JP5436026B2 - Seismic isolation device plug and method of manufacturing the same - Google Patents

Seismic isolation device plug and method of manufacturing the same Download PDF

Info

Publication number
JP5436026B2
JP5436026B2 JP2009108079A JP2009108079A JP5436026B2 JP 5436026 B2 JP5436026 B2 JP 5436026B2 JP 2009108079 A JP2009108079 A JP 2009108079A JP 2009108079 A JP2009108079 A JP 2009108079A JP 5436026 B2 JP5436026 B2 JP 5436026B2
Authority
JP
Japan
Prior art keywords
plug
seismic isolation
isolation device
powder
elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009108079A
Other languages
Japanese (ja)
Other versions
JP2010255782A (en
Inventor
重信 鈴木
宏典 ▲濱▼▲崎▼
秀章 加藤
章之 荒井
成彦 真下
裕一郎 若菜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2009108079A priority Critical patent/JP5436026B2/en
Publication of JP2010255782A publication Critical patent/JP2010255782A/en
Application granted granted Critical
Publication of JP5436026B2 publication Critical patent/JP5436026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震装置用プラグ及びその製造方法、並びに該プラグを用いた免震装置に関する。   The present invention relates to a plug for a seismic isolation device, a manufacturing method thereof, and a seismic isolation device using the plug.

従来、ゴム等の粘弾性的性質を有する軟質板と鋼板等の硬質板とを交互に積層した免震装置が、免震装置の支承等として使用されている。このような免震装置の中には、例えば、軟質板と硬質板とからなる積層体の中心に中空部を形成し、該中空部に免震装置用プラグが圧入されたものがある。   2. Description of the Related Art Conventionally, seismic isolation devices in which soft plates having viscoelastic properties such as rubber and hard plates such as steel plates are alternately stacked are used as a support for the seismic isolation device. Among such seismic isolation devices, for example, there is one in which a hollow portion is formed at the center of a laminate made of a soft plate and a hard plate, and a plug for the seismic isolation device is press-fitted into the hollow portion.

上記免震装置用プラグとしては、全体が鉛からなるものが使用されることが多く、積層体がせん断変形する際に、かかる免震装置用プラグが塑性変形することによって振動のエネルギーを吸収する。しかしながら、鉛は、環境負荷が大きく、また、廃棄時等に要するコストが大きい。そのため、鉛の代替材料を用いて、充分な減衰性能、変位追従性等を有する免震装置用プラグを開発することが試みられている。   As the plug for the seismic isolation device, a plug made entirely of lead is often used, and when the laminated body undergoes shear deformation, the vibration isolating device plug plastically deforms to absorb vibration energy. . However, lead has a large environmental burden and a high cost for disposal. Therefore, an attempt has been made to develop a plug for a seismic isolation device having sufficient damping performance, displacement followability, etc., using an alternative material of lead.

例えば、特許文献1には、鉛からなる免震装置用プラグに代えて、積層体の中空部にエラストマー組成物及び粉体からなる粉体材料を封入し、粉体の隙間をエラストマー組成物で充填するようにした免震装置用プラグが提案されている。かかる免震装置用プラグは、鉛からなる免震装置用プラグと同様、長期の使用に際しても、その減衰性能及び変位追従性が比較的安定している。なお、エラストマー組成物としては、ゴム材などがあり、粉体としては、金属、硬質樹脂、硬質繊維などが示されている。   For example, in Patent Document 1, instead of a seismic isolation device plug made of lead, a powder material made of an elastomer composition and powder is enclosed in a hollow portion of a laminate, and the gap between the powders is made of the elastomer composition. A plug for a seismic isolation device has been proposed. Such a plug for a seismic isolation device has a relatively stable damping performance and displacement followability even when used for a long time, like a plug for a seismic isolation device made of lead. Examples of the elastomer composition include a rubber material, and examples of the powder include metals, hard resins, and hard fibers.

特開2006−316990号公報JP 2006-316990 A

特許文献1に記載の免震プラグを使用した免震装置は、減衰特性及び変位追従性を安定して確保しているものの、近年の建設物の大型化、高層化を背景に、免震装置の更なる性能向上が求められており、そのことから、免震装置の減衰特性及び変位追従性の更なる向上が希求されている。   Although the seismic isolation device using the seismic isolation plug described in Patent Document 1 stably secures the damping characteristics and the displacement followability, the seismic isolation device is against the background of the recent increase in size and height of construction. Therefore, further improvement in the damping characteristics and displacement followability of the seismic isolation device is desired.

本発明の目的は、十分な減衰性能及び変位追従性を発揮する免震装置用プラグ、及び該免震装置用プラグを用いた免震装置を提供することにある。また、本発明の他の目的は、前記免震装置用プラグを容易に製造できる方法を提供することにある。   An object of the present invention is to provide a plug for a seismic isolation device that exhibits sufficient damping performance and displacement followability, and a seismic isolation device using the plug for the seismic isolation device. Another object of the present invention is to provide a method by which the seismic isolation device plug can be easily manufactured.

本発明者らは、エラストマー組成物と粉体とを含有する成型体からなるプラグについて更なる性能の向上を目指して究明したところ、かかる成型体は、厚さ方向では下の部分ほど、厚さ方向と直する断面においては中心部から離れるほど、空気含有率が高くなる傾向があることが分かった。かように、部分的に空気含有率が高い成型体は、免震装置用プラグとして用いた場合、十分な減衰性能及び変位追従性を発揮しないことが判明した。一方、高い圧力で成型した成型体は、空気含有率の高い部分は無くなるものの、部分的に非常に硬くなり柔軟性に欠けるため、十分な減衰性能及び変位追従性を発揮しないことも判明した。 The inventors of the present invention have sought to improve the performance of a plug comprising a molded body containing an elastomer composition and a powder, and as a result, the molded body has a lower thickness in the thickness direction. increasing distance from the center in a cross section direction Cartesian, it has been found that it tends to air content increases. Thus, it has been found that a molded body having a partially high air content does not exhibit sufficient damping performance and displacement followability when used as a plug for a seismic isolation device. On the other hand, it has also been found that a molded body molded at a high pressure does not exhibit sufficient damping performance and displacement followability because it is partially hard and lacks flexibility, although there is no portion with a high air content.

上記の知見を踏まえ、本発明者らが更に鋭意検討した結果、エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを含有する成型体において、厚さと、該厚さ方向と直する断面の直径との比を所定の範囲にすることによって、空気が均等に低減され、十分な減衰性能及び変位追従性を発揮する免震装置用プラグが提供できることを見出して本発明を完成するに至った。 Based on the above knowledge, as a result of further intensive studies by the present inventors, the molded product containing the elastomer composition obtained by blending the elastomer component with the reinforcing filler and the powder, the thickness and the thickness by setting the ratio between the diameter of the cross section direction Cartesian to a predetermined range, book found that air is evenly reduced, can be provided seismic isolation system for a plug exhibit sufficient damping performance and displacement tracking property The invention has been completed.

即ち、本発明の要旨構成は以下の通りである。   That is, the gist configuration of the present invention is as follows.

(1)エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを含有するプラグ材を複数積層してなり、該プラグ材は、厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足することを特徴とする免震装置用プラグ。   (1) A plurality of plug materials containing an elastomer composition obtained by blending a reinforcing filler in an elastomer component and powder, and the plug material has a thickness h (mm) and a thickness A plug for a seismic isolation device, wherein a ratio h / D to a diameter D (mm) of a cross section perpendicular to the vertical direction satisfies 0.02 to 0.7.

(2)エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを含有する免震装置用プラグであって、厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足することを特徴とする免震装置用プラグ。   (2) A plug for a seismic isolation device containing an elastomer composition obtained by blending a reinforcing filler in an elastomer component and powder, and the thickness h (mm) is orthogonal to the thickness direction. A plug for a seismic isolation device, characterized in that a ratio h / D to a cross-sectional diameter D (mm) satisfies 0.02 to 0.7.

(3)前記厚さhが5mm以上である前記(1)又は(2)に記載の免震装置用プラグ。   (3) The plug for a seismic isolation device according to (1) or (2), wherein the thickness h is 5 mm or more.

(4)エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを加圧することによって、厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足するプラグ材を成型し、該プラグ材を積層する免震装置用プラグの製造方法。   (4) By pressing an elastomer composition obtained by blending a reinforcing filler into an elastomer component and powder, a thickness h (mm) and a diameter D (mm) of a cross section perpendicular to the thickness direction ) And a plug material for a seismic isolation device in which a plug material satisfying a ratio h / D of 0.02 to 0.7 is molded and the plug materials are laminated.

(5)エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを加圧することによって、厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足する免震装置用プラグの製造方法。   (5) By pressing an elastomer composition obtained by blending a reinforcing filler in an elastomer component and powder, a thickness h (mm) and a diameter D (mm) of a cross section perpendicular to the thickness direction And the ratio h / D to the manufacturing method of the plug for a seismic isolation device satisfying 0.02 to 0.7.

(6)剛性板と弾性板とが交互に積層されてなり、該積層方向に延びる中空部を有する積層体をそなえる免震装置において、該積層体の中空部に前記(1)〜(3)に記載の免震装置用プラグを圧入することを特徴とする免震装置。   (6) In the seismic isolation device having a laminate having a hollow portion extending in the laminating direction, in which rigid plates and elastic plates are alternately laminated, the hollow portions of the laminate (1) to (3) A seismic isolator characterized by press-fitting the plug for seismic isolator described in 1.

本発明に従って、プラグ材における厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dを0.02〜0.7の範囲内にすることによって、空気含有率が低いため、十分な減衰性能及び変位追従性を発揮する免震装置用プラグ、更には、該プラグを用いた免震装置を提供することができる。更に、本発明の製造方法によれば、前記免震装置用プラグを容易に製造することができる。   According to the present invention, the ratio h / D between the thickness h (mm) of the plug material and the diameter D (mm) of the cross section perpendicular to the thickness direction is set within the range of 0.02 to 0.7. Since the air content is low, it is possible to provide a plug for a seismic isolation device that exhibits sufficient damping performance and displacement followability, and further a seismic isolation device using the plug. Furthermore, according to the manufacturing method of this invention, the said plug for seismic isolation devices can be manufactured easily.

本発明の免震装置の一実施態様の構造を示す図である。It is a figure which shows the structure of one embodiment of the seismic isolation apparatus of this invention. 本発明の免震装置用プラグの一実施態様を示す図である。It is a figure which shows one embodiment of the plug for seismic isolation apparatuses of this invention. せん断歪みγとせん断応力τとの関係を示す図である。It is a figure which shows the relationship between the shear distortion (gamma) and the shear stress (tau). プラグ材のh/Dと空気含有率との関係を示すグラフである。It is a graph which shows the relationship between h / D of a plug material, and an air content rate. 本発明の免震装置用プラグを使用した免震装置における、水平方向の変形変位とせん断応力との関係を示すグラフである。It is a graph which shows the relationship between a horizontal deformation displacement and a shear stress in the seismic isolation apparatus using the plug for seismic isolation apparatuses of this invention.

次に、図面を参照しつつ、本発明の免震装置及び免震装置用プラグについて説明する。図1は本発明の免震装置の一実施態様の構造を示す図であり、図2は本発明の免震装置用プラグの一実施態様を示す図である。   Next, the seismic isolation device and the plug for the seismic isolation device of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the structure of one embodiment of the seismic isolation device of the present invention, and FIG. 2 is a diagram showing one embodiment of the plug for the seismic isolation device of the present invention.

図1に示す本発明の一実施態様である免震装置1は、剛性を有する剛性板2と弾性を有する弾性板3とが交互に積層されてなり、該積層方向(鉛直方向)に延びる円筒状の中空部を中心部に有する積層体4と、該積層体4の中空部に圧入された免震装置用プラグ8と、積層体4及び免震装置用プラグ8の両端(上端及び下端)に固定されたフランジ板6とを具え、更に、積層体4の外周面が被覆材7で覆われている。免震装置1は、地震に伴う振動により水平方向のせん断力を受けた際に、積層体4と共に免震装置用プラグ8がせん断変形し、振動のエネルギーを効果的に吸収して、振動を速やかに減衰させることができる。   A seismic isolation device 1 according to an embodiment of the present invention shown in FIG. 1 is a cylinder in which a rigid plate 2 having rigidity and an elastic plate 3 having elasticity are alternately stacked, and extends in the stacking direction (vertical direction). Laminate 4 having a hollow portion in the center, seismic isolation device plug 8 press-fitted into the hollow portion of laminate 4, and both ends (upper and lower ends) of laminate 4 and seismic isolation device plug 8 Further, the outer peripheral surface of the laminate 4 is covered with a covering material 7. When the seismic isolation device 1 receives a shearing force in the horizontal direction due to the vibration caused by the earthquake, the seismic isolation device plug 8 is sheared and deformed together with the laminate 4, effectively absorbing the vibration energy and absorbing the vibration. It can be quickly attenuated.

ここで、免震装置用プラグ8は、図2に示すように、プラグ材5の複数、図示例で3個のプラグ材5の積層になり、各プラグ材の厚さをh(mm)、該厚さ方向と直交する断面の直径をD(mm)としたときに、比h/Dが0.02〜0.7を満足することが肝要である。このように、上記規定を満足するプラグ材をあらかじめ加圧成型し、これらを積層して免震装置用プラグを作製することにより、厚さ方向並びに径方向での空気含有率のばらつきが緩和されると共に空気含有率も低くなる結果、全体として空気含有率が低い免震装置用プラグが提供できる。   Here, as shown in FIG. 2, the seismic isolation device plug 8 is formed by stacking a plurality of plug members 5, three plug members 5 in the illustrated example, and the thickness of each plug member is h (mm), It is important that the ratio h / D satisfies 0.02 to 0.7 when the diameter of the cross section perpendicular to the thickness direction is D (mm). Thus, by pre-molding plug materials that satisfy the above requirements and stacking them together to produce a plug for a seismic isolation device, variations in air content in the thickness direction and radial direction are alleviated. As a result, the air content rate is also lowered, so that a plug for a seismic isolation device having a low air content rate as a whole can be provided.

以下に、h/Dの値を上記範囲に規定するために行なった実験及びその結果について詳しく述べる。まず、空気含有率の異なるプラグについて、せん断歪みγとせん断応力τとの関係について評価した結果を示す、図3のグラフより、歪みγを1.5(150%)以上とした状態において、せん断応力の目標値であるτ=80kgf/cm以下を満足するためには、空気含有率は、6%以下であることが必要であるとわかる。 In the following, the experiments conducted to define the value of h / D within the above range and the results will be described in detail. First, for plugs having different air contents, the results of evaluation of the relationship between the shear strain γ and the shear stress τ are shown. From the graph of FIG. 3, in the state where the strain γ is 1.5 (150%) or more, In order to satisfy the target value of stress, τ = 80 kgf / cm 2 or less, it can be seen that the air content needs to be 6% or less.

次に、プラグ材の空気含有率と、前記厚さh(mm)と該厚さ方向と直する断面の直径D(mm)との比h/Dについての関係を調べたところ、これらは図4に示すような比例関係にあり、本発明のプラグ材の空気含有率を6%以下とするためには、h/Dの値を0.7以下にすることが必要であることが分かった。 Next it was examined the relationship between the ratio h / D of the air content of the plug material, and the thickness h (mm) and said thickness direction and Cartesian cross-section of diameter D (mm), which are It has a proportional relationship as shown in FIG. 4, and it is found that the h / D value needs to be 0.7 or less in order to make the air content of the plug material of the present invention 6% or less. It was.

従って、これら結果を勘案すると、本発明の免震装置用プラグに十分な減衰性能及び変位追従性を付与するためにはプラグ材のh/Dの値を0.02〜0.7とすることが必要である。   Therefore, considering these results, the h / D value of the plug material should be 0.02 to 0.7 in order to give sufficient damping performance and displacement followability to the plug for a seismic isolation device of the present invention. is necessary.

ここで、前記h/Dの値が0.02未満であるとプラグ材が柔軟性を失い、プラグ製作の作業性が悪化する。そのため、プラグ材のh/Dの値は0.02以上であることが必要である。また、空気含有率以外の要因による製造時のばらつきを考慮した場合、プラグ材の空気含有率は2.9〜5%であることが好ましい。従って、図4から分かるように、前記h/Dの値は0.02〜0.46であることが好ましい。   Here, when the value of h / D is less than 0.02, the plug material loses flexibility, and the workability of manufacturing the plug deteriorates. Therefore, the value of h / D of the plug material needs to be 0.02 or more. Moreover, when the dispersion | variation at the time of manufacture by factors other than an air content rate is considered, it is preferable that the air content rate of a plug material is 2.9-5%. Therefore, as can be seen from FIG. 4, the value of h / D is preferably 0.02 to 0.46.

図2において、免震装置用プラグ8はプラグ材5を3個積層して成るが、プラグ材のh/Dの値が上記規定の範囲内にあればプラグ材の積層数は特に限定されず、適宜選択できる。従って、免震装置用プラグのh/Dが規定の範囲であれば分割せずに一個の免震装置用プラグとして用いることができる。   In FIG. 2, the seismic isolation device plug 8 is formed by laminating three plug members 5. However, the number of plug members laminated is not particularly limited as long as the h / D value of the plug material is within the specified range. Can be appropriately selected. Accordingly, if the h / D of the seismic isolation device plug is within a specified range, it can be used as a single seismic isolation device plug without being divided.

また、前記厚さh(mm)は、h/Dの値が上記規定の範囲内にある限り特に限定されず、例えば、積層するプラグ間で異なっていても同じでもよい。更に、厚さ方向と直する断面の形状としては、厚さ方向と直交する断面の直径D(mm)が上記規定の範囲内である限り特に限定されず、例えば正16角形、正8角形などの正多角形及び円形などが好適に挙げられるが、応力に対する異方性がないことから円形が特に好ましい。即ち、プラグ材は円柱状であることが好ましい。 Further, the thickness h (mm) is not particularly limited as long as the value of h / D is within the specified range. For example, the thickness h (mm) may be different between stacked plugs. Furthermore, the shape of the cross section of the thickness direction and Cartesian, of a cross section perpendicular to the thickness direction diameter D (mm) is not particularly limited so long as it is within the scope of the above definition, for example, a positive 16 rectangular, regular octagon Preferred examples include regular polygons and circles, and the like, but circles are particularly preferred because there is no anisotropy against stress. That is, the plug material is preferably cylindrical.

また、前記厚さhは5mm以上であることが好ましい。なぜなら、hが5mm未満であると、前記プラグ材を積層する枚数が多くなるため前記プラグ材の免震装置への圧入が面倒になり、且つ、プラグ材が割れやすくなる。更には、プラグ材の厚みを均一に成型することが難しくなる。より好ましくは、前記厚さhは20〜100mmである。   The thickness h is preferably 5 mm or more. This is because if h is less than 5 mm, the number of the plug materials to be stacked increases, so that the press-fitting of the plug material into the seismic isolation device becomes troublesome and the plug material is easily broken. Furthermore, it becomes difficult to mold the plug material uniformly. More preferably, the thickness h is 20 to 100 mm.

前記エラストマー組成物に使用するエラストマー成分としては、室温でゴム弾性を呈するもの、例えば、天然ゴムや合成ゴム等のゴム、熱可塑性エラストマーを使用することができ、これらの中でも、天然ゴムや合成ゴム等のゴムを使用することが好ましい。天然ゴムや合成ゴム系のポリマーは、粘弾性体で若干の弾性は示すものの塑性が大きく、大変形にも追従でき、振動後、原点に戻ったときには再び同じ状態に再凝集できる。また、エラストマー成分がゴムの場合(即ち、エラストマー組成物がゴム組成物の場合)、免震装置用プラグの減衰性能が向上する上、耐久性も向上する。   As the elastomer component used in the elastomer composition, those exhibiting rubber elasticity at room temperature, for example, rubbers such as natural rubber and synthetic rubber, and thermoplastic elastomers can be used. Among these, natural rubber and synthetic rubber can be used. It is preferable to use a rubber such as Natural rubber and synthetic rubber-based polymers are viscoelastic and show some elasticity, but have great plasticity, can follow large deformations, and can re-aggregate in the same state again when returning to the origin after vibration. Further, when the elastomer component is rubber (that is, when the elastomer composition is a rubber composition), the damping performance of the seismic isolation device plug is improved and the durability is also improved.

上記エラストマー成分として、より具体的には、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム(CR)、エチレン−プロピレンゴム、ニトリルゴム、ブチルゴム、ハロゲン化ブチルゴム、アクリルゴム、ポリウレタン、シリコーンゴム、フッ化ゴム、多硫化ゴム、ハイパロン、エチレン酢酸ビニルゴム、エピクロルヒドリンゴム、エチレン−メチルアクリレート共重合体、スチレン系エラストマー、ウレタン系エラストマー、ポリオレフィン系エラストマー等が挙げられる。これらエラストマー成分は、1種単独で用いてもよいし、2種以上をブレンドして用いてもよい。   More specifically, the elastomer component includes natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), ethylene-propylene rubber, nitrile. Rubber, butyl rubber, halogenated butyl rubber, acrylic rubber, polyurethane, silicone rubber, fluorinated rubber, polysulfide rubber, hyperon, ethylene vinyl acetate rubber, epichlorohydrin rubber, ethylene-methyl acrylate copolymer, styrene elastomer, urethane elastomer, polyolefin Based elastomers and the like. These elastomer components may be used alone or in a blend of two or more.

上記エラストマー成分は、少なくとも一部、好ましくは全てが未架橋であり、具体的には未加硫であることが好ましい。エラストマー成分が完全に架橋されている場合、大変形を受けた際には変形するものの、変形時に粉体の位置が変わることができず、ある限界点をもって変形への追従が不可能となり、架橋エラストマー部分が破断、或いは、架橋エラストマー部分の反発力で元の形状に戻ろうとする。架橋エラストマー部分が破断してしまうと、免震装置用プラグの位置が原点に戻っても免震装置用プラグが元の形状に戻らないため、減衰性能が徐々に低下してしまい、また、架橋エラストマー部分の反発力が働くと、本来の減衰性能が発揮できなくなる。   The elastomer component is preferably at least partially, preferably all uncrosslinked, specifically unvulcanized. When the elastomer component is completely cross-linked, it deforms when subjected to large deformation, but the position of the powder cannot be changed during deformation, and it becomes impossible to follow the deformation at a certain limit point. The elastomer part is broken or tries to return to its original shape by the repulsive force of the crosslinked elastomer part. If the cross-linked elastomer part breaks, the damping performance plug will not return to its original shape even if the position of the base isolation device plug returns to the origin, and the damping performance will gradually decrease. When the repulsive force of the elastomer part works, the original damping performance cannot be exhibited.

一方、エラストマー成分が未架橋であれば、変形への追従が可能であり、また、免震装置用プラグが大変形の履歴を受けた後、再び原点に戻った際に、免震装置用プラグ全体には静水圧がかかっているため、免震装置用プラグが元の形状に戻ることができ、その結果、初期と同等の性能を長期に渡って維持することが可能となる。なお、架橋点が非常に少ない場合、または、プラグ材の表面のみが架橋されている場合は、免震装置用プラグが変形した後に、元の形状に戻れるため、本発明において未架橋とは、架橋反応を未だ完全には経ていない状態を指し、部分的に架橋された状態も包含する。   On the other hand, if the elastomer component is uncrosslinked, it is possible to follow the deformation, and when the plug for the seismic isolation device receives a history of large deformation and then returns to the origin, the plug for the seismic isolation device is used. Since hydrostatic pressure is applied to the whole, the seismic isolation device plug can return to its original shape, and as a result, the same performance as the initial stage can be maintained over a long period of time. In addition, when the number of cross-linking points is very small, or when only the surface of the plug material is cross-linked, after the plug for the seismic isolation device is deformed, it can return to the original shape. It refers to a state in which the crosslinking reaction has not yet been completely completed, and includes a partially crosslinked state.

上記補強性充填剤としては、エラストマー成分との相互作用によってエラストマー組成物の粘度を向上させる効果が大きい点で、カーボンブラック及びシリカが好ましく、カーボンブラックが特に好ましい。カーボンブラック及びシリカは、エラストマー成分との相互作用によってエラストマー組成物の粘度を向上させる効果が大きいため、プラグ材の流動抵抗が大きくなり、結果として、免震装置用プラグの減衰効果が大きくなる。   As the reinforcing filler, carbon black and silica are preferable, and carbon black is particularly preferable in that the effect of improving the viscosity of the elastomer composition by interaction with the elastomer component is great. Since carbon black and silica have a large effect of improving the viscosity of the elastomer composition by interaction with the elastomer component, the flow resistance of the plug material is increased, and as a result, the damping effect of the plug for the seismic isolation device is increased.

ここで、カーボンブラッックとしては、SAF、ISAF、HAFグレードのもの等が挙げられ、これらの中でも、SAF、ISAFグレードのもの等の微粒子で表面積が大きいものが好ましい。また、シリカとしては、湿式シリカ、乾式シリカ、及びコロイダルシリカ等が挙げられる。これら補強性充填剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   Here, examples of the carbon black include SAF, ISAF, and HAF grades. Among these, fine particles such as SAF and ISAF grades having a large surface area are preferable. Examples of silica include wet silica, dry silica, and colloidal silica. These reinforcing fillers may be used alone or in combination of two or more.

上記エラストマー組成物における補強性充填剤の配合量は、上記エラストマー成分100質量部に対して60〜150質量部の範囲が好ましい。補強性充填剤の配合量が60質量部未満では、エラストマー組成物の粘度及び流動抵抗が低く、免震装置用プラグの減衰性能が不十分となり易い。一方、補強性充填剤の配合量が150質量部を超えると、混練が難しく、均一な組成物を得難くなる上、免震装置用プラグの繰り返し安定性が低下する。   The compounding amount of the reinforcing filler in the elastomer composition is preferably in the range of 60 to 150 parts by mass with respect to 100 parts by mass of the elastomer component. When the compounding amount of the reinforcing filler is less than 60 parts by mass, the viscosity and flow resistance of the elastomer composition are low, and the damping performance of the seismic isolation device plug tends to be insufficient. On the other hand, when the compounding amount of the reinforcing filler exceeds 150 parts by mass, it is difficult to knead and it is difficult to obtain a uniform composition, and the repeated stability of the plug for a seismic isolation device is lowered.

上記エラストマー組成物には、上記エラストマー成分、補強性充填剤の他に、樹脂、老化防止剤、ワックス、可塑剤、軟化剤等のエラストマー組成物に一般に添加される添加剤も配合してもよい。エラストマー組成物に老化防止剤を配合することにより、長期間経過した後でも免震装置用プラグの物性変化を小さく抑えることが可能となる。なおそのような目的のために、老化防止剤と共に、酸化防止剤、オゾン劣化防止剤、安定剤、難燃剤等を配合することはとりわけ有効である。   In addition to the elastomer component and the reinforcing filler, additives generally added to the elastomer composition such as a resin, an anti-aging agent, a wax, a plasticizer, and a softener may be added to the elastomer composition. . By blending the anti-aging agent with the elastomer composition, it is possible to suppress a change in physical properties of the plug for a seismic isolation device even after a long period of time. For such purposes, it is particularly effective to blend an antioxidant, an ozone deterioration inhibitor, a stabilizer, a flame retardant, and the like with the anti-aging agent.

前記粉体としては、金属粉が好ましく、また、該金属粉としては、環境への負荷が小さいものが好ましく、例えば、鉄粉、ステンレス粉、ジルコニウム粉、タングステン粉、青銅(CuSn)粉、アルミニウム粉、金粉、銀粉、錫粉、炭化タングステン粉、タンタル粉、チタン粉、銅粉、ニッケル粉、ニオブ粉、鉄−ニッケル合金粉、亜鉛粉、モリブデン粉等が挙げられ、これら金属粉は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。   The powder is preferably a metal powder, and the metal powder preferably has a low environmental load. For example, iron powder, stainless steel powder, zirconium powder, tungsten powder, bronze (CuSn) powder, aluminum Powder, gold powder, silver powder, tin powder, tungsten carbide powder, tantalum powder, titanium powder, copper powder, nickel powder, niobium powder, iron-nickel alloy powder, zinc powder, molybdenum powder, and the like. One species may be used alone, or two or more species may be used in combination.

なお、これら金属粉は、金属酸化物粉でもよいため、上記粉体としては、金属酸化物粉等の金属化合物粉も好適に使用できる。これら粉体の中でも、鉄粉が特に好ましい。鉄粉は、安価である上、他の金属粉と対比して破壊強度が高く、また、鉄粉を主成分とする免震装置用プラグは、固すぎることも脆すぎることもないため、優れた減衰性能を長期に渡って発揮することができる。なお、鉄粉としては、還元鉄粉、電解鉄粉、噴霧鉄粉、純鉄粉、鋳鉄粉等が挙げられるが、これらの中でも、還元鉄粉が好ましい。   In addition, since these metal powders may be metal oxide powders, metal compound powders such as metal oxide powders can also be suitably used as the powder. Among these powders, iron powder is particularly preferable. Iron powder is inexpensive and has high fracture strength compared to other metal powders. Also, the plug for seismic isolation devices based on iron powder is neither too hard nor too brittle. The damping performance can be demonstrated over a long period of time. Examples of the iron powder include reduced iron powder, electrolytic iron powder, sprayed iron powder, pure iron powder, and cast iron powder. Among these, reduced iron powder is preferable.

本発明のプラグ材用の組成物において上記粉体の含有量は、50〜74体積%の範囲が好ましく、粒径は0.1μm〜2mmの範囲が好ましい。また、減衰性能を向上させる観点から、上記粉体の形状は不定形であることが好ましい。ここで、不定形とは、球状などの1種類の形状のみではなく、凹凸を有するものや突起を有するものなど、種々の形態を有する形状が混在していることを意味する。   In the composition for a plug material of the present invention, the content of the powder is preferably in the range of 50 to 74% by volume, and the particle size is preferably in the range of 0.1 μm to 2 mm. Moreover, it is preferable that the shape of the said powder is an indeterminate form from a viewpoint of improving damping performance. Here, the indefinite shape means that not only one type of shape such as a spherical shape but also shapes having various forms such as those having irregularities and protrusions are mixed.

本発明のプラグ材用の組成物は、エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを用いる以外特に制限はなく、例えば、以下のようにして製造することができる。   The composition for a plug material of the present invention is not particularly limited except that an elastomer composition obtained by blending a reinforcing filler with an elastomer component and powder are used, and can be produced, for example, as follows. it can.

まず、第一工程において、エラストマー成分に、補強性充填剤と、必要に応じて適宜選択した各種配合剤を加えて混練して、エラストマー組成物を調製する。   First, in the first step, an elastomer composition is prepared by adding a reinforcing filler and various compounding agents appropriately selected as necessary to the elastomer component and kneading them.

次に、第二工程において、上記エラストマー組成物に粉体を加えて更に混練する。第二工程においては、粉体を複数回に分けて配合することが好ましく、粉体を複数回に分けて配合することで、均一なプラグ材用組成物を製造することが可能となる。   Next, in the second step, powder is added to the elastomer composition and further kneaded. In the second step, it is preferable to mix the powder into a plurality of times, and it is possible to produce a uniform plug material composition by mixing the powder into a plurality of times.

上記プラグ材用の組成物の製造においては、ニーダー、バンバリーミキサー等の通常の混練装置を用いることができる。また、混練の条件も、特に限定されるものではなく、当該技術分野において通常に用いられている条件を適宜改変して本発明の組成物が十分に混練されるような条件を設定することができる。例えば、第二工程の混練条件としては、回転数が20〜40rpmの範囲で、温度は100℃程度が好ましい。   In the production of the composition for the plug material, an ordinary kneading apparatus such as a kneader or a Banbury mixer can be used. Also, the kneading conditions are not particularly limited, and the conditions that are normally used in the technical field can be appropriately modified to set conditions that allow the composition of the present invention to be sufficiently kneaded. it can. For example, the kneading conditions in the second step are preferably in the range of 20 to 40 rpm and a temperature of about 100 ° C.

エラストマー成分の粘度低下を抑えるためには、回転数は低い方が好ましい。また、温度については、エラストマー組成物への粉体の分散を良くするために、エラストマー組成物を軟化させるのに十分な温度が好ましいが、温度が高過ぎると、エラストマー成分が劣化したり、冷却に時間がかかり過ぎて生産性が低下する。なお、混練された組成物を排出する前に、圧力を開放して無加圧で混練することが好ましく、無加圧で混練することによって、組成物が固まりにならず、組成物の取り出しが容易となる。   In order to suppress a decrease in the viscosity of the elastomer component, it is preferable that the rotational speed is low. The temperature is preferably a temperature sufficient to soften the elastomer composition in order to improve the dispersion of the powder in the elastomer composition. However, if the temperature is too high, the elastomer component deteriorates or is cooled. Takes too much time to reduce productivity. In addition, before discharging the kneaded composition, it is preferable to release the pressure and knead without pressure. By kneading without pressure, the composition does not solidify and the composition can be taken out. It becomes easy.

次に、上記免震装置用プラグの製造方法について説明する。まず、エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを、厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足する形状に加圧成型することによってプラグ材を製造する。   Next, the manufacturing method of the said plug for seismic isolation devices is demonstrated. First, the ratio h between the thickness h (mm) and the diameter D (mm) of the cross section perpendicular to the thickness direction of the elastomer composition obtained by blending the elastomer component with a reinforcing filler and the powder. A plug material is manufactured by pressure molding into a shape satisfying / D satisfying 0.02 to 0.7.

次いで、かくして得られたプラグ材の複数を積層して本発明の免震装置用プラグを製造する。また、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7の範囲内にあるプラグ材を免震装置用プラグとして使う場合には、エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを、厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足する形状に加圧成型することによって製造する。   Next, a plurality of plug materials thus obtained are laminated to manufacture the plug for a seismic isolation device of the present invention. When a plug material having a ratio h / D within a range of 0.02 to 0.7 to a diameter D (mm) of a cross section orthogonal to the thickness direction is used as a plug for a seismic isolation device, an elastomer is used. The ratio h / D between the thickness h (mm) and the diameter D (mm) of the cross section perpendicular to the thickness direction of the elastomer composition obtained by blending a reinforcing filler into the component and the powder. It is manufactured by pressure molding into a shape satisfying 0.02 to 0.7.

このように、本発明の免震装置用プラグの製造方法によれば、新たな装置を用いることなく、従来の工程に従うことによって、空気含有率が低く、更に空気含有率の部分的なばらつきの少ない免震装置用プラグを製造することが可能になる。   As described above, according to the method for manufacturing a plug for a seismic isolation device of the present invention, the air content is low and a partial variation in the air content is achieved by following the conventional process without using a new device. It becomes possible to manufacture a few plugs for seismic isolation devices.

ここで、エラストマー組成物と、粉体とを加圧する方法としては、金型内に前記エラストマー組成物と、粉体とを充填し、これらをプレス加工する方法が挙げられる。プレス加工する条件としては特に限定されるものではなく、条件を適宜改変してプラグ材の成型に適した条件に設定すればよい。例えば、プレス加工の条件としては、プレス温度は常温〜90℃の範囲が好ましく、成形圧力は0.6tf/cm以上が好ましい。また、プレス加工における加圧方向は特に限定されないが、鉛直方向で上下2方向から加圧することが好ましく、更に左右方向からも加圧することがより好ましい。 Here, as a method of pressurizing the elastomer composition and the powder, there is a method of filling the elastomer composition and the powder in a mold and pressing them. The conditions for the press working are not particularly limited, and the conditions may be modified as appropriate to set conditions suitable for molding the plug material. For example, as the conditions for pressing, the pressing temperature is preferably in the range of room temperature to 90 ° C., and the molding pressure is preferably 0.6 tf / cm 2 or more. In addition, the pressing direction in the press working is not particularly limited, but it is preferable to press in the vertical direction from two directions, and more preferably from the left and right directions.

以下に、実施例を挙げて本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例プラグ材1〜5、比較例プラグ材1及び2)
ニーダーを用いて、表1に示す配合処方のエラストマー組成物を調製し、次に、該エラストマー組成物と、粉体として粒径40μmの不定形還元鉄粉を、表1に示す体積比で混練してプラグ材用の組成物を調製した。次に、該プラグ材用組成物を、金型内に装入して温度100℃、圧力1.26tf/cmの条件でプレス加工して、表2に示す実施例プラグ材1〜5並びに比較例プラグ材1および2を作製した。
(Example plug materials 1 to 5, comparative example plug materials 1 and 2)
Using an kneader, an elastomer composition having the formulation shown in Table 1 was prepared, and then the elastomer composition and amorphous reduced iron powder having a particle size of 40 μm as a powder were kneaded at a volume ratio shown in Table 1. Thus, a composition for a plug material was prepared. Next, the plug material composition was placed in a mold and pressed under conditions of a temperature of 100 ° C. and a pressure of 1.26 tf / cm 2 , and Example plug materials 1 to 5 shown in Table 2 and Comparative plug materials 1 and 2 were produced.

剛性板[鉄板]と弾性板[加硫ゴム(G’=0.4MPa)]とが交互に積層されてなる外径が225mmの積層体の中央に直径45mmの円筒状の中空部を形成し、該中空部に、実施例プラグ材1〜3を重ねて圧入して、図1に示す構造の実施例プラグを具える免震装置を作製した。   A cylindrical hollow portion having a diameter of 45 mm is formed in the center of a laminate having an outer diameter of 225 mm, in which rigid plates [iron plates] and elastic plates [vulcanized rubber (G ′ = 0.4 MPa)] are alternately laminated. The example plug members 1 to 3 were overlapped and press-fitted into the hollow portion to produce a seismic isolation device having the example plug having the structure shown in FIG.

次いで、上記免震装置に対して、動的試験機を用いて鉛直方向に基準面圧をかけた状態で水平方向に加振して規定変位のせん断変形を生じさせてせん断応力τdを測定した。なお、加振変位は、積層体の総厚さを100%として、歪を50、100、150、200及び250%、加振周波数は0.33Hzとし、垂直面圧は10MPaとした。   Next, with respect to the seismic isolator, a dynamic tester was used to vibrate in the horizontal direction while applying a reference surface pressure in the vertical direction to cause shear deformation at a specified displacement, and the shear stress τd was measured. . The vibration displacement was set such that the total thickness of the laminate was 100%, the strain was 50, 100, 150, 200, and 250%, the vibration frequency was 0.33 Hz, and the vertical surface pressure was 10 MPa.

図5に、水平方向の変形変位(δ)と免震装置のせん断応力(τ)との関係を示す。図5中のヒステリシス曲線で囲まれた領域の面積が広くなるほど、振動のエネルギーを多く吸収できることを意味する。ここでは、歪50%、100%、150%、200%、250%におけるせん断応力τdでプラグの減衰性能を評価した。なお、せん断応力τdは、歪み150%における変位0での応力をそれぞれd及びdとしたとき、d及びdの絶対値の和の平均({(dの絶対値)+(dの絶対値)}/2)から計算した。τdの値が大きくなる程、プラグの減衰性能が優れることを示す。 FIG. 5 shows the relationship between the horizontal displacement (δ) and the shear stress (τ) of the seismic isolation device. As the area of the region surrounded by the hysteresis curve in FIG. 5 increases, it means that more vibration energy can be absorbed. Here, the damping performance of the plug was evaluated based on the shear stress τd at a strain of 50%, 100%, 150%, 200%, and 250%. Incidentally, the shear stress τd, when the stress of displacement 0 in strain 150% was d 1 and d 2, respectively, the average of the sum of the absolute values of d 1 and d 2 ({(the absolute value of d 1) + ( the absolute value of d 2)} / 2) were calculated from. The larger the value of τd, the better the plug attenuation performance.

Figure 0005436026
Figure 0005436026

*1 天然ゴム、未加硫、RSS#4
*2 ポリブタジエンゴム(低シス)、未加硫、旭化成製「ジエンNF35R」
*3 カーボンブラック、ISAF、東海カーボン製「シースト6P」
*4 樹脂、日本ゼオン製「ゼオファイン」、新日本石油化学製「日石ネオポリマー140」、丸善石油化学製「マルカレッツM−890A」、「ゼオファイン」:「日石ネオポリマー140」:「マルカレッツM−890A」=40:40:20(質量比)
*5 可塑剤、ジオクチルアジペート(DOA)
*6 その他の配合剤、亜鉛華、ステアリン酸、老化防止剤[住友化学製「アンステージ6C」、ワックス[新日本石油製「プロトワックス1」]、亜鉛華:ステアリン酸:老化防止剤:ワックス=4:5:3:1(質量比)
* 1 Natural rubber, unvulcanized, RSS # 4
* 2 Polybutadiene rubber (low cis), unvulcanized, "Diene NF35R" manufactured by Asahi Kasei
* 3 "Seast 6P" made by carbon black, ISAF, Tokai Carbon
* 4 Resin, “Zeofine” manufactured by Nippon Zeon, “Nisseki Neopolymer 140” manufactured by Nippon Petrochemical, “Marcaretz M-890A” manufactured by Maruzen Petrochemical, “Zeofine”: “Nisseki Neopolymer 140”: “Marcaretz M” −890A ”= 40: 40: 20 (mass ratio)
* 5 Plasticizer, dioctyl adipate (DOA)
* 6 Other compounding agents, zinc white, stearic acid, anti-aging agent (“Anstage 6C” manufactured by Sumitomo Chemical), wax [“Proto Wax 1” manufactured by Nippon Oil Corporation], zinc white: stearic acid: anti-aging agent: wax = 4: 5: 3: 1 (mass ratio)

Figure 0005436026
Figure 0005436026

尚、実施例プラグのせん断応力を測定した結果、せん断応力が目標とする80以上であり、具体的には84kgf/cmであった。 In addition, as a result of measuring the shear stress of the example plug, the shear stress was 80 or more as a target, specifically 84 kgf / cm 2 .

1 免震装置
2 剛性板
3 弾性板
4 積層体
5 プラグ材
6 フランジ板
7 被覆材
8 免震装置用プラグ
h 厚さ
D 厚さ方向に対する垂直断面の直径
S 厚さ方向に対する垂直断面の面積
DESCRIPTION OF SYMBOLS 1 Seismic isolation apparatus 2 Rigid board 3 Elastic board 4 Laminated body 5 Plug material 6 Flange board 7 Cover material 8 Plug for seismic isolation apparatus Thickness D Diameter of perpendicular section with respect to thickness direction S Area of perpendicular section with respect to thickness direction

Claims (2)

エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを加圧することによって厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足するプラグ材を成型し、該プラグ材を積層する免震装置用プラグの製造方法。   The ratio of the thickness h (mm) by pressing the elastomer composition obtained by blending a reinforcing filler into the elastomer component and the powder, and the diameter D (mm) of the cross section perpendicular to the thickness direction A method for manufacturing a plug for a seismic isolation device, in which a plug material satisfying h / D of 0.02 to 0.7 is molded and the plug materials are laminated. エラストマー成分に補強性充填剤を配合してなるエラストマー組成物と、粉体とを加圧することによって厚さh(mm)と、該厚さ方向と直交する断面の直径D(mm)との比h/Dが0.02〜0.7を満足する免震装置用プラグの製造方法。   The ratio of the thickness h (mm) by pressing the elastomer composition obtained by blending a reinforcing filler into the elastomer component and the powder, and the diameter D (mm) of the cross section perpendicular to the thickness direction A method for manufacturing a plug for a seismic isolation device satisfying h / D of 0.02 to 0.7.
JP2009108079A 2009-04-27 2009-04-27 Seismic isolation device plug and method of manufacturing the same Active JP5436026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009108079A JP5436026B2 (en) 2009-04-27 2009-04-27 Seismic isolation device plug and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009108079A JP5436026B2 (en) 2009-04-27 2009-04-27 Seismic isolation device plug and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010255782A JP2010255782A (en) 2010-11-11
JP5436026B2 true JP5436026B2 (en) 2014-03-05

Family

ID=43316917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009108079A Active JP5436026B2 (en) 2009-04-27 2009-04-27 Seismic isolation device plug and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP5436026B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105697643A (en) * 2014-12-16 2016-06-22 蔡崇兴 Friction damping type supporting pad

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5628651B2 (en) * 2010-12-10 2014-11-19 株式会社ブリヂストン Seismic isolation plug manufacturing method and manufacturing apparatus
JP5869860B2 (en) * 2011-12-09 2016-02-24 株式会社ブリヂストン Method for manufacturing composition for plug of base isolation structure and method for manufacturing plug for base isolation structure
CN103717939B (en) * 2011-07-28 2015-09-23 株式会社普利司通 The manufacture method of the manufacture method of the plug composition in the plug composition in base isolation structure, base isolation structure plug, base isolation structure, base isolation structure and base isolation structure plug
JP5891078B2 (en) * 2012-03-14 2016-03-22 株式会社ブリヂストン Manufacturing method of seismic isolation device
JP6023477B2 (en) * 2012-06-22 2016-11-09 株式会社ブリヂストン Seismic isolation plug manufacturing method and manufacturing apparatus
JP6693698B2 (en) * 2014-11-28 2020-05-13 オイレス工業株式会社 Seismic isolation device
WO2016084363A1 (en) * 2014-11-28 2016-06-02 オイレス工業株式会社 Seismic isolation device
JP6927676B2 (en) * 2016-07-19 2021-09-01 オイレス工業株式会社 Laminated rubber bearings
JP7037272B2 (en) * 2016-07-19 2022-03-16 オイレス工業株式会社 Laminated rubber bearings

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0784815B2 (en) * 1986-03-11 1995-09-13 株式会社ブリヂストン Seismic isolation device
JP2724847B2 (en) * 1988-10-06 1998-03-09 株式会社竹中工務店 Seismic isolation device using granular material
JP2004332339A (en) * 2003-05-06 2004-11-25 Yoshio One Quake-absorbing bearing device of hardened coarse granule
JP2008038950A (en) * 2006-08-02 2008-02-21 Sumitomo Kinzoku Kozan Siporex Kk Energy absorbing device
JP2008082353A (en) * 2006-09-25 2008-04-10 Bridgestone Corp Laminated support
JP2008121799A (en) * 2006-11-13 2008-05-29 Nitta Ind Corp Base isolation structure
JP2008121822A (en) * 2006-11-14 2008-05-29 Bridgestone Corp Vibration-isolation structure and its manufacturing method
JP4851425B2 (en) * 2006-11-24 2012-01-11 株式会社ブリヂストン Laminated support
JP4974806B2 (en) * 2007-08-14 2012-07-11 株式会社ブリヂストン Manufacturing method of laminated seismic isolation bearing and plug body forming apparatus used therefor
JP5091083B2 (en) * 2008-10-22 2012-12-05 株式会社ブリヂストン Seismic isolation structure plug and seismic isolation structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105697643A (en) * 2014-12-16 2016-06-22 蔡崇兴 Friction damping type supporting pad
CN105697643B (en) * 2014-12-16 2018-01-09 蔡崇兴 Friction damping type supporting pad

Also Published As

Publication number Publication date
JP2010255782A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5436026B2 (en) Seismic isolation device plug and method of manufacturing the same
JP5140546B2 (en) Seismic isolation structure
KR101779365B1 (en) Chloroprene rubber composition, and vulcanizate and molding thereof
WO2013014907A1 (en) Composition for plug of seismic structure, plug for seismic structure, and seismic structure, as well as method for manufacturing composition for plug of seismic structure, and method for manufacturing plug for seismic structure body
JP2017222824A (en) High damping rubber composition and viscoelastic damper
JP5415691B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP2011149476A (en) Vibration control damper
JP5091083B2 (en) Seismic isolation structure plug and seismic isolation structure
JP2010025233A (en) Plug for base isolation structure and base isolation structure using the same
JP5164783B2 (en) Seismic isolation structure
JP5917953B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP5539642B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP5436027B2 (en) Seismic isolation structure plug and seismic isolation structure
JP5043310B2 (en) Low repulsion rubber composition and seismic isolation structure using the same
JP2014118516A (en) High-damping composition and vibration control damper
JP5174443B2 (en) Seismic isolation structure
JP2010255776A (en) Base isolation structure
JP5869863B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP5289029B2 (en) Seismic isolation structure plug and seismic isolation structure using the plug
JP2009108200A (en) Elastomer composition for plug in base isolation structure, composition for plug in base isolation structure, plug in base isolation structure, and base isolation structure
JP5869860B2 (en) Method for manufacturing composition for plug of base isolation structure and method for manufacturing plug for base isolation structure
JP5745564B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug, seismic isolation structure, and method of manufacturing seismic isolation structure plug
JP5350773B2 (en) Manufacturing method of seismic isolation structure plug
JP5851751B2 (en) Seismic isolation structure plug composition, seismic isolation structure plug and seismic isolation structure
JP2005113094A (en) Rubber vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R150 Certificate of patent or registration of utility model

Ref document number: 5436026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250