JP2013002192A - Tension type base-isolation bearing device - Google Patents

Tension type base-isolation bearing device Download PDF

Info

Publication number
JP2013002192A
JP2013002192A JP2011135934A JP2011135934A JP2013002192A JP 2013002192 A JP2013002192 A JP 2013002192A JP 2011135934 A JP2011135934 A JP 2011135934A JP 2011135934 A JP2011135934 A JP 2011135934A JP 2013002192 A JP2013002192 A JP 2013002192A
Authority
JP
Japan
Prior art keywords
tensile
rubber
recess
rubber layer
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011135934A
Other languages
Japanese (ja)
Inventor
Yuichi Aida
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIWA TEC KK
Miwa Tech Co Ltd
Original Assignee
MIWA TEC KK
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIWA TEC KK, Miwa Tech Co Ltd filed Critical MIWA TEC KK
Priority to JP2011135934A priority Critical patent/JP2013002192A/en
Publication of JP2013002192A publication Critical patent/JP2013002192A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tension type base-isolation bearing device to be arranged between an upper structure and a lower structure of a building or a civil engineering structure such as a bridge such that a structure bearing device being made thin, compact, and low-cost, and attenuating energy of an earthquake by paying attention to ductility by tensile force of rubber against large inertial force of the upper structure during an earthquake.SOLUTION: A structure bearing device 1 includes a first member 11 arranged at one of the upper structure and lower structure; a second member 7 arranged at the other; and an elastic material which has a radial part 13c arranged horizontally and radially between the second member 7 and first member 11, and is made of a tensile rubber material. The bearing device is configured to absorb energy with tensile force added to the elastic material against horizontal displacement in all directions added to the structures.

Description

本発明は、建築物、橋梁等の土木構造物の上部構造と下部構造との間に設置される免震支承装置に関し、特に、引張ゴム材の引張力により水平方向の応力を吸収する引張型免震支承装置。   The present invention relates to a seismic isolation device installed between an upper structure and a lower structure of a civil structure such as a building or a bridge, and in particular, a tension type that absorbs a horizontal stress by a tensile force of a tensile rubber material. Seismic isolation device.

建築物や橋梁等の土木構造物の上部構造と下部構造との間に、上部構造の荷重を支持しつつその伸縮を吸収する支承装置が設けられる。1995年の兵庫県南部地震によって鋼製支承を有する多くの橋梁が被害を受けた結果、近年の橋梁にはゴム支承が多く採用されている。ゴム支承としては、ゴムと補強鋼板が交互に積層された積層ゴム支承で、高減衰性ゴムを用いた積層ゴム系の免震支承や鉛プラグ入り積層ゴム支承を用いて建築物や橋梁等の構造物の長周期化と高減衰化により地震力の低減と耐震性の向上を図る免震構造が一般的に採用されるようになってきている。   Between the upper structure and the lower structure of a civil structure such as a building or a bridge, a support device is provided that absorbs the expansion and contraction while supporting the load of the upper structure. As a result of the damage to many bridges with steel bearings caused by the 1995 Hyogoken-Nanbu Earthquake, rubber bridges have been widely used in recent bridges. Rubber bearings are laminated rubber bearings in which rubber and reinforced steel plates are alternately laminated. Laminated rubber-based seismic isolation bearings using high-damping rubber and laminated rubber bearings with lead plugs are used for buildings and bridges. Seismic isolation structures that reduce seismic force and improve seismic resistance by increasing the period and increasing damping of structures have been generally adopted.

特開2002−38418号公報JP 2002-38418 A

しかしながら、高減衰性ゴムを用いた積層ゴム系の免震支承や鉛プラグ入り積層ゴム支承は、一般に割高であることから、免震支承としての適用が限定的であった。また、高減衰性ゴムを用いた積層ゴム支承や鉛プラグ入り積層ゴム支承は、圧縮方向に高い荷重性能を有しながら水平方向の変位に対してゴムの弾性変形で抵抗し、上部構造の慣性力を低減するものである。一般的にこのような支承装置においては、免震性能を向上するために積層ゴム支承の厚さを大きくしなければならい。その結果、支承装置の高さが高くなり、支承装置の小型化、コンパクト化が困難であるという問題を有するものであった。   However, laminated rubber-based seismic isolation bearings using high-damping rubber and laminated rubber bearings with lead plugs are generally expensive, so their application as seismic isolation bearings has been limited. In addition, laminated rubber bearings using high-damping rubber and laminated rubber bearings with lead plugs are resistant to horizontal displacement by elastic deformation of the rubber while having high load performance in the compression direction, and the inertia of the superstructure. It reduces the power. In general, in such a bearing device, it is necessary to increase the thickness of the laminated rubber bearing in order to improve the seismic isolation performance. As a result, the height of the support device is increased, and there is a problem that it is difficult to reduce the size and size of the support device.

本発明は、上記従来の問題を解決するものであって、構造物支承装置の薄型化、コンパクト化および低コスト化を達成し、地震時の上部構造の大きな慣性力に対してゴムの引張力により延伸性に注目して地震のエネルギーを減衰化することが可能な引張型免震支承装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and achieves a thin structure, a compact structure and a low cost of the structure bearing device, and the tensile force of rubber against the large inertial force of the superstructure during an earthquake. An object of the present invention is to provide a tension type seismic isolation device capable of attenuating earthquake energy by paying attention to stretchability.

本発明の引張型免震支承装置は、前記課題を解決するために、建築物や橋梁等の土木構造物の上部構造と下部構造間に配置される構造物用支承装置において、上部構造又は下部構造の一方に配置される第1部材と、他方に配置される第2部材と、前記第2部材と前記第1部材との間に水平方向に放射状に張設される複数の復元性を有する弾性材と、を備え、構造物に付加される全水平方向の水平変位に対して前記弾性材に付加される引張力によりエネルギーを吸収することを特徴とする。   In order to solve the above-mentioned problems, the tension type seismic isolation device of the present invention is a structural support device arranged between an upper structure and a lower structure of a civil engineering structure such as a building or a bridge. A first member disposed on one side of the structure, a second member disposed on the other side, and a plurality of resilience stretched radially in a horizontal direction between the second member and the first member. And an elastic material, wherein energy is absorbed by a tensile force applied to the elastic material with respect to a horizontal displacement in the entire horizontal direction applied to the structure.

また、本発明の引張型免震支承装置は、前記弾性材を引張ゴムとすることを特徴とする。   The tensile-type seismic isolation device of the present invention is characterized in that the elastic material is tensile rubber.

また、本発明の引張型免震支承装置は、前記弾性材をコイルスプリングとすることを特徴とする。   The tension type seismic isolation device of the present invention is characterized in that the elastic material is a coil spring.

また、本発明の引張型免震支承装置は、第1部材に凹部を形成し、凹部の内径より外径が小さい第2部材の一部を前記凹部内に位置させ、第1部材の凹部の内壁と前記第2部材の一部外周との間に複数の復元性を有する弾性材を水平方向に放射状に張設することを特徴とする。   Moreover, the tension type seismic isolation device of the present invention forms a recess in the first member, positions a part of the second member having an outer diameter smaller than the inner diameter of the recess in the recess, A plurality of elastic materials having resilience are stretched radially between the inner wall and a part of the outer periphery of the second member.

また、本発明の構造物用支承装置は、前記第1部材の凹部の底面と前記第2部材の一部の上面との間に摩擦材を配置することを特徴とする。   The structure support device of the present invention is characterized in that a friction material is disposed between the bottom surface of the recess of the first member and the top surface of a part of the second member.

また、本発明の構造物用支承装置は、前記第2部材が配置された構造部側に嵌合凹部を形成した鋼板を固定し、前記嵌合凹部内にその側面部が膨張可能なスペースを有し上下面が水平面なゴム層を配置し、前記嵌合凹部に前記第2部材の一部を前記ゴム層と接触するように嵌合し、前記鋼板又は前記第2部材の前記ゴム層と接する少なくとも一方の面に前記ゴム層の膨張を許容する貫通孔又は凹部を形成することを特徴とする。   Moreover, the structure support device of the present invention fixes a steel plate in which a fitting recess is formed on the side of the structure where the second member is arranged, and provides a space in which the side portion can expand in the fitting recess. A rubber layer having an upper and lower surface that is horizontal, and a part of the second member is fitted in the fitting recess so as to be in contact with the rubber layer; and the steel layer or the rubber layer of the second member A through hole or a recess allowing the expansion of the rubber layer is formed on at least one surface in contact with the rubber layer.

建築物や橋梁等の土木構造物の上部構造と下部構造間に配置される構造物用支承装置において、上部構造又は下部構造の一方に配置される第1部材と、他方に配置される第2部材と、前記第2部材と前記第1部材との間に水平方向に放射状に張設される複数の復元性を有する弾性材と、を備え、構造物に付加される全水平方向の水平変位に対して前記弾性材に付加される引張力によりエネルギーを吸収することで、全水平方向の水平変位に対しても対応する弾性材に引張力が付加されるので、全水平方向の水平変位に対してのエネルギー吸収が可能となる。また、弾性材には上部荷重が付加されることが無く、水平方向の変位に対してのみ引張力が作用するので、水平方向の変位のエネルギーを効率良く吸収し免震効果を向上することが可能となる。
弾性材を引張ゴムとすることで、容易に入手可能な材料であり、取付作業を容易にすることが可能となる。
弾性材をコイルスプリングとすることで、容易に入手可能な材料であり、取付作業を容易にすることが可能となる。
第1部材に凹部を形成し、前記凹部の内径より外径が小さい第2部材の一部を前記凹部内に位置させ、前記第1部材の凹部の内壁と前記第2部材の一部外周との間に複数の復元性を有する弾性材を水平方向に放射状に張設することで、複数の弾性材が第1部材の凹部内に配置されるので高さを低く抑えることが可能となり、免震支承装置の小型化に貢献することが可能となる。
第1部材の凹部の底面と第2部材の一部の上面との間に摩擦材を配置することで、第1部材と第2部材の地震時の水平方向の変位に対する相対変位のエネルギーを摩擦力により減衰することが可能となる。
第2部材が配置された構造部側に嵌合凹部を形成した鋼板を固定し、前記嵌合凹部内にその側面部が膨張可能なスペースを有し上下面が水平面なゴム層を配置し、前記嵌合凹部に前記第2部材の一部を前記ゴム層と接触するように嵌合し、前記鋼板又は前記第2部材の前記ゴム層と接する少なくとも一方の面に前記ゴム層の膨張を許容する貫通孔又は凹部を形成することで、地震時の応力によりゴム層の側面部への膨出と、ゴム層の上下水平面のゴム膨張用凹部への膨出で大きな圧縮ひずみを得ることができ、その圧縮ひずみ分ゴム層で地震時の回転変位を吸収することが可能となる。
In a structure support device disposed between an upper structure and a lower structure of a civil structure such as a building or a bridge, a first member disposed on one of the upper structure or the lower structure and a second disposed on the other A horizontal displacement that is added to the structure, and a plurality of elastic members having a plurality of restoring properties that are radially stretched in a horizontal direction between the second member and the first member. In contrast, by absorbing energy by the tensile force applied to the elastic material, tensile force is added to the elastic material corresponding to horizontal displacement in all horizontal directions. Energy absorption is possible. In addition, no upper load is applied to the elastic material, and the tensile force acts only on the horizontal displacement, so the energy of the horizontal displacement can be absorbed efficiently and the seismic isolation effect can be improved. It becomes possible.
By using a tensile rubber as the elastic material, it is a readily available material, and the mounting operation can be facilitated.
By using a coil spring as the elastic material, it is a readily available material, and the mounting operation can be facilitated.
A recess is formed in the first member, a part of the second member having an outer diameter smaller than the inner diameter of the recess is positioned in the recess, an inner wall of the recess of the first member, a part of the outer periphery of the second member, By stretching elastic materials having a plurality of restoring properties in the radial direction between them, the plurality of elastic materials are disposed in the recesses of the first member, so that the height can be kept low. It is possible to contribute to downsizing of the seismic bearing device.
By disposing a friction material between the bottom surface of the recess of the first member and the top surface of a part of the second member, the friction of the relative displacement energy with respect to the horizontal displacement during the earthquake of the first member and the second member is rubbed. It can be attenuated by force.
A steel plate having a fitting recess formed on the structure portion side where the second member is arranged is fixed, and a rubber layer having a lateral surface expandable in the fitting recess and having a horizontal surface on the upper and lower surfaces is arranged, A part of the second member is fitted into the fitting recess so as to be in contact with the rubber layer, and expansion of the rubber layer is allowed on at least one surface of the steel plate or the second member in contact with the rubber layer. By forming through-holes or recesses, a large compressive strain can be obtained by the swelling of the rubber layer to the side surface due to the stress at the time of the earthquake and the swelling of the rubber layer to the rubber expansion recess in the vertical and horizontal planes. The rotational strain at the time of earthquake can be absorbed by the rubber layer for the compressive strain.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の構造物用支承装置の実施形態を図により説明する。図1、図2は、本発明の構造物用支承装置を橋梁に用いた一実施形態を示す。   An embodiment of a structure support device of the present invention will be described with reference to the drawings. 1 and 2 show an embodiment in which the structural support device of the present invention is used for a bridge.

構造物用支承装置1は、橋脚等の下部構造2と主桁等の上部構造3の間に設置される。下部構造2に下鋼板4が固定ボルト5により固定される。下鋼板4の中央部に嵌合凹部4aが形成される。嵌合凹部4aの底部にはゴム層6が配置される。ゴム層6の側面と嵌合凹部4aの内壁面との間にはゴム層6の側方への膨張を可能にするスペースを有する。   The structure support device 1 is installed between a lower structure 2 such as a pier and an upper structure 3 such as a main girder. A lower steel plate 4 is fixed to the lower structure 2 with fixing bolts 5. A fitting recess 4 a is formed at the center of the lower steel plate 4. A rubber layer 6 is disposed at the bottom of the fitting recess 4a. Between the side surface of the rubber layer 6 and the inner wall surface of the fitting recess 4a, there is a space that allows the rubber layer 6 to expand laterally.

ゴム層6が配置された嵌合凹部4aにその一部が嵌合される第2部材7は、大径部7aと大径部7aの中央から立設する小径部7bを備えている。大径部7aがゴム層6の配置された嵌合凹部7aに嵌合する。下鋼板4と第2部材7の大径部7aとの間に上楊力止め8が連結ボルト9で固定され、第2部材7の嵌合凹部7aから抜け落ちるのを防止する。 The second member 7 partially fitted in the fitting recess 4a in which the rubber layer 6 is disposed includes a large diameter portion 7a and a small diameter portion 7b standing from the center of the large diameter portion 7a. The large diameter portion 7a is fitted into the fitting recess 7a in which the rubber layer 6 is disposed. An upper reed stop 8 is fixed between the lower steel plate 4 and the large-diameter portion 7 a of the second member 7 with a connecting bolt 9 to prevent the second steel member 7 from coming off from the fitting recess 7 a.

ゴム層6と接する嵌合凹部4aの底面と大径部7aの下面の少なくとも1つにゴム層6の膨張を許容するゴム膨張用凹部4b、7c又は貫通穴(図示せず)を形成する。ゴム膨張用凹部4b、7cの機能については後述する。   At least one of the bottom surface of the fitting recess 4a in contact with the rubber layer 6 and the lower surface of the large diameter portion 7a is formed with rubber expansion recesses 4b, 7c or through holes (not shown) that allow the rubber layer 6 to expand. The functions of the rubber expansion recesses 4b and 7c will be described later.

ソールプレート10が配置され主桁等の上部構造3に、第1部材11がセットボルト12により固定される。第1部材11の下面に凹部11aが形成される。第1部材の凹部11aの内径は第2部材7の小径部7bの外径より大きく、凹部11a内に小径部7bが位置する。小径部7bの上面には、表面を租面とした摩擦材14が固定され、第2部材7の摩擦材14が設置された上面と第1部材の凹部11aの底面とが接して摩擦減衰性の高い滑り面を構成する。摩擦材14を凹部11aの底面に配置しても良く、小径部7bの上面、凹部11aの底面を直接租面加工して摩擦力を高めても良い。   A sole plate 10 is disposed, and a first member 11 is fixed to an upper structure 3 such as a main girder by a set bolt 12. A recess 11 a is formed on the lower surface of the first member 11. The inner diameter of the concave portion 11a of the first member is larger than the outer diameter of the small diameter portion 7b of the second member 7, and the small diameter portion 7b is located in the concave portion 11a. A friction material 14 having a surface as a rough surface is fixed to the upper surface of the small diameter portion 7b, and the upper surface of the second member 7 on which the friction material 14 is installed and the bottom surface of the recess 11a of the first member are in contact with each other. Constitutes a high sliding surface. The friction material 14 may be disposed on the bottom surface of the recess 11a, or the upper surface of the small diameter portion 7b and the bottom surface of the recess 11a may be directly processed to increase the frictional force.

第2部材7の小径部7bと第1部材11の凹部11aの内壁との間に、復元性を有する弾性材として複数の引張ゴム材13が水平方向に放射状に一定の張力を付されて張設される。この実施形態では、引張ゴム材13を所定厚みと所定幅を有するベルト状とし、ベルト状の引張ゴム材13の厚み方向が上面となる縦型に放射状に張設する。   Between the small diameter portion 7b of the second member 7 and the inner wall of the concave portion 11a of the first member 11, a plurality of tensile rubber materials 13 are stretched as a resilient material having a restoring property by applying a constant radial force in the horizontal direction. Established. In this embodiment, the tensile rubber material 13 is formed in a belt shape having a predetermined thickness and a predetermined width, and the belt-shaped tensile rubber material 13 is radially extended in a vertical shape whose upper surface is the thickness direction.

ベルト状の引張ゴム材13を第2部材7の小径部7bと第1部材11の凹部11aの内壁との間に一定張力を付して張設するための手段を説明する。引張ゴム材13は中央部13aから放射状部13cを複数一体に形成し、引張ゴム材13の中央部13aに第2部材7の小径部7bを挿入する中央貫通穴13bを形成する。引張ゴム材13の中央貫通穴13bに第2部材7の小径部7bを挿入して引張ゴム材13の中央部13aを第2部材7に固定する。第1部材11には、引張ゴム材13の放射状部13cを挿通するスリット(図示せず)と固定フランジ11bが形成される。引張ゴム材13の放射状部13cをスリットに挿通し、引張ゴム材13に一定張力を付与し、固定フランジ11bに押さえ板11dと固定ピン11cを介して引張ゴム材13の放射状部13cの端部を圧着固定する。引張ゴム材13を第1部材11の凹部11a内に位置するように配置する。   A means for tensioning the belt-like tension rubber material 13 between the small diameter portion 7b of the second member 7 and the inner wall of the recess 11a of the first member 11 will be described. The tensile rubber material 13 is formed integrally with a plurality of radial portions 13c from the central portion 13a, and a central through hole 13b for inserting the small diameter portion 7b of the second member 7 is formed in the central portion 13a of the tensile rubber material 13. The small diameter portion 7 b of the second member 7 is inserted into the central through hole 13 b of the tensile rubber material 13, and the central portion 13 a of the tensile rubber material 13 is fixed to the second member 7. The first member 11 is formed with a slit (not shown) through which the radial portion 13c of the tensile rubber material 13 is inserted and a fixing flange 11b. The radial portion 13c of the tensile rubber material 13 is inserted into the slit, a constant tension is applied to the tensile rubber material 13, and the end portion of the radial portion 13c of the tensile rubber material 13 is attached to the fixing flange 11b via the holding plate 11d and the fixing pin 11c. Is fixed by crimping. The tensile rubber material 13 is disposed so as to be located in the recess 11 a of the first member 11.

図1、図2に示される実施形態では、引張ゴム材13の放射状部13cは4本であるが、引張ゴム材13の放射状部13cをより多く等間隔で張設しても良い。また、引張ゴム材13の第2部材7の小径部7bと第1部材11の凹部11aの内壁との間の固定手段としては、図1、図2に示される実施形態に限定されるものでは無く、例えば接着剤、熔着等の他の固定手段を用いても良い。   In the embodiment shown in FIGS. 1 and 2, there are four radial portions 13 c of the tensile rubber material 13, but more radial portions 13 c of the tensile rubber material 13 may be stretched at equal intervals. Moreover, as a fixing means between the small diameter part 7b of the 2nd member 7 of the tensile rubber material 13, and the inner wall of the recessed part 11a of the 1st member 11, it is not limited to embodiment shown by FIG. 1, FIG. For example, other fixing means such as an adhesive or welding may be used.

このように構成された構造物用支承装置1の作用について説明する。地震時の水平全方向からの大きな変位に対して、第1部材11の凹部11aの底面と摩擦材14が設置され第2部材7の小径部7bとの摩擦力が大きい滑り面で水平方向に変位し、摩擦力により水平変位によるエネルギーを吸収する。第1部材11と第2部材7との間は、水平方向に放射状に延びる複数の引張ゴム材13が張設されており、第1部材11と第2部材7の水平方向の相対変位により、縦型に放射状に張設された複数の引張ゴム材13の放射状部13cの内の水平方向の変位に対応する引張ゴム材13に引張力が付加され伸張する。引張ゴム材13への引張力の付加による抵抗力で水平方向の変位のエネルギーが吸収される。全水平方向の水平変位に対しても対応する放射状部13cに引張力が付加されるので、全水平方向の水平変位に対してのエネルギー吸収が可能となる。引張ゴム材13には上部荷重が付加されることが無く、水平方向の変位に対してのみ引張力が作用するので、水平方向の変位のエネルギーを効率良く吸収し免震効果を向上することが可能となる。また、引張ゴム材13が第1部材11の凹部11aの内に位置するように縦型に配置されるので、緩む方向の引張ゴム材13の横方向の撓みを第1部材11の凹部11a内で許容することが可能となる。   The operation of the structure support device 1 configured as described above will be described. In response to a large displacement from all horizontal directions during an earthquake, the frictional force between the bottom surface of the recess 11a of the first member 11 and the friction member 14 is large and the frictional force between the small-diameter portion 7b of the second member 7 is large, and the horizontal direction. Displaces and absorbs energy due to horizontal displacement by frictional force. Between the first member 11 and the second member 7, a plurality of tensile rubber materials 13 extending radially in the horizontal direction are stretched, and due to the relative displacement of the first member 11 and the second member 7 in the horizontal direction, A tensile force is applied to the tensile rubber material 13 corresponding to the horizontal displacement of the radial portions 13c of the plurality of tensile rubber materials 13 that are radially stretched in the vertical shape, and the tensile rubber material 13 expands. The displacement energy in the horizontal direction is absorbed by the resistance force due to the addition of the tensile force to the tensile rubber material 13. Since tensile force is applied to the radial portion 13c corresponding to horizontal displacement in all horizontal directions, energy can be absorbed with respect to horizontal displacement in all horizontal directions. Since no tensile load is applied to the tensile rubber material 13 and a tensile force acts only on the horizontal displacement, the horizontal displacement energy can be absorbed efficiently and the seismic isolation effect can be improved. It becomes possible. Further, since the tensile rubber material 13 is vertically arranged so as to be located in the recess 11 a of the first member 11, the lateral bending of the tensile rubber material 13 in the loosening direction is caused in the recess 11 a of the first member 11. Can be allowed.

第1部材11と第2部材7との間に張設される放射状に延びる縦型の複数の引張ゴム材13は、第1部材11の凹部11a内に配置されるので高さを低く抑えることが可能となり、免震支承装置の小型化に貢献することが可能となる。   The plurality of radially extending vertical tensile rubber members 13 stretched between the first member 11 and the second member 7 are disposed in the recesses 11a of the first member 11, so that the height is kept low. It becomes possible to contribute to the downsizing of the seismic isolation bearing device.

また、ゴム層6と接する嵌合凹部4aの底面と大径部7aの下面の少なくとも1つにゴム層6の膨張を許容するゴム膨張用凹部4b、7c又は貫通穴(図示せず)を形成することで、地震時の応力によりゴム層6の側面部への膨出と、ゴム層6の上下水平面の少なくとも何れかが、ゴム膨張用凹部4b、7cに弾性変形して膨出することで、大きな圧縮ひずみを得ることができ、その圧縮ひずみ分ゴム層6で地震時の回転変位を吸収することが可能となる。この結果、ゴム層6の厚みを薄くすることが可能になり、さらにゴム層6が下鋼板4の嵌合凹部4aに配置されるため、支承装置の薄型化及び小型化に貢献することが可能になる。   Also, rubber expansion recesses 4b, 7c or through holes (not shown) that allow expansion of the rubber layer 6 are formed in at least one of the bottom surface of the fitting recess 4a that contacts the rubber layer 6 and the lower surface of the large diameter portion 7a. By doing so, at least one of the swelling of the rubber layer 6 to the side surface and the upper and lower horizontal surfaces of the rubber layer 6 due to the stress at the time of the earthquake is elastically deformed and bulged into the rubber expansion recesses 4b and 7c. A large compressive strain can be obtained, and the rotational displacement at the time of earthquake can be absorbed by the rubber layer 6 corresponding to the compressive strain. As a result, the thickness of the rubber layer 6 can be reduced, and the rubber layer 6 is disposed in the fitting recess 4a of the lower steel plate 4, which can contribute to the reduction in thickness and size of the support device. become.

図3、図4は、本発明の構造物用支承装置を橋梁に用いた他の実施形態を示す。   3 and 4 show another embodiment in which the structural support device of the present invention is used for a bridge.

構造物用支承装置1は、橋脚等の下部構造2と主桁等の上部構造3の間に設置される。下部構造2に下鋼板4が固定ボルト5により固定される。下鋼板4の中央部に嵌合凹部4aが形成される。嵌合凹部4aの底部にはゴム層6が配置される。ゴム層6の側面と嵌合凹部4aの内壁面との間にはゴム層6の側方への膨張を可能にするスペースを有する。   The structure support device 1 is installed between a lower structure 2 such as a pier and an upper structure 3 such as a main girder. A lower steel plate 4 is fixed to the lower structure 2 with fixing bolts 5. A fitting recess 4 a is formed at the center of the lower steel plate 4. A rubber layer 6 is disposed at the bottom of the fitting recess 4a. Between the side surface of the rubber layer 6 and the inner wall surface of the fitting recess 4a, there is a space that allows the rubber layer 6 to expand laterally.

ゴム層6が配置された嵌合凹部4aにその一部が嵌合される第2部材7は、大径部7aと大径部7aの中央から立設する小径部7bを備えている。大径部7aがゴム層6の配置された嵌合凹部7aに嵌合する。下鋼板4と第2部材7の大径部7aとの間に上楊力止め8が連結ボルト9で固定され、第2部材7の嵌合凹部7aから抜け落ちるのを防止する。   The second member 7 partially fitted in the fitting recess 4a in which the rubber layer 6 is disposed includes a large diameter portion 7a and a small diameter portion 7b standing from the center of the large diameter portion 7a. The large diameter portion 7a is fitted into the fitting recess 7a in which the rubber layer 6 is disposed. An upper reed stop 8 is fixed between the lower steel plate 4 and the large-diameter portion 7 a of the second member 7 with a connecting bolt 9 to prevent the second steel member 7 from coming off from the fitting recess 7 a.

ゴム層6と接する嵌合凹部4aの底面と大径部7aの下面の少なくとも1つにゴム層6の膨張を許容するゴム膨張用凹部4b、7c又は貫通穴(図示せず)を形成する。   At least one of the bottom surface of the fitting recess 4a in contact with the rubber layer 6 and the lower surface of the large diameter portion 7a is formed with rubber expansion recesses 4b, 7c or through holes (not shown) that allow the rubber layer 6 to expand.

ソールプレート10が配置され主桁等の上部構造3に、第1部材11がセットボルト12により固定される。第1部材11の下面に凹部11aが形成される。第1部材の凹部11aの内径は第2部材7の小径部7bの外径より大きく、凹部11a内に小径部7bが位置する。小径部7bの上面には、表面を租面とした摩擦材14が固定され、第2部材7の摩擦材14が設置された上面と第1部材の凹部11aの底面とが接して摩擦力によりエネルギ吸収性の高い滑り面を構成する。摩擦材14を凹部11aの底面に配置しても良く、小径部7bの上面、凹部11aの底面を直接租面加工して摩擦力を高めても良い。   A sole plate 10 is disposed, and a first member 11 is fixed to an upper structure 3 such as a main girder by a set bolt 12. A recess 11 a is formed on the lower surface of the first member 11. The inner diameter of the concave portion 11a of the first member is larger than the outer diameter of the small diameter portion 7b of the second member 7, and the small diameter portion 7b is located in the concave portion 11a. On the upper surface of the small diameter portion 7b, a friction material 14 having a surface as a rough surface is fixed, and the upper surface where the friction material 14 of the second member 7 is installed and the bottom surface of the recess 11a of the first member are in contact with each other by friction force. It constitutes a sliding surface with high energy absorption. The friction material 14 may be disposed on the bottom surface of the recess 11a, or the upper surface of the small diameter portion 7b and the bottom surface of the recess 11a may be directly processed to increase the frictional force.

第2部材7の小径部7bと第1部材11の凹部11aの内壁との間に復元性を有する弾性材として複数の引張ゴム材13が水平方向に放射状に一定の張力を付されて張設される。この実施形態では、引張ゴム材13を所定厚みと所定幅を有するベルト状とし、ベルト状の引張ゴム材13の幅方向が上面となる横型に放射状に張設する。   A plurality of tensile rubber members 13 are stretched as a resilient material having resilience between the small-diameter portion 7b of the second member 7 and the inner wall of the recess 11a of the first member 11 with a certain radial tension applied in the horizontal direction. Is done. In this embodiment, the tensile rubber material 13 is formed in a belt shape having a predetermined thickness and a predetermined width, and the belt-shaped tensile rubber material 13 is radially stretched in a horizontal shape whose upper surface is the width direction.

ベルト状の引張ゴム材13を第2部材7の小径部7bと第1部材11の凹部11aの内壁との間に一定張力を付して張設するための手段を説明する。引張ゴム材13は中央部13aから放射状部13cを複数一体に形成し、引張ゴム材13の中央部13aに第2部材7の小径部7bを挿入する中央貫通穴13bを形成する。引張ゴム材13の中央貫通穴13bに第2部材7の小径部7bを挿入して引張ゴム材13の中央部13aを第2部材7に固定する。第1部材11には、引張ゴム材13の放射状部13cを挿通する横方向の貫通穴(図示せず)と固定フランジ11bが形成される。引張ゴム材13の放射状部13cを横方向の貫通穴に挿通し、引張ゴム材13に一定張力を付与し、固定フランジ11bに押さえ板11dと固定ピン11cを介して引張ゴム材13の放射状部13cの端部を圧着固定する。横型のベルト状の引張ゴム材13は、第1部材11の凹部11aとの間に前記ベルト状の引張ゴム材13の撓みを許容する上下のスペースを確保して配置する   A means for tensioning the belt-like tension rubber material 13 between the small diameter portion 7b of the second member 7 and the inner wall of the recess 11a of the first member 11 will be described. The tensile rubber material 13 is formed integrally with a plurality of radial portions 13c from the central portion 13a, and a central through hole 13b for inserting the small diameter portion 7b of the second member 7 is formed in the central portion 13a of the tensile rubber material 13. The small diameter portion 7 b of the second member 7 is inserted into the central through hole 13 b of the tensile rubber material 13, and the central portion 13 a of the tensile rubber material 13 is fixed to the second member 7. The first member 11 is formed with a lateral through hole (not shown) through which the radial portion 13c of the tensile rubber material 13 is inserted and a fixing flange 11b. The radial portion 13c of the tensile rubber material 13 is inserted into the through hole in the horizontal direction, a constant tension is applied to the tensile rubber material 13, and the radial portion of the tensile rubber material 13 is attached to the fixing flange 11b via the holding plate 11d and the fixing pin 11c. The end of 13c is crimped and fixed. The horizontal belt-like tensile rubber material 13 is arranged with a space above and below allowing the belt-like tensile rubber material 13 to bend between the concave portion 11 a of the first member 11.

図3、図4に示される実施形態では、引張ゴム材13の放射状部13cは4本であるが、引張ゴム材13の放射状部13cをより多く等間隔で張設しても良い。また、引張ゴム材13の第2部材7の小径部7bと第1部材11の凹部11aの内壁との間の固定手段としては、図3、図4に示される実施形態に限定されるものでは無く、例えば接着剤、熔着等の他の固定手段を用いても良い。   In the embodiment shown in FIGS. 3 and 4, there are four radial portions 13 c of the tensile rubber material 13, but more radial portions 13 c of the tensile rubber material 13 may be stretched at equal intervals. Moreover, as a fixing means between the small diameter part 7b of the 2nd member 7 of the tensile rubber material 13, and the inner wall of the recessed part 11a of the 1st member 11, it is not limited to embodiment shown by FIG. 3, FIG. For example, other fixing means such as an adhesive or welding may be used.

このように構成された構造物用支承装置1の作用について説明する。地震時の水平全方向からの大きな変位に対して、第1部材11の凹部11aの底面と摩擦材14が設置され第2部材7の小径部7bとの摩擦力の大きい滑り面で水平方向に変位し、摩擦力によりエネルギーを吸収する。第1部材11と第2部材7との間は、水平方向に放射状に延びる複数の引張ゴム材13が張設されており、第1部材11と第2部材7の水平方向の相対変位により、縦型に放射状に張設された複数の引張ゴム材13の放射状部13cの内の水平方向の変位に対応する引張ゴム材13に引張力が付加され伸張する。引張ゴム材13への引張力の付加による抵抗力で水平方向の変位のエネルギーが吸収される。全水平方向の水平変位に対しても対応する放射状部13cに引張力が付加されるので、全水平方向の水平変位に対してのエネルギー吸収が可能となる。引張ゴム材13には上部荷重が付加されることが無く、水平方向の変位に対してのみ引張力が作用するので、水平方向の変位のエネルギーを効率良く吸収し免震効果を向上することが可能となる。また、横型のベルト状の引張ゴム材13が、第1部材11の凹部11aとの間に前記ベルト状の引張ゴム材13の撓みを許容する上下のスペースを確保して配置されるので、引張ゴム材13が撓んで他の物体に接触するのを防止することが可能となる。   The operation of the structure support device 1 configured as described above will be described. In response to a large displacement from all horizontal directions during an earthquake, the bottom surface of the concave portion 11a of the first member 11 and the friction material 14 are installed, and the sliding surface having a large frictional force between the small diameter portion 7b of the second member 7 is arranged in the horizontal direction. Displaces and absorbs energy by frictional force. Between the first member 11 and the second member 7, a plurality of tensile rubber materials 13 extending radially in the horizontal direction are stretched, and due to the relative displacement of the first member 11 and the second member 7 in the horizontal direction, A tensile force is applied to the tensile rubber material 13 corresponding to the horizontal displacement of the radial portions 13c of the plurality of tensile rubber materials 13 that are radially stretched in the vertical shape, and the tensile rubber material 13 expands. The displacement energy in the horizontal direction is absorbed by the resistance force due to the addition of the tensile force to the tensile rubber material 13. Since tensile force is applied to the radial portion 13c corresponding to horizontal displacement in all horizontal directions, energy can be absorbed with respect to horizontal displacement in all horizontal directions. Since no tensile load is applied to the tensile rubber material 13 and a tensile force acts only on the horizontal displacement, the horizontal displacement energy can be absorbed efficiently and the seismic isolation effect can be improved. It becomes possible. Further, since the horizontal belt-like tensile rubber material 13 is arranged with a space above and below to allow the belt-like tensile rubber material 13 to bend between the concave portion 11a of the first member 11, the tension is reduced. It is possible to prevent the rubber material 13 from bending and coming into contact with other objects.

第1部材11と第2部材7との間に張設される放射状に延びる横型の複数の引張ゴム材13は、第1部材11の凹部11a内に配置されるので高さをより低く抑えることが可能となり、免震支承装置の小型化に貢献することが可能となる。   The plurality of radially extending horizontal tensile rubber members 13 stretched between the first member 11 and the second member 7 are disposed in the recesses 11a of the first member 11, so that the height is kept lower. It becomes possible to contribute to the downsizing of the seismic isolation bearing device.

また、ゴム層6と接する嵌合凹部4aの底面と大径部7aの下面の少なくとも1つにゴム層6の膨張を許容するゴム膨張用凹部4b、7c又は貫通穴(図示せず)を形成することで、地震時の応力によりゴム層6の側面部への膨出と、ゴム層6の上下水平面の少なくとも何れかが、ゴム膨張用凹部4b、7cに弾性変形して膨出することで、大きな圧縮ひずみを得ることができ、その圧縮ひずみ分ゴム層6で地震時の回転変位を吸収することが可能となる。この結果、ゴム層6の厚みを薄くすることが可能になり、さらにゴム層6が下鋼板4の嵌合凹部4aに配置されるため、支承装置の薄型化及び小型化に貢献することが可能になる。   Also, rubber expansion recesses 4b, 7c or through holes (not shown) that allow expansion of the rubber layer 6 are formed in at least one of the bottom surface of the fitting recess 4a that contacts the rubber layer 6 and the lower surface of the large diameter portion 7a. By doing so, at least one of the swelling of the rubber layer 6 to the side surface and the upper and lower horizontal surfaces of the rubber layer 6 due to the stress at the time of the earthquake is elastically deformed and bulged into the rubber expansion recesses 4b and 7c. A large compressive strain can be obtained, and the rotational displacement at the time of earthquake can be absorbed by the rubber layer 6 corresponding to the compressive strain. As a result, the thickness of the rubber layer 6 can be reduced, and the rubber layer 6 is disposed in the fitting recess 4a of the lower steel plate 4, which can contribute to the reduction in thickness and size of the support device. become.

図5、図6は、本発明の構造物用支承装置を橋梁に用いた別の実施形態を示す。   5 and 6 show another embodiment in which the structural support device of the present invention is used for a bridge.

構造物用支承装置1は、橋脚等の下部構造2と主桁等の上部構造3の間に設置される。下部構造2に下鋼板4が固定ボルト5により固定される。下鋼板4の中央部に嵌合凹部4aが形成される。嵌合凹部4aの底部にはゴム層6が配置される。ゴム層6の側面と嵌合凹部4aの内壁面との間にはゴム層6の側方への膨張を可能にするスペースを有する。   The structure support device 1 is installed between a lower structure 2 such as a pier and an upper structure 3 such as a main girder. A lower steel plate 4 is fixed to the lower structure 2 with fixing bolts 5. A fitting recess 4 a is formed at the center of the lower steel plate 4. A rubber layer 6 is disposed at the bottom of the fitting recess 4a. Between the side surface of the rubber layer 6 and the inner wall surface of the fitting recess 4a, there is a space that allows the rubber layer 6 to expand laterally.

ゴム層6が配置された嵌合凹部4aにその一部が嵌合される第2部材7は、大径部7aと大径部7aの中央から立設する小径部7bを備えている。大径部7aがゴム層6の配置された嵌合凹部7aに嵌合する。下鋼板4と第2部材7の大径部7aとの間に上楊力止め8が連結ボルト9で固定され、第2部材7の嵌合凹部7aから抜け落ちるのを防止する。   The second member 7 partially fitted in the fitting recess 4a in which the rubber layer 6 is disposed includes a large diameter portion 7a and a small diameter portion 7b standing from the center of the large diameter portion 7a. The large diameter portion 7a is fitted into the fitting recess 7a in which the rubber layer 6 is disposed. An upper reed stop 8 is fixed between the lower steel plate 4 and the large-diameter portion 7 a of the second member 7 with a connecting bolt 9 to prevent the second steel member 7 from coming off from the fitting recess 7 a.

ゴム層6と接する嵌合凹部4aの底面と大径部7aの下面の少なくとも1つにゴム層6の膨張を許容するゴム膨張用凹部4b、7c又は貫通穴(図示せず)を形成する。   At least one of the bottom surface of the fitting recess 4a in contact with the rubber layer 6 and the lower surface of the large diameter portion 7a is formed with rubber expansion recesses 4b, 7c or through holes (not shown) that allow the rubber layer 6 to expand.

ソールプレート10が配置され主桁等の上部構造3に、第1部材11がセットボルト12により固定される。第1部材11の下面に凹部11aが形成される。第1部材の凹部11aの内径は第2部材7の小径部7bの外径より大きく、凹部11a内に小径部7bが位置する。小径部7bの上面には、表面を租面とした摩擦材14が固定され、第2部材7の摩擦材14が設置された上面と第1部材の凹部11aの底面とが接して摩擦力によりエネルギ吸収性の高い滑り面を構成する。摩擦材14を凹部11aの底面に配置しても良く、小径部7bの上面、凹部11aの底面を直接租面加工して摩擦力を高めても良い。   A sole plate 10 is disposed, and a first member 11 is fixed to an upper structure 3 such as a main girder by a set bolt 12. A recess 11 a is formed on the lower surface of the first member 11. The inner diameter of the concave portion 11a of the first member is larger than the outer diameter of the small diameter portion 7b of the second member 7, and the small diameter portion 7b is located in the concave portion 11a. On the upper surface of the small diameter portion 7b, a friction material 14 having a surface as a rough surface is fixed, and the upper surface where the friction material 14 of the second member 7 is installed and the bottom surface of the recess 11a of the first member are in contact with each other by friction force. It constitutes a sliding surface with high energy absorption. The friction material 14 may be disposed on the bottom surface of the recess 11a, or the upper surface of the small diameter portion 7b and the bottom surface of the recess 11a may be directly processed to increase the frictional force.

第2部材7の小径部7bと第1部材11の凹部11aの内壁との間に復元性を有する弾性材として複数のコイルスプリング15が水平方向に放射状に一定の張力を付されて張設される。   A plurality of coil springs 15 are stretched between the small-diameter portion 7b of the second member 7 and the inner wall of the concave portion 11a of the first member 11 as a resilient material having a restoring property, with a certain radial force applied in the horizontal direction. The

図5、図6に示される実施形態では、コイルスプリング15は4本であるが、コイルスプリング15をより多く等間隔で張設しても良い。   In the embodiment shown in FIGS. 5 and 6, there are four coil springs 15, but more coil springs 15 may be stretched at equal intervals.

このように構成された構造物用支承装置1の作用について説明する。地震時の水平全方向からの大きな変位に対して、第1部材11の凹部11aの底面と摩擦材14が設置され第2部材7の小径部7bとの摩擦力の大きい滑り面で水平方向に変位し、摩擦力によりエネルギーを吸収する。第1部材11と第2部材7との間は、水平方向に放射状に延びる複数のコイルスプリング15が張設されており、第1部材11と第2部材7の水平方向の相対変位により、複数のコイルスプリング15の内の水平方向の変位に対応するコイルスプリング15に引張力が付加され伸張する。コイルスプリング15への引張力の付加による抵抗力で水平方向の変位のエネルギーが吸収される。全水平方向の水平変位に対しても対応するコイルスプリング15に引張力が付加されるので、全水平方向の水平変位に対してのエネルギー吸収が可能となる。コイルスプリング15には上部荷重が付加されることが無く、水平方向の変位に対してのみ引張力が作用するので、水平方向の変位のエネルギーを効率良く吸収し免震効果を向上することが可能となる。   The operation of the structure support device 1 configured as described above will be described. In response to a large displacement from all horizontal directions during an earthquake, the bottom surface of the concave portion 11a of the first member 11 and the friction material 14 are installed, and the sliding surface having a large frictional force between the small diameter portion 7b of the second member 7 is arranged in the horizontal direction. Displaces and absorbs energy by frictional force. A plurality of coil springs 15 extending radially in the horizontal direction are stretched between the first member 11 and the second member 7, and the plurality of coil springs 15 are arranged by relative displacement in the horizontal direction between the first member 11 and the second member 7. A tensile force is applied to the coil spring 15 corresponding to the horizontal displacement of the coil spring 15 to expand. The displacement energy in the horizontal direction is absorbed by the resistance force due to the addition of the tensile force to the coil spring 15. Since tensile force is applied to the coil spring 15 corresponding to horizontal displacement in all horizontal directions, energy can be absorbed with respect to horizontal displacement in all horizontal directions. Since no upper load is applied to the coil spring 15 and a tensile force acts only on the horizontal displacement, it is possible to efficiently absorb the energy of the horizontal displacement and improve the seismic isolation effect. It becomes.

第1部材11と第2部材7との間に張設される放射状に延びるコイルスプリング15は、第1部材11の凹部11a内に配置されるので高さをより低く抑えることが可能となり、免震支承装置の小型化に貢献することが可能となる。   Since the radially extending coil spring 15 stretched between the first member 11 and the second member 7 is disposed in the recess 11a of the first member 11, the height can be further reduced, and the It is possible to contribute to downsizing of the seismic bearing device.

また、ゴム層6と接する嵌合凹部4aの底面と大径部7aの下面の少なくとも1つにゴム層6の膨張を許容するゴム膨張用凹部4b、7c又は貫通穴(図示せず)を形成することで、地震時の応力によりゴム層6の側面部への膨出と、ゴム層6の上下水平面の少なくとも何れかが、ゴム膨張用凹部4b、7cに弾性変形して膨出することで、大きな圧縮ひずみを得ることができ、その圧縮ひずみ分ゴム層6で地震時の回転変位を吸収することが可能となる。この結果、ゴム層6の厚みを薄くすることが可能になり、さらにゴム層6が下鋼板4の嵌合凹部4aに配置されるため、支承装置の薄型化及び小型化に貢献することが可能になる。   Also, rubber expansion recesses 4b, 7c or through holes (not shown) that allow expansion of the rubber layer 6 are formed in at least one of the bottom surface of the fitting recess 4a that contacts the rubber layer 6 and the lower surface of the large diameter portion 7a. By doing so, at least one of the swelling of the rubber layer 6 to the side surface and the upper and lower horizontal surfaces of the rubber layer 6 due to the stress at the time of the earthquake is elastically deformed and bulged into the rubber expansion recesses 4b and 7c. A large compressive strain can be obtained, and the rotational displacement at the time of earthquake can be absorbed by the rubber layer 6 corresponding to the compressive strain. As a result, the thickness of the rubber layer 6 can be reduced, and the rubber layer 6 is disposed in the fitting recess 4a of the lower steel plate 4, which can contribute to the reduction in thickness and size of the support device. become.

以上のように、本発明の引張型免震支承装置1によれば、全水平方向の水平変位に対しても対応する復元性を有する弾性材に引張力が付加されるので、全水平方向の水平変位に対してのエネルギー吸収が可能となる。また、第1部材と第2部材間の摩擦力が大きい滑り面での相対変位により摩擦力によるエネルギー吸収を図ることが可能となる。また、復元性を有する弾性材には上部荷重が付加されることが無く、水平方向の変位に対してのみ引張力が作用するので、水平方向の変位のエネルギーを効率良く吸収し免震効果を向上することが可能となる。   As described above, according to the tension type seismic isolation device 1 of the present invention, a tensile force is added to the elastic material having resilience corresponding to the horizontal displacement in the entire horizontal direction. Energy absorption for horizontal displacement is possible. In addition, energy absorption by the frictional force can be achieved by relative displacement on the sliding surface where the frictional force between the first member and the second member is large. In addition, there is no upper load applied to the elastic material with resilience, and the tensile force acts only on the horizontal displacement, so the energy of the horizontal displacement is absorbed efficiently and the seismic isolation effect is obtained. It becomes possible to improve.

1:構造物用支承装置、2:下部構造、3:上部構造、4:下鋼板、4a:嵌合凹部、4b:ゴム膨張用凹部、5:固定ボルト、6:ゴム層、7:第2部材、7a:大径部、7b:小径部、7c:ゴム膨張用凹部、8:上楊力止め、9:連結ボルト、10:ソールプレート、11:第1部材、11a:凹部、11b:固定フランジ、11c:固定ピン、11d:押さえ板、12:セットボルト、13:引張ゴム材、13a:中央部、13b:中央貫通穴、13c:放射状部、14:摩擦材、15:コイルスプリング   1: structure support device, 2: lower structure, 3: upper structure, 4: lower steel plate, 4a: fitting recess, 4b: rubber expansion recess, 5: fixing bolt, 6: rubber layer, 7: second Member, 7a: large diameter portion, 7b: small diameter portion, 7c: recess for rubber expansion, 8: upper side force stop, 9: connecting bolt, 10: sole plate, 11: first member, 11a: recess, 11b: fixed Flange, 11c: Fixing pin, 11d: Presser plate, 12: Set bolt, 13: Tensile rubber material, 13a: Central part, 13b: Central through hole, 13c: Radial part, 14: Friction material, 15: Coil spring

Claims (6)

建築物や橋梁等の土木構造物の上部構造と下部構造間に配置される引張型免震支承装置において、
上部構造又は下部構造の一方に配置される第1部材と、
他方に配置される第2部材と、
前記第2部材と前記第1部材との間に水平方向に放射状に張設される複数の復元性を有する弾性材と、
を備え、
構造物に付加される全水平方向の水平変位に対して前記弾性材に付加される引張力によりエネルギーを吸収することを特徴とする引張型免震支承装置。
In the tension-type seismic isolation device placed between the upper structure and the lower structure of civil structures such as buildings and bridges,
A first member disposed on one of the upper structure or the lower structure;
A second member disposed on the other side;
An elastic material having a plurality of resilience stretched radially in a horizontal direction between the second member and the first member;
With
A tensile-type seismic isolation device characterized in that energy is absorbed by a tensile force applied to the elastic member with respect to a horizontal displacement applied to the structure in all horizontal directions.
前記弾性材を引張ゴムとすることを特徴とする請求項1に記載の引張型免震支承装置。   2. The tension type seismic isolation device according to claim 1, wherein the elastic material is a tensile rubber. 前記弾性材をコイルスプリングとすることを特徴とする請求項1に記載の引張型免震支承装置。   2. The tension-type seismic isolation device according to claim 1, wherein the elastic material is a coil spring. 前記第1部材に凹部を形成し、前記凹部の内径より外径が小さい前記第2部材の一部を前記凹部内に位置させ、前記第1部材の凹部の内壁と前記第2部材の一部外周との間に複数の復元性を有する弾性材を水平方向に放射状に張設することを特徴とする請求項1に記載の引張型免震支承装置。   A recess is formed in the first member, a part of the second member having an outer diameter smaller than an inner diameter of the recess is positioned in the recess, and an inner wall of the recess of the first member and a part of the second member The tension type seismic isolation device according to claim 1, wherein a plurality of elastic materials having resilience are stretched radially in the horizontal direction between the outer periphery and the outer periphery. 前記第1部材の凹部の底面と前記第2部材の一部の上面との間に摩擦材を配置することを特徴とする請求項1ないし4のいずれか1項に記載の引張型免震支承装置。   5. The tension-type seismic isolation bearing according to claim 1, wherein a friction material is disposed between a bottom surface of the concave portion of the first member and a top surface of a part of the second member. apparatus. 前記第2部材が配置された構造部側に嵌合凹部を形成した鋼板を固定し、前記嵌合凹部内にその側面部が膨張可能なスペースを有し上下面が水平面なゴム層を配置し、前記嵌合凹部に前記第2部材の一部を前記ゴム層と接触するように嵌合し、前記鋼板又は前記第2部材の前記ゴム層と接する少なくとも一方の面に前記ゴム層の膨張を許容する貫通孔又は凹部を形成することを特徴とする請求項1ないし5のいずれか1項に記載の引張型免震支承装置。   A steel plate in which a fitting recess is formed is fixed to the structure portion side where the second member is arranged, and a rubber layer having a lateral surface expandable in the fitting recess and having a horizontal surface on the upper and lower surfaces is arranged. In addition, a part of the second member is fitted into the fitting recess so as to be in contact with the rubber layer, and the rubber layer is expanded on at least one surface of the steel plate or the second member in contact with the rubber layer. The tension type seismic isolation device according to any one of claims 1 to 5, wherein a through hole or a concave portion to be allowed is formed.
JP2011135934A 2011-06-20 2011-06-20 Tension type base-isolation bearing device Withdrawn JP2013002192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011135934A JP2013002192A (en) 2011-06-20 2011-06-20 Tension type base-isolation bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011135934A JP2013002192A (en) 2011-06-20 2011-06-20 Tension type base-isolation bearing device

Publications (1)

Publication Number Publication Date
JP2013002192A true JP2013002192A (en) 2013-01-07

Family

ID=47671052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011135934A Withdrawn JP2013002192A (en) 2011-06-20 2011-06-20 Tension type base-isolation bearing device

Country Status (1)

Country Link
JP (1) JP2013002192A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231862A (en) * 2013-05-28 2014-12-11 清水建設株式会社 Slide base isolation mechanism
CN108265573A (en) * 2018-03-12 2018-07-10 北京盈峰科技有限公司 Tension straddle-type monorail bearing
CN108978879A (en) * 2018-07-08 2018-12-11 华北理工大学 Tension limits shock isolating pedestal and its installation method certainly
CN110067190A (en) * 2018-01-24 2019-07-30 比亚迪股份有限公司 Mounting assembly and track girder with it
CN114922050A (en) * 2022-05-13 2022-08-19 中铁第四勘察设计院集团有限公司 Annular damping piece, multidirectional annular steel damping device and seismic isolation and reduction bridge structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231862A (en) * 2013-05-28 2014-12-11 清水建設株式会社 Slide base isolation mechanism
CN110067190A (en) * 2018-01-24 2019-07-30 比亚迪股份有限公司 Mounting assembly and track girder with it
CN108265573A (en) * 2018-03-12 2018-07-10 北京盈峰科技有限公司 Tension straddle-type monorail bearing
CN108978879A (en) * 2018-07-08 2018-12-11 华北理工大学 Tension limits shock isolating pedestal and its installation method certainly
CN114922050A (en) * 2022-05-13 2022-08-19 中铁第四勘察设计院集团有限公司 Annular damping piece, multidirectional annular steel damping device and seismic isolation and reduction bridge structure

Similar Documents

Publication Publication Date Title
JP5762780B2 (en) Hysteretic damper
JP2013002192A (en) Tension type base-isolation bearing device
CN112281641B (en) Grid damping support
KR20060084173A (en) Earthquake isolation bearing for bridges using shape memory alloy
JP2005299078A (en) Vibration proofing apparatus for bridge
JP4292127B2 (en) Bridge bearing device
JP5305756B2 (en) Damping wall using corrugated steel
JP2018091035A (en) Attachment structure of building oil damper
JP2019100098A (en) Composite damper
JP5841889B2 (en) Column base pin structure
KR200384918Y1 (en) A form memory bearing apparatus for structure
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP4404319B1 (en) Bearing device
JP6230672B2 (en) Damper device for seismic reinforcement of structures
JP7083525B2 (en) Seismic isolation structure
JP7266468B2 (en) Seismic isolation structure
JP5612629B2 (en) Seismic isolation device
JP5646845B2 (en) Bridge girder support device
JP4250539B2 (en) Seismic isolation device
JP2012052374A (en) Beam end vibration control structure
JP6681667B2 (en) Seismic isolation structure
JP2006226313A (en) Base isolator
JP4695650B2 (en) Seismic isolation and control equipment
JP6941480B2 (en) Ceiling support structure
JP2017187055A (en) Seismic isolator with concentric circle laminated attenuation materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902