WO2023203892A1 - Method for manufacturing titanium compact and method for manufacturing titanium sintered body - Google Patents

Method for manufacturing titanium compact and method for manufacturing titanium sintered body Download PDF

Info

Publication number
WO2023203892A1
WO2023203892A1 PCT/JP2023/007918 JP2023007918W WO2023203892A1 WO 2023203892 A1 WO2023203892 A1 WO 2023203892A1 JP 2023007918 W JP2023007918 W JP 2023007918W WO 2023203892 A1 WO2023203892 A1 WO 2023203892A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
mold
core material
powder
compact
Prior art date
Application number
PCT/JP2023/007918
Other languages
French (fr)
Japanese (ja)
Inventor
昌志 早川
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Publication of WO2023203892A1 publication Critical patent/WO2023203892A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy

Definitions

  • the present invention relates to a method for producing a titanium-based green compact and a method for producing a titanium-based sintered body.
  • titanium and titanium alloys are being considered for use in various parts because of certain excellent properties such as fatigue resistance, corrosion resistance, light weight, and high specific strength.
  • manufacturing parts made of titanium or titanium alloys generally involves a number of steps such as melting by electron beam melting or vacuum arc melting, casting, and in some cases further hot rolling, heat treatment and machining, and welding. This increases manufacturing costs. Due to such high costs, it cannot be said that the scope of application of titanium and titanium alloys has been sufficiently expanded.
  • some parts made of titanium or titanium alloy have an internal space or a recessed part including an opening to the outside.
  • a core material is placed in a position corresponding to the internal space of the mold, and the mold, whose forming space is filled with raw material powder, is cooled. Apply isostatic pressure for a while.
  • Patent Document 1 states, ⁇ Production of a hollow structure obtained by immersing a sintered body having a base material and a core made of an iron-based material in an acid solution to dissolve and remove the core.
  • the base material is made of a material nobler than the iron-based material constituting the core, and the base material is formed with a non-conductive coating on at least a part of the surface of the base material.
  • a method for manufacturing a hollow structure comprising a film forming step that reduces the surface that comes into contact with an acid solution has been proposed.
  • An example of the "hollow structure” is an "impeller (pump impeller)."
  • Patent Document 2 describes a method for manufacturing a metal green compact having a recess, in which a resin mold having a shape corresponding to the recess is placed in a position corresponding to the recess of a resin mold.
  • a method for producing a green compact comprising the step of applying cold isostatic pressure to the raw material powder filled in the mold with the core material positioned in the mold. According to the method described in Patent Document 2, "it is possible to suppress the occurrence of bulges on the surface of the green compact near the core material.”
  • Patent Document 3 states, ⁇ When performing cold isostatic pressure molding by enclosing powder in a mold, storing it in a pressure vessel, and applying isostatic pressure using a liquid such as water as a pressure medium, A method for cold isostatic pressure molding of powder, characterized in that a mold made of a viscoplastic material is used as the mold.
  • Patent Document 4 states, ⁇ In a method of manufacturing a green compact by molding raw powder, a cavity of a desired shape is provided in a mold made of a semi-solid material with a consistency of 15 to 300, and a cavity of a desired shape is formed in the cavity. "A method for producing a green compact, which comprises filling the powder raw material with pressure, and then pressurizing the powder raw material using the mold as a pressure medium.”
  • the core material When using a highly rigid core material such as the "core made of iron-based material” described in Patent Document 1, the core material hardly undergoes elastic deformation during cold isostatic pressurization. Differences may occur in the transmission of pressurizing force in the raw material powder, which may result in insufficient compaction. As a result, in the case of a highly rigid core material, the surface near the core material may bulge, and as a result, it may not be possible to satisfactorily produce a titanium-based green compact having a predetermined shape.
  • Patent Document 1 requires "immersing a sintered body having a base material and a core made of an iron-based material in an acid solution to dissolve and remove the core.”
  • parts made of titanium or titanium alloy have a more complicated shape, such as a closed impeller, in which a plate part such as a blade part is provided upright on the inner surface facing the internal space including the opening to the outside.
  • a titanium-based green compact having a plate portion provided in the internal space may not be manufactured even if a resin core material is placed in a mold for cold isostatic pressing.
  • Patent Documents 3 and 4 do not consider producing a titanium-based compact having a plate portion in the internal space as described above.
  • An object of the present invention is to provide a method for manufacturing a titanium-based green compact that can relatively easily produce a titanium-based green compact having a predetermined complicated shape, and a method for producing a titanium-based sintered body. There is a particular thing.
  • the inventor found that if a core component material with a consistency of 50 or higher is used as the core material placed in a resin mold, titanium-based powder compacts with a plate section erected in the internal space can be obtained. It has been found that it can be produced satisfactorily. For materials with a consistency of less than 50 and poor fluidity, springback of the core material when the load is unloaded by cold isostatic pressing may cause the plate part, which is thin to some extent, of titanium-based powder compacts to It is assumed that it will be easily damaged. By using a core constituent material having a consistency of 50 or more, damage to the plate portion is suppressed, and it becomes possible to manufacture a titanium-based green compact having the plate portion. Moreover, the core material constituent material having a consistency of 50 or more can be easily taken out from the titanium-based green compact after cold isostatic pressing.
  • the method for producing a titanium-based green compact according to the present invention is such that the titanium-based powder green body has a hollow main body portion forming an internal space including an opening to the outside, and a hollow main body portion having an internal space including an opening to the outside.
  • the manufacturing method includes a step of arranging a core material forming the inner space in a core material arrangement space of a resin mold; filling the molding space of the mold with raw material powder, and applying a pressure of 300 MPa or more to the mold with the molding space filled with the raw material powder with the core material arranged in the core material arrangement space;
  • the method includes a step of performing cold isostatic pressurization in a step, and a core material constituting material having a consistency of 50 or more is used as the core material.
  • the core constituent material has a consistency of 60 or more and 240 or less.
  • the core constituent material contains a polybutene resin or clay.
  • the hollow main body portions are spaced apart from each other.
  • a casing portion including a pair of disk-shaped portions arranged to provide the internal space therebetween, and the plate portion is oriented radially outward from the center of the disk-shaped portion between the disk-shaped portions.
  • the blade portion may extend straight or include curved and/or bent portions.
  • the titanium-based green compact has a cross section perpendicular to the central axis including the plate portion of the titanium-based green compact,
  • the ratio of the length corresponding to the thickness of the plate portion to the total length of each space portion located on both sides of the plate portion in the circumferential direction on a perpendicular line perpendicular to the extending direction of the plate portion is 0.05.
  • the mold is made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120. It is preferable to use a mold consisting of: (7) In the method for producing a titanium green compact described in (6) above, it is preferable to use a mold made of a thermoplastic resin having a Shore D hardness in the range of 30 to 85. (8) In the method for producing a titanium green compact according to any one of (1) to (7) above, the thickness of the mold is preferably 0.5 mm to 2.0 mm.
  • the mold may be a mold produced using a three-dimensional modeling device.
  • the method for producing a titanium-based sintered body of the present invention is a method for producing a titanium-based powder compact produced by the method for producing a titanium-based powder compact according to any one of (1) to (9) above. This includes a sintering step of heating and sintering.
  • a titanium-based powder compact having a predetermined complicated shape can be produced relatively easily.
  • FIG. 1 is a perspective view showing an example of a titanium-based powder compact that can be manufactured by a manufacturing method according to an embodiment of the present invention.
  • 2(a) is a plan view of the titanium-based compact shown in FIG. 1
  • FIG. 2(b) is a cross-sectional view taken along line bb in FIG. 2(a).
  • FIG. 3(a) is a side view of the titanium-based compact shown in FIG. 1
  • FIG. 3(b) is a cross-sectional view taken along line bb in FIG. 3(a).
  • FIG. 4(a) is a sectional view taken along the central axis line, showing a mold and core material that can be used for manufacturing the titanium-based compact shown in FIG.
  • FIG. 3 is a cross-sectional view taken along line bb.
  • FIG. 5 is a cross-sectional view taken along the central axis line, schematically showing a state in which cold isostatic pressing is performed using the mold and core material of FIG. 4 .
  • FIG. 3 is a perspective view showing another example of a titanium-based powder compact that can be manufactured by the manufacturing method according to one embodiment of the present invention.
  • 7(a) is a plan view of the titanium-based powder compact of FIG. 6, and
  • FIG. 7(b) is a sectional view taken along line bb of FIG. 7(a).
  • FIG. 8(a) is a side view of the titanium-based powder compact of FIG. 6, and
  • FIG. 8(b) is a sectional view taken along line bb of FIG.
  • FIG. 8(a) It is a perspective view showing still another example of the titanium-based green compact which can be manufactured by the manufacturing method concerning one embodiment of this invention.
  • 10(a) is a plan view of the titanium-based compact shown in FIG. 9, and FIG. 10(b) is a sectional view taken along line bb in FIG. 10(a).
  • 11(a) is a side view of the titanium-based green compact shown in FIG. 9, and FIG. 11(b) is a sectional view taken along line bb in FIG. 11(a).
  • 13(a) is a plan view of the titanium-based powder compact of FIG. 12, and FIG.
  • FIG. 13(b) is a sectional view taken along line bb of FIG. 13(a).
  • 14(a) is a side view of the titanium-based powder compact of FIG. 12, and FIG. 14(b) is a sectional view taken along the line bb of FIG. 14(a).
  • 16(a) is a plan view of the titanium-based compact shown in FIG. 15, and FIG. 16(b) is a cross-sectional view taken along line bb in FIG. 16(a).
  • 16 is a side view of the titanium-based powder compact of FIG. 15.
  • a titanium-based powder compact 1 is provided with a plate portion 3 in an internal space 2b including an opening 2a, as illustrated in FIGS. 1 to 3. etc.
  • titanium-based herein includes not only pure titanium but also titanium alloys.
  • the core material placement space of the resin mold is When arranging the core material forming the internal space, a material constituting the core material having a consistency of 50 or more is used as the core material.
  • a core made of core material with a consistency of 50 or higher has a relatively low viscosity and high fluidity, so when the load is removed after cold isostatic pressing, it will not have much springback. It is presumed that this prevents damage to the plate portion of the titanium-based green compact from occurring. Moreover, since the core material of the core material having a consistency of 50 or more has fluidity, it can be easily taken out from the titanium compact after cold isostatic pressing. As a result, a titanium-based green compact having a predetermined complicated shape can be produced relatively easily.
  • This titanium-based powder compact 1 is provided upright on a hollow main body part 2 forming an internal space 2b including an opening 2a to the outside, and an inner surface 2c facing the inner space 2b of the hollow main body part 2, and the inner surface 2c It has a plate portion 3 extending above.
  • the hollow main body part 2 includes a pair of disc-shaped parts 4a and 4b arranged parallel to each other at intervals, and a disc-shaped part 4a extending parallel to the central axis between the disc-shaped parts 4a and 4b. , 4b are included (see FIGS. 2 and 3).
  • the internal space 2b is defined on the outer peripheral side of the connecting portion 5 between the disc-shaped portions 4a and 4b, and is recessed from the outer surface of the hollow main body portion 2 and exists at a position deeper than the outer surface.
  • This internal space 2b has an opening 2a to the outside between the outer peripheral surfaces of the disk-shaped portions 4a and 4b of the outer surface of the hollow main body portion 2.
  • the boundary between the outer end surface facing the outside of each disk-shaped part 4a, 4b, and an outer peripheral surface can form the chamfered part 4c of the curved surface shape over the entire circumference as needed.
  • the plate portion 3 has an inner surface 2c facing the inner space 2b of the disc-shaped parts 4a, 4b and facing the inner space 2b (more specifically, an inner end face of the disc-shaped parts 4a, 4b facing the inner space 2b). It is set in.
  • the number of plate portions 3 can be one or more, and in the illustrated example, there are six.
  • Each plate portion 3 is formed integrally with the inner surface 2c (the inner end surface of each disc-shaped portion 4a, 4b), and extends on the inner surface 2c in an upright position from the inner surface 2c.
  • the plurality of plate parts 3 are connected to a connecting part 5 at the center of the disc-shaped parts 4a and 4b, and have a shape that extends straight radially outward from the connecting part 5.
  • the internal space 2b is divided into a corresponding number of space parts by a plurality of plate parts 3, and a plurality of openings are provided at the outermost radial direction of each space part. 2a exists.
  • the mold 51 for molding the titanium-based green compact 1 is provided with a molding space 52 having a shape corresponding to the shape of the titanium-based green compact 1, as shown in FIGS. 4(a) and (b). More specifically, this mold 51 includes a pair of hollow disc-shaped walls 53a, 53b arranged at intervals, and a wall extending parallel to the central axis at the center between the disc-shaped walls 53a, 53b. A hollow cylindrical wall 54 connected to the disc-shaped walls 53a, 53b, and a hollow columnar wall 54 connected to each of the disc-shaped walls 53a, 53b and the cylindrical wall 54 between the disc-shaped walls 53a, 53b. It has a plurality of hollow plate-like wall portions 55 extending radially.
  • a molding space 52 is defined inside the hollow disc-shaped walls 53a, 53b, the cylindrical wall 54, and the plate-shaped wall 55.
  • the disk-shaped parts 4a and 4b of the titanium-based powder compact 1 are connected on the forming surfaces inside the disk-like walls 53a and 53b, and the titanium-based powder compact 1 is connected on the forming surface inside the columnar wall 54.
  • the plate portion 3 of the titanium-based powder compact 1 is formed at the portion 5 and the molding surface inside the plate-like wall portion 55, respectively.
  • a through hole 53c used for supplying the raw material powder 71 to the molding space 52 is provided in the center portion of the outside of one disk-shaped wall portion 53a, but the through hole is not provided in the other part of the mold. It may be provided in some parts. Further, the number of through holes 53c is not limited to one, but may be plural.
  • the mold 51 is made of resin, preferably thermoplastic resin, and is particularly preferably made of acrylic resin, elastomer-containing acrylic resin, polylactic acid (PLA) resin, or the like.
  • the resin mold 51 is preferably made of a thermoplastic resin with a Shore D hardness within the range of 30 to 120 in order to ensure the required strength and maintain its shape even when filling the raw material powder 71. It may also be a thermoplastic resin having a molecular weight within the range of 30 to 85. Shore D hardness can be measured by a test method based on JIS K7215 (1986). From the same viewpoint, the thickness of the resin mold 51 is preferably 0.5 mm to 2.0 mm.
  • the resin mold 51 can be produced by various methods, it is preferably produced using a three-dimensional modeling device (so-called 3D printer). Thereby, molds 51 of various shapes can be easily produced.
  • the modeling method of the three-dimensional printer is not particularly limited, and may be any one of, for example, a stereolithography method, an inkjet method, an inkjet powder layering method, a powder sintering layered manufacturing method, a hot melt layering method, or a powder fixation method.
  • the raw material powder 71 to be filled into the molding space 52 of the mold 51 various powders such as titanium powder, alloying element powder, mother alloy powder, etc. can be used in combination as necessary.
  • This titanium powder includes pure titanium powder consisting essentially only of titanium, titanium hydride powder mainly containing titanium, and containing hydrogen in an amount of 5% by mass or less.
  • the pure titanium powder may be, for example, a hydride-dehydrogenated powder obtained by dehydrogenating titanium hydride powder.
  • the above-mentioned alloying element powder means a powder containing a single alloying element of a titanium alloy
  • the mother alloy powder means a powder containing a plurality of elements.
  • the raw material powder 71 may be, for example, only titanium powder, or may include titanium powder, an alloying element powder selected from the group consisting of iron, aluminum, vanadium, zirconium, tin, molybdenum, copper, and nickel, and/or powder. Alternatively, a mixture of two or more types of master alloy powders may be used. Alternatively, it is also possible to use only a powder containing titanium and an alloying element as the raw material powder 71.
  • pure titanium means titanium having a titanium content of 99% by mass or more.
  • the mass ratio of the alloying element to titanium in the raw material powder 71 may be in the range of 0 to 0.33, for example, 0 to 0.11, where titanium is 1.
  • the average particle size of the raw material powder 71 is preferably 10 ⁇ m to 150 ⁇ m. By using such relatively fine particles, it is possible to improve the compressed density of the titanium-based green compact after cold isostatic pressing and furthermore of the titanium-based sintered body after heating.
  • the average particle diameter means the particle diameter D50 (median diameter) of the particle size distribution (volume basis) obtained by a laser diffraction scattering method.
  • known powders such as crushed powder and atomized powder can be used as the raw material powder 71.
  • a core material 61 is placed in the core arrangement space of the mold 51 to form the internal space 2b of the titanium-based powder compact 1. Place. As shown in FIG. 4, between the pair of disc-shaped walls 53a and 53b in the mold 51, a core material is formed in the space between the circumferentially adjacent plate-shaped walls 55 on the outer peripheral side of the columnar wall 54. 61 is arranged, and this space corresponds to the core material arrangement space.
  • the core material having flowability can be filled by pouring into the core material arrangement space from the opening to the outside around the core material arrangement space, whereby the core material 61 is arranged in the core material arrangement space. be done. After arranging the core material 61, the opening of the core material arrangement space can be closed with a sealing member 56, such as a plate, to seal the core material arrangement space (see FIG. 5).
  • the raw material powder 71 is filled into the molding space 52 of the mold 51 through the through hole 53c.
  • a plate-shaped lid member 57 made of, for example, substantially the same material as the mold 51 is provided in the through hole 53c, thereby sealing the molding space 52. (See Figure 5).
  • the process of arranging the core material 61 in the core material arrangement space and the process of filling the molding space 52 of the mold 51 with the raw material powder 71 may be performed in any order, and either process may be performed first.
  • the entire mold may be covered with a bag-like covering member, although not shown. . In this case, if necessary, the interior of the covering member surrounding the mold may be depressurized before the cold isostatic press described below.
  • the mold 51 with the raw material powder 71 filled in the molding space 52 is subjected to cold isostatic pressure in a cold isostatic pressure device. CIP).
  • CIP cold isostatic pressure device
  • the mold 51 is pressurized from the outside.
  • the sealing member 56 and the lid member 57 constitute a part of the mold 51, and pressure is applied to the sealing member 56 and the lid member 57 from the outside.
  • the raw material powder 71 in the molding space 52 of the mold 51 is compressed and compacted, and becomes the titanium-based compact 1 .
  • the mold 51 In cold isostatic pressurization, the mold 51 is pressurized with isostatic pressure (hydrostatic pressure, etc.) by the surrounding fluid, regardless of its shape. Therefore, by cold isostatic pressing, the titanium-based powder compact 1 can be manufactured using molds 51 of various shapes.
  • the pressure applied to the mold 51 by cold isostatic pressing is 300 MPa or more, preferably 400 MPa or more. If the pressing force is less than 300 MPa, the raw material powder 71 will not be sufficiently compressed, and the shape accuracy of the titanium-based compact 1 will become insufficient.
  • the pressing force may be, for example, 750 MPa or less, or 600 MPa or less, and typically 500 MPa or less. Further, the holding time under such pressure may be, for example, 0.5 minutes to 30 minutes.
  • the titanium-based powder compact 1 is taken out together with the mold 51 and the core material 61 from the cold isostatic pressing device. Thereafter, the mold 51 and the core material 61 are removed from the titanium-based compact 1. At this time, since the core material 61 has fluidity, it can be easily removed. Depending on the type of core material forming the core material 61, the core material 61 may be taken out together with a part of the mold 51. Note that the mold 51 may be heated to about 100° C. in the atmosphere to soften it before removal, if necessary. Thereby, the titanium-based green compact 1 can be manufactured.
  • a step of heating the titanium-based compact 1 is performed after the cold isostatic pressing step.
  • the particles constituting it are sintered to become a titanium-based sintered body.
  • the manufactured titanium-based green compact and titanium-based sintered body can be subjected to further processing such as cutting and polishing.
  • the titanium-based powder compact 1 can be heated without pressure at a temperature of, for example, 1200° C. to 1300° C. for 1 hour to 3 hours.
  • hot isostatic pressing HIP
  • argon gas An isostatic pressure of about 100 MPa to 200 MPa may be applied for 30 minutes to 180 minutes using a pressure medium such as gas.
  • a titanium-based sintered body can be produced by pressureless heating and/or hot isostatic pressing.
  • pressureless heating and hot isostatic pressing are performed, the order is not particularly limited, but for example, hot isostatic pressing can be performed after pressureless heating.
  • the core material 61 arranged in the core material arrangement space of the mold 51 is made of a core material constituting material having a consistency of 50 or more.
  • the core material 61 exhibits a certain degree of low viscosity and high fluidity. 51.
  • the titanium-based powder compact 1 tends to be less likely to be damaged after cold isostatic pressing. This is because the consistency of the core material constituent material is 50 or more, so that the core material 61, which has appropriate viscosity and fluidity, does not recover so much when the load of cold isostatic pressing is removed. It is assumed that this is due to the following. If a core material 61 made of a core material having a consistency of less than 50 is used, a large springback of the core material 61 may occur when the load of cold isostatic pressing is removed. As a result, the relatively thin plate portion 3 of the titanium-based powder compact 1 that is adjacent to the core material 61 with the plate-like wall portion 55 interposed therebetween is likely to be damaged.
  • the core material 61 whose core material constituting material has a consistency of 50 or more can be filled and arranged in core material arrangement spaces of various shapes because of its fluidity. Therefore, by using such a core material 61, titanium-based powder compacts 1 having internal spaces 2b of various shapes can be manufactured.
  • a material constituting the core material whose consistency does not change is used; however, in the case of a material constituting the core material whose consistency can change due to hardening due to heat, etc., immediately before filling the core material arrangement space of the mold 51. , and the consistency of the core constituent material immediately after being taken out from the titanium-based powder compact 1 may all be 50 or more. Even if the consistency of the core component material before filling into the core material placement space is 50 or more, if the consistency becomes less than 50 due to hardening after filling, cold isostatic pressure is applied. Springback of the core material may occur when unloading.
  • the consistency of the core constituent material is preferably 60 or more and 240 or less.
  • the consistency is 60 or more, damage to the titanium-based powder compact 1 as described above can be suppressed even more effectively.
  • the consistency is set to 240 or less, contamination of the titanium-based powder compact 1 due to adhesion of the core material 61 or penetration into the interior when the core material 61 is removed from the titanium-based powder compact 1 can be suppressed.
  • the core material constituent material adheres to or permeates into the titanium-based green compact 1, the concentration of oxygen, carbon, nitrogen, etc. increases locally during subsequent sintering, and the mechanical properties of the titanium-based sintered body deteriorate. There are concerns about this.
  • the consistency is appropriate, it becomes easy to fill the core material into the core material arrangement space and to take it out from there.
  • the consistency of the core material is measured using a standard cone in accordance with JIS K2220:2013.
  • core material constituent materials include polybutene resin, clay, and the like.
  • Clay is an aggregate of artificial or natural soil or particles containing soil, sand, oil, pulp, etc. and having a predetermined adhesive property, such as oil clay.
  • titanium-based green compact According to the manufacturing method of the embodiment described above, the titanium-based powder compact 1 shown in FIGS. 1 to 3 can be manufactured.
  • the specific structure of this titanium-based powder compact 1 is as described above, and its explanation will be omitted.
  • the titanium-based powder compact 1 is made of titanium made of pure titanium, or made of Ti-5Al-1Fe, Ti-5Al-2Fe, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr. It may be made of a titanium alloy such as -2Mo, Ti-6Al-2Sn-4Zr-6Mo, or Ti-10V-2Fe-3Al. In addition, in the components of the titanium alloy listed here, the number attached before each alloy element symbol means the content (mass %). For example, "Ti-6Al-4V" represents a titanium alloy containing 6% by mass of Al and 4% by mass of V.
  • What can be manufactured is not limited to the titanium-based compact 1 shown in FIGS. 1 to 3.
  • the titanium-based powder compact 11 shown in FIGS. 6 to 8 does not have a portion corresponding to the connecting portion 5 of the titanium-based powder compact 1 shown in FIGS. It has almost the same structure as the titanium-based powder compact 1, except that it is ring-shaped with a through hole 15 connected to the gap between the titanium-based powder compact 1 and the disc-shaped part 14b.
  • the through hole portion 15 constitutes a part of the internal space 12b, and an opening portion 15a to the outside is also present on the outer end surface side of the disk-shaped portion 14a (see FIGS. 6 and 7). Note that the pair of disk-shaped portions 14a and 14b are connected to each other by a plate portion 13 between them.
  • the titanium-based powder compact 21 shown in FIGS. 9 to 11 has a connecting portion 25 having a larger diameter than the connecting portion 5 of the titanium-based powder compact 1 in FIGS. 1 to 3, and each plate portion 23 is , extends radially outward from the center of the disc-shaped portions 24a, 24b, including a curved portion that protrudes toward one side in the circumferential direction (counterclockwise in FIG. 11(b)). Except for this, it has almost the same configuration as the titanium-based powder compact 1.
  • the entire plate portion 23 is a curved portion.
  • the plate portion may partially include at least one curved portion instead of the entire plate portion.
  • the titanium-based powder compact 31 shown in FIGS. 12 to 14 has a connecting portion 35 having a larger diameter than the connecting portion 5 of the titanium-based powder compact 1 in FIGS. 1 to 3, and each plate portion 33 has a , has almost the same structure as the titanium-based powder compact 1, except that it extends radially outward from the center of the disc-shaped portions 34a and 34b, including at least one bent point.
  • each plate portion 33 has a plurality of bending points, and as shown in FIG. It has a zigzag shape with alternate locations and bent locations protruding to the other side. Note that a corner portion 33 a is formed on the outer surface of the columnar connecting portion 35 by connecting with an end portion of the zigzag plate portion 33 .
  • the curved portions included in the plate portion 23 of the titanium-based powder compact 21 shown in FIGS. 9 to 11 and the plate portion 33 of the titanium-based powder compact 31 shown in FIGS. 12 to 14 It is also possible to have a plate portion that has both such bending points.
  • the titanium-based powder compacts 1, 11, 21, and 31 shown in FIGS. 1 to 14 can be used as an impeller such as a closed impeller.
  • the pair of disc-shaped parts 4a, 4b, 14a, 14b, 24a, 24b, 34a, 34b and the connecting parts 5, 25, 35 are the casing part of the impeller.
  • the casing portion includes a pair of disk-shaped portions 4a, 4b, 14a, 14b, 24a, 24b, 34a, and 34b.
  • the plate portions 3, 13, 23, and 33 of the titanium-based powder compacts 1, 11, 21, and 31 correspond to the blade portions of the impeller.
  • the plate portions 3, 13, 23, and 33 which are blade portions existing in the internal spaces 2b, 12b, 22b, and 32b, are relatively thick. May be thin.
  • the thickness of the plate portion 3 occupies a small proportion or area in the internal space 2b. More specifically, in the above-mentioned cross section, the titanium-based powder compact 1 has a plate portion in the circumferential direction on a perpendicular line PL (indicated by a broken line in FIG. 3(b)) perpendicular to the direction in which the plate portion 3 extends.
  • the ratio (Lt/Ls) of the length Lt corresponding to the thickness of the plate portion 3 to the total length (Ls) of the lengths (Ls/2) in each space portion located on both sides of the plate portion 3 is, for example, 0.05 or more and There may be locations where the value is 0.25 or less. It is not necessary that the entire plate portion of the titanium-based powder compact has the above ratio (Lt/Ls). If there is a portion where the above ratio (Lt/Ls) is 0.05 or more and 0.25 or less in at least a part of the plate part, the titanium-based compacted powder has a portion where the ratio (Lt/Ls) is Applies to the body.
  • each space portion on both sides in the circumferential direction of the plate portion 3 is as shown in FIG. means the length in the direction along the perpendicular line PL from the side surface of the plate section 3 to the side surface of another plate section.
  • the length in the perpendicular direction from the side of the plate to the inner surface is corresponds to the length of each spatial portion on both sides of .
  • the ratio (Lt/Ls) between the length Lt corresponding to the thickness of the plate portion 3 and the total length (Ls) of the space portions on both sides in the circumferential direction is 0.05 or more and 0.25
  • a titanium-based powder compact 1 having the following locations tends to be easily damaged due to the springback of the core material 61 mentioned above during its manufacture.
  • by using a predetermined core constituent material even such a titanium-based powder compact 1 can be manufactured satisfactorily while suppressing damage to the plate portion 3. be able to.
  • the titanium-based powder compact 41 shown in FIGS. 15 to 17 is provided upright on a hollow main body 42 forming an internal space 42b including an opening 42a to the outside, and on an inner surface 42c of the hollow main body 42 facing the internal space 42b. , and three plate portions 43 extending on the inner surface 42c.
  • the hollow main body 42 has a pair of disc-shaped parts 44a and 44b arranged at intervals, which are connected to each other by a cylindrical connecting part 45 extending along the central axis. .
  • the internal space 42b is recessed from the outer surface of the hollow main body portion 42 and is defined by the pair of disc-shaped portions 44a, 44b and the inner surface of the connecting portion 45 on the inner space 42b side.
  • each plate portion 43 provided around the cylindrical connecting portion 45 extends in the circumferential direction on the inner surface 42c facing the internal space 42b side of the connecting portion 45, and has a radial radius. It has a circular plate shape whose thickness gradually decreases toward the outside. Note that the number of plate portions 43 can be changed as appropriate, and may be one, two, or four or more.
  • the titanium-based green compact 41 shown in FIGS. 15 to 17 is not intended for use in an impeller, it can be manufactured using this embodiment in order to be molded without causing damage to the plate portion 43 provided in the internal space 42b. can.
  • the titanium-based powder compact A has a length in each space portion located on both sides of the plate portion in the circumferential direction on a perpendicular line perpendicular to the extending direction of the plate portion in a cross section including the plate portion and perpendicular to the central axis.
  • the minimum value of the ratio (Lt/Ls) of the length Lt corresponding to the thickness of the plate portion to the total length Ls is 0.05.
  • the minimum value of the similar ratio (Lt/Ls) in the titanium-based green compact B is 0.09.
  • Example 1 to 8 and Comparative Examples 1 to 3 titanium compacts were produced.
  • Hydrodehydrogenation powder (HDH powder) was used as the raw material powder in Examples 1 to 7 and Comparative Examples 1 to 3.
  • a mixture of HDH powder and titanium hydride powder at a mass ratio of 1:1 was used.
  • the above HDH powder had a titanium content of 99% by mass or more and an average particle size of 66 ⁇ m.
  • the titanium hydride powder had a titanium content of 95% by mass or more, a hydrogen content of 5% by mass or less, and an average particle size of 66 ⁇ m.
  • Example 9 a powder compact made of titanium alloy was produced, and a mixture of the above HDH powder and 60Al40V powder at a mass ratio of 9:1 was used as the raw material powder.
  • the above 60Al40V powder was produced by crushing an ingot, contained 60% by mass of aluminum and 40% by mass of vanadium, and had an average particle size of 35 ⁇ m.
  • the mold used for manufacturing was modeled using a 3D printer.
  • the resin material constituting the mold was polylactic acid (PLA), and had a Shore D hardness of 83.
  • the thickness of the mold was 1.0 mm.
  • Each core material constituent material shown in Table 1 was used for the core material arranged in the core material arrangement space of the mold.
  • "putty for air conditioner piping” is made of polybutene resin.
  • the consistency of the core constituent material was measured in accordance with JIS K2220:2013, as described above. However, since the silicone sealant of Comparative Example 1 hardens over time, and the carbon steel of Comparative Example 2 and the thermosetting resin of Comparative Example 3 do not have fluidity at room temperature, the consistency was could not be measured. From this, it can be considered that Comparative Examples 1 to 3 are hard materials and have a consistency of clearly less than 50.
  • the entire mold After placing the core material in the above mold and filling it with raw material powder, the entire mold is wrapped in a plastic bag, the inside of the mold is depressurized, and then hydrostatic pressure is applied in a cold isostatic pressurizer.
  • Cold isostatic pressing CIP
  • CIP Cold isostatic pressing
  • a pressing force of 490 MPa was applied to the mold filled with the raw material powder for 1 minute.
  • the mold was taken out of the plastic bag, and most of the core material was removed manually. The mold was then heated to about 100° C. in air to soften it. Thereafter, the mold was removed from the titanium compact inside using a tool such as pliers.
  • the titanium-based green compact produced in this way was visually observed to check for damage, adhesion of the core material, and penetration into the interior. The results are shown in Table 1.

Abstract

In a method for manufacturing a titanium compact 1 according to the present invention, the titanium compact 1 has a hollow body part 2 in which there is formed an internal space 2b that includes an opening part 2a opening to the outside, and plate parts 3 that are provided so as to stand on an inner surface 2c of the hollow body part 2 facing the internal space 2b and that extend on the inner surface 2c. The manufacturing method includes: a step for placing a core material 61, for forming the internal space 2b, in a core material placement space in a mold 51 made of a resin; a step for filling a molding space 52 of the mold 51 with a raw material powder 71; and a step for performing cold isostatic pressing, at a pressing force of 300 MPa or above, on the mold 51 in which the molding space 52 is filled with the material powder 71, in a state in which the core material 61 is placed in the core material placement space. A core-material-constituting material having a consistency of 50 or above is used as the core material 61.

Description

チタン系圧粉体の製造方法及び、チタン系焼結体の製造方法Method for manufacturing titanium-based green compact and method for manufacturing titanium-based sintered body
 この発明は、チタン系圧粉体の製造方法及び、チタン系焼結体の製造方法に関するものである。 The present invention relates to a method for producing a titanium-based green compact and a method for producing a titanium-based sintered body.
 たとえばチタンやチタン合金は、耐疲労性、耐食性、軽量かつ高い比強度といった所定の優れた特性の故に、種々の部品に用いることが検討されている。
 しかるに、チタン又はチタン合金製の部品を製造するには一般に、電子ビーム溶解や真空アーク溶解等による溶解、鋳造、場合によってはさらに熱間圧延、熱処理及び機械加工、溶接等の多数の工程を行う必要があり、それに伴って製造コストが嵩む。このような高コストに起因して、チタンやチタン合金の適用範囲が十分に広がっているとは言い難い。
For example, titanium and titanium alloys are being considered for use in various parts because of certain excellent properties such as fatigue resistance, corrosion resistance, light weight, and high specific strength.
However, manufacturing parts made of titanium or titanium alloys generally involves a number of steps such as melting by electron beam melting or vacuum arc melting, casting, and in some cases further hot rolling, heat treatment and machining, and welding. This increases manufacturing costs. Due to such high costs, it cannot be said that the scope of application of titanium and titanium alloys has been sufficiently expanded.
 かかる状況の下、近年は、いわゆるニアネットシェイプとして、チタンを含む原料粉末を樹脂製のモールド内に充填して、当該原料粉末に対して冷間等方圧加圧を施し、所定の形状のチタン系圧粉体を得る粉末冶金法が注目されている。粉末冶金法では、冷間等方圧加圧の後、必要に応じて加熱して焼結させ、密度を高めることが行われる場合がある。 Under these circumstances, in recent years, so-called near-net shapes have been developed by filling raw material powder containing titanium into a resin mold and applying cold isostatic pressure to the raw material powder to form a predetermined shape. Powder metallurgy methods for obtaining titanium-based green compacts are attracting attention. In the powder metallurgy method, after cold isostatic pressing, the material may be heated and sintered as necessary to increase the density.
 ところで、チタン又はチタン合金製の部品のなかには、外部への開口部を含む内部空間ないし凹部が形成されたものがある。かかる内部空間を有するチタン系圧粉体を、粉末冶金法により製造するには、モールドのその内部空間に対応する箇所に芯材を配置し、成形空間に原料粉末を充填したモールドに対して冷間等方圧加圧を行う。 By the way, some parts made of titanium or titanium alloy have an internal space or a recessed part including an opening to the outside. In order to produce a titanium-based green compact having such an internal space using the powder metallurgy method, a core material is placed in a position corresponding to the internal space of the mold, and the mold, whose forming space is filled with raw material powder, is cooled. Apply isostatic pressure for a while.
 これに関し、特許文献1には、「母材と鉄系材料からなる中子とを有する焼結体を酸溶液に浸漬して前記中子を溶解し、除去して得られる中空構造体の製造方法であって、前記母材は前記中子を構成する鉄系材料よりも貴の材料からなり、前記母材の表面の少なくとも一部に非電導被膜を形成することで、前記母材における前記酸溶液と接触する表面を少なくする被膜形成工程を備える、中空構造体の製造方法」が提案されている。「中空構造体」としては、「インペラ(ポンプ羽根車)」が挙げられている。 Regarding this, Patent Document 1 states, ``Production of a hollow structure obtained by immersing a sintered body having a base material and a core made of an iron-based material in an acid solution to dissolve and remove the core. In the method, the base material is made of a material nobler than the iron-based material constituting the core, and the base material is formed with a non-conductive coating on at least a part of the surface of the base material. A method for manufacturing a hollow structure comprising a film forming step that reduces the surface that comes into contact with an acid solution has been proposed. An example of the "hollow structure" is an "impeller (pump impeller)."
 また、特許文献2には、「凹部を有する金属製の圧粉体を製造する方法であって、樹脂製のモールドの、前記凹部に対応する箇所に、該凹部に対応する形状を有する樹脂製の芯材を位置させた状態で、前記モールド内に充填した原料粉末に対して冷間等方圧加圧を行う工程を含む、圧粉体の製造方法」が記載されている。特許文献2に記載された方法によれば、「芯材の近傍の圧粉体表面への隆起の発生を抑制することができる。」としている。 Further, Patent Document 2 describes a method for manufacturing a metal green compact having a recess, in which a resin mold having a shape corresponding to the recess is placed in a position corresponding to the recess of a resin mold. A method for producing a green compact comprising the step of applying cold isostatic pressure to the raw material powder filled in the mold with the core material positioned in the mold. According to the method described in Patent Document 2, "it is possible to suppress the occurrence of bulges on the surface of the green compact near the core material."
 なお、材料がチタン又はチタン合金ではないが、圧粉体に関する技術としては、たとえば特許文献3及び4に記載されたものがある。特許文献3には、「粉体をモールド内に封入し、圧力容器内に収納して水などの液体を圧媒として等方圧を加え、冷間等方圧加圧成形を行うに際し、前記モールドとして粘塑性体にて構成したモールドを用いることを特徴とする粉体の冷間等方圧加圧成形方法」が記載されている。特許文献4には、「原料粉体を成形して圧粉体を製造する方法において、ちょう度15~300の半固形材料により形成されたモールド内に所望形状のキャビティを設け、該キャビティ内に粉体原料を充填した後、該モールドを圧力媒体として粉体原料を加圧することを特徴とする圧粉体の製造方法」が記載されている。 Although the material is not titanium or titanium alloy, there are techniques related to green compacts, such as those described in Patent Documents 3 and 4. Patent Document 3 states, ``When performing cold isostatic pressure molding by enclosing powder in a mold, storing it in a pressure vessel, and applying isostatic pressure using a liquid such as water as a pressure medium, A method for cold isostatic pressure molding of powder, characterized in that a mold made of a viscoplastic material is used as the mold. Patent Document 4 states, ``In a method of manufacturing a green compact by molding raw powder, a cavity of a desired shape is provided in a mold made of a semi-solid material with a consistency of 15 to 300, and a cavity of a desired shape is formed in the cavity. "A method for producing a green compact, which comprises filling the powder raw material with pressure, and then pressurizing the powder raw material using the mold as a pressure medium."
特開2016-17218号公報Japanese Patent Application Publication No. 2016-17218 国際公開第2021/060363号International Publication No. 2021/060363 特開昭63-219503号公報Japanese Unexamined Patent Publication No. 63-219503 特開2003-154494号公報Japanese Patent Application Publication No. 2003-154494
 特許文献1に記載された「鉄系材料からなる中子」のような高剛性の芯材を用いた場合、冷間等方圧加圧時に芯材がほぼ弾性変形しないので、芯材を介した原料粉末中での加圧力の伝達に差異が生じ、締固めが不十分になる箇所が生じ得る。それにより、高剛性の芯材では、当該芯材近傍の表面が隆起すること等により、所定の形状のチタン系圧粉体を良好に製造することができない場合があった。加えて、特許文献1に記載された方法は、「母材と鉄系材料からなる中子とを有する焼結体を酸溶液に浸漬して前記中子を溶解し、除去」することを要し、チタン系圧粉体を簡易に製造できるとは言い難い。 When using a highly rigid core material such as the "core made of iron-based material" described in Patent Document 1, the core material hardly undergoes elastic deformation during cold isostatic pressurization. Differences may occur in the transmission of pressurizing force in the raw material powder, which may result in insufficient compaction. As a result, in the case of a highly rigid core material, the surface near the core material may bulge, and as a result, it may not be possible to satisfactorily produce a titanium-based green compact having a predetermined shape. In addition, the method described in Patent Document 1 requires "immersing a sintered body having a base material and a core made of an iron-based material in an acid solution to dissolve and remove the core." However, it is difficult to say that titanium-based green compacts can be easily produced.
 一方、特許文献2に記載された製造方法では、樹脂製の芯材を用いることから、冷間等方圧加圧後に成形されるチタン系圧粉体における当該芯材近傍の表面の隆起を抑制することができる。また、樹脂製の芯材は、冷間等方圧加圧後のチタン系圧粉体から比較的容易に取り出すことが可能である。 On the other hand, in the manufacturing method described in Patent Document 2, since a core material made of resin is used, the protrusion of the surface near the core material in the titanium-based powder compact formed after cold isostatic pressing is suppressed. can do. Moreover, the resin core material can be relatively easily taken out from the titanium-based powder compact after cold isostatic pressing.
 ところで、チタン又はチタン合金製の部品には、より複雑な形状として、たとえばクローズドインペラーのような、外部への開口部を含む内部空間に臨む内面に、羽根部等のプレート部を立てて設けたものがある。そのような内部空間にプレート部が設けられたチタン系圧粉体は、冷間等方圧加圧用のモールドに樹脂製の芯材を配置しても製造できない場合があった。 By the way, parts made of titanium or titanium alloy have a more complicated shape, such as a closed impeller, in which a plate part such as a blade part is provided upright on the inner surface facing the internal space including the opening to the outside. There is something. Such a titanium-based green compact having a plate portion provided in the internal space may not be manufactured even if a resin core material is placed in a mold for cold isostatic pressing.
 特許文献3及び4では、上記のような内部空間にプレート部を設けたチタン系圧粉体を製造することについては何ら検討されていない。 Patent Documents 3 and 4 do not consider producing a titanium-based compact having a plate portion in the internal space as described above.
 この発明の目的は、所定の複雑な形状を有するチタン系圧粉体を、比較的簡易に製造することができるチタン系圧粉体の製造方法及び、チタン系焼結体の製造方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a titanium-based green compact that can relatively easily produce a titanium-based green compact having a predetermined complicated shape, and a method for producing a titanium-based sintered body. There is a particular thing.
 発明者は鋭意検討の結果、樹脂製のモールドに配置する芯材として、ちょう度が50以上である芯材構成材料を使用すれば、内部空間にプレート部を立てて設けたチタン系圧粉体を良好に製造できることを見出した。ちょう度が50よりも小さく流動性に乏しい材料では、冷間等方圧加圧による荷重の除荷時における芯材のスプリングバックで、チタン系圧粉体の特に、厚みがある程度薄いプレート部が破損しやすくなると推測される。ちょう度が50以上である芯材構成材料を使用することにより、プレート部の破損が抑制され、該プレート部を有するチタン系圧粉体を製造することが可能になる。また、ちょう度が50以上である芯材構成材料は、冷間等方圧加圧後にチタン系圧粉体から容易に取り出すことができる。 As a result of intensive studies, the inventor found that if a core component material with a consistency of 50 or higher is used as the core material placed in a resin mold, titanium-based powder compacts with a plate section erected in the internal space can be obtained. It has been found that it can be produced satisfactorily. For materials with a consistency of less than 50 and poor fluidity, springback of the core material when the load is unloaded by cold isostatic pressing may cause the plate part, which is thin to some extent, of titanium-based powder compacts to It is assumed that it will be easily damaged. By using a core constituent material having a consistency of 50 or more, damage to the plate portion is suppressed, and it becomes possible to manufacture a titanium-based green compact having the plate portion. Moreover, the core material constituent material having a consistency of 50 or more can be easily taken out from the titanium-based green compact after cold isostatic pressing.
(1)この発明のチタン系圧粉体の製造方法は、当該チタン系圧粉体が、外部への開口部を含む内部空間を形成した中空本体部と、前記中空本体部の前記内部空間に臨む内面に立てて設けられ、該内面上で延びるプレート部とを有し、前記製造方法が、樹脂製のモールドの芯材配置スペースに、前記内部空間を形成する芯材を配置する工程と、前記モールドの成形空間に原料粉末を充填する工程と、前記芯材配置スペースに前記芯材が配置された状態で、前記成形空間に前記原料粉末を充填した前記モールドに対して300MPa以上の加圧力にて冷間等方圧加圧を行う工程とを含み、前記芯材として、ちょう度が50以上である芯材構成材料を使用するというものである。 (1) The method for producing a titanium-based green compact according to the present invention is such that the titanium-based powder green body has a hollow main body portion forming an internal space including an opening to the outside, and a hollow main body portion having an internal space including an opening to the outside. and a plate portion that is provided upright on a facing inner surface and extends on the inner surface, and the manufacturing method includes a step of arranging a core material forming the inner space in a core material arrangement space of a resin mold; filling the molding space of the mold with raw material powder, and applying a pressure of 300 MPa or more to the mold with the molding space filled with the raw material powder with the core material arranged in the core material arrangement space; The method includes a step of performing cold isostatic pressurization in a step, and a core material constituting material having a consistency of 50 or more is used as the core material.
(2)上記(1)の項に記載のチタン系圧粉体の製造方法において、前記芯材構成材料のちょう度は、60以上かつ240以下であることが好ましい。 (2) In the method for producing a titanium-based green compact according to item (1) above, it is preferable that the core constituent material has a consistency of 60 or more and 240 or less.
(3)上記(1)又は(2)の項に記載のチタン系圧粉体の製造方法において、前記芯材構成材料は、ポリブテン樹脂または粘土を含むことが好ましい。 (3) In the method for producing a titanium-based green compact according to item (1) or (2) above, it is preferable that the core constituent material contains a polybutene resin or clay.
(4)上記(1)~(3)のいずれか一項に記載のチタン系圧粉体の製造方法において、インペラー用のチタン系圧粉体では、前記中空本体部は、互いに間隔をおいて配置されて相互間に前記内部空間を設けた一対の円盤状部分を含むケーシング部であり、前記プレート部は、前記円盤状部分の相互間で、該円盤状部分の中心から半径方向外側に向けて、真っ直ぐに、あるいは湾曲箇所及び/又は屈曲箇所を含んで延びる羽根部である場合がある。 (4) In the method for producing a titanium-based powder compact according to any one of (1) to (3) above, in the titanium-based powder compact for an impeller, the hollow main body portions are spaced apart from each other. A casing portion including a pair of disk-shaped portions arranged to provide the internal space therebetween, and the plate portion is oriented radially outward from the center of the disk-shaped portion between the disk-shaped portions. The blade portion may extend straight or include curved and/or bent portions.
(5)上記(4)の項に記載のチタン系圧粉体の製造方法において、チタン系圧粉体は、該チタン系圧粉体の前記プレート部を含んで中心軸線に直交する断面で、前記プレート部の延びる方向に垂直な垂線上にて、周方向で前記プレート部の両側に位置する各空間部分における長さの合計に対する、プレート部の厚みに相当する長さの比が0.05以上かつ0.25以下になる箇所が、当該チタン系圧粉体に存在する場合がある。 (5) In the method for producing a titanium-based green compact according to item (4) above, the titanium-based green compact has a cross section perpendicular to the central axis including the plate portion of the titanium-based green compact, The ratio of the length corresponding to the thickness of the plate portion to the total length of each space portion located on both sides of the plate portion in the circumferential direction on a perpendicular line perpendicular to the extending direction of the plate portion is 0.05. There may be a portion in the titanium-based powder compact where the value is above and below 0.25.
(6)上記(1)~(5)のいずれか一項に記載のチタン系圧粉体の製造方法において、前記モールドとしては、ショアD硬さが30~120の範囲内である熱可塑性樹脂からなるモールドを用いることが好ましい。
(7)上記(6)に記載のチタン系圧粉体の製造方法において、前記モールドとしては、ショアD硬さが30~85の範囲内である熱可塑性樹脂からなるモールドを用いることが好ましい。
(8)上記(1)~(7)のいずれか一項に記載のチタン系圧粉体の製造方法において、前記モールドの厚みは0.5mm~2.0mmであることが好ましい。
(6) In the method for producing a titanium green compact according to any one of (1) to (5) above, the mold is made of a thermoplastic resin having a Shore D hardness within the range of 30 to 120. It is preferable to use a mold consisting of:
(7) In the method for producing a titanium green compact described in (6) above, it is preferable to use a mold made of a thermoplastic resin having a Shore D hardness in the range of 30 to 85.
(8) In the method for producing a titanium green compact according to any one of (1) to (7) above, the thickness of the mold is preferably 0.5 mm to 2.0 mm.
(9)上記(1)~(8)のいずれか一項に記載のチタン系圧粉体の製造方法において、前記モールドとしては、三次元造形装置を用いて作製されたモールドを用いることができる。 (9) In the method for producing a titanium-based powder compact according to any one of (1) to (8) above, the mold may be a mold produced using a three-dimensional modeling device. .
(10)この発明のチタン系焼結体の製造方法は、上記(1)~(9)のいずれか一項に記載のチタン系圧粉体の製造方法により製造されたチタン系圧粉体を加熱して焼結させる焼結工程を含むものである。 (10) The method for producing a titanium-based sintered body of the present invention is a method for producing a titanium-based powder compact produced by the method for producing a titanium-based powder compact according to any one of (1) to (9) above. This includes a sintering step of heating and sintering.
 この発明のチタン系圧粉体の製造方法によれば、所定の複雑な形状を有するチタン系圧粉体を、比較的簡易に製造することができる。 According to the method for producing a titanium-based powder compact of the present invention, a titanium-based powder compact having a predetermined complicated shape can be produced relatively easily.
この発明の一の実施形態に係る製造方法により製造することができるチタン系圧粉体の一例を示す斜視図である。1 is a perspective view showing an example of a titanium-based powder compact that can be manufactured by a manufacturing method according to an embodiment of the present invention. 図2(a)は、図1のチタン系圧粉体の平面図であり、図2(b)は、図2(a)のb-b線に沿う断面図である。2(a) is a plan view of the titanium-based compact shown in FIG. 1, and FIG. 2(b) is a cross-sectional view taken along line bb in FIG. 2(a). 図3(a)は、図1のチタン系圧粉体の側面図であり、図3(b)は、図3(a)のb-b線に沿う断面図である。FIG. 3(a) is a side view of the titanium-based compact shown in FIG. 1, and FIG. 3(b) is a cross-sectional view taken along line bb in FIG. 3(a). 図4(a)は、図1のチタン系圧粉体の製造に用いられ得るモールド及び芯材を示す、中心軸線に沿う断面図であり、図4(b)は、図4(a)のb-b線に沿う断面図である。FIG. 4(a) is a sectional view taken along the central axis line, showing a mold and core material that can be used for manufacturing the titanium-based compact shown in FIG. FIG. 3 is a cross-sectional view taken along line bb. 図4のモールド及び芯材を用いて冷間等方圧加圧を行う状態を模式的に示す、中心軸線に沿う断面図である。FIG. 5 is a cross-sectional view taken along the central axis line, schematically showing a state in which cold isostatic pressing is performed using the mold and core material of FIG. 4 . この発明の一の実施形態に係る製造方法により製造することができるチタン系圧粉体の他の例を示す斜視図である。FIG. 3 is a perspective view showing another example of a titanium-based powder compact that can be manufactured by the manufacturing method according to one embodiment of the present invention. 図7(a)は、図6のチタン系圧粉体の平面図であり、図7(b)は、図7(a)のb-b線に沿う断面図である。7(a) is a plan view of the titanium-based powder compact of FIG. 6, and FIG. 7(b) is a sectional view taken along line bb of FIG. 7(a). 図8(a)は、図6のチタン系圧粉体の側面図であり、図8(b)は、図8(a)のb-b線に沿う断面図である。FIG. 8(a) is a side view of the titanium-based powder compact of FIG. 6, and FIG. 8(b) is a sectional view taken along line bb of FIG. 8(a). この発明の一の実施形態に係る製造方法により製造することができるチタン系圧粉体のさらに他の例を示す斜視図である。It is a perspective view showing still another example of the titanium-based green compact which can be manufactured by the manufacturing method concerning one embodiment of this invention. 図10(a)は、図9のチタン系圧粉体の平面図であり、図10(b)は、図10(a)のb-b線に沿う断面図である。10(a) is a plan view of the titanium-based compact shown in FIG. 9, and FIG. 10(b) is a sectional view taken along line bb in FIG. 10(a). 図11(a)は、図9のチタン系圧粉体の側面図であり、図11(b)は、図11(a)のb-b線に沿う断面図である。11(a) is a side view of the titanium-based green compact shown in FIG. 9, and FIG. 11(b) is a sectional view taken along line bb in FIG. 11(a). この発明の一の実施形態に係る製造方法により製造することができるチタン系圧粉体のさらに他の例を示す斜視図である。It is a perspective view showing still another example of the titanium-based green compact which can be manufactured by the manufacturing method concerning one embodiment of this invention. 図13(a)は、図12のチタン系圧粉体の平面図であり、図13(b)は、図13(a)のb-b線に沿う断面図である。13(a) is a plan view of the titanium-based powder compact of FIG. 12, and FIG. 13(b) is a sectional view taken along line bb of FIG. 13(a). 図14(a)は、図12のチタン系圧粉体の側面図であり、図14(b)は、図14(a)のb-b線に沿う断面図である。14(a) is a side view of the titanium-based powder compact of FIG. 12, and FIG. 14(b) is a sectional view taken along the line bb of FIG. 14(a). この発明の一の実施形態に係る製造方法により製造することができるチタン系圧粉体のさらに他の例を示す斜視図である。It is a perspective view showing still another example of the titanium-based green compact which can be manufactured by the manufacturing method concerning one embodiment of this invention. 図16(a)は、図15のチタン系圧粉体の平面図であり、図16(b)は、図16(a)のb-b線に沿う断面図である。16(a) is a plan view of the titanium-based compact shown in FIG. 15, and FIG. 16(b) is a cross-sectional view taken along line bb in FIG. 16(a). 図15のチタン系圧粉体の側面図である。16 is a side view of the titanium-based powder compact of FIG. 15. FIG.
 以下に図面を参照しながら、この発明の実施の形態について詳細に説明する。
 この発明の一の実施形態に係るチタン系圧粉体の製造方法では、図1~3に例示するような、開口部2aを含む内部空間2bにプレート部3を設けたチタン系圧粉体1等を製造する。なお、ここでいう「チタン系」には、純チタンのチタン製だけでなく、チタン合金製も含まれるものとする。
Embodiments of the present invention will be described in detail below with reference to the drawings.
In the method for producing a titanium-based powder compact according to one embodiment of the present invention, a titanium-based powder compact 1 is provided with a plate portion 3 in an internal space 2b including an opening 2a, as illustrated in FIGS. 1 to 3. etc. Note that the term "titanium-based" herein includes not only pure titanium but also titanium alloys.
 このような内部空間2bにプレート部3を設けたチタン系圧粉体1を製造するため、この実施形態では、冷間等方圧加圧に先立って、樹脂製のモールドの芯材配置スペースに、内部空間を形成する芯材を配置するに当り、その芯材として、ちょう度が50以上である芯材構成材料を使用する。 In order to manufacture the titanium-based powder compact 1 in which the plate portion 3 is provided in the internal space 2b, in this embodiment, prior to cold isostatic pressing, the core material placement space of the resin mold is When arranging the core material forming the internal space, a material constituting the core material having a consistency of 50 or more is used as the core material.
 ちょう度が50以上である芯材構成材料で構成される芯材は、比較的低粘度で流動性が高いので、冷間等方圧加圧の後にその荷重が取り除かれたとき、それほどスプリングバックが起こらず、それによるチタン系圧粉体のプレート部の破損が抑えられると推測される。また、ちょう度が50以上である芯材構成材料の芯材は、流動性を有することから、冷間等方圧加圧後にチタン系圧粉体から容易に取り出すことができる。その結果として、所定の複雑な形状を有するチタン系圧粉体を、比較的簡易に製造することができる。 A core made of core material with a consistency of 50 or higher has a relatively low viscosity and high fluidity, so when the load is removed after cold isostatic pressing, it will not have much springback. It is presumed that this prevents damage to the plate portion of the titanium-based green compact from occurring. Moreover, since the core material of the core material having a consistency of 50 or more has fluidity, it can be easily taken out from the titanium compact after cold isostatic pressing. As a result, a titanium-based green compact having a predetermined complicated shape can be produced relatively easily.
(製造方法)
 ここでは、一例として、図1~3に示すチタン系圧粉体1を製造する方法について詳説する。このチタン系圧粉体1は、外部への開口部2aを含む内部空間2bを形成した中空本体部2と、中空本体部2の内部空間2bに臨む内面2cに立てて設けられ、該内面2c上で延びるプレート部3とを有するものである。
(Production method)
Here, as an example, a method for manufacturing the titanium-based powder compact 1 shown in FIGS. 1 to 3 will be explained in detail. This titanium-based powder compact 1 is provided upright on a hollow main body part 2 forming an internal space 2b including an opening 2a to the outside, and an inner surface 2c facing the inner space 2b of the hollow main body part 2, and the inner surface 2c It has a plate portion 3 extending above.
 ここで、中空本体部2には、互いに間隔をおいて平行に配置された一対の円盤状部分4a、4b、並びに、円盤状部分4a、4b間で中心軸線と平行に延びて円盤状部分4a、4bの相互を連結する円柱状の連結部分5が含まれる(図2及び3参照)。内部空間2bは、円盤状部分4a、4bの相互間で連結部分5の外周側に区画されており、中空本体部2の外面から窪んで該外面よりも奥まった位置に存在する。この内部空間2bは、中空本体部2の外面のうちの円盤状部分4a、4bの外周面の相互間に、外部への開口部2aがある。なお、各円盤状部分4a、4bの外側を向く外端面と外周面との間の境界は、必要に応じて、たとえば曲面状の、全周にわたる面取り部4cを形成することができる。 Here, the hollow main body part 2 includes a pair of disc-shaped parts 4a and 4b arranged parallel to each other at intervals, and a disc-shaped part 4a extending parallel to the central axis between the disc-shaped parts 4a and 4b. , 4b are included (see FIGS. 2 and 3). The internal space 2b is defined on the outer peripheral side of the connecting portion 5 between the disc-shaped portions 4a and 4b, and is recessed from the outer surface of the hollow main body portion 2 and exists at a position deeper than the outer surface. This internal space 2b has an opening 2a to the outside between the outer peripheral surfaces of the disk-shaped portions 4a and 4b of the outer surface of the hollow main body portion 2. In addition, the boundary between the outer end surface facing the outside of each disk-shaped part 4a, 4b, and an outer peripheral surface can form the chamfered part 4c of the curved surface shape over the entire circumference as needed.
 そして、プレート部3は、円盤状部分4a、4bの内部空間2bに臨んで内部空間2b側を向く内面2c(より詳細には、円盤状部分4a、4bの内部空間2b側を向く内端面)に設けられている。プレート部3は一枚又は複数枚とすることができ、図示の例では六枚存在する。各プレート部3は、内面2c(各円盤状部分4a、4bのそれぞれの内端面)と一体に形成され、該内面2cから立ち上がった姿勢で内面2c上にて延びるものとしている。 The plate portion 3 has an inner surface 2c facing the inner space 2b of the disc-shaped parts 4a, 4b and facing the inner space 2b (more specifically, an inner end face of the disc-shaped parts 4a, 4b facing the inner space 2b). It is set in. The number of plate portions 3 can be one or more, and in the illustrated example, there are six. Each plate portion 3 is formed integrally with the inner surface 2c (the inner end surface of each disc-shaped portion 4a, 4b), and extends on the inner surface 2c in an upright position from the inner surface 2c.
 この例では、複数枚のプレート部3は、円盤状部分4a、4bの中心の連結部分5に接続されており、その連結部分5から半径方向外側に向かって放射状に真っ直ぐ延びる形状を有する。内部空間2bは、図3に示すように、複数枚のプレート部3で、それに対応する数の複数箇所の空間部分に区分けされており、各空間部分の半径方向の最も外側に複数の開口部2aが存在する。 In this example, the plurality of plate parts 3 are connected to a connecting part 5 at the center of the disc-shaped parts 4a and 4b, and have a shape that extends straight radially outward from the connecting part 5. As shown in FIG. 3, the internal space 2b is divided into a corresponding number of space parts by a plurality of plate parts 3, and a plurality of openings are provided at the outermost radial direction of each space part. 2a exists.
 上記のチタン系圧粉体1を成形するモールド51は、図4(a)及び(b)に示すように、当該チタン系圧粉体1の形状に対応する形状の成形空間52が設けられる。より詳細には、このモールド51は、互いに間隔をおいて配置された一対の中空の円盤状壁部53a、53bと、円盤状壁部53a、53b間の中心で中心軸線と平行に延びて各円盤状壁部53a、53bに連結された中空の円柱状壁部54と、円盤状壁部53a、53b間で、それらの円盤状壁部53a、53b及び円柱状壁部54のそれぞれに連結されて放射状に延びる複数個の中空の板状壁部55とを有するものである。 The mold 51 for molding the titanium-based green compact 1 is provided with a molding space 52 having a shape corresponding to the shape of the titanium-based green compact 1, as shown in FIGS. 4(a) and (b). More specifically, this mold 51 includes a pair of hollow disc-shaped walls 53a, 53b arranged at intervals, and a wall extending parallel to the central axis at the center between the disc-shaped walls 53a, 53b. A hollow cylindrical wall 54 connected to the disc-shaped walls 53a, 53b, and a hollow columnar wall 54 connected to each of the disc-shaped walls 53a, 53b and the cylindrical wall 54 between the disc-shaped walls 53a, 53b. It has a plurality of hollow plate-like wall portions 55 extending radially.
 図示のモールド51では、いずれも中空の円盤状壁部53a、53b、円柱状壁部54及び板状壁部55の内部に、成形空間52が区画されている。円盤状壁部53a、53bの内部の成形面で、チタン系圧粉体1の円盤状部分4a、4bが、また円柱状壁部54の内部の成形面で、チタン系圧粉体1の連結部分5が、また板状壁部55の内部の成形面で、チタン系圧粉体1のプレート部3がそれぞれ形成される。なお、このモールド51では、一方の円盤状壁部53aの外側の中央部分に、成形空間52への原料粉末71の供給に用いる貫通孔53cが設けられているが、貫通孔はモールドの他の部分に設けてもよい。また、貫通孔53cの個数は一個に限らず、複数個でもよい。 In the illustrated mold 51, a molding space 52 is defined inside the hollow disc-shaped walls 53a, 53b, the cylindrical wall 54, and the plate-shaped wall 55. The disk-shaped parts 4a and 4b of the titanium-based powder compact 1 are connected on the forming surfaces inside the disk- like walls 53a and 53b, and the titanium-based powder compact 1 is connected on the forming surface inside the columnar wall 54. The plate portion 3 of the titanium-based powder compact 1 is formed at the portion 5 and the molding surface inside the plate-like wall portion 55, respectively. In addition, in this mold 51, a through hole 53c used for supplying the raw material powder 71 to the molding space 52 is provided in the center portion of the outside of one disk-shaped wall portion 53a, but the through hole is not provided in the other part of the mold. It may be provided in some parts. Further, the number of through holes 53c is not limited to one, but may be plural.
 モールド51は樹脂製であり、好ましくは熱可塑性樹脂製とし、特にアクリル樹脂、エラストマーを含有するアクリル樹脂、ポリ乳酸(PLA)樹脂等で形成されたものとすることが好適である。樹脂製のモールド51は、所要の強度を確保して原料粉末71の充填時にもその形状を維持するため、ショアD硬さが30~120の範囲内である熱可塑性樹脂からなることが好ましく、30~85の範囲内である熱可塑性樹脂としてもよい。ショアD硬さは、JIS K7215(1986)に準拠する試験方法によって測定することができる。また同様の観点から、樹脂製のモールド51の厚みは、0.5mm~2.0mmであるものとすることが好ましい。 The mold 51 is made of resin, preferably thermoplastic resin, and is particularly preferably made of acrylic resin, elastomer-containing acrylic resin, polylactic acid (PLA) resin, or the like. The resin mold 51 is preferably made of a thermoplastic resin with a Shore D hardness within the range of 30 to 120 in order to ensure the required strength and maintain its shape even when filling the raw material powder 71. It may also be a thermoplastic resin having a molecular weight within the range of 30 to 85. Shore D hardness can be measured by a test method based on JIS K7215 (1986). From the same viewpoint, the thickness of the resin mold 51 is preferably 0.5 mm to 2.0 mm.
 樹脂製のモールド51は、種々の方法により作製することが可能であるが、三次元造形装置(いわゆる3Dプリンタ)を用いて作製されたものであることが好ましい。これにより、様々な形状のモールド51を容易に作製することができる。三次元造形装置の造形方式は特に問わず、たとえば光造形方式、インクジェット方式、インクジェット粉末積層方式、粉末焼結積層造形方式、熱溶解積層方式又は粉末固着方式等のいずれであってもよい。 Although the resin mold 51 can be produced by various methods, it is preferably produced using a three-dimensional modeling device (so-called 3D printer). Thereby, molds 51 of various shapes can be easily produced. The modeling method of the three-dimensional printer is not particularly limited, and may be any one of, for example, a stereolithography method, an inkjet method, an inkjet powder layering method, a powder sintering layered manufacturing method, a hot melt layering method, or a powder fixation method.
 モールド51の成形空間52に充填する原料粉末71としては、チタン粉末、合金元素粉末、母合金粉末等の様々な粉末を、必要に応じて組み合わせて用いることができる。このチタン粉末には、実質的にチタンのみからなる純チタン粉末や、主としてチタンを含有し、水素を5質量%以下で含む水素化チタン粉末等がある。純チタン粉末は、たとえば、水素化チタン粉末に脱水素処理を行って得られる水素化脱水素粉末とすることがある。なお、原料粉末71が水素化チタン粉末を含む場合は、後述するようにチタン系圧粉体1を加熱して焼結させる工程を行うことが望ましい。また、上記の合金元素粉末はチタン合金の合金元素を単独で含む粉末、母合金粉末は複数の元素を含む粉末をそれぞれ意味する。原料粉末71は、たとえば、チタン粉末のみとすることができる他、チタン粉末に、鉄、アルミニウム、バナジウム、ジルコニウム、錫、モリブデン、銅及びニッケルからなる群から選択される一種の合金元素粉末及び/又は、それらの二種以上の母合金粉末を混合させたものとしてもよい。あるいは、チタン及び合金元素を含む粉末だけを、原料粉末71とすることも可能である。なお、純チタンとは、チタン含有量が99質量%以上であるチタンを意味する。原料粉末71中のチタンに対する合金元素の質量比は、チタンを1とした場合、0~0.33の範囲内とすることがあり、たとえば0~0.11である。 As the raw material powder 71 to be filled into the molding space 52 of the mold 51, various powders such as titanium powder, alloying element powder, mother alloy powder, etc. can be used in combination as necessary. This titanium powder includes pure titanium powder consisting essentially only of titanium, titanium hydride powder mainly containing titanium, and containing hydrogen in an amount of 5% by mass or less. The pure titanium powder may be, for example, a hydride-dehydrogenated powder obtained by dehydrogenating titanium hydride powder. In addition, when the raw material powder 71 contains titanium hydride powder, it is desirable to perform a step of heating and sintering the titanium-based powder compact 1 as described later. Further, the above-mentioned alloying element powder means a powder containing a single alloying element of a titanium alloy, and the mother alloy powder means a powder containing a plurality of elements. The raw material powder 71 may be, for example, only titanium powder, or may include titanium powder, an alloying element powder selected from the group consisting of iron, aluminum, vanadium, zirconium, tin, molybdenum, copper, and nickel, and/or powder. Alternatively, a mixture of two or more types of master alloy powders may be used. Alternatively, it is also possible to use only a powder containing titanium and an alloying element as the raw material powder 71. Note that pure titanium means titanium having a titanium content of 99% by mass or more. The mass ratio of the alloying element to titanium in the raw material powder 71 may be in the range of 0 to 0.33, for example, 0 to 0.11, where titanium is 1.
 原料粉末71の平均粒径は、10μm~150μmとすることが好ましい。このように比較的微細な粒子を使用することにより、冷間等方圧加圧後のチタン系圧粉体、さらには加熱後のチタン系焼結体の圧縮密度を向上させることができる。平均粒径は、レーザー回折散乱法によって得られた粒度分布(体積基準)の粒子径D50(メジアン径)を意味する。原料粉末71には、破砕粉末やアトマイズ粉末等の公知の粉末を使用可能である。 The average particle size of the raw material powder 71 is preferably 10 μm to 150 μm. By using such relatively fine particles, it is possible to improve the compressed density of the titanium-based green compact after cold isostatic pressing and furthermore of the titanium-based sintered body after heating. The average particle diameter means the particle diameter D50 (median diameter) of the particle size distribution (volume basis) obtained by a laser diffraction scattering method. As the raw material powder 71, known powders such as crushed powder and atomized powder can be used.
 上記のモールド51及び原料粉末71を用いてチタン系圧粉体1を製造するには、モールド51の芯材配置スペースに、チタン系圧粉体1の内部空間2bを形成するための芯材61を配置する。図4に示すところでは、モールド51における一対の円盤状壁部53a、53bの相互間にて、円柱状壁部54の外周側で周方向に隣り合う板状壁部55間のスペースに芯材61が配置されており、このスペースが芯材配置スペースに相当する。流動性を有する芯材構成材料は、芯材配置スペースの周囲の、外部への開口部から芯材配置スペースに流し込んで充填することができ、それにより、芯材配置スペースに芯材61が配置される。芯材61を配置した後、芯材配置スペースの当該開口部は、たとえば板状等の密閉部材56で閉じることで、芯材配置スペースを密閉することができる(図5参照)。 In order to manufacture the titanium-based powder compact 1 using the mold 51 and the raw material powder 71, a core material 61 is placed in the core arrangement space of the mold 51 to form the internal space 2b of the titanium-based powder compact 1. Place. As shown in FIG. 4, between the pair of disc-shaped walls 53a and 53b in the mold 51, a core material is formed in the space between the circumferentially adjacent plate-shaped walls 55 on the outer peripheral side of the columnar wall 54. 61 is arranged, and this space corresponds to the core material arrangement space. The core material having flowability can be filled by pouring into the core material arrangement space from the opening to the outside around the core material arrangement space, whereby the core material 61 is arranged in the core material arrangement space. be done. After arranging the core material 61, the opening of the core material arrangement space can be closed with a sealing member 56, such as a plate, to seal the core material arrangement space (see FIG. 5).
 また、モールド51の芯材配置スペースに芯材61を配置する工程の前又は後に、モールド51の成形空間52に、貫通孔53cを通じて原料粉末71を充填する。成形空間52に原料粉末71を充填した後、貫通孔53cには、たとえばモールド51と実質的に同種の材料等からなる板状等の蓋部材57が設けられ、これにより成形空間52は密閉される(図5参照)。 Furthermore, before or after the step of arranging the core material 61 in the core material arrangement space of the mold 51, the raw material powder 71 is filled into the molding space 52 of the mold 51 through the through hole 53c. After filling the molding space 52 with the raw material powder 71, a plate-shaped lid member 57 made of, for example, substantially the same material as the mold 51 is provided in the through hole 53c, thereby sealing the molding space 52. (See Figure 5).
 なお、芯材配置スペースに芯材61を配置する工程と、モールド51の成形空間52に原料粉末71を充填する工程を行う順序の先後は問わず、いずれの工程を先に行ってもよい。また、貫通孔53cに設ける蓋部材57及び/又は、芯材配置スペースの開口部を閉じる密閉部材56に代えて、図示は省略するが、モールド全体を袋状等の被覆部材で覆ってもよい。この場合、必要に応じて、次に述べる冷間等方圧加圧の前に、モールドを包み込んだ被覆部材の内部の減圧処理等が行われ得る。 Note that the process of arranging the core material 61 in the core material arrangement space and the process of filling the molding space 52 of the mold 51 with the raw material powder 71 may be performed in any order, and either process may be performed first. Further, instead of the lid member 57 provided in the through hole 53c and/or the sealing member 56 that closes the opening of the core material arrangement space, the entire mold may be covered with a bag-like covering member, although not shown. . In this case, if necessary, the interior of the covering member surrounding the mold may be depressurized before the cold isostatic press described below.
 その後、芯材配置スペースに芯材61が配置された状態で、成形空間52に原料粉末71を充填したモールド51に対し、冷間等方圧加圧装置内で冷間等方圧加圧(CIP)を行う。ここでは、図5に示すように、モールド51がその外側から加圧される。なお、密閉部材56及び蓋部材57はモールド51の一部を構成するものとし、密閉部材56及び蓋部材57にもその外側から加圧力が作用する。モールド51の加圧に伴い、モールド51の成形空間52の原料粉末71は圧縮されて締め固められ、チタン系圧粉体1になる。 Thereafter, with the core material 61 arranged in the core material arrangement space, the mold 51 with the raw material powder 71 filled in the molding space 52 is subjected to cold isostatic pressure in a cold isostatic pressure device. CIP). Here, as shown in FIG. 5, the mold 51 is pressurized from the outside. Note that the sealing member 56 and the lid member 57 constitute a part of the mold 51, and pressure is applied to the sealing member 56 and the lid member 57 from the outside. As the mold 51 is pressurized, the raw material powder 71 in the molding space 52 of the mold 51 is compressed and compacted, and becomes the titanium-based compact 1 .
 冷間等方圧加圧では、モールド51はその形状のいかんを問わず、周囲の流体により等方圧(静水圧等)で加圧される。それ故に、冷間等方圧加圧によると、種々の形状のモールド51を用いてチタン系圧粉体1を製造することができる。 In cold isostatic pressurization, the mold 51 is pressurized with isostatic pressure (hydrostatic pressure, etc.) by the surrounding fluid, regardless of its shape. Therefore, by cold isostatic pressing, the titanium-based powder compact 1 can be manufactured using molds 51 of various shapes.
 冷間等方圧加圧でモールド51に作用させる加圧力は、300MPa以上とし、好ましくは400MPa以上である。加圧力を300MPa未満にすると、原料粉末71が十分に圧縮されず、チタン系圧粉体1の形状精度が不十分となる。加圧力は、たとえば750MPa以下、また600MPa以下、典型的には500MPa以下とすることがある。また、そのような加圧力での保持時間は、たとえば0.5分~30分とする場合がある。 The pressure applied to the mold 51 by cold isostatic pressing is 300 MPa or more, preferably 400 MPa or more. If the pressing force is less than 300 MPa, the raw material powder 71 will not be sufficiently compressed, and the shape accuracy of the titanium-based compact 1 will become insufficient. The pressing force may be, for example, 750 MPa or less, or 600 MPa or less, and typically 500 MPa or less. Further, the holding time under such pressure may be, for example, 0.5 minutes to 30 minutes.
 冷間等方圧加圧の工程後は、冷間等方圧加圧装置からチタン系圧粉体1を、モールド51及び芯材61とともに取り出す。その後、チタン系圧粉体1からモールド51及び芯材61を除去する。このとき、芯材61は、流動性を有するので容易に取り除くことが可能である。芯材61を構成する芯材構成材料の種類等によっては、芯材61はモールド51の一部とともに取り出すことがある。なお、モールド51は、必要に応じて除去前に、大気中で100℃程度に加熱して軟化させてもよい。これにより、チタン系圧粉体1を製造することができる。 After the cold isostatic pressing step, the titanium-based powder compact 1 is taken out together with the mold 51 and the core material 61 from the cold isostatic pressing device. Thereafter, the mold 51 and the core material 61 are removed from the titanium-based compact 1. At this time, since the core material 61 has fluidity, it can be easily removed. Depending on the type of core material forming the core material 61, the core material 61 may be taken out together with a part of the mold 51. Note that the mold 51 may be heated to about 100° C. in the atmosphere to soften it before removal, if necessary. Thereby, the titanium-based green compact 1 can be manufactured.
 チタン系焼結体を製造する場合、冷間等方圧加圧の工程の後、チタン系圧粉体1を加熱する工程を行う。チタン系圧粉体1は加熱すると、それを構成する粒子が焼結してチタン系焼結体になる。なお、製造されたチタン系圧粉体やチタン系焼結体は切削や研磨などの更なる処理に供することができる。 When producing a titanium-based sintered body, a step of heating the titanium-based compact 1 is performed after the cold isostatic pressing step. When the titanium-based green compact 1 is heated, the particles constituting it are sintered to become a titanium-based sintered body. Note that the manufactured titanium-based green compact and titanium-based sintered body can be subjected to further processing such as cutting and polishing.
 この工程では、チタン系圧粉体1を無加圧で、たとえば1200℃~1300℃の温度にて1時間~3時間にわたって加熱することができる。また、それに代えて又は加えて、チタン系圧粉体1に熱間等方圧加圧(HIP)を施し、たとえば800℃~1000℃の温度にて、チタン系圧粉体1に対し、アルゴンガス等の圧力媒体により100MPa~200MPa程度の等方圧を30分~180分にわたって作用させてもよい。 In this step, the titanium-based powder compact 1 can be heated without pressure at a temperature of, for example, 1200° C. to 1300° C. for 1 hour to 3 hours. Alternatively or additionally, hot isostatic pressing (HIP) is applied to the titanium-based green compact 1, and argon gas An isostatic pressure of about 100 MPa to 200 MPa may be applied for 30 minutes to 180 minutes using a pressure medium such as gas.
 無加圧の加熱及び/又は熱間等方圧加圧により、チタン系焼結体を製造することができる。無加圧の加熱及び熱間等方圧加圧の両方を行う場合は、その順序は特に問わないが、たとえば無加圧の加熱後に熱間等方圧加圧を行うことができる。 A titanium-based sintered body can be produced by pressureless heating and/or hot isostatic pressing. When both pressureless heating and hot isostatic pressing are performed, the order is not particularly limited, but for example, hot isostatic pressing can be performed after pressureless heating.
 上述したような製造方法において、モールド51の芯材配置スペースに配置する芯材61は、ちょう度が50以上である芯材構成材料で構成されるものとする。 In the manufacturing method as described above, the core material 61 arranged in the core material arrangement space of the mold 51 is made of a core material constituting material having a consistency of 50 or more.
 芯材構成材料のちょう度が50以上であれば、芯材61はある程度低粘度で高い流動性を示すので、冷間等方圧加圧時の等方圧の作用に際し、原料粉末71及びモールド51に追従して変形することができる。そのような芯材61を用いると、冷間等方圧加圧後のチタン系圧粉体1の破損が生じにくくなる傾向がある。これは、芯材構成材料のちょう度が50以上であることで、冷間等方圧加圧の荷重が除荷されたときに、適度な粘性及び流動性を有する芯材61がそれほど復元しないことによるものと推察される。ちょう度が50未満の芯材構成材料で構成された芯材61を使用した場合は、冷間等方圧加圧の荷重が取り除かれた際に、芯材61の大きなスプリングバックが起こり得る。これにより、チタン系圧粉体1の特に、芯材61と板状壁部55を介して隣り合う比較的薄肉のプレート部3が破損しやすくなる。 If the consistency of the core material constituent material is 50 or more, the core material 61 exhibits a certain degree of low viscosity and high fluidity. 51. When such a core material 61 is used, the titanium-based powder compact 1 tends to be less likely to be damaged after cold isostatic pressing. This is because the consistency of the core material constituent material is 50 or more, so that the core material 61, which has appropriate viscosity and fluidity, does not recover so much when the load of cold isostatic pressing is removed. It is assumed that this is due to the following. If a core material 61 made of a core material having a consistency of less than 50 is used, a large springback of the core material 61 may occur when the load of cold isostatic pressing is removed. As a result, the relatively thin plate portion 3 of the titanium-based powder compact 1 that is adjacent to the core material 61 with the plate-like wall portion 55 interposed therebetween is likely to be damaged.
 これまでは、内部空間2bにプレート部3が存在するチタン系圧粉体1を製造する場合、内部空間2bの切削加工が困難であることから、プレート部3を溶接して設ける必要があった。但し、チタンやチタン合金は酸素と結合しやすいので、溶接でプレート部3を接合すると、その溶接部は酸素を含みやすく、他の部分と機械的特性が異なるものになるという問題がある。これに対し、上述した実施形態では溶接が不要になり、そのような問題が生じないという利点もある。 Until now, when manufacturing a titanium-based powder compact 1 in which the plate portion 3 exists in the internal space 2b, it was necessary to weld the plate portion 3 because cutting the internal space 2b was difficult. . However, since titanium and titanium alloys easily combine with oxygen, there is a problem that when the plate portion 3 is joined by welding, the welded portion tends to contain oxygen and has different mechanical properties from other parts. In contrast, the embodiments described above do not require welding and have the advantage that such problems do not occur.
 また、芯材構成材料のちょう度が50以上である芯材61は、その流動性の故に、様々な形状の芯材配置スペースに充填して配置することができる。このため、かかる芯材61を使用すれば、多様な形状の内部空間2bのチタン系圧粉体1を製造することができる。 Moreover, the core material 61 whose core material constituting material has a consistency of 50 or more can be filled and arranged in core material arrangement spaces of various shapes because of its fluidity. Therefore, by using such a core material 61, titanium-based powder compacts 1 having internal spaces 2b of various shapes can be manufactured.
 なお一般には、ちょう度が変化しない芯材構成材料を使用するが、たとえば熱による硬化等によって、ちょう度が変化し得る芯材構成材料である場合、モールド51の芯材配置スペースへの充填直前、及び、チタン系圧粉体1から取り出した直後の芯材構成材料のちょう度が、いずれも50以上であればよい。芯材配置スペースへの充填前の芯材構成材料のちょう度が50以上であっても、その充填後に硬化したことによって、そのちょう度が50未満となった場合、冷間等方圧加圧の除荷時に芯材のスプリングバックが起こるおそれがある。 In general, a material constituting the core material whose consistency does not change is used; however, in the case of a material constituting the core material whose consistency can change due to hardening due to heat, etc., immediately before filling the core material arrangement space of the mold 51. , and the consistency of the core constituent material immediately after being taken out from the titanium-based powder compact 1 may all be 50 or more. Even if the consistency of the core component material before filling into the core material placement space is 50 or more, if the consistency becomes less than 50 due to hardening after filling, cold isostatic pressure is applied. Springback of the core material may occur when unloading.
 芯材構成材料のちょう度は、60以上かつ240以下であることが好ましい。ちょう度を60以上とすると、上述したようなチタン系圧粉体1の破損をより一層有効に抑制することができる。一方、ちょう度を240以下としたときは、芯材61をチタン系圧粉体1から除去する際等の芯材61の付着や内部への浸透によるチタン系圧粉体1の汚染が抑えられる。チタン系圧粉体1に芯材構成材料が付着ないし浸透した場合、その後の焼結時に酸素や炭素、窒素等の濃度が局所的に上昇し、チタン系焼結体の機械的特性が低下すること等が懸念される。また、ちょう度が適切な大きさであれば、芯材の、芯材配置スペースへの充填やそこからの取出しが容易になる。 The consistency of the core constituent material is preferably 60 or more and 240 or less. When the consistency is 60 or more, damage to the titanium-based powder compact 1 as described above can be suppressed even more effectively. On the other hand, when the consistency is set to 240 or less, contamination of the titanium-based powder compact 1 due to adhesion of the core material 61 or penetration into the interior when the core material 61 is removed from the titanium-based powder compact 1 can be suppressed. . If the core material constituent material adheres to or permeates into the titanium-based green compact 1, the concentration of oxygen, carbon, nitrogen, etc. increases locally during subsequent sintering, and the mechanical properties of the titanium-based sintered body deteriorate. There are concerns about this. Moreover, if the consistency is appropriate, it becomes easy to fill the core material into the core material arrangement space and to take it out from there.
 芯材構成材料のちょう度は、JIS K2220:2013に準拠し、標準円すいを用いて測定する。 The consistency of the core material is measured using a standard cone in accordance with JIS K2220:2013.
 芯材構成材料として具体的には、ポリブテン樹脂、粘土等を挙げることができる。粘土は、土、砂、油脂、パルプ等を含み所定の粘着性を有する人工もしくは自然の土又は粒子の集合体であり、たとえば油粘土等がある。 Specific examples of core material constituent materials include polybutene resin, clay, and the like. Clay is an aggregate of artificial or natural soil or particles containing soil, sand, oil, pulp, etc. and having a predetermined adhesive property, such as oil clay.
(チタン系圧粉体)
 上述した実施形態の製造方法によると、図1~3に示すチタン系圧粉体1を製造することができる。このチタン系圧粉体1の具体的な構成は先に述べたとおりであり、その再度の説明は省略する。
(Titanium-based green compact)
According to the manufacturing method of the embodiment described above, the titanium-based powder compact 1 shown in FIGS. 1 to 3 can be manufactured. The specific structure of this titanium-based powder compact 1 is as described above, and its explanation will be omitted.
 チタン系圧粉体1は、純チタンからなるチタン製、又は、Ti-5Al-1Fe、Ti-5Al-2Fe、Ti-6Al-4V、Ti-6Al-6V-2Sn、Ti-6Al-2Sn-4Zr-2Mo、Ti-6Al-2Sn-4Zr-6Moもしくは、Ti-10V-2Fe-3Al等からなるチタン合金製とすることがある。なお、ここで列挙したチタン合金の成分において各合金元素記号の前に付した数字は、含有量(質量%)を意味する。例えば、「Ti-6Al-4V」とは、6質量%のAlと4質量%のVとを含有するチタン合金を表している。 The titanium-based powder compact 1 is made of titanium made of pure titanium, or made of Ti-5Al-1Fe, Ti-5Al-2Fe, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr. It may be made of a titanium alloy such as -2Mo, Ti-6Al-2Sn-4Zr-6Mo, or Ti-10V-2Fe-3Al. In addition, in the components of the titanium alloy listed here, the number attached before each alloy element symbol means the content (mass %). For example, "Ti-6Al-4V" represents a titanium alloy containing 6% by mass of Al and 4% by mass of V.
 製造の対象とすることができるのは、図1~3に示すチタン系圧粉体1に限らない。その他、たとえば、図6~8に示すチタン系圧粉体11、図9~11に示すチタン系圧粉体21又は、図12~14に示すチタン系圧粉体31を製造することも可能である。 What can be manufactured is not limited to the titanium-based compact 1 shown in FIGS. 1 to 3. In addition, it is also possible to manufacture, for example, the titanium-based powder compact 11 shown in FIGS. 6 to 8, the titanium-based powder compact 21 shown in FIGS. 9 to 11, or the titanium-based powder compact 31 shown in FIGS. 12 to 14. be.
 図6~8に示すチタン系圧粉体11は、図1~3のチタン系圧粉体1の連結部分5に相当する部分が存在せず、一方の円盤状部分14aを、その中心に他方の円盤状部分14bとの間の隙間につながる貫通穴部15のあるリング状のものとしたことを除いて、チタン系圧粉体1とほぼ同様の構成を有するものである。貫通穴部15は、内部空間12bの一部を構成し、その円盤状部分14aの外端面側にも、外部への開口部15aが存在する(図6及び7参照)。なお、一対の円盤状部分14a、14bは、それらの間のプレート部13で互いに連結されている。 The titanium-based powder compact 11 shown in FIGS. 6 to 8 does not have a portion corresponding to the connecting portion 5 of the titanium-based powder compact 1 shown in FIGS. It has almost the same structure as the titanium-based powder compact 1, except that it is ring-shaped with a through hole 15 connected to the gap between the titanium-based powder compact 1 and the disc-shaped part 14b. The through hole portion 15 constitutes a part of the internal space 12b, and an opening portion 15a to the outside is also present on the outer end surface side of the disk-shaped portion 14a (see FIGS. 6 and 7). Note that the pair of disk-shaped portions 14a and 14b are connected to each other by a plate portion 13 between them.
 図9~11に示すチタン系圧粉体21は、図1~3のチタン系圧粉体1の連結部分5に比して直径が大きい連結部分25を有すること、並びに、各プレート部23が、円盤状部分24a、24bの中心から半径方向外側に向かうに伴って周方向の一方側(図11(b)では反時計回りの向き)に突出するように湾曲する箇所を含んで延びることを除いて、チタン系圧粉体1とほぼ同様の構成を有するものである。このチタン系圧粉体21では、プレート部23の全体が湾曲箇所である。但し、図示しないが、プレート部は、全体ではなく、少なくとも一箇所の湾曲箇所を部分的に含むものであってもよい。 The titanium-based powder compact 21 shown in FIGS. 9 to 11 has a connecting portion 25 having a larger diameter than the connecting portion 5 of the titanium-based powder compact 1 in FIGS. 1 to 3, and each plate portion 23 is , extends radially outward from the center of the disc-shaped portions 24a, 24b, including a curved portion that protrudes toward one side in the circumferential direction (counterclockwise in FIG. 11(b)). Except for this, it has almost the same configuration as the titanium-based powder compact 1. In this titanium-based powder compact 21, the entire plate portion 23 is a curved portion. However, although not shown in the drawings, the plate portion may partially include at least one curved portion instead of the entire plate portion.
 図12~14に示すチタン系圧粉体31は、図1~3のチタン系圧粉体1の連結部分5に比して直径が大きい連結部分35を有すること、並びに、各プレート部33が、円盤状部分34a、34bの中心から半径方向外側に向かう途中に、少なくとも一箇所の屈曲箇所を含んで延びることを除いて、チタン系圧粉体1とほぼ同様の構成を有するものである。図示のチタン系圧粉体31では、各プレート部33は複数箇所の屈曲箇所を有し、図14(b)に示すように、半径方向外側に向かう途中で、周方向の一方側に突き出る屈曲箇所と、他方側に突き出る屈曲箇所とが交互に設けられたジグザグ状をなす。なお、円柱状の連結部分35の外面には、ジグザグ状のプレート部33の端部との接続による角部33aが形成されている。 The titanium-based powder compact 31 shown in FIGS. 12 to 14 has a connecting portion 35 having a larger diameter than the connecting portion 5 of the titanium-based powder compact 1 in FIGS. 1 to 3, and each plate portion 33 has a , has almost the same structure as the titanium-based powder compact 1, except that it extends radially outward from the center of the disc-shaped portions 34a and 34b, including at least one bent point. In the illustrated titanium-based powder compact 31, each plate portion 33 has a plurality of bending points, and as shown in FIG. It has a zigzag shape with alternate locations and bent locations protruding to the other side. Note that a corner portion 33 a is formed on the outer surface of the columnar connecting portion 35 by connecting with an end portion of the zigzag plate portion 33 .
 図示は省略するが、図9~11に示すチタン系圧粉体21のプレート部23に含まれるような湾曲箇所と、図12~14に示すチタン系圧粉体31のプレート部33に含まれるような屈曲箇所との両方が存在するプレート部とすることも可能である。 Although not shown, the curved portions included in the plate portion 23 of the titanium-based powder compact 21 shown in FIGS. 9 to 11 and the plate portion 33 of the titanium-based powder compact 31 shown in FIGS. 12 to 14 It is also possible to have a plate portion that has both such bending points.
 図1~図14に示すチタン系圧粉体1、11、21、31は、クローズドインペラー等のインペラーとして用いられ得るものである。それらのチタン系圧粉体1、11、21、31では、一対の円盤状部分4a、4b、14a、14b、24a、24b、34a、34b及び連結部分5、25、35が、インペラーのケーシング部に相当する。いずれのチタン系圧粉体1、11、21及び31も、ケーシング部は、一対の円盤状部分4a、4b、14a、14b、24a、24b、34a、34bを含むものである。また、チタン系圧粉体1、11、21、31のプレート部3、13、23、33は、インペラーの羽根部に相当する。 The titanium-based powder compacts 1, 11, 21, and 31 shown in FIGS. 1 to 14 can be used as an impeller such as a closed impeller. In these titanium-based powder compacts 1, 11, 21, 31, the pair of disc-shaped parts 4a, 4b, 14a, 14b, 24a, 24b, 34a, 34b and the connecting parts 5, 25, 35 are the casing part of the impeller. corresponds to In each of the titanium-based powder compacts 1, 11, 21, and 31, the casing portion includes a pair of disk-shaped portions 4a, 4b, 14a, 14b, 24a, 24b, 34a, and 34b. Furthermore, the plate portions 3, 13, 23, and 33 of the titanium-based powder compacts 1, 11, 21, and 31 correspond to the blade portions of the impeller.
 このようなインペラー用のチタン系圧粉体1、11、21、31は、内部空間2b、12b、22b、32bに存在する羽根部であるプレート部3、13、23、33の厚みが比較的薄いことがある。 In such titanium-based powder compacts 1, 11, 21, and 31 for impellers, the plate portions 3, 13, 23, and 33, which are blade portions existing in the internal spaces 2b, 12b, 22b, and 32b, are relatively thick. May be thin.
 この点について、図1~3に示すチタン系圧粉体1を例として説明すると、このチタン系圧粉体1は、図3(b)に示すような、当該チタン系圧粉体1のプレート部3を含んで中心軸線に直交する断面で視たときに、プレート部3の厚みの、内部空間2bに占める割合ないし領域が小さいものである。より詳細には、チタン系圧粉体1には、上記断面で、プレート部3の延びる方向に垂直な垂線PL(図3(b)に破線で示す。)上にて、周方向でプレート部3の両側に位置する各空間部分における長さ(Ls/2)の合計(Ls)に対する、プレート部3の厚みに相当する長さLtの比(Lt/Ls)が、例えば0.05以上かつ0.25以下になる箇所が存在することがある。チタン系圧粉体のプレート部の全体が、上記の比(Lt/Ls)になる箇所であることまでは要しない。プレート部の少なくとも一部に、上記の比(Lt/Ls)が0.05以上かつ0.25以下になる箇所があれば、当該比(Lt/Ls)になる箇所が存在するチタン系圧粉体に該当する。 This point will be explained using the titanium-based powder compact 1 shown in FIGS. 1 to 3 as an example. When viewed in a cross section including the portion 3 and perpendicular to the central axis, the thickness of the plate portion 3 occupies a small proportion or area in the internal space 2b. More specifically, in the above-mentioned cross section, the titanium-based powder compact 1 has a plate portion in the circumferential direction on a perpendicular line PL (indicated by a broken line in FIG. 3(b)) perpendicular to the direction in which the plate portion 3 extends. The ratio (Lt/Ls) of the length Lt corresponding to the thickness of the plate portion 3 to the total length (Ls) of the lengths (Ls/2) in each space portion located on both sides of the plate portion 3 is, for example, 0.05 or more and There may be locations where the value is 0.25 or less. It is not necessary that the entire plate portion of the titanium-based powder compact has the above ratio (Lt/Ls). If there is a portion where the above ratio (Lt/Ls) is 0.05 or more and 0.25 or less in at least a part of the plate part, the titanium-based compacted powder has a portion where the ratio (Lt/Ls) is Applies to the body.
 プレート部3の周方向両側の各空間部分における長さは、図3(b)のように、当該プレート部3の空間部分を隔てた側方に、それと隣接する他のプレート部3があるときは、当該プレート部3の側面から他のプレート部の側面までの、上記垂線PLに沿う方向の長さを意味する。あるいは、図示は省略するが、プレート部の空間部分を隔てた側方に、内部空間に臨む内面があるときは、当該プレート部の側面から該内面までの垂線方向の長さが、当該プレート部の両側の各空間部分の長さに相当する。 The length of each space portion on both sides in the circumferential direction of the plate portion 3 is as shown in FIG. means the length in the direction along the perpendicular line PL from the side surface of the plate section 3 to the side surface of another plate section. Alternatively, although not shown, if there is an inner surface facing the internal space on the side across the space of the plate, the length in the perpendicular direction from the side of the plate to the inner surface is corresponds to the length of each spatial portion on both sides of .
 上記のような、プレート部3の厚みに相当する長さLtと、その周方向両側の空間部分における長さの合計(Ls)との比(Lt/Ls)が0.05以上かつ0.25以下になる箇所が存在するチタン系圧粉体1は、その製造時に先述した芯材61のスプリングバックに起因する破損が生じやすくなる傾向がある。これに対し、この実施形態によれば、所定の芯材構成材料を使用することにより、そのようなチタン系圧粉体1であっても、プレート部3の破損を抑制しつつ良好に製造することができる。 As described above, the ratio (Lt/Ls) between the length Lt corresponding to the thickness of the plate portion 3 and the total length (Ls) of the space portions on both sides in the circumferential direction is 0.05 or more and 0.25 A titanium-based powder compact 1 having the following locations tends to be easily damaged due to the springback of the core material 61 mentioned above during its manufacture. In contrast, according to this embodiment, by using a predetermined core constituent material, even such a titanium-based powder compact 1 can be manufactured satisfactorily while suppressing damage to the plate portion 3. be able to.
 ところで、この発明の実施形態によると、インペラー用のチタン系圧粉体1、11、21、31だけでなく、図15~17に示す他の用途のチタン系圧粉体41を製造することもできる。 By the way, according to the embodiment of the present invention, not only the titanium-based powder compacts 1, 11, 21, and 31 for impellers, but also the titanium-based powder compacts 41 for other uses shown in FIGS. 15 to 17 can be manufactured. can.
 図15~17のチタン系圧粉体41は、外部への開口部42aを含む内部空間42bを形成した中空本体部42と、中空本体部42の内部空間42bに臨む内面42cに立てて設けられ、内面42c上で延びる三枚のプレート部43とを有するものである。 The titanium-based powder compact 41 shown in FIGS. 15 to 17 is provided upright on a hollow main body 42 forming an internal space 42b including an opening 42a to the outside, and on an inner surface 42c of the hollow main body 42 facing the internal space 42b. , and three plate portions 43 extending on the inner surface 42c.
 ここで、中空本体部42は、互いに間隔をおいて配置された一対の円盤状部分44a、44bが、それらの相互間で中心軸線に沿って延びる円柱状の連結部分45により互いに連結されている。内部空間42bは、中空本体部42の外面から窪んで外面よりも奥まった位置にて、一対の円盤状部分44a、44b及び連結部分45の内部空間42b側の内面によって区画されている。 Here, the hollow main body 42 has a pair of disc-shaped parts 44a and 44b arranged at intervals, which are connected to each other by a cylindrical connecting part 45 extending along the central axis. . The internal space 42b is recessed from the outer surface of the hollow main body portion 42 and is defined by the pair of disc-shaped portions 44a, 44b and the inner surface of the connecting portion 45 on the inner space 42b side.
 またここで、円柱状の連結部分45の周囲に設けた各プレート部43は、図示の例では、その連結部分45の内部空間42b側を向く内面42c上で周方向に延びるものであり、半径方向外側に向かうに従い厚みが漸減する円環の板状をなす。なお、プレート部43の枚数は適宜変更可能であり、一枚、二枚又は、四枚以上としてもよい。 In addition, in the illustrated example, each plate portion 43 provided around the cylindrical connecting portion 45 extends in the circumferential direction on the inner surface 42c facing the internal space 42b side of the connecting portion 45, and has a radial radius. It has a circular plate shape whose thickness gradually decreases toward the outside. Note that the number of plate portions 43 can be changed as appropriate, and may be one, two, or four or more.
 図15~17に示すチタン系圧粉体41は、インペラー用ではないが、内部空間42bに設けたプレート部43の破損を生じさせずに成形するため、この実施形態を用いて製造することができる。 Although the titanium-based green compact 41 shown in FIGS. 15 to 17 is not intended for use in an impeller, it can be manufactured using this embodiment in order to be molded without causing damage to the plate portion 43 provided in the internal space 42b. can.
 次に、この発明のチタン系圧粉体の製造方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、これに限定されることを意図するものではない。 Next, the method for producing a titanium-based green compact of the present invention was carried out on a trial basis, and its effects were confirmed, which will be described below. However, the description here is for the purpose of mere illustration, and is not intended to be limiting.
 原料粉末の冷間等方圧加圧により、図1~3に示すようなチタン系圧粉体A及び、図9~11に示すようなチタン系圧粉体Bのそれぞれの製造を試みた。チタン系圧粉体Aは、プレート部を含んで中心軸線に直交する断面で、プレート部の延びる方向に垂直な垂線上にて、周方向で前記プレート部の両側に位置する各空間部分における長さの合計Lsに対する、プレート部の厚みに相当する長さLtの比(Lt/Ls)の最小値が0.05である。また、チタン系圧粉体Bにおける同様の比(Lt/Ls)の最小値は、0.09である。 By applying cold isostatic pressure to the raw material powder, we attempted to produce titanium-based powder compacts A as shown in FIGS. 1 to 3 and titanium-based powder compacts B as shown in FIGS. 9 to 11, respectively. The titanium-based powder compact A has a length in each space portion located on both sides of the plate portion in the circumferential direction on a perpendicular line perpendicular to the extending direction of the plate portion in a cross section including the plate portion and perpendicular to the central axis. The minimum value of the ratio (Lt/Ls) of the length Lt corresponding to the thickness of the plate portion to the total length Ls is 0.05. Further, the minimum value of the similar ratio (Lt/Ls) in the titanium-based green compact B is 0.09.
 実施例1~8及び比較例1~3では、チタン製の圧粉体を製造した。原料粉末として、実施例1~7及び比較例1~3では水素化脱水素粉末(HDH粉末)を使用した。実施例8では、HDH粉末と水素化チタン粉末とを質量比で1:1に混合させたものを使用した。上記のHDH粉末は、チタン含有量が99質量%以上であり、平均粒径が66μmであった。また、上記の水素化チタン粉末は、チタン含有量が95質量%以上、水素含有量が5質量%以下であり、平均粒径が66μmであった。 In Examples 1 to 8 and Comparative Examples 1 to 3, titanium compacts were produced. Hydrodehydrogenation powder (HDH powder) was used as the raw material powder in Examples 1 to 7 and Comparative Examples 1 to 3. In Example 8, a mixture of HDH powder and titanium hydride powder at a mass ratio of 1:1 was used. The above HDH powder had a titanium content of 99% by mass or more and an average particle size of 66 μm. Further, the titanium hydride powder had a titanium content of 95% by mass or more, a hydrogen content of 5% by mass or less, and an average particle size of 66 μm.
 実施例9ではチタン合金製の圧粉体を製造し、原料粉末として、上記のHDH粉末と60Al40V粉末とを質量比で9:1に混合させたものを使用した。上記の60Al40V粉末は、鋳塊を粉砕して作製され、アルミニウムを60質量%、バナジウムを40質量%で含むものであり、平均粒径が35μmであった。 In Example 9, a powder compact made of titanium alloy was produced, and a mixture of the above HDH powder and 60Al40V powder at a mass ratio of 9:1 was used as the raw material powder. The above 60Al40V powder was produced by crushing an ingot, contained 60% by mass of aluminum and 40% by mass of vanadium, and had an average particle size of 35 μm.
 製造に用いたモールドは、3Dプリンタにより造形した。モールドを構成する樹脂材料は、ポリ乳酸(PLA)とし、ショアD硬さが83であった。モールドの厚みは1.0mmとした。モールドの芯材配置スペースに配置する芯材には、表1に示す各芯材構成材料を使用した。なお、表1中、「エアコン配管用パテ」はポリブテン樹脂製である。芯材構成材料のちょう度は、先に述べたように、JIS K2220:2013に準拠して測定した。但し、比較例1のシリコーンシーラントは時間の経過に伴って硬化すること、比較例2の炭素鋼及び比較例3の熱硬化性樹脂は室温で流動性を有しないことから、それぞれ、ちょう度を測定することができなかった。これにより、比較例1~3は硬い材料であり、ちょう度が明らかに50未満であると考えられる。 The mold used for manufacturing was modeled using a 3D printer. The resin material constituting the mold was polylactic acid (PLA), and had a Shore D hardness of 83. The thickness of the mold was 1.0 mm. Each core material constituent material shown in Table 1 was used for the core material arranged in the core material arrangement space of the mold. In Table 1, "putty for air conditioner piping" is made of polybutene resin. The consistency of the core constituent material was measured in accordance with JIS K2220:2013, as described above. However, since the silicone sealant of Comparative Example 1 hardens over time, and the carbon steel of Comparative Example 2 and the thermosetting resin of Comparative Example 3 do not have fluidity at room temperature, the consistency was could not be measured. From this, it can be considered that Comparative Examples 1 to 3 are hard materials and have a consistency of clearly less than 50.
 上記のモールドに芯材を配置するとともに原料粉末を充填した後、モールドの全体をビニール袋で包み込んで、その内部を減圧してから、冷間等方圧加圧装置内にて静水圧加圧で冷間等方圧加圧(CIP)を行った。冷間等方圧加圧では、原料粉末を充填したモールドに対し、490MPaの加圧力を1分にわたって作用させた。冷間等方圧加圧の後、モールドをビニール袋から取り出し、手作業にて芯材の大部分を取り除いた。次いで、モールドを、大気中で約100℃に加熱して軟化させた。そしてその後、モールドを内部のチタン系圧粉体から、ペンチ等の工具を使用して除去した。 After placing the core material in the above mold and filling it with raw material powder, the entire mold is wrapped in a plastic bag, the inside of the mold is depressurized, and then hydrostatic pressure is applied in a cold isostatic pressurizer. Cold isostatic pressing (CIP) was performed. In the cold isostatic pressing, a pressing force of 490 MPa was applied to the mold filled with the raw material powder for 1 minute. After cold isostatic pressing, the mold was taken out of the plastic bag, and most of the core material was removed manually. The mold was then heated to about 100° C. in air to soften it. Thereafter, the mold was removed from the titanium compact inside using a tool such as pliers.
 このようにして製造したチタン系圧粉体を目視により観察し、破損の有無や、芯材の付着及び内部への浸透の有無を確認した。その結果を表1に示す。 The titanium-based green compact produced in this way was visually observed to check for damage, adhesion of the core material, and penetration into the interior. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~9では、いずれのチタン系圧粉体A及びBでも破断が生じていなかった。一方、比較例1及び3では、チタン系圧粉体A及びBの両方において、モールドから取り出した後にプレート部(羽根部)が破断していた。比較例2では、炭素鋼からなる芯材を使用したことから、チタン系圧粉体Bを製造することができなかった。なお、実施例4~6のチタン系圧粉体A及びBでは、モールドからの取出し作業中に芯材構成材料が付着し、内部への浸透が起こっていた。一方、実施例1~3、7~9のチタン系圧粉体A及びBでは、そのような芯材構成材料の付着や浸透が無かった。加えて、特に実施例1~3、7~9では、芯材配置スペースに対する芯材の充填及び取出しが容易であった。 In Examples 1 to 9, no breakage occurred in any of the titanium-based powder compacts A and B. On the other hand, in Comparative Examples 1 and 3, in both titanium-based powder compacts A and B, the plate portion (blade portion) was broken after being taken out from the mold. In Comparative Example 2, titanium-based powder compact B could not be manufactured because a core material made of carbon steel was used. In addition, in the titanium-based green compacts A and B of Examples 4 to 6, the core material constituent material adhered and penetrated into the interior during the removal operation from the mold. On the other hand, in the titanium-based powder compacts A and B of Examples 1 to 3 and 7 to 9, there was no such adhesion or penetration of the core constituent material. In addition, especially in Examples 1 to 3 and 7 to 9, it was easy to fill and remove the core material from the core material arrangement space.
 以上より、この発明の製造方法によれば、複雑な形状を有するチタン系圧粉体を、比較的簡易に製造できることがわかった。 From the above, it was found that according to the manufacturing method of the present invention, a titanium-based green compact having a complicated shape can be manufactured relatively easily.
 1、11、21、31、41 チタン系圧粉体
 2、12、22、32、42 中空本体部
 2a、12a、15a、22a、32a、42a 開口部
 2b、12b、22b、32b、42b 内部空間
 2c、12c、22c、32c、42c 内面
 3、13、23、33、43 プレート部
 33a 角部
 4a、4b、14a、14b、24a、24b、34a、34b、44a、44b 円盤状部分
 4c、14c、24c、34c、44c 面取り部
 5、25、35、45 連結部分
 15 貫通穴部
 51 モールド
 52 成形空間
 53a 円盤状壁部
 53b 円盤状壁部
 53c 貫通孔
 54 円柱状壁部
 55 板状壁部
 56 密閉部材
 57 蓋部材
 61 芯材
 71 原料粉末
 PL プレート部の延びる方向に垂直な垂線
 Ls プレート部の周方向両側の空間部分における長さの合計
 Lt プレート部の厚みに相当する長さ
1, 11, 21, 31, 41 Titanium-based compact 2, 12, 22, 32, 42 Hollow main body 2a, 12a, 15a, 22a, 32a, 42a Opening 2b, 12b, 22b, 32b, 42b Internal space 2c, 12c, 22c, 32c, 42c Inner surface 3, 13, 23, 33, 43 Plate portion 33a Corner portion 4a, 4b, 14a, 14b, 24a, 24b, 34a, 34b, 44a, 44b Disc-shaped portion 4c, 14c, 24c, 34c, 44c Chamfered portion 5, 25, 35, 45 Connecting portion 15 Through-hole portion 51 Mold 52 Molding space 53a Disc-shaped wall portion 53b Disc-shaped wall portion 53c Through-hole 54 Column-shaped wall portion 55 Plate-shaped wall portion 56 Sealing Member 57 Lid member 61 Core material 71 Raw material powder PL Perpendicular line perpendicular to the extending direction of the plate portion Ls Total length in the space on both circumferential sides of the plate portion Lt Length equivalent to the thickness of the plate portion

Claims (10)

  1.  チタン系圧粉体の製造方法であって、
     当該チタン系圧粉体が、外部への開口部を含む内部空間を形成した中空本体部と、前記中空本体部の前記内部空間に臨む内面に立てて設けられ、該内面上で延びるプレート部とを有し、
     前記製造方法が、樹脂製のモールドの芯材配置スペースに、前記内部空間を形成する芯材を配置する工程と、前記モールドの成形空間に原料粉末を充填する工程と、前記芯材配置スペースに前記芯材が配置された状態で、前記成形空間に前記原料粉末を充填した前記モールドに対して300MPa以上の加圧力にて冷間等方圧加圧を行う工程とを含み、
     前記芯材として、ちょう度が50以上である芯材構成材料を使用する、チタン系圧粉体の製造方法。
    A method for producing a titanium green compact, the method comprising:
    A hollow main body part in which the titanium-based powder compact forms an internal space including an opening to the outside, and a plate part provided upright on an inner surface facing the inner space of the hollow main body part and extending on the inner surface. has
    The manufacturing method includes a step of arranging a core material forming the internal space in a core material arrangement space of a resin mold, a step of filling the molding space of the mold with raw material powder, and a step of filling the core material arrangement space in the core material arrangement space. with the core material arranged, applying cold isostatic pressure to the mold filled with the raw material powder in the molding space at a pressure of 300 MPa or more,
    A method for producing a titanium-based powder compact, using a core constituent material having a consistency of 50 or more as the core material.
  2.  前記芯材構成材料のちょう度が、60以上かつ240以下である、請求項1に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based powder compact according to claim 1, wherein the core constituent material has a consistency of 60 or more and 240 or less.
  3.  前記芯材構成材料が、ポリブテン樹脂または粘土を含む、請求項1又は2に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based green compact according to claim 1 or 2, wherein the core constituent material contains a polybutene resin or clay.
  4.  当該チタン系圧粉体がインペラー用であり、
     前記中空本体部が、互いに間隔をおいて配置されて相互間に前記内部空間を設けた一対の円盤状部分を含むケーシング部であり、
     前記プレート部が、前記円盤状部分の相互間で、該円盤状部分の中心から半径方向外側に向けて、真っ直ぐに、あるいは湾曲箇所及び/又は屈曲箇所を含んで延びる羽根部である、請求項1~3のいずれか一項に記載のチタン系圧粉体の製造方法。
    The titanium-based green compact is for an impeller,
    The hollow main body portion is a casing portion including a pair of disc-shaped portions spaced apart from each other and having the internal space therebetween;
    Claim: The plate portion is a blade portion that extends between the disc-shaped portions from the center of the disc-shaped portions toward the outside in the radial direction, either straight or including curved portions and/or bent portions. A method for producing a titanium-based green compact according to any one of 1 to 3.
  5.  当該チタン系圧粉体の前記プレート部を含んで中心軸線に直交する断面で、前記プレート部の延びる方向に垂直な垂線上にて、周方向で前記プレート部の両側に位置する各空間部分における長さの合計に対する、プレート部の厚みに相当する長さの比が0.05以上かつ0.25以下になる箇所が、当該チタン系圧粉体に存在する、請求項4に記載のチタン系圧粉体の製造方法。 In each space portion located on both sides of the plate portion in the circumferential direction on a perpendicular line perpendicular to the extending direction of the plate portion in a cross section including the plate portion of the titanium-based compact and perpendicular to the central axis. The titanium-based powder body according to claim 4, wherein the titanium-based powder compact has a portion where the ratio of the length corresponding to the thickness of the plate portion to the total length is 0.05 or more and 0.25 or less. Method for producing green compacts.
  6.  前記モールドとして、ショアD硬さが30~120の範囲内である熱可塑性樹脂からなるモールドを用いる、請求項1~5のいずれか一項に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based green compact according to any one of claims 1 to 5, wherein a mold made of a thermoplastic resin having a Shore D hardness in the range of 30 to 120 is used as the mold.
  7.  前記モールドとして、ショアD硬さが30~85の範囲内である熱可塑性樹脂からなるモールドを用いる、請求項6に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based green compact according to claim 6, wherein a mold made of a thermoplastic resin having a Shore D hardness in the range of 30 to 85 is used as the mold.
  8.  前記モールドの厚みが0.5mm~2.0mmである、請求項1~7のいずれか一項に記載のチタン系圧粉体の製造方法。 The method for producing a titanium green compact according to any one of claims 1 to 7, wherein the thickness of the mold is 0.5 mm to 2.0 mm.
  9.  前記モールドとして、三次元造形装置を用いて作製されたモールドを用いる、請求項1~8のいずれか一項に記載のチタン系圧粉体の製造方法。 The method for producing a titanium-based green compact according to any one of claims 1 to 8, wherein a mold produced using a three-dimensional modeling device is used as the mold.
  10.  チタン系焼結体を製造する方法であって、
     請求項1~9のいずれか一項に記載のチタン系圧粉体の製造方法により製造されたチタン系圧粉体を加熱して焼結させる焼結工程を含む、チタン系焼結体の製造方法。
    A method for manufacturing a titanium-based sintered body, the method comprising:
    Production of a titanium-based sintered body, comprising a sintering step of heating and sintering a titanium-based green compact produced by the method for producing a titanium-based green compact according to any one of claims 1 to 9. Method.
PCT/JP2023/007918 2022-04-21 2023-03-02 Method for manufacturing titanium compact and method for manufacturing titanium sintered body WO2023203892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-070294 2022-04-21
JP2022070294A JP2023160150A (en) 2022-04-21 2022-04-21 Method for manufacturing titanium-based green compact and method for manufacturing titanium-based sintered compact

Publications (1)

Publication Number Publication Date
WO2023203892A1 true WO2023203892A1 (en) 2023-10-26

Family

ID=88419776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007918 WO2023203892A1 (en) 2022-04-21 2023-03-02 Method for manufacturing titanium compact and method for manufacturing titanium sintered body

Country Status (2)

Country Link
JP (1) JP2023160150A (en)
WO (1) WO2023203892A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154494A (en) * 2001-11-21 2003-05-27 Osaka Prefecture Method for manufacturing green compact
JP2007162090A (en) * 2005-12-15 2007-06-28 Nissan Motor Co Ltd Molding die
JP2017522488A (en) * 2014-07-04 2017-08-10 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Manufacturing turbomachinery impellers by assembling multiple tubular parts
WO2021060363A1 (en) * 2019-09-27 2021-04-01 東邦チタニウム株式会社 Method for producing green compact and method for producing sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003154494A (en) * 2001-11-21 2003-05-27 Osaka Prefecture Method for manufacturing green compact
JP2007162090A (en) * 2005-12-15 2007-06-28 Nissan Motor Co Ltd Molding die
JP2017522488A (en) * 2014-07-04 2017-08-10 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Manufacturing turbomachinery impellers by assembling multiple tubular parts
WO2021060363A1 (en) * 2019-09-27 2021-04-01 東邦チタニウム株式会社 Method for producing green compact and method for producing sintered body

Also Published As

Publication number Publication date
JP2023160150A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
US11370026B2 (en) Method for manufacture a metallic component by pre-manufactured bodies
KR102297842B1 (en) A method of making cermet or cemented carbide powder
EP2551040A1 (en) Method of manufacturing a component by hot isostatic pressing
RU2306227C2 (en) Method of manufacture (versions) of the details or the semi-finished products, which contain the intermetallic titanium-aluminide alloys and also the detail manufactured by the method
JP5777306B2 (en) Apparatus and method for hot isostatic pressure container
JP5719543B2 (en) Improved apparatus and method for hot isostatic pressure vessels with adjustable volume and corners
KR20140102685A (en) Endplate for hot isostatic pressing canister, hot isostatic pressing canister, and hot isostatic pressing method
WO2021060363A1 (en) Method for producing green compact and method for producing sintered body
JPH04232203A (en) Gear
WO2023203892A1 (en) Method for manufacturing titanium compact and method for manufacturing titanium sintered body
JP2001501254A (en) Die and mold with net shape, and manufacturing method therefor
JP2004035919A (en) Target material
EP2444180A2 (en) A mould assembly for a hot isostatic pressing process
US20100178525A1 (en) Method for making composite sputtering targets and the tartets made in accordance with the method
GB2484691A (en) Forming a component with a projection by hot isostatic pressing
EP2268434A1 (en) A method for making composite sputtering targets and the targets made in accordance with the method
JP2014001427A (en) Method of manufacturing sintered component
JP2003119554A (en) Method for manufacturing fiber reinforced metal
WO2022190601A1 (en) Titanium green compact production method and titanium sintered body production method
JP2021134397A (en) Manufacturing method of titanium-based pressurized powder body and manufacturing method of titanium-based sintering body
JP2006342374A (en) Method for manufacturing metal sintered compact and alloy sintered compact
US20220097139A1 (en) Method for the production of parts made from metal or metal matrix composite and resulting from additive manufacturing followed by an operation involving the forging of said parts
JP2020143378A (en) Molybdenum material and method for producing the same
JPH08176615A (en) Closed powder forging
JP2006131952A (en) METHOD FOR PRODUCING Fe-Ti SINTERED ALLOY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791547

Country of ref document: EP

Kind code of ref document: A1