isolation plug which can manufacture a seismic isolation plug with a low air content rate, suppressing generation | occurrence | production of a shaping | molding defect. Another object of the present invention is to provide a seismic isolation plug having a flat end face and a low air content, and excellent damping performance and displacement followability.

即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の免震プラグの製造方法は、塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する方法であって、前記金型内の粉体材料はプッシャーで両側から挟んで加圧成形され、金型内に充填された粉体材料一方側を、加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーを用いて加圧すると共に、粉体材料の他方側を、楔形プッシャーまたは加圧方向に直交する平面を加圧面として有する平面プッシャーで加圧する予備加圧成形工程と、前記予備加圧成形工程において楔形プッシャーで加圧した粉体材料を平面プッシャーを用いて両側から加圧して免震プラグとする最終加圧成形工程とを含み、前記予備加圧成形工程の前に、金型内に充填された粉体材料を、一方側から楔形プッシャーで加圧すると共に、加圧方向最外端よりも内方に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーで他方側から加圧する前処理工程を更に含むことを特徴とする。このように、予備加圧成形工程において楔形プッシャーを用いて粉体材料を加圧すれば、金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜くことができるので、空気含有率の低い免震プラグを製造することができる。また、予備加圧成形工程後の最終加圧成形工程において、楔形プッシャーで加圧した粉体材料を平面プッシャーで加圧すれば、免震プラグの端面における成形不良の発生を抑制することができる。更に、前処理工程において楔形プッシャーおよび楔溝形プッシャーで粉体材料を両側から加圧すれば、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができる。また、前処理工程を予備加圧成形工程の前に実施すれば、前処理工程で楔溝形プッシャーを使用しても、免震プラグの端面における成形不良の発生を抑制することができる。 That is, the present invention aims to advantageously solve the above-mentioned problems, and the method for manufacturing a seismic isolation plug according to the present invention includes a powder material containing a plastic fluid and a hard filler in a mold. A method of manufacturing a seismic isolation plug for a seismic isolation structure by pressure molding with the powder material in the mold being pressed from both sides with a pusher and filled in the mold one side of the powder material, along with pressurized using a wedge-shaped pusher having two planes that intersect at the top side located in the pressurizing direction side as pressing surface, the other side of the powder material, wedge pusher or pressure A pre-pressing step of pressing with a flat pusher having a plane perpendicular to the direction as a pressing surface, and the powder material pressed with a wedge-shaped pusher in the pre-pressing step is pressed from both sides with a flat pusher. Final seismic isolation plug Look including a molding step, prior to the preliminary pressing step, the powder material filled in the mold, whereas with pressurized with wedge pusher from the side, inward from the pressing direction outermost end It further includes a pretreatment step of pressurizing from the other side with a wedge groove type pusher having two planes intersecting at the bottom located at the bottom as a pressurizing surface . In this way, if the powder material is pressurized using a wedge-shaped pusher in the pre-press molding step, the powder material can be forced to flow in the mold to remove the air mixed in the powder material. As a result, a seismic isolation plug with a low air content can be manufactured. In addition, in the final pressure forming process after the pre-press forming process, if the powder material pressed with the wedge-shaped pusher is pressed with a flat pusher, the occurrence of molding defects on the end face of the seismic isolation plug can be suppressed. . Furthermore, if the powder material is pressurized from both sides with the wedge-shaped pusher and the wedge groove-shaped pusher in the pretreatment process, the powder material is further flowed in the mold to sufficiently remove the air mixed in the powder material. Therefore, the air content of the seismic isolation plug can be further reduced. In addition, if the pretreatment process is performed before the pre-press molding process, the occurrence of molding defects on the end face of the seismic isolation plug can be suppressed even if a wedge groove type pusher is used in the pretreatment process.

ここで、本発明の免震プラグの製造方法は前記予備加圧成形工程では、前記粉体材料を、一方側から楔形プッシャーで加圧すると共に他方側から平面プッシャーで加圧し、前記最終加圧成形工程では、前記粉体材料を、両側から平面プッシャーで加圧することが好ましい。予備加圧成形工程において粉体材料を両側から加圧する際に、一方のプッシャーを平面プッシャーとすれば、免震プラグの端面における成形不良の発生を更に抑制することができるからである。また、予備加圧成形工程で使用した平面プッシャーを最終加圧成形工程でもそのまま使用することができるので、予備加圧成形工程から最終加圧成形工程へと移る際に交換するプッシャーの数を減らして免震プラグを効率的に製造することができるからである。 Here, the manufacturing method of the seismic isolation plug of the present invention, in the preliminary pressing step, the powder material, while the planar pusher from the other side with pressurized with wedge pusher from the side pressurizing said final pressure In the molding step, the powder material is preferably pressed with a flat pusher from both sides. This is because, when the powder material is pressed from both sides in the pre-press molding process, if one of the pushers is a flat pusher, the occurrence of molding defects on the end face of the seismic isolation plug can be further suppressed. In addition, since the flat pushers used in the pre-press molding process can be used as they are in the final press-molding process, the number of pushers to be replaced when moving from the pre-press molding process to the final press molding process is reduced. This is because the seismic isolation plug can be manufactured efficiently.

また、本発明の免震プラグの製造方法は、前記予備加圧成形工程において、前記粉体材料を、楔形プッシャーの頂辺の延在方向を異ならせて複数回加圧することが好ましい。楔形プッシャーの頂辺の延在方向を異ならせて複数回加圧すれば、粉体材料を均等に隅々まで流動させて平面プッシャー側の端面を更に平坦にすることができるからである。また、粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。   In the method of manufacturing a seismic isolation plug according to the present invention, it is preferable that the powder material is pressurized a plurality of times while changing the extending direction of the top side of the wedge-shaped pusher in the preliminary pressure forming step. This is because if the extending direction of the top side of the wedge-shaped pusher is changed and pressed several times, the end face on the flat pusher side can be further flattened by allowing the powder material to flow evenly to every corner. Further, the air mixed in the powder material can be sufficiently removed, so that the air content of the seismic isolation plug can be further reduced.

更に、本発明の免震プラグの製造方法は前記予備加圧成形工程では、前記粉体材料を、両側から楔形プッシャーで加圧し、前記最終加圧成形工程では、前記粉体材料を、両側から平面プッシャーで加圧することが好ましい。予備加圧成形工程において粉体材料を両側から加圧する際に、両方のプッシャーを楔形プッシャーとすれば、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができるからである。また、予備加圧成形工程後の最終加圧成形工程において、楔形プッシャーで加圧した粉体材料を平面プッシャーで加圧すれば、免震プラグの両端面における成形不良の発生を抑制することができるからである。 Furthermore, the manufacturing method of the seismic isolation plug of the present invention, in the preliminary pressing step, the powder material, pressurized with wedge pusher from both sides, in the final pressing step, the powder material, both sides It is preferable to apply pressure with a flat pusher. When pressing the powder material from both sides in the pre-press molding process, if both pushers are wedge-shaped pushers, the powder material will flow more greatly in the mold and the air mixed in the powder material will be sufficient. This is because the air content of the seismic isolation plug can be further reduced. In addition, in the final pressing process after the pre-pressing process, if the powder material pressed with the wedge-shaped pusher is pressed with a flat pusher, the occurrence of molding defects on both end faces of the seismic isolation plug can be suppressed. Because it can.

また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の免震プラグの製造装置は、塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する装置であって、前記粉体材料が充填される金型と、前記金型内の粉体材料の加圧に用いられる複数のプッシャーと、前記粉体材料の加圧に使用するプッシャーを交換するプッシャー交換機構とを備え、前記複数のプッシャーで前記粉体材料を両側から挟んで加圧し、前記複数のプッシャーには、加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーと、加圧方向に直交する平面を加圧面として有する平面プッシャーと、加圧方向最外端よりも内方に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーとが含まれ、且つ、前記複数のプッシャーには、一対の楔形プッシャーおよび楔溝形プッシャーと、一対の楔形プッシャー、或いは、一対の楔形プッシャーおよび平面プッシャーと、一対の平面プッシャーとが含まれることを特徴とする。このように、楔形プッシャーを設ければ、楔形プッシャーを用いて粉体材料を加圧することにより、金型内で粉体材料を強制的に流動させて粉体材料中に混入した空気を抜くことができるので、空気含有率の低い免震プラグを製造することができる。また、平面プッシャーおよびプッシャー交換機構を設ければ、楔形プッシャーで加圧した粉体材料を平面プッシャーで加圧して、免震プラグの端面における成形不良の発生を抑制することができる。更に、楔形プッシャーおよび楔溝形プッシャーを設ければ、楔形プッシャーおよび楔溝形プッシャーで粉体材料を両側から加圧することにより、金型内で粉体材料を更に大きく流動させて粉体材料中に混入した空気を十分に抜くことができるので、免震プラグの空気含有率を更に低減することができる。 Another object of the present invention is to advantageously solve the above-mentioned problems, and the seismic isolation plug manufacturing apparatus of the present invention provides a powder material containing a plastic fluid material and a hard filler in a mold. A device for producing a seismic isolation plug for a seismic isolation structure by pressure molding with a mold filled with the powder material and a plurality of used for pressurizing the powder material in the mold And a pusher exchange mechanism for exchanging a pusher used for pressurizing the powder material. The plurality of pushers pressurize the powder material by sandwiching it from both sides. a wedge-shaped pusher having two planar as pressurizing surfaces that intersect at the top side located in the pressure direction, a plane perpendicular to the pressing direction and the plane pusher having a pressing surface, inward of the pressing direction outermost end Two planes that intersect at the bottom It includes a Kusabimizogata pusher having a pressing surface, and, wherein the plurality of pushers, and a pair of wedge pusher and Kusabimizogata pusher, a pair of wedge-shaped pusher, or a pair of wedge pusher and planar pusher, a pair The planar pusher is included . In this way, if a wedge-shaped pusher is provided, the powder material is pressurized using the wedge-shaped pusher to forcibly flow the powder material in the mold and remove air mixed in the powder material. Therefore, it is possible to manufacture a seismic isolation plug with a low air content. Further, if a flat pusher and a pusher exchange mechanism are provided, the powder material pressed by the wedge-shaped pusher can be pressed by the flat pusher to suppress the occurrence of molding defects on the end face of the seismic isolation plug . In addition, if a wedge-shaped pusher and a wedge-groove pusher are provided, the powder material is pressed from both sides by the wedge-shaped pusher and the wedge-groove pusher, so that the powder material flows more greatly in the mold and is contained in the powder material. Since the air mixed in can be sufficiently removed, the air content of the seismic isolation plug can be further reduced.

本発明の免震プラグの製造方法および製造装置によれば、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる。また、本発明によれば、端面が平坦で空気含有率が低い、減衰性能や変位追従性に優れる免震プラグを提供することができる。   According to the manufacturing method and the manufacturing apparatus of the seismic isolation plug of the present invention, it is possible to manufacture the seismic isolation plug having a low air content while suppressing the occurrence of molding defects. Further, according to the present invention, it is possible to provide a seismic isolation plug having a flat end face and a low air content and excellent damping performance and displacement followability.

(a)〜(k)は、本発明に従う代表的な免震プラグの製造方法を用いて免震プラグを製造する工程を説明する図である。(A)-(k) is a figure explaining the process of manufacturing a seismic isolation plug using the manufacturing method of the typical seismic isolation plug according to this invention. (a)は、本発明の免震プラグを圧入した免震構造体の上面図であり、(b)は、図2(a)に示す免震構造体のI−I線に沿う断面図である。(A) is a top view of the seismic isolation structure in which the seismic isolation plug of the present invention is press-fitted, and (b) is a sectional view taken along line II of the seismic isolation structure shown in FIG. 2 (a). is there. 免震プラグの製造に用いる楔形プッシャーの先端部の形状を示す図であり、(a)は正面図、(b)は側面図、(c)は平面図である。It is a figure which shows the shape of the front-end | tip part of the wedge-shaped pusher used for manufacture of a seismic isolation plug, (a) is a front view, (b) is a side view, (c) is a top view. 免震プラグの製造に用いる楔溝形プッシャーの先端部の形状を示す図であり、(a)は正面図、(b)は側面図、(c)は平面図である。It is a figure which shows the shape of the front-end | tip part of the wedge groove type pusher used for manufacture of a seismic isolation plug, (a) is a front view, (b) is a side view, (c) is a top view. (a)〜(i)は、本発明に従う他の免震プラグの製造方法を用いて免震プラグを製造する工程を説明する図である。(A)-(i) is a figure explaining the process of manufacturing a seismic isolation plug using the manufacturing method of the other seismic isolation plug according to this invention. (a)〜(e)は、本発明に従う別の免震プラグの製造方法を用いて免震プラグを製造する工程を説明する図である。(A)-(e) is a figure explaining the process of manufacturing a seismic isolation plug using the manufacturing method of another seismic isolation plug according to this invention. (a)〜(e)は、円錐プッシャーを用いた従来の免震プラグの製造方法を用いて免震プラグを製造する工程を説明する図である。(A)-(e) is a figure explaining the process of manufacturing a seismic isolation plug using the manufacturing method of the conventional seismic isolation plug using a cone pusher. 免震プラグの体積および端面の平坦化度の算出方法を説明する図である。It is a figure explaining the calculation method of the volume of a seismic isolation plug, and the flatness degree of an end surface. 免震プラグを使用した免震構造体における、水平方向の変形変位(δ)と水平方向荷重(Q)との関係を示すグラフである。It is a graph which shows the relationship between a horizontal deformation displacement (delta) and a horizontal load (Q) in the base isolation structure using a base isolation plug.

以下、図面を参照して本発明の実施の形態を詳細に説明する。ここで、本発明の免震プラグの製造方法は、塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震プラグを製造する際に、所定の形状を有するプッシャーを所定の順番で用いて粉体材料を加圧することを特徴とする。そして、本発明の免震プラグの製造方法を用いて製造された本発明の免震プラグは、免震装置の支承等として使用される免震構造体に用いられる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, the manufacturing method of the seismic isolation plug according to the present invention provides a predetermined shape when the powder material containing the plastic fluid material and the hard filler is pressure-molded in a mold to manufacture the seismic isolation plug. The powder material is pressurized using the pushers having the predetermined order. And the seismic isolation plug of this invention manufactured using the manufacturing method of the seismic isolation plug of this invention is used for the seismic isolation structure used as a support etc. of a seismic isolation apparatus.

具体的には、本発明の免震プラグは、例えば図2(a)に上面図を示し、図2(b)に図2(a)のI―I線に沿う断面図を示すような、略ドーナツ盤状の弾性を有する軟質板51と剛性を有する硬質板52とを交互に積層してなり、積層方向(鉛直方向)に伸びる円柱状の中空部53を有する積層体54と、積層体54の両端(上端および下端)に固定された略ドーナツ盤状のフランジ板57および円盤状の封止板56よりなる2枚のフランジと、積層体54の外周面を覆うゴム製の被覆材58とを具える免震構造体50の中空部53に圧入されて用いられる。そして、積層体54の中空部53に免震プラグ55を圧入してなる免震構造体50は、例えば地盤と構造物との間に取り付けられて用いられる。   Specifically, the seismic isolation plug of the present invention has, for example, a top view in FIG. 2 (a) and a cross-sectional view taken along line II in FIG. 2 (a). A laminated body 54 having a cylindrical hollow portion 53 extending in the laminating direction (vertical direction) by alternately laminating soft plates 51 having substantially donut disk-like elasticity and hard plates 52 having rigidity; Two flanges made of a substantially donut disk-shaped flange plate 57 and a disk-shaped sealing plate 56 fixed to both ends (upper end and lower end) of 54, and a rubber covering material 58 covering the outer peripheral surface of the laminate 54. Are used by being press-fitted into the hollow portion 53 of the seismic isolation structure 50. And the seismic isolation structure 50 formed by press-fitting the seismic isolation plug 55 in the hollow part 53 of the laminated body 54 is used, for example, attached between the ground and the structure.

ここで、本発明の免震プラグの一例は、塑性流動材および硬質充填材を含有する粉体材料が充填される金型と、金型内の粉体材料の加圧に用いられる複数のプッシャーと、粉体材料の加圧に使用するプッシャーを交換するプッシャー交換機構とを備える本発明の免震プラグの製造装置の一例を用いて、例えば後述のようにして製造することができる。   Here, an example of the seismic isolation plug of the present invention includes a mold filled with a powder material containing a plastic fluid material and a hard filler, and a plurality of pushers used for pressurizing the powder material in the mold. Using the example of the seismic isolation plug manufacturing apparatus of the present invention that includes the pusher replacement mechanism that replaces the pusher used to pressurize the powder material, for example, it can be manufactured as described below.

なお、免震プラグの製造装置のプッシャー交換機構は、使用する順に並列配置した複数のプッシャーに沿って金型を移動させることにより使用するプッシャーを交換し得るようにした機構であっても良いし、位置を固定した金型に対して使用する順に並列配置した複数のプッシャーを移動させることにより使用するプッシャーを交換し得るようにした機構であっても良い。更に、プッシャー交換機構は、粉体材料を加圧する方向と平行な方向に延びる回転軸線に関してプッシャーおよび金型の少なくとも一方を回転させる回転機構を有していても良い。   The pusher replacement mechanism of the seismic isolation plug manufacturing apparatus may be a mechanism that allows replacement of the pusher to be used by moving the mold along a plurality of pushers arranged in parallel in the order of use. The mechanism may be such that the pushers to be used can be replaced by moving a plurality of pushers arranged in parallel in the order of use with respect to the mold having a fixed position. Furthermore, the pusher exchange mechanism may have a rotation mechanism that rotates at least one of the pusher and the mold with respect to a rotation axis extending in a direction parallel to the direction in which the powder material is pressed.

また、免震プラグの製造に用いられる粉体材料を構成する塑性流動材としては、特に限定されることなく、例えば、天然ゴム、ポリブタジエンゴム、アクリルゴム、シリコンゴム、ポリウレタン、ウレタン系エラストマーなどのエストラマー成分と、ロジン樹脂、フェノール樹脂などの樹脂と、カーボンブラック、シリカなどの補強性充填材と、フタル酸、マレイン酸、クエン酸などの可塑剤と、ヒマシ油、アマニ油、ナタネ油などの軟化剤とを含む混合物が挙げられる。また、硬質充填材としては、特に限定されることなく、例えば、銅粉、ステンレス鋼粉、ジルコニウム粉、タングステン粉、青銅粉、アルミニウム粉、ニッケル粉、モリブデン粉、チタン粉、鉄粉などの金属粉体や金属化合物が挙げられる。そして、これら塑性流動材および硬質充填材の組成等は、免震プラグ55に求められる性能に応じて適宜変更することができる。   Further, the plastic fluid material constituting the powder material used for manufacturing the seismic isolation plug is not particularly limited, and examples thereof include natural rubber, polybutadiene rubber, acrylic rubber, silicon rubber, polyurethane, and urethane-based elastomer. Estramer components, resins such as rosin resin and phenol resin, reinforcing fillers such as carbon black and silica, plasticizers such as phthalic acid, maleic acid and citric acid, and castor oil, linseed oil, rapeseed oil, etc. The mixture containing a softener is mentioned. Further, the hard filler is not particularly limited, for example, metal such as copper powder, stainless steel powder, zirconium powder, tungsten powder, bronze powder, aluminum powder, nickel powder, molybdenum powder, titanium powder, iron powder, etc. Examples thereof include powders and metal compounds. The composition of the plastic fluid material and the hard filler can be appropriately changed according to the performance required for the seismic isolation plug 55.

本発明の免震プラグの製造方法の一例では、図1(a)〜(k)に示す工程に従い、楔形プッシャー3、楔溝形プッシャー4および平面プッシャー5を所定の順序・組合せで用いて金型内の粉体材料を加圧成形して免震プラグを製造する。なお、粉体材料を加圧成形する際の圧力は、所望の免震プラグの性能等に応じて適宜設定することができる。   In an example of the manufacturing method of the seismic isolation plug of this invention, according to the process shown to Fig.1 (a)-(k), the wedge type pusher 3, the wedge groove type pusher 4, and the plane pusher 5 are used in a predetermined order and combination. Seismic isolation plugs are manufactured by pressing the powder material in the mold. In addition, the pressure at the time of pressure-molding powder material can be suitably set according to the performance etc. of a desired seismic isolation plug.

ここで、楔形プッシャー3は、粉体材料を加圧する側の先端部の正面図を図3(a)に、側面図を図3(b)に、平面図を図3(c)にそれぞれ示すように、加圧方向側(図3(a),(b)では上側)に突出して位置する頂辺31で交差する二つの平面32a,32bを加圧面として有するプッシャーである。即ち、楔形プッシャー3の先端部では、頂辺31に直交する断面が、加圧方向に凸のV字形をしており、頂辺31の延在方向および加圧方向の双方に直交する方向(図3(a)では左右方向)の楔形プッシャー3の幅が、頂辺31に向かって漸減している。   Here, the wedge-shaped pusher 3 is shown in FIG. 3A, a side view in FIG. 3B, and a plan view in FIG. As described above, the pusher has two flat surfaces 32a and 32b intersecting at the apex 31 projecting in the pressurizing direction side (the upper side in FIGS. 3A and 3B). That is, at the tip of the wedge-shaped pusher 3, the cross section perpendicular to the apex 31 has a V shape that is convex in the pressurizing direction, and the direction orthogonal to both the extending direction of the apex 31 and the pressurizing direction ( The width of the wedge-shaped pusher 3 in the left-right direction in FIG. 3A gradually decreases toward the top side 31.

なお、図3に示す楔形プッシャー3では、金型に対して楔形プッシャー3を真っ直ぐに挿入し易くする観点から頂辺31を平面視で楔形プッシャー3の中央に位置させているが、本発明の免震プラグの製造方法では、平面視における頂辺31の位置が中央からオフセットした楔形プッシャーを用いても良い。また、図3に示す楔形プッシャー3では、頂辺31が加圧方向に直交しているが、本発明の免震プラグの製造方法では、頂辺が加圧方向に対して傾斜した楔形プッシャーを用いても良い。更に、楔形プッシャー3の二つの平面32a,32bが交差する角度は、適宜変更することができる。   In the wedge-shaped pusher 3 shown in FIG. 3, the apex 31 is positioned at the center of the wedge-shaped pusher 3 in plan view from the viewpoint of easy insertion of the wedge-shaped pusher 3 straight into the mold. In the manufacturing method of the seismic isolation plug, a wedge-shaped pusher in which the position of the apex 31 in plan view is offset from the center may be used. In the wedge-shaped pusher 3 shown in FIG. 3, the apex 31 is orthogonal to the pressurizing direction. However, in the seismic isolation plug manufacturing method of the present invention, a wedge-shaped pusher whose apex is inclined with respect to the pressurizing direction is used. It may be used. Furthermore, the angle at which the two flat surfaces 32a and 32b of the wedge-shaped pusher 3 intersect can be changed as appropriate.

楔溝形プッシャー4は、粉体材料を加圧する側の先端部の正面図を図4(a)に、側面図を図4(b)に、平面図を図4(c)にそれぞれ示すように、加圧方向側(図4(a),(b)では上側)とは反対側に窪んで位置する底辺41(換言すれば、楔溝形プッシャー4の加圧方向最外端43a,43bよりも内方に位置する底辺41)で交差する二つの平面42a,42bを加圧面として有するプッシャーである。即ち、楔溝形プッシャー4の先端部には、底辺41に直交する断面の形状がV字形の溝が形成されている。そして、楔溝形プッシャー4の先端部は楔形プッシャー3の先端部の形状に対応した形状となっており、楔溝形プッシャー4の断面V字形の溝は、楔形プッシャー3の加圧方向に凸のV字形断面に対応した形状をしている。   The wedge-groove pusher 4 is shown in FIG. 4A, a side view in FIG. 4B, and a plan view in FIG. Furthermore, the bottom side 41 (in other words, the pressure direction outermost ends 43a, 43b of the wedge groove type pusher 4) is depressed on the opposite side to the pressure direction side (the upper side in FIGS. 4A and 4B). The pusher has two planes 42a and 42b intersecting at the bottom 41) located on the inner side. That is, a groove having a V-shaped cross section perpendicular to the bottom 41 is formed at the tip of the wedge groove pusher 4. The tip of the wedge-shaped pusher 4 has a shape corresponding to the shape of the tip of the wedge-shaped pusher 3, and the groove having a V-shaped cross section of the wedge-shaped pusher 4 protrudes in the pressurizing direction of the wedge-shaped pusher 3. The shape corresponds to the V-shaped cross section.

なお、図4に示す楔溝形プッシャー4では、楔溝形プッシャー4の形状を楔形プッシャー3の形状に対応させる観点から底辺41を平面視で楔溝形プッシャー4の中央に位置させているが、本発明の免震プラグの製造方法では、平面視における底辺41の位置が中央からオフセットした楔溝形プッシャーを用いても良い。また、図4に示す楔溝形プッシャー4では、底辺41が加圧方向に直交しているが、本発明の免震プラグの製造方法では、底辺が加圧方向に対して傾斜した楔溝形プッシャーを用いても良い。更に、楔溝形プッシャー4の二つの平面42a,42bが交差する角度は、適宜変更することができる。   In the wedge groove pusher 4 shown in FIG. 4, the bottom 41 is positioned in the center of the wedge groove pusher 4 in plan view from the viewpoint of making the shape of the wedge groove pusher 4 correspond to the shape of the wedge pusher 3. In the seismic isolation plug manufacturing method of the present invention, a wedge groove type pusher in which the position of the bottom 41 in a plan view is offset from the center may be used. Further, in the wedge groove type pusher 4 shown in FIG. 4, the bottom 41 is orthogonal to the pressurizing direction. However, in the method for manufacturing the seismic isolation plug of the present invention, the bottom is inclined with respect to the pressurizing direction. A pusher may be used. Furthermore, the angle at which the two flat surfaces 42a and 42b of the wedge-shaped pusher 4 intersect can be changed as appropriate.

平面プッシャー5は、加圧方向に直交する平面を加圧面として有するプッシャーである。なお、平面プッシャー5の平面の形状は、粉体材料が充填される金型の中空部の加圧方向に直交する断面の形状と略等しい形状である。   The plane pusher 5 is a pusher having a plane orthogonal to the pressing direction as a pressing surface. The flat shape of the flat pusher 5 is substantially the same as the cross-sectional shape perpendicular to the pressing direction of the hollow portion of the mold filled with the powder material.

そして、図1(a)〜(k)に製造工程を示す本発明の免震プラグの製造方法の一例では、まず、図1(a)〜(d)に示すように、円筒状の金型1の内部に投入した粉体材料2を、加圧方向に対向させた一対の楔形プッシャー3および楔溝形プッシャー4で両側から挟んで加圧する。具体的には、最初に、図1(a)に示すように、金型1内に充填した粉体材料2の一方側(図1では上側)から楔形プッシャー3を金型1内に挿入すると共に、粉体材料2の他方側(図1では下側)から楔溝形プッシャー4を金型1内に挿入して粉体材料2を加圧する。次に、図1(b)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取った後、図1(c)に示すように、楔形プッシャー3および楔溝形プッシャー4を例えば90°回転させ、90°回転させた楔形プッシャー3および楔溝形プッシャー4で粉体材料2を両側から挟んで再び加圧する。即ち、楔形プッシャー3の頂辺31の延在方向および楔溝形プッシャー4の底辺41の延在方向を1回目の加圧時と2回目の加圧時とで異ならせて、粉体材料2を2回加圧する。その後、図1(d)に示すように、楔形プッシャー3および楔溝形プッシャー4を金型1から抜き取る(前処理工程)。   And in an example of the manufacturing method of the seismic isolation plug of this invention which shows a manufacturing process to Fig.1 (a)-(k), as shown to Fig.1 (a)-(d), a cylindrical metal mold | die is shown first. The powder material 2 put into the interior of 1 is pressed by being sandwiched from both sides by a pair of wedge-shaped pushers 3 and wedge groove-shaped pushers 4 opposed to each other in the pressing direction. Specifically, first, as shown in FIG. 1A, a wedge-shaped pusher 3 is inserted into the mold 1 from one side (upper side in FIG. 1) of the powder material 2 filled in the mold 1. At the same time, a wedge groove pusher 4 is inserted into the mold 1 from the other side (lower side in FIG. 1) of the powder material 2 to press the powder material 2. Next, as shown in FIG. 1 (b), after the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are extracted from the mold 1, as shown in FIG. 1 (c), the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are removed. Is rotated by 90 °, for example, and the powder material 2 is sandwiched from both sides by the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 rotated by 90 °, and pressurized again. That is, the extending direction of the top side 31 of the wedge-shaped pusher 3 and the extending direction of the bottom side 41 of the wedge-shaped pusher 4 are made different between the first pressurization and the second pressurization. Is pressurized twice. Thereafter, as shown in FIG. 1D, the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are extracted from the mold 1 (pretreatment step).

ここで、この前処理工程では、楔形プッシャー3および楔溝形プッシャー4で粉体材料2を挟み込んで加圧しているので、金型1内で粉体材料2が強制的に流動させられて、粉体材料2内の空気が抜ける。また、この前処理工程では、1回目の加圧時と2回目の加圧時とで楔形プッシャー3の頂辺31の延在方向および楔溝形プッシャー4の底辺41の延在方向を異ならせているので、金型1内での粉体材料2の流動が強く促されて、粉体材料2内の空気が十分に抜ける。なお、金型内で粉体材料が流動させられることにより粉体材料内の空気が抜けて免震プラグの空気含有率が低くなるのは、粉体材料の流動により粉体材料内の硬質充填材同士が密に配置されるためであると推察される。   Here, in this pretreatment step, since the powder material 2 is sandwiched and pressed by the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4, the powder material 2 is forced to flow in the mold 1, The air in the powder material 2 escapes. In this pretreatment step, the extending direction of the top side 31 of the wedge-shaped pusher 3 and the extending direction of the bottom side 41 of the wedge-shaped pusher 4 are different between the first pressurization and the second pressurization. Therefore, the flow of the powder material 2 in the mold 1 is strongly promoted, and the air in the powder material 2 is sufficiently released. In addition, when the powder material flows in the mold, the air in the powder material escapes and the air content of the seismic isolation plug decreases. This is presumably because the materials are closely arranged.

因みに、前処理工程では、粉体材料2を金型1内で良好に流動させる観点からは、楔形プッシャー3の頂辺31の延在方向と楔溝形プッシャー4の底辺41の延在方向とを一致させることが好ましいが、本発明の免震プラグの製造方法では、頂辺31の延在方向と底辺41の延在方向とを異ならせた状態で粉体材料2を加圧しても良い。また、粉体材料2を加圧する回数は、製造する免震プラグの直径や粉体材料の組成に応じて適宜変更しても良い。更に、楔形プッシャー3および楔溝形プッシャー4を回転させる角度は、頂辺31および底辺41の延在方向を変えることができれば(即ち、180°以外であれば)任意の角度とすることができるが、金型1内で粉体材料2を均等に隅々まで流動させる観点からは、90°とすることが好ましい。なお、本発明の免震プラグの製造方法では、楔形プッシャーおよび楔溝形プッシャーの位置を固定した状態で、内部に粉体材料を充填した金型を回転させることにより、頂辺および底辺の延在方向を変えても良い。   Incidentally, in the pretreatment step, from the viewpoint of favorably flowing the powder material 2 in the mold 1, the extending direction of the top side 31 of the wedge-shaped pusher 3 and the extending direction of the bottom side 41 of the wedge-shaped pusher 4 However, in the method for manufacturing a seismic isolation plug of the present invention, the powder material 2 may be pressed in a state where the extending direction of the top side 31 and the extending direction of the bottom side 41 are different. . Moreover, you may change suitably the frequency | count of pressurizing the powder material 2 according to the diameter of the seismic isolation plug to manufacture, or the composition of powder material. Furthermore, the angle at which the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 are rotated can be any angle as long as the extending directions of the top side 31 and the bottom side 41 can be changed (that is, other than 180 °). However, from the viewpoint of allowing the powder material 2 to flow evenly to every corner in the mold 1, 90 ° is preferable. In the seismic isolation plug manufacturing method of the present invention, the top and bottom sides are extended by rotating a mold filled with a powder material inside while the positions of the wedge-shaped pusher and the wedge-groove pusher are fixed. You may change the direction.

次に、この一例の免震プラグの製造方法では、図1(e)〜(h)に示すように、前処理工程において楔形プッシャー3および楔溝形プッシャー4を用いて加圧された粉体材料2を、加圧方向に対向させた一対の楔形プッシャー3および平面プッシャー5で両側から挟んで加圧する。具体的には、まず、図1(e)に示すように、粉体材料2の一方側(図1では上側)から楔形プッシャー3を金型1内に挿入すると共に、粉体材料2の他方側(図1では下側)から平面プッシャー5を金型1内に挿入して粉体材料2を加圧する。次に、図1(f)に示すように、楔形プッシャー3および平面プッシャー5を金型1から抜き取った後、図1(g)に示すように、楔形プッシャー3を例えば90°回転させ、90°回転させた楔形プッシャー3および平面プッシャー5で粉体材料2を両側から挟んで再び加圧する。即ち、楔形プッシャー3の頂辺31の延在方向を、前処理工程後の1回目の加圧時と2回目の加圧時とで異ならせて、粉体材料2を2回加圧する。その後、図1(h)に示すように、楔形プッシャー3および平面プッシャー5を金型1から抜き取る(予備加圧成形工程)。   Next, in the manufacturing method of the seismic isolation plug of this example, as shown in FIGS. 1E to 1H, the powder pressed using the wedge shaped pusher 3 and the wedge groove shaped pusher 4 in the pretreatment process. The material 2 is pressed by being sandwiched from both sides by a pair of wedge-shaped pushers 3 and a flat pusher 5 opposed to each other in the pressing direction. Specifically, first, as shown in FIG. 1 (e), a wedge-shaped pusher 3 is inserted into the mold 1 from one side (upper side in FIG. 1) of the powder material 2, and the other side of the powder material 2 A flat pusher 5 is inserted into the mold 1 from the side (lower side in FIG. 1) to pressurize the powder material 2. Next, as shown in FIG. 1 (f), after the wedge-shaped pusher 3 and the flat pusher 5 are extracted from the mold 1, the wedge-shaped pusher 3 is rotated by 90 °, for example, as shown in FIG. The powder material 2 is sandwiched from both sides by the wedge-shaped pusher 3 and the flat pusher 5 that have been rotated. That is, the extending direction of the apex 31 of the wedge-shaped pusher 3 is made different between the first pressurization and the second pressurization after the pretreatment step, and the powder material 2 is pressed twice. Thereafter, as shown in FIG. 1 (h), the wedge-shaped pusher 3 and the flat pusher 5 are extracted from the mold 1 (pre-pressurizing process).

ここで、本発明者の研究によれば、楔溝形プッシャーの形状に対応した形状(楔形)に成形された粉体材料に対して両側から平面プッシャーのみを用いて加圧成形を実施した場合、金型内で粉体材料が十分に流動せず、免震プラグの外周部(特に、楔溝形プッシャーにより楔形に成形されていた粉体材料の、楔溝形プッシャー4の加圧方向最外端43a,43bに対応する位置の近傍)が他の部分より窪んで成形不良が発生することがある。しかし、この予備加圧成形工程では、楔形プッシャー3および平面プッシャー5で粉体材料2を挟み込んで加圧しているので、金型1内での粉体材料2の流動が促され、粉体材料2内の空気が抜けると共に、前処理工程において楔溝形プッシャー4の形状に対応した形状(楔形)に成形された粉体材料2の平面プッシャー5側(図1では下側)の面が平坦になる。また、この前処理工程では、1回目の加圧時と2回目の加圧時とで楔形プッシャー3の頂辺31の延在方向を異ならせているので、金型1内での粉体材料2の流動が更に強く促される。従って、粉体材料2内の空気が十分に抜けると共に、例えば直径200mm以上の大口径の免震プラグを製造する場合であっても、金型内で粉体材料を均等かつ十分に流動させ、平面プッシャー5側の面を平坦にすることができる。   Here, according to the study of the present inventor, when the pressure molding is performed using only the flat pusher from both sides to the powder material molded into a shape corresponding to the shape of the wedge groove type pusher (wedge shape) The powder material does not flow sufficiently in the mold, and the outer peripheral portion of the seismic isolation plug (particularly, the powder material that has been formed into a wedge shape by the wedge groove type pusher in the pressure direction of the wedge groove type pusher 4) In some cases, the vicinity of the positions corresponding to the outer ends 43a and 43b is recessed from other portions, and molding defects may occur. However, in this pre-press molding process, the powder material 2 is sandwiched and pressed by the wedge-shaped pusher 3 and the flat pusher 5, so that the flow of the powder material 2 in the mold 1 is promoted, and the powder material 2 and the surface on the flat pusher 5 side (lower side in FIG. 1) of the powder material 2 formed into a shape (wedge shape) corresponding to the shape of the wedge groove pusher 4 in the pretreatment step is flat. become. Further, in this pretreatment step, the extending direction of the apex 31 of the wedge-shaped pusher 3 is different between the first pressurization and the second pressurization. The flow of 2 is further strongly encouraged. Therefore, the air in the powder material 2 is sufficiently removed and, for example, even when manufacturing a large-diameter seismic isolation plug having a diameter of 200 mm or more, the powder material is allowed to flow evenly and sufficiently in the mold, The surface on the flat pusher 5 side can be flattened.

因みに、予備加圧成形工程では、粉体材料2を加圧する回数は、製造する免震プラグの直径や粉体材料の組成に応じて適宜変更しても良い。更に、楔形プッシャー3を回転させる角度は、頂辺31の延在方向を変えることができれば(即ち、180°以外であれば)任意の角度とすることができるが、金型1内で粉体材料2を均等に隅々まで流動させる観点からは、90°とすることが好ましい。また、前処理工程の後に楔形プッシャー3および平面プッシャー5で粉体材料2を加圧する際の楔形プッシャー3の頂辺31の延在方向は、粉体材料2を良好に流動させる観点から、図1(e)に示すように前処理工程の最後の加圧時の楔形プッシャー3の頂辺31の延在方向と異ならせることが好ましい。なお、本発明の免震プラグの製造方法では、楔形プッシャーおよび平面プッシャーの位置を固定した状態で、内部に粉体材料を充填した金型を回転させることにより、頂辺31の延在方向を変えても良い。   Incidentally, in the pre-press molding process, the number of times of pressing the powder material 2 may be appropriately changed according to the diameter of the seismic isolation plug to be manufactured and the composition of the powder material. Furthermore, the angle at which the wedge-shaped pusher 3 is rotated can be any angle as long as the extending direction of the apex 31 can be changed (that is, other than 180 °). From the viewpoint of allowing the material 2 to flow evenly to every corner, 90 ° is preferable. Further, the extending direction of the apex 31 of the wedge-shaped pusher 3 when the powder material 2 is pressed by the wedge-shaped pusher 3 and the flat pusher 5 after the pretreatment step is shown in FIG. It is preferable to make it different from the extending direction of the top side 31 of the wedge-shaped pusher 3 at the time of the final pressurization in the pretreatment step as shown in 1 (e). In the method for manufacturing a seismic isolation plug according to the present invention, the extending direction of the apex 31 is adjusted by rotating a die filled with a powder material in a state where the positions of the wedge-shaped pusher and the flat pusher are fixed. You can change it.

そして最後に、この一例の免震プラグの製造方法では、図1(i)〜(k)に示すように、予備加圧成形工程において楔形プッシャー3および平面プッシャー5を用いて加圧された粉体材料2を、加圧方向に対向させた一対の平面プッシャー5,5で両側から挟んで加圧する。具体的には、まず、図1(i)に示すように、粉体材料2の両側から平面プッシャー5,5を金型1内に挿入して粉体材料2を加圧する。次に、図1(j)に示すように、二つの平面プッシャー5,5を金型1から抜き取る(最終加圧成形工程)。そして、加圧成形された粉体材料2よりなる免震プラグ20を金型1から取り外す。   And finally, in the manufacturing method of the seismic isolation plug of this example, as shown to FIG.1 (i)-(k), as shown in FIG.1 (i)-(k), the powder pressurized using the wedge-shaped pusher 3 and the plane pusher 5 in the pre-press molding process. The body material 2 is pressed by being sandwiched from both sides by a pair of flat pushers 5 and 5 facing each other in the pressing direction. Specifically, first, as shown in FIG. 1 (i), the flat pushers 5 and 5 are inserted into the mold 1 from both sides of the powder material 2 to pressurize the powder material 2. Next, as shown in FIG. 1 (j), the two flat pushers 5 and 5 are extracted from the mold 1 (final pressure molding step). Then, the seismic isolation plug 20 made of the pressure-formed powder material 2 is removed from the mold 1.

ここで、この最終加圧成形工程では、予備加圧成形工程において楔形プッシャー3および平面プッシャー5を用いて加圧した、一方側(図1では上側)が楔形プッシャー3の形状に対応した形状(楔溝形)に成形され、他方側(図1では下側)が平坦に成形された粉体材料2を平面プッシャー5で両側から加圧しているので、両端面が平坦な免震プラグ20を得ることができる。なお、従来の円錐プッシャーを用いた場合とは異なり、楔形プッシャー3を用いて加圧した面を平面プッシャー5で加圧した際に免震プラグ20の端面が平坦になる原因は、明らかではないが、楔形プッシャー3を用いて粉体材料2を加圧した際の粉体材料2の端部形状(楔溝形)が、平面プッシャーで加圧した際に材料が溝底に向かって流れ易い形状だからであると推察される。因みに、この最終加圧成形工程では、他方側(図1では下側)の平面プッシャー5として、予備加圧成形工程において使用した平面プッシャーをそのまま用いることができるので、予備加圧成形工程から最終加圧成形工程へと移る際に下側のプッシャーを交換しなくても良い。従って、プッシャーの交換に要する手間を削減して効率的に免震プラグを製造することができる。   Here, in this final pressure molding step, pressure is applied using the wedge-shaped pusher 3 and the flat pusher 5 in the pre-pressure molding step, and one side (the upper side in FIG. 1) corresponds to the shape of the wedge-shaped pusher 3 ( Since the powder material 2 formed in a wedge groove shape and flat on the other side (lower side in FIG. 1) is pressed from both sides by the flat pusher 5, the seismic isolation plug 20 having flat both end surfaces is provided. Can be obtained. Unlike the case of using a conventional conical pusher, the reason why the end face of the seismic isolation plug 20 becomes flat when the surface pressed with the wedge-shaped pusher 3 is pressed with the flat pusher 5 is not clear. However, when the powder material 2 is pressed using the wedge-shaped pusher 3, the end portion shape (wedge groove shape) of the powder material 2 is easy to flow toward the groove bottom when the powder material 2 is pressed by the flat pusher. It is inferred that it is a shape. Incidentally, in this final pressure molding process, the planar pusher used in the preliminary pressure molding process can be used as it is as the planar pusher 5 on the other side (lower side in FIG. 1). It is not necessary to replace the lower pusher when moving to the pressure molding process. Accordingly, it is possible to efficiently manufacture the seismic isolation plug while reducing the labor required for the replacement of the pusher.

そして、この一例の免震プラグの製造方法によれば、前処理工程、予備加圧成形工程および最終加圧成形工程を順次実施することにより、金型1内で粉体材料2を強制的に流動させて粉体材料2中に混入した空気を抜くことができるので、空気含有率の低い免震プラグ20を製造することができる。また、免震プラグ20の端面における成形不良の発生を抑制することができる。従って、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる。   And according to the manufacturing method of the seismic isolation plug of this example, the powder material 2 is compulsorily carried out in the metal mold 1 by sequentially carrying out the pretreatment process, the pre-pressure forming process and the final pressure forming process. Since the air mixed and extracted in the powder material 2 can be extracted, the seismic isolation plug 20 having a low air content can be manufactured. In addition, the occurrence of molding defects on the end face of the seismic isolation plug 20 can be suppressed. Therefore, it is possible to manufacture a seismic isolation plug having a low air content while suppressing the occurrence of molding defects.

次に、本発明の免震プラグの製造方法の他の例について、図5を用いて説明する。この他の例の免震プラグの製造方法は、予備加圧成形工程において一対の楔形プッシャー3,3を用いて粉体材料2を両側から加圧した点を除き、他の点では先の一例の免震プラグの製造方法と同様の工程を有している。   Next, another example of the manufacturing method of the seismic isolation plug of the present invention will be described with reference to FIG. The other example of the method for manufacturing a seismic isolation plug is the same as the previous example except that the powder material 2 is pressed from both sides by using a pair of wedge-shaped pushers 3 and 3 in the pre-press molding process. It has the same process as the manufacturing method of the seismic isolation plug.

即ち、図5(a)〜(d)に示すこの他の例の製造方法の前処理工程は、図1(a)〜(d)に示す先の一例の製造方法の前処理工程と同様にして実施することができる。また、図5(g)〜(i)に示すこの他の例の製造方法の最終加圧成形工程は、図1(i)〜(k)に示す先の一例の製造方法の最終加圧成形工程と同様にして実施することができる。   That is, the pre-processing steps of the other example manufacturing methods shown in FIGS. 5A to 5D are the same as the pre-processing steps of the previous example manufacturing method shown in FIGS. 1A to 1D. Can be implemented. 5 (g) to (i), the final pressure forming step of the other example manufacturing method shown in FIGS. 1 (i) to (k) is the final pressure forming of the previous example manufacturing method. It can be carried out in the same manner as the process.

ここで、この他の例の製造方法の予備加圧成形工程では、図5(e)〜(f)に示すように、前処理工程において楔形プッシャー3および楔溝形プッシャー4を用いて加圧された粉体材料2を、加圧方向に対向させた一対の楔形プッシャー3,3で両側から挟んで加圧する。具体的には、まず、図5(e)に示すように、粉体材料2の両側から楔形プッシャー3,3を金型1内に挿入して粉体材料2を加圧する。次に、図5(f)に示すように、2つの楔形プッシャー3,3を金型1から抜き取る(予備加圧成形工程)。因みに、この他の例の製造方法では、予備加圧成形後、最終加圧成形工程を実施する際には、粉体材料2の両側(図5では上下両方)のプッシャーを平面プッシャーに交換する。   Here, in the pre-press molding step of the manufacturing method of this other example, as shown in FIGS. 5E to 5F, pressurization is performed using the wedge-shaped pusher 3 and the wedge groove-shaped pusher 4 in the pretreatment step. The pressed powder material 2 is pressed by being sandwiched from both sides by a pair of wedge-shaped pushers 3 and 3 facing each other in the pressing direction. Specifically, first, as shown in FIG. 5 (e), wedge-shaped pushers 3 and 3 are inserted into the mold 1 from both sides of the powder material 2 to pressurize the powder material 2. Next, as shown in FIG. 5 (f), the two wedge-shaped pushers 3 and 3 are extracted from the mold 1 (pre-pressure forming step). Incidentally, in the manufacturing method of this other example, when the final pressure forming step is carried out after the pre-press forming, the pushers on both sides (both up and down in FIG. 5) of the powder material 2 are replaced with flat pushers. .

ここで、この予備加圧成形工程では、粉体材料2が楔形プッシャー3で両側から加圧されるので、金型1内で粉体材料2が非常に良好に流動して、粉体材料2から空気が十分に抜ける。   Here, in this pre-press molding process, the powder material 2 is pressed from both sides by the wedge-shaped pusher 3, so that the powder material 2 flows very well in the mold 1, and the powder material 2 Enough air to escape.

なお、予備加圧成形工程では、粉体材料2を加圧する回数は、製造する免震プラグの直径や粉体材料の組成に応じて適宜変更しても良い。また、前処理工程の後に楔形プッシャー3で粉体材料2を加圧する際の楔形プッシャー3の頂辺31の延在方向は、粉体材料2を良好に流動させる観点から、図5(e)に示すように前処理工程の最後の加圧時の楔形プッシャー3の頂辺31の延在方向および楔溝形プッシャー4の底辺41の延在方向と異ならせることが好ましい。   In the pre-press molding process, the number of times the powder material 2 is pressed may be appropriately changed according to the diameter of the seismic isolation plug to be manufactured and the composition of the powder material. Further, the extending direction of the top side 31 of the wedge-shaped pusher 3 when the powder material 2 is pressed by the wedge-shaped pusher 3 after the pretreatment step is shown in FIG. As shown in FIG. 6, it is preferable that the extending direction of the top side 31 of the wedge-shaped pusher 3 and the extending direction of the bottom side 41 of the wedge-shaped pusher 4 are different from each other at the time of the final pressurization in the pretreatment step.

そして、この他の例の免震プラグの製造方法によれば、先の一例の免震プラグの製造方法と同様に、前処理工程、予備加圧成形工程および最終加圧成形工程を順次実施することにより、金型1内で粉体材料2を強制的に流動させて粉体材料2中に混入した空気を抜くことができるので、空気含有率の低い免震プラグ20を製造することができる。また、免震プラグ20の端面における成形不良の発生を抑制することができる。従って、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる。   And according to the manufacturing method of the seismic isolation plug of this other example, similarly to the manufacturing method of the seismic isolation plug of the previous example, the pretreatment process, the pre-pressing process, and the final pressing process are sequentially performed. As a result, the powder material 2 can be forced to flow in the mold 1 and air mixed in the powder material 2 can be removed, so that the seismic isolation plug 20 having a low air content can be manufactured. . In addition, the occurrence of molding defects on the end face of the seismic isolation plug 20 can be suppressed. Therefore, it is possible to manufacture a seismic isolation plug having a low air content while suppressing the occurrence of molding defects.

ここで、上記一例および他の例の免震プラグの製造方法を用いて製造した免震プラグは、空気含有率が例えば3.5%以下となり、また、端面の平坦化度が例えば1.5%以下、好ましくは1.0%以下となる。そして、免震構造体に用いた際に非常に良好な減衰性能や変位追従性を発揮する。   Here, the seismic isolation plug manufactured using the manufacturing method of the seismic isolation plug of the above example and the other examples has an air content of, for example, 3.5% or less, and a flatness of the end surface is, for example, 1.5. % Or less, preferably 1.0% or less. And when used for a seismic isolation structure, it exhibits very good damping performance and displacement followability.

以上、図面を参照して本発明の実施形態を説明したが、本発明の免震プラグの製造方法、免震プラグの製造装置および免震プラグは上述した一例に限定されることは無く、本発明の免震プラグの製造方法、免震プラグの製造装置および免震プラグには適宜変更を加えることができる。   As mentioned above, although embodiment of this invention was described with reference to drawings, the manufacturing method of the seismic isolation plug of this invention, the manufacturing apparatus of a seismic isolation plug, and a seismic isolation plug are not limited to the example mentioned above, The seismic isolation plug manufacturing method, the seismic isolation plug manufacturing apparatus, and the seismic isolation plug of the invention can be modified as appropriate.

具体的には、本発明の免震プラグの製造方法では、粉体材料をプッシャーで両側から加圧しなくても良く、例えば図6(a)〜(e)に示すように、一端が閉止された円筒状の金型61に充填した粉体材料2を一方側から加圧して免震プラグを製造しても良い。ここで、この別の例の免震プラグの製造方法では、具体的には、図6(a)に示すように、まず、金型61内に充填した粉体材料2の一方側(図6では上側)から楔形プッシャー3を金型61内に挿入し、粉体材料2を加圧する(予備加圧成形工程)。次に、図6(b)に示すように、楔形プッシャー3を金型61から抜き取った後、図6(c)に示すように、粉体材料2の一方側(図6では上側)から平面プッシャー5を金型61内に挿入し、粉体材料2を再び加圧する(最終加圧成形工程)。そして最後に、図6(d)に示すように、平面プッシャー5を金型61から抜き取ることにより、図6(e)に示すような免震プラグ20を得ることができる。   Specifically, in the manufacturing method of the seismic isolation plug of the present invention, it is not necessary to press the powder material from both sides with a pusher. For example, as shown in FIGS. 6 (a) to 6 (e), one end is closed. Alternatively, the powder material 2 filled in the cylindrical mold 61 may be pressurized from one side to manufacture a seismic isolation plug. Here, in the manufacturing method of the seismic isolation plug of this other example, specifically, as shown in FIG. 6A, first, one side of the powder material 2 filled in the mold 61 (FIG. 6). Then, the wedge-shaped pusher 3 is inserted into the mold 61 from the upper side, and the powder material 2 is pressurized (pre-pressure forming step). Next, as shown in FIG. 6 (b), after the wedge-shaped pusher 3 is extracted from the mold 61, as shown in FIG. 6 (c), a plane is formed from one side (upper side in FIG. 6) of the powder material 2. The pusher 5 is inserted into the mold 61, and the powder material 2 is pressurized again (final pressure molding step). And finally, as shown in FIG.6 (d), the seismic isolation plug 20 as shown in FIG.6 (e) can be obtained by extracting the plane pusher 5 from the metal mold | die 61. FIG.

以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example at all.

(実施例1)
表1に示す組成を有する塑性流動材および硬質充填材を含む粉体材料を用いて、内径16cmの円筒状の金型内で免震プラグを製造した。
具体的には、表2に示すように、前処理工程として、楔形プッシャーおよび楔溝形プッシャーで粉体材料を両側から挟み込んで加圧した後、予備加圧成形工程として、楔形プッシャーおよび平面プッシャーで粉体材料を両側から挟み込んで加圧した。その後、最終加圧成形工程として、粉体材料を2つの平面プッシャーで両側から挟み込んで合計1回加圧した。なお、前処理工程では、楔形プッシャーおよび楔溝形プッシャーを90°ずつ回転させながら粉体材料を合計4回加圧し、予備加圧成形工程では、楔形プッシャーおよび平面プッシャーを90°ずつ回転させながら粉体材料を合計2回加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を以下の方法で評価した。結果を表2に示す。
Example 1
A seismic isolation plug was manufactured in a cylindrical mold having an inner diameter of 16 cm using a powder material containing a plastic fluid and a hard filler having the composition shown in Table 1.
Specifically, as shown in Table 2, as a pretreatment process, a wedge material pusher and a wedge pusher are sandwiched and pressed by a wedge-shaped pusher and a wedge groove-shaped pusher, and then a pre-pressing process is performed. And pressed the powder material from both sides. Thereafter, as a final pressure forming step, the powder material was sandwiched from both sides by two flat pushers and pressed once in total. In the pretreatment step, the powder material is pressed a total of four times while rotating the wedge-shaped pusher and the wedge groove-shaped pusher by 90 °, and in the pre-press forming step, the wedge-shaped pusher and the planar pusher are rotated by 90 °. The powder material was pressed a total of 2 times.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, an external appearance, and attenuation | damping performance were evaluated with the following method. The results are shown in Table 2.

Figure 0005628651
Figure 0005628651

*1 不定形粉末、平均粒径40μm
*2 天然ゴムと合成ゴムのブレンド
* 1 Amorphous powder, average particle size 40μm
* 2 Blend of natural rubber and synthetic rubber

<空気含有率>
免震プラグの製造に使用した粉体材料の理論比重(ρ)と免震プラグの実比重(ρ)とを求めた。そして、免震プラグの製造に使用した粉体材料の理論比重(ρ)と免震プラグの実比重(ρ)との差(ρ−ρ)を免震プラグの製造に使用した粉体材料の理論比重(ρ)で除した値を百分率で表して空気含有率ε(={(ρ−ρ)/ρ}×100%)とした。なお、免震プラグの実比重は、下記式(1)を用いて算出した。また、免震プラグの製造に使用した粉体材料の理論比重(ρ)を算出したところ、5.204g/cmであった。
ρ=W/V=W/(A×hav) ・・・(1)
ここで、式(1)中、Wは免震プラグの質量、Vは免震プラグの体積、Aは免震プラグの断面積、havは免震プラグの平均高さである。なお、Aは、免震プラグ径の平均値davを用いて算出することができ(A=(dav/2)×π)、免震プラグの平均径davは、図8に示すように免震プラグ55の両端面(上面および下面)のそれぞれにおいて互いに直交する2方向にノギスで測定した免震プラグ径(d,d,d,d)の平均値(dav=(d+d+d+d)/4)である。また、havは、図8に示す免震プラグ55の端面の外周4箇所においてノギスで測定した免震プラグの高さ(h,h,h,h)の平均値(hav=(h+h+h+h)/4)である。
<端面の平坦化度>
製造した免震プラグについて、図8に示すように免震プラグ55の端面の外周4箇所および中央1箇所の合計5箇所において免震プラグの高さ(h,h,h,h,h)をノギスで測定した。また、図8に示すように、免震プラグ55の両端面(上面および下面)のそれぞれにおいて互いに直交する2方向に免震プラグ径(d,d,d,d)をノギスで測定した。そして、測定した5箇所の免震プラグの高さの最大値hmaxと最小値hminとの差(hmax−hmin)を、測定した免震プラグ径の平均値dav(=(d+d+d+d)/4)で除した値を百分率で表して平坦化度f(={(hmax−hmin)/dav}×100%)とした。
<免震プラグの外観>
製造した免震プラグの外観を目視で観察し、目立った欠損(成形不良)が無い場合を「○(非常に良好)」、欠損はあるが著しいものではない場合を「△(良好)」、欠損が著しくて成形性が非常に悪い場合を「×(不良)」として評価した。
<減衰性能>
製造した免震プラグを圧入した免震構造体に対し、動的試験機を用いて鉛直方向に基準面圧をかけた状態で水平方向に加振して規定変位のせん断変形を生じさせた。なお、加振変位は、積層体のゴム(軟質板)総厚さを100%として、歪50〜250%とし、加振周波数は0.33Hzとし、垂直面圧は15MPaとした。図9に、水平方向の変形変位(δ)と免震構造体の水平方向荷重(Q)との関係の一例を示す。図9中のヒステリシス曲線で囲まれた領域の面積ΔWが広くなるほど、振動のエネルギーを多く吸収できることを意味する。ここでは、簡便のため、歪100%における切片荷重Q(変位0における水平荷重値)を免震プラグ断面積Aで除した値τp(=Q/A)で免震プラグの減衰性能を評価した。なお、切片荷重Qは、ヒステリシス曲線が縦軸と交差する点での荷重Qd1、Qd2を用いて、下記式(2)から計算した。
=(Qd1+Qd2)/2 ・・・(2)
τpが大きくなる程、ヒステリシス曲線で囲まれた領域の面積が広くなり、減衰性能が優れていることを示す。
<Air content>
The theoretical specific gravity (ρ A ) of the powder material used for manufacturing the base isolation plug and the actual specific gravity (ρ B ) of the base isolation plug were determined. Then, the difference (ρ A −ρ B ) between the theoretical specific gravity (ρ A ) of the powder material used for manufacturing the base isolation plug and the actual specific gravity (ρ B ) of the base isolation plug was used for manufacturing the base isolation plug. The value obtained by dividing the powder material by the theoretical specific gravity (ρ A ) was expressed as a percentage to obtain an air content ε (= {(ρ A −ρ B ) / ρ A } × 100%). The actual specific gravity of the seismic isolation plug was calculated using the following formula (1). Moreover, it was 5.204 g / cm < 3 > when the theoretical specific gravity ((rho) A ) of the powder material used for manufacture of a seismic isolation plug was computed.
ρ B = W B / V B = W B / (A B × h av ) (1)
Here, in the formula (1), W B is the mass of the seismic isolation plugs, V B is the volume of seismic isolation plug, A B is the cross-sectional area of the seismic isolation plug, the h av is the average height of the seismic isolation plug. Incidentally, A B may be calculated using the average value d av seismic isolation plug diameter (A B = (d av / 2) 2 × π), the average diameter d av seismic isolation plug 8 As shown in FIG. 2 , the average values of the diameters of the seismic isolation plugs (d 1 , d 2 , d 3 , d 4 ) measured with calipers in two directions orthogonal to each other on both end surfaces (upper surface and lower surface) of the seismic isolation plug 55 ( d av = (d 1 + d 2 + d 3 + d 4 ) / 4). Further, h av is the average value (h av ) of the heights (h 1 , h 2 , h 3 , h 4 ) of the seismic isolation plugs measured with calipers at four locations on the outer periphery of the end face of the seismic isolation plug 55 shown in FIG. = (H 1 + h 2 + h 3 + h 4 ) / 4).
<Flatness of the end face>
As for the manufactured seismic isolation plug, as shown in FIG. 8, the heights of the seismic isolation plugs (h 1 , h 2 , h 3 , h 4) at a total of 5 locations including the outer periphery of the end face of the seismic isolation plug 55 and the central 1 location. , H 5 ) were measured with calipers. Further, as shown in FIG. 8, the seismic isolation plug diameters (d 1 , d 2 , d 3 , d 4 ) are set in two directions orthogonal to each other on both end surfaces (upper surface and lower surface) of the seismic isolation plug 55 with calipers. It was measured. Then, the difference (h max −h min ) between the maximum height h max and the minimum value h min of the measured five base isolation plugs is determined as the average value d av (= (d The value obtained by dividing by 1 + d 2 + d 3 + d 4 ) / 4) was expressed as a percentage to obtain a flatness degree f (= {(h max −h min ) / d av } × 100%).
<Appearance of seismic isolation plug>
Visually observe the appearance of the manufactured seismic isolation plug, “○ (very good)” when there is no conspicuous defect (molding defect), “△ (good)” when there is a defect but not significant, The case where the defect was remarkable and the moldability was very bad was evaluated as “x (defect)”.
<Attenuation performance>
The seismic isolation structure into which the manufactured seismic isolation plug was press-fitted in a horizontal direction with a reference surface pressure applied in the vertical direction using a dynamic testing machine to cause shear deformation with a specified displacement. The vibration displacement was set such that the total rubber (soft plate) thickness of the laminate was 100%, the strain was 50 to 250%, the vibration frequency was 0.33 Hz, and the vertical surface pressure was 15 MPa. FIG. 9 shows an example of the relationship between the horizontal deformation displacement (δ) and the horizontal load (Q) of the seismic isolation structure. As the area ΔW of the region surrounded by the hysteresis curve in FIG. 9 increases, it means that more vibration energy can be absorbed. Here, simple for the attenuation of seismic isolation plug (horizontal load value in displacement 0) intercept load Q d in the distortion 100% seismic isolation plug cross-sectional area A B at a value obtained by dividing .tau.p (= Q d / A B) Performance was evaluated. Incidentally, sections load Q d, using the load Q d1, Q d2 at the point where the hysteresis curve intersects the vertical axis was calculated from the following equation (2).
Q d = (Q d1 + Q d2 ) / 2 (2)
As τp increases, the area surrounded by the hysteresis curve increases, indicating that the attenuation performance is excellent.

(実施例2)
予備加圧成形工程の操作を表2に示すように変更した以外は、実施例1と同様にして免震プラグを製造した。
具体的には、表2に示すように、前処理工程として、楔形プッシャーおよび楔溝形プッシャーで粉体材料を両側から挟み込んで加圧した後、予備加圧成形工程として、粉体材料を2つの楔形プッシャーで両側から挟み込んで合計1回加圧した。その後、最終加圧成形工程として、粉体材料を2つの平面プッシャーで両側から挟み込んで合計1回加圧した。なお、前処理工程では、楔形プッシャーおよび楔溝形プッシャーを90°ずつ回転させながら粉体材料を合計4回加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
(Example 2)
A seismic isolation plug was produced in the same manner as in Example 1 except that the operation of the pre-press molding process was changed as shown in Table 2.
Specifically, as shown in Table 2, as a pretreatment step, the powder material is sandwiched and pressed from both sides by a wedge-shaped pusher and a wedge-groove pusher, and then, as a pre-press molding step, the powder material 2 Two wedge-shaped pushers were sandwiched from both sides and pressurized once in total. Thereafter, as a final pressure forming step, the powder material was sandwiched from both sides by two flat pushers and pressed once in total. In the pretreatment step, the powder material was pressurized a total of four times while rotating the wedge-shaped pusher and the wedge groove-shaped pusher by 90 °.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

参考例3)
前処理工程を実施せず、予備加圧成形工程の操作を表2に示すように変更した以外は、実施例1と同様にして免震プラグを製造した。
具体的には、表2に示すように、予備加圧成形工程として、楔形プッシャーおよび楔溝形プッシャーで粉体材料を両側から挟み込んで加圧した後、最終加圧成形工程として、粉体材料を2つの平面プッシャーで両側から挟み込んで合計1回加圧した。なお、予備加圧成形工程では、楔形プッシャーおよび楔溝形プッシャーを90°ずつ回転させながら粉体材料を合計4回加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
( Reference Example 3)
A seismic isolation plug was produced in the same manner as in Example 1 except that the pretreatment process was not carried out and the operation of the pre-press molding process was changed as shown in Table 2.
Specifically, as shown in Table 2, as a pre-pressing molding process, the powder material is sandwiched and pressed from both sides by a wedge-shaped pusher and a wedge groove-shaped pusher, and then the final pressure molding process is performed. Was sandwiched from both sides with two flat pushers and pressurized once in total. In the pre-press forming step, the powder material was pressed a total of four times while rotating the wedge-shaped pusher and the wedge groove-shaped pusher by 90 °.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

(従来例1)
表1に示す組成を有する塑性流動材および硬質充填材を含む粉体材料を用いて、内径16cmの円筒状の金型内で免震プラグを製造した。
具体的には、表2に示すように、2つの平面プッシャーで粉体材料を両側から挟み込んで加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
(Conventional example 1)
A seismic isolation plug was manufactured in a cylindrical mold having an inner diameter of 16 cm using a powder material containing a plastic fluid and a hard filler having the composition shown in Table 1.
Specifically, as shown in Table 2, the powder material was sandwiched from both sides with two flat pushers and pressed.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

(比較例1)
表1に示す組成を有する塑性流動材および硬質充填材を含む粉体材料を用いて、内径16cmの円筒状の金型内で免震プラグを製造した。
具体的には、表2に示すように、予備加圧成形工程として、2つの円錐プッシャーで粉体材料を両側から挟み込んで加圧した後に、最終加圧成形工程として、2つの平面プッシャーで粉体材料を両側から挟み込んで加圧した。
そして、得られた免震プラグについて、空気含有率、端面の平坦化度、外観および減衰性能を実施例1と同様の方法で評価した。結果を表2に示す。
(Comparative Example 1)
A seismic isolation plug was manufactured in a cylindrical mold having an inner diameter of 16 cm using a powder material containing a plastic fluid and a hard filler having the composition shown in Table 1.
Specifically, as shown in Table 2, as a pre-pressing molding process, the powder material is sandwiched and pressed from both sides by two conical pushers, and then the final pressing process is performed by two flat pushers. The body material was sandwiched from both sides and pressurized.
And about the obtained seismic isolation plug, the air content rate, the flatness degree of an end surface, the external appearance, and the attenuation | damping performance were evaluated by the method similar to Example 1. FIG. The results are shown in Table 2.

Figure 0005628651
Figure 0005628651

表2より、楔形プッシャーを用いて製造した実施例1〜2および参考例3の免震プラグは、端面の平坦化度の値が小さく(即ち、端面が平坦であり)、成形不良の発生が抑制されていると共に、空気含有率が低いので、優れた減衰性能を発揮し得ることが分かる。また、予備加圧成形工程の前に前処理工程を実施した実施例1および2の免震プラグは、成形不良の発生が更に抑制されていると共に、空気含有率が特に低いので、非常に優れた減衰性能を発揮し得ることが分かる。一方、平面プッシャーのみを用いて製造した従来例1の免震プラグは、空気含有率が高いので十分に高い減衰性能が得られないことが分かる。また、円錐プッシャーを用いて製造した比較例1の免震プラグは、平坦化度の値が大きく(即ち、端面が平坦ではなく)、成形不良が発生しているので十分に高い減衰性能が得られないことが分かる。
From Table 2, the seismic isolation plugs of Examples 1 and 2 and Reference Example 3 manufactured using a wedge-shaped pusher have a small end face flatness value (that is, the end face is flat), and the occurrence of molding defects occurs. In addition to being suppressed, the air content is low, so that it can be seen that excellent damping performance can be exhibited. In addition, the seismic isolation plugs of Examples 1 and 2 in which the pretreatment process was performed before the pre-press molding process are extremely excellent because the occurrence of molding defects is further suppressed and the air content is particularly low. It can be seen that the damping performance can be exhibited. On the other hand, it can be seen that the seismic isolation plug of Conventional Example 1 manufactured using only the flat pusher cannot obtain a sufficiently high damping performance because of its high air content. In addition, the seismic isolation plug of Comparative Example 1 manufactured using the conical pusher has a large flatness value (that is, the end surface is not flat), and a molding defect occurs, so that sufficiently high damping performance is obtained. I can't understand.

本発明の免震プラグの製造方法および製造装置によれば、成形不良の発生を抑制しつつ空気含有率の低い免震プラグを製造することができる。また、本発明によれば、端面が平坦で空気含有率が低い、減衰性能や変位追従性に優れる免震プラグを提供することができる。   According to the manufacturing method and manufacturing apparatus of the seismic isolation plug of the present invention, it is possible to manufacture the seismic isolation plug having a low air content while suppressing the occurrence of molding defects. Further, according to the present invention, it is possible to provide a seismic isolation plug having a flat end face and a low air content and excellent damping performance and displacement followability.

1 金型
2 粉体材料
3 楔形プッシャー
4 楔溝形プッシャー
5 平面プッシャー
20 免震プラグ
31 頂辺
32a,32b 平面
41 底辺
42a,42b 平面
43a,43b 最外端
50 免震構造体
51 軟質板
52 硬質板
53 中空部
54 積層体
55 免震プラグ
56 封止板
57 フランジ板
58 被覆材
61 金型
71 金型
72 円錐プッシャー
72a 円錐形状
73 粉体材料
74 平面プッシャー
80 免震プラグ
81 端面
82 凹部
1 Mold 2 Powder material 3 Wedge shaped pusher 4 Wedge groove shaped pusher 5 Planar pusher 20 Seismic isolation plug 31 Top side 32a, 32b Plane 41 Bottom side 42a, 42b Plane 43a, 43b Outermost end 50 Seismic isolation structure 51 Soft plate 52 Hard plate 53 Hollow portion 54 Laminated body 55 Seismic isolation plug 56 Sealing plate 57 Flange plate 58 Covering material 61 Mold 71 Die 72 Conical pusher 72a Conical shape 73 Powder material 74 Flat pusher 80 Seismic isolation plug 81 End face 82 Recess

Claims (5)

塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する方法であって、
前記金型内の粉体材料はプッシャーで両側から挟んで加圧成形され、
金型内に充填された粉体材料一方側を、加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーを用いて加圧すると共に、粉体材料の他方側を、楔形プッシャーまたは加圧方向に直交する平面を加圧面として有する平面プッシャーで加圧する予備加圧成形工程と、
前記予備加圧成形工程において楔形プッシャーで加圧した粉体材料を平面プッシャーを用いて両側から加圧して免震プラグとする最終加圧成形工程と、
を含み、
前記予備加圧成形工程の前に、金型内に充填された粉体材料を、一方側から楔形プッシャーで加圧すると共に、加圧方向最外端よりも内方に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーで他方側から加圧する前処理工程を更に含む、ことを特徴とする、免震プラグの製造方法。
A method of manufacturing a seismic isolation plug for a seismic isolation structure by pressing a powder material containing a plastic fluid and a hard filler in a mold,
The powder material in the mold is pressure-molded by sandwiching from both sides with a pusher,
One side of the powder material filled into the mold, with pressurized using a wedge-shaped pusher having two planes that intersect at the top side located in the pressurizing direction side as pressure surface, the other side of the powder material A pre- press molding step of pressing with a wedge-shaped pusher or a plane pusher having a plane perpendicular to the pressing direction as a pressing surface ;
A final pressure forming step in which the powder material pressed with a wedge-shaped pusher in the pre-press forming step is pressed from both sides with a flat pusher to form a seismic isolation plug;
Only including,
Before the pre-pressing step, the powder material filled in the mold is pressed with a wedge-shaped pusher from one side and intersects at the bottom located inward from the outermost end in the pressing direction. A method of manufacturing a seismic isolation plug, further comprising a pretreatment step of pressurizing from one side with a wedge groove type pusher having one flat surface as a pressurizing surface .
前記予備加圧成形工程では、前記粉体材料を、一方側から楔形プッシャーで加圧すると共に他方側から平面プッシャーで加圧し、
前記最終加圧成形工程では、前記粉体材料を、両側から平面プッシャーで加圧することを特徴とする、請求項1に記載の免震プラグの製造方法。
In the pre-press molding step, the powder material is pressurized with a wedge-shaped pusher from one side and with a flat pusher from the other side,
The method for manufacturing a seismic isolation plug according to claim 1, wherein in the final pressure forming step, the powder material is pressed with a flat pusher from both sides.
前記予備加圧成形工程において、前記粉体材料を、楔形プッシャーの頂辺の延在方向を異ならせて複数回加圧することを特徴とする、請求項2に記載の免震プラグの製造方法。   3. The method for manufacturing a seismic isolation plug according to claim 2, wherein in the pre-pressing step, the powder material is pressed a plurality of times with different extending directions of the tops of the wedge-shaped pushers. 前記予備加圧成形工程では、前記粉体材料を、両側から楔形プッシャーで加圧し、
前記最終加圧成形工程では、前記粉体材料を、両側から平面プッシャーで加圧することを特徴とする、請求項1に記載の免震プラグの製造方法。
In the pre-press molding step, the powder material is pressed with a wedge-shaped pusher from both sides,
The method for manufacturing a seismic isolation plug according to claim 1, wherein in the final pressure forming step, the powder material is pressed with a flat pusher from both sides.
塑性流動材および硬質充填材を含有する粉体材料を金型内で加圧成形して免震構造体用の免震プラグを製造する装置であって、
前記粉体材料が充填される金型と、
前記金型内の粉体材料の加圧に用いられる複数のプッシャーと、
前記粉体材料の加圧に使用するプッシャーを交換するプッシャー交換機構と、
を備え、前記複数のプッシャーで前記粉体材料を両側から挟んで加圧し
前記複数のプッシャーには、加圧方向側に位置する頂辺で交差する二つの平面を加圧面として有する楔形プッシャーと、加圧方向に直交する平面を加圧面として有する平面プッシャーと、加圧方向最外端よりも内方に位置する底辺で交差する二つの平面を加圧面として有する楔溝形プッシャーとが含まれ、且つ、
前記複数のプッシャーには、一対の楔形プッシャーおよび楔溝形プッシャーと、一対の楔形プッシャー、或いは、一対の楔形プッシャーおよび平面プッシャーと、一対の平面プッシャーとが含まれることを特徴とする、免震プラグの製造装置。
An apparatus for producing a seismic isolation plug for a seismic isolation structure by pressing a powder material containing a plastic fluid and a hard filler in a mold,
A mold filled with the powder material;
A plurality of pushers used to press the powder material in the mold;
A pusher exchange mechanism for exchanging a pusher used for pressurizing the powder material;
And pressurizing the powder material from both sides with the plurality of pushers ,
Wherein the plurality of pushers, a planar pusher having a wedge-shaped pusher having two planes that intersect at the top side located in the pressurizing direction side as pressing surface, the plane perpendicular to the pressing direction as a pressing surface, the pressing direction A wedge groove type pusher having, as pressure surfaces, two planes intersecting at the bottom located inward from the outermost end , and
The plurality of pushers include a pair of wedge-shaped pushers and a wedge groove-shaped pusher, a pair of wedge-shaped pushers, or a pair of wedge-shaped pushers and a plane pusher, and a pair of plane pushers. Plug manufacturing equipment.
JP2010276262A 2010-12-10 2010-12-10 Seismic isolation plug manufacturing method and manufacturing apparatus Active JP5628651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276262A JP5628651B2 (en) 2010-12-10 2010-12-10 Seismic isolation plug manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276262A JP5628651B2 (en) 2010-12-10 2010-12-10 Seismic isolation plug manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2012121308A JP2012121308A (en) 2012-06-28
JP5628651B2 true JP5628651B2 (en) 2014-11-19

Family

ID=46503292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276262A Active JP5628651B2 (en) 2010-12-10 2010-12-10 Seismic isolation plug manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5628651B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250467B2 (en) * 2009-04-10 2013-07-31 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5404161B2 (en) * 2009-04-27 2014-01-29 株式会社ブリヂストン Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5436026B2 (en) * 2009-04-27 2014-03-05 株式会社ブリヂストン Seismic isolation device plug and method of manufacturing the same

Also Published As

Publication number Publication date
JP2012121308A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5415821B2 (en) Substantially cylindrical powder molded body and powder molding die apparatus
JP5404161B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5628651B2 (en) Seismic isolation plug manufacturing method and manufacturing apparatus
JP2022070970A (en) Tool set having displacement compensation
JP5345888B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP6023477B2 (en) Seismic isolation plug manufacturing method and manufacturing apparatus
US20220274167A1 (en) Method for Producing Green Compact and Method for Producing Sintered Body
JP4376834B2 (en) Manufacturing method of sintered gear
JP5250467B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5345881B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5977599B2 (en) Manufacturing method of seismic isolation plug
JP5442464B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
JP5802413B2 (en) Bond magnet and manufacturing method thereof
JP5862927B2 (en) Green compact mold equipment for curved plate parts
CN112053843B (en) Forming and mould pressing method for large-size sintered neodymium iron boron blank
JP5590816B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN102653120B (en) Manufacture method for shock insulation plug, shock insulation plug, and manufacture device for shock insulation plug
JP5462957B1 (en) Long light metal billet and manufacturing method thereof
WO2023203892A1 (en) Method for manufacturing titanium compact and method for manufacturing titanium sintered body
JP6857049B2 (en) Bathing agent
JP2011158033A (en) Manufacturing method of seismic isolation plug for seismic isolation device, and seismic isolation plug manufactured by the method
JP4787793B2 (en) Manufacturing method of large-sized high-density compact
JP5366639B2 (en) Method for manufacturing seismic isolation plug for seismic isolation device and manufacturing apparatus therefor
CN102267209B (en) Forming die for vibration isolating support seat
JP2012193846A (en) Manufacturing method of base isolation plug for base isolation device and its manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141002

R150 Certificate of patent or registration of utility model

Ref document number: 5628651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250