JPH11296900A - Optical device - Google Patents

Optical device

Info

Publication number
JPH11296900A
JPH11296900A JP10098859A JP9885998A JPH11296900A JP H11296900 A JPH11296900 A JP H11296900A JP 10098859 A JP10098859 A JP 10098859A JP 9885998 A JP9885998 A JP 9885998A JP H11296900 A JPH11296900 A JP H11296900A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
diffractive optical
laser light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10098859A
Other languages
Japanese (ja)
Other versions
JP4668365B2 (en
Inventor
Nobuyuki Hashimoto
信幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP09885998A priority Critical patent/JP4668365B2/en
Publication of JPH11296900A publication Critical patent/JPH11296900A/en
Application granted granted Critical
Publication of JP4668365B2 publication Critical patent/JP4668365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PROBLEM TO BE SOLVED: To make switchable an electrically effective numerical aperture with high light usage efficiency by converging the luminous flux diffracting/ transmitting a laser beam from a laser light source with a diffraction optical element controlled by an electric signal with a convergent optical system and making a controlled area act on a partial area of the luminous flux. SOLUTION: The laser beam 103 emitted from the laser light source 101 and made into a parallel planar wave by a collimate lens 102 is diffracted by the diffraction optical element 104 consisting of parts 105, 106 diffracting by zero degree and θ degree. The laser beam 107 transmitting through the part 106 diffracting by θdegree and diffracted by θ degree is made incident on an area excepting the circular area 110 of the convergent optical system 108, and is image-formed on points πP1 not to contribute to the image forming point P of the circular area 110 for CD. Then, the diffractive function of the part 106 diffracting by θ degree of the diffraction optical element 104 is stopped with the electric signal to make it into the part diffracting by zero degree, and effective luminous flux 111 is bypassed to be image-formed on the image forming point P and to be used for a DVD. Thus, the numerical aperture can be electrically switched with a simple constitution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学系の実効的な開
口数を切り替える技術、特に最近の光ディスク装置の光
ピックアップにおいて実効的な開口数を切り替え、DV
DやCD−ROM用といった異なる開口数から構成され
る光ピックアップを一つの光ピックアップで共用可能と
する技術に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for switching an effective numerical aperture of an optical system, and more particularly, to a technique for switching an effective numerical aperture in a recent optical pickup of an optical disk apparatus.
It belongs to a technology that allows an optical pickup having different numerical apertures, such as for D and CD-ROM, to be shared by one optical pickup.

【0002】[0002]

【従来の技術】従来技術の理解を容易にするため、光学
系の開口数について簡単に説明する。幾何光学的にほぼ
無収差で設計された光学系においては点像は無限小のス
ポットで結像されるが、実際は光の波動性による回折の
影響でスポットは有限の広がりを持つ。この時、結像も
しくは集光に寄与する光学系の開口数をNAとすると、
スポットの広がりの物理的定義はk×λ÷NAで表され
る。ここでλは光の波長、kは光学系に定まる定数で普
通は1から2前後の値をとる。NAは光学系の有効入射
瞳直径D(一般的には有効光束の直径)と焦点距離fの
比D/fに比例する。この式で表されるスポットの広が
りが理論解像限界となり回折限界といわれる。
2. Description of the Related Art To facilitate understanding of the prior art, the numerical aperture of an optical system will be briefly described. In an optical system designed with almost no aberration in geometrical optics, a point image is formed as an infinitely small spot, but in reality, the spot has a finite spread due to diffraction due to the wave nature of light. At this time, if the numerical aperture of the optical system that contributes to image formation or light collection is NA,
The physical definition of the spread of a spot is represented by k × λ ÷ NA. Here, λ is the wavelength of light, and k is a constant determined by the optical system and usually takes a value of about 1 to 2. NA is proportional to the ratio D / f between the effective entrance pupil diameter D of the optical system (generally, the diameter of the effective light beam) and the focal length f. The spread of the spot represented by this equation becomes the theoretical resolution limit and is called the diffraction limit.

【0003】先の式から明らかなように、光学系の理論
解像度は開口数に大きく左右される。一般に光ディスク
の場合の光ピックアップの集光光学系の開口数はCDや
CD−ROM用では0.45程度、DVD(デジタルバ
ーサタイルディスク)用では0.6程度である。また光
ディスク基盤の厚さはCD用が1.2mm、DVD用が
0.6mmと異なる事もありCDとDVDとでは同一の
開口数を持つ集光光学系は共用不可能である。
[0003] As is apparent from the above equation, the theoretical resolution of an optical system largely depends on the numerical aperture. Generally, the numerical aperture of the converging optical system of an optical pickup for an optical disc is about 0.45 for a CD or CD-ROM, and about 0.6 for a DVD (digital versatile disc). Also, the thickness of the optical disc substrate may be 1.2 mm for CD and 0.6 mm for DVD, and condensing optical systems having the same numerical aperture cannot be shared between CD and DVD.

【0004】そこでこの問題を解決するため、一台の機
器の中に2台の光ピックアップを設置する方法や、光ピ
ックアップの集光レンズにホログラムを刻み二焦点にし
て同時に二種の開口を得る方法、あるいは液晶シャッタ
を用いて有効入射瞳径を切り替えて開口を切り替える方
法等が用いられている。
In order to solve this problem, a method of installing two optical pickups in one device, a method in which a hologram is cut into a condenser lens of the optical pickup, and two kinds of apertures are simultaneously obtained by making two focuses. A method, a method of switching an aperture by switching an effective entrance pupil diameter using a liquid crystal shutter, or the like is used.

【0005】次に、本発明に近い従来例を図7に示す。
これは光ディスクへの適用を前提としたものである。以
下図7に従って説明する。
Next, a conventional example close to the present invention is shown in FIG.
This is based on application to an optical disk. This will be described below with reference to FIG.

【0006】直線偏光レーザ光源701から出射しコリ
メートレンズ702で平面波にされた直線偏光703
は、その偏光軸704が紙面に平行であるY軸方向とす
る。直線偏光703は90度TN(ツイストネマティッ
ク)型液晶素子705により偏光軸704の方向が90
度回転しX軸方向となる。集光光学系706により直線
偏光703が集光される。この時、中央部が丸く切り抜
かれた偏光板707が集光光学系706の手前に設置さ
れ、その直線偏光透過軸はY軸方向であるとする。この
時、偏光板707と組み合わされた90度TN型液晶素
子705の光シャッタ機能により、偏光板のくり貫かれ
た中央部を透過した直線偏光のみが集光に寄与する。C
Dの再生にはこの状態で使用する。
Linearly polarized light 703 emitted from a linearly polarized laser light source 701 and converted into a plane wave by a collimating lens 702
Is the Y-axis direction whose polarization axis 704 is parallel to the paper surface. The direction of the polarization axis 704 of the linearly polarized light 703 is 90 degrees by a 90 degree TN (twisted nematic) liquid crystal element 705.
And rotate in the X-axis direction. The condensing optical system 706 condenses the linearly polarized light 703. At this time, it is assumed that a polarizing plate 707 whose center is cut out in a round shape is installed in front of the condensing optical system 706, and its linearly polarized light transmission axis is in the Y-axis direction. At this time, due to the optical shutter function of the 90-degree TN type liquid crystal element 705 combined with the polarizing plate 707, only the linearly polarized light that has passed through the hollow central portion of the polarizing plate contributes to light collection. C
D is used in this state for reproduction.

【0007】一方、DVDの再生においては90度TN
型液晶素子705にZ方向の電界を加え、後に述べるホ
メオトロピックの状態にする。この状態では液晶素子に
旋光性が無くなるため直線偏光703は偏光板を透過す
る事ができ先の状態と比べ開口数が大きくなる。この状
態においても偏光板の持つ光吸収作用により光量が失わ
れる。また偏光板の中央部がくり貫かれているため、偏
光板を透過した直線偏光とそうでない直線偏光に偏光板
と空気の屈折率差に起因する光の位相差が生じ、回折限
界まで集光する事が困難となる。そのため、くり貫かれ
た中央部に直線偏光透過軸がX軸方向である同じ種類の
偏光板を設置すれば位相差の問題は解決するが、更に光
量が失われる事になる。
On the other hand, in the case of reproducing a DVD, a 90 ° TN
An electric field in the Z direction is applied to the type liquid crystal element 705 to bring it to a homeotropic state described later. In this state, since the liquid crystal element has no optical rotation, the linearly polarized light 703 can pass through the polarizing plate, and the numerical aperture is larger than that in the previous state. Even in this state, the amount of light is lost due to the light absorbing action of the polarizing plate. In addition, since the central part of the polarizer is hollowed out, there is a phase difference between the linearly polarized light transmitted through the polarizer and the other linearly polarized light due to the difference in the refractive index between the polarizer and air, and the light reaches the diffraction limit. It becomes difficult to do. Therefore, if the same type of polarizing plate whose linearly polarized light transmission axis is in the X-axis direction is provided in the hollowed-out central portion, the problem of the phase difference is solved, but the light amount is further lost.

【0008】集光光学系706で集光された集光スポッ
ト708は光ディスク709で反射されほぼ入射と同じ
光路をもどり、光分離素子710で分離された光束71
1が別の集光光学系712で集光され、集光スポット7
13が光検出素子714で検出される。
The condensed light spot 708 condensed by the condensing optical system 706 is reflected by the optical disk 709 and returns almost in the same optical path as the incident light.
1 is condensed by another condensing optical system 712 and a condensed spot 7
13 is detected by the light detection element 714.

【0009】[0009]

【発明が解決しようとする課題】しかしながら一台の機
器に2つのピックアップを設置する事は機器構成が複雑
になり且つスペースの点でも不利になる。また集光レン
ズにホログラムを刻み二焦点にすると常にどちらか一方
の使われない不要な集光スポットを発生しているため、
光利用効率が低下する。これはDVD−Rすなわち書き
込み書き換え可能なDVDのような大きな光量を必要と
する機器においては書き込み速度の低下の問題となる。
同様に液晶シャッタを用いる方法においても同じ問題が
生じる。
However, installing two pickups in one device complicates the device configuration and is disadvantageous in terms of space. In addition, when a hologram is engraved on the condenser lens to make it a bifocal point, one of them will always generate an unnecessary condensed spot that is not used.
Light utilization efficiency decreases. This causes a problem of reduction in writing speed in a device requiring a large amount of light, such as a DVD-R, ie, a rewritable DVD.
Similarly, the same problem occurs in the method using the liquid crystal shutter.

【0010】そこで本発明は、レーザー光を出射するレ
ーザー光源とレーザー光を集光する集光光学系からなる
光学装置において、光路中に電気的に回折機能を制御可
能な回折光学素子を設置し且つ回折機能を集光光学系で
集光されるレーザー光束の一部分の領域に作用させる事
で、光利用効率が高く電気的に実効的な開口数を切り替
え可能な光学装置を提供することを目的とする。
Accordingly, the present invention provides an optical device comprising a laser light source for emitting laser light and a condensing optical system for condensing laser light, wherein a diffractive optical element capable of electrically controlling a diffraction function is provided in an optical path. In addition, an object of the present invention is to provide an optical device which has high light utilization efficiency and can switch an electrically effective numerical aperture by applying a diffraction function to a partial area of a laser beam condensed by a condensing optical system. And

【0011】[0011]

【課題を解決するための手段】本発明における光学装置
は、少なくともレーザー光を出射するレーザー光源と該
レーザー光を回折する回折光学素子と該回折光学素子を
透過した光束を集光する集光光学系とから構成される光
学装置において、回折光学素子の回折機能は電気信号で
制御され、かつ制御される領域は集光光学系で集光され
る光束の一部分の領域に作用する事を特徴とする。
An optical device according to the present invention comprises a laser light source for emitting at least a laser beam, a diffractive optical element for diffracting the laser beam, and a condensing optic for condensing a light beam transmitted through the diffractive optical element. In the optical device composed of the optical system, the diffraction function of the diffractive optical element is controlled by an electric signal, and the controlled area acts on a partial area of the light beam condensed by the condensing optical system. I do.

【0012】また、前記回折光学素子は入射レーザー光
を0度回折する部位とθ度回折する部位とから構成さ
れ、該0度回折する部位は、集光光学系により利用され
る有効光束中の光軸を中心としたほぼ円形領域に作用
し、前記θ度回折する部位は、前記有効光束中の前記円
形領域以外の領域に作用し、前記回折光学素子の回折機
能は、電気信号で制御される事を特徴とする。
The diffractive optical element is composed of a part that diffracts the incident laser light by 0 degrees and a part that diffracts by θ degrees, and the part that diffracts by 0 degree is included in the effective light beam used by the focusing optical system. Acting on a substantially circular area centered on the optical axis, the portion diffracted by θ degrees acts on an area other than the circular area in the effective light beam, and the diffraction function of the diffractive optical element is controlled by an electric signal. It is characterized by.

【0013】また、レーザー光として直線偏光レーザー
光を、また電気信号で制御可能な回折光学素子として液
晶回折光学素子を用い、かつ該液晶回折光学素子は、平
行配向型液晶素子から構成され、前記直線偏光レーザー
光の偏光軸方向は、前記液晶回折光学素子の液晶分子配
向軸の方向とほぼ一致し、前記平行配向型液晶素子の位
相変調能力は、前記直線偏光レーザー光の波長の半波長
プラス波長の整数倍程度もしくは波長の整数倍程度とし
た事を特徴とする。
A linearly polarized laser beam is used as the laser beam, and a liquid crystal diffractive optical element is used as the diffractive optical element which can be controlled by an electric signal. The liquid crystal diffractive optical element is composed of a parallel alignment type liquid crystal element. The direction of the polarization axis of the linearly polarized laser light substantially coincides with the direction of the liquid crystal molecule alignment axis of the liquid crystal diffraction optical element, and the phase modulation capability of the parallel alignment type liquid crystal element is a half wavelength plus the wavelength of the linearly polarized laser light. It is characterized in that it is about an integral multiple of the wavelength or about an integral multiple of the wavelength.

【0014】[0014]

【発明の実施の形態】(第1の実施の形態)次に本発明
による第1の実施形態を図1に示す。簡単のため図1は
YZ平面である2次元に投影して描いた。実際は光軸1
09を回転軸とした回転対照となる。また本発明と直接
には関係しない検出光学系の部分は省いた。レーザー光
源101から出射し、コリメートレンズ102で平行平
面波にされたレーザー光103は回折光学素子104を
透過後、回折光学素子104の回折機能により回折す
る。回折光学素子104は入射光を0度回折する部位1
05と、θ度回折する部位106とから構成される。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention. For simplicity, FIG. 1 is drawn by projecting onto a two-dimensional YZ plane. Actually optical axis 1
The rotation reference is the rotation axis 09. In addition, parts of the detection optical system that are not directly related to the present invention are omitted. The laser light 103 emitted from the laser light source 101 and converted into a parallel plane wave by the collimator lens 102 passes through the diffractive optical element 104 and is diffracted by the diffractive optical element 104. The diffractive optical element 104 is a part 1 that diffracts incident light by 0 degree.
05 and a portion 106 that diffracts by θ degrees.

【0015】θ度回折する部位106を透過しθ度回折
したレーザー光107は集光光学系108の光軸109
を中心としたほぼ円形領域110(斜線表示)以外に入
射する。この円形領域110は集光光学系108に本来
入射すべき有効光束111の一部分であり、有効光束1
11による開口より小さくなっている事がわかる。ここ
では有効光束111による開口をDVD用に、円形領域
110による開口をCD用に設定する。
The laser beam 107 transmitted through the part 106 diffracted by θ degrees and diffracted by θ degrees is transmitted through the optical axis 109 of the focusing optical system 108.
Is incident on a region other than the substantially circular region 110 (shown by oblique lines) centered at. This circular area 110 is a part of the effective light beam 111 that should originally enter the light-collecting optical system 108,
It can be seen that the opening is smaller than the opening 11. Here, the opening by the effective light beam 111 is set for DVD, and the opening by the circular region 110 is set for CD.

【0016】図1に示すようにθ度回折した領域の光束
は、光学結像の原理より光軸109からY軸方向に±f
×tan(θ)だけずれた点±P1に結像する。ここで
fは集光光学系108の焦点距離である。すなわちCD
用の開口に設定した円形領域110を透過した光の結像
点Pに寄与しない。また回折角θの値が十分大きければ
θ度回折した領域の光束は集光光学系108にはまった
く入射しなくなる事もわかる。これらの状態での実効的
な開口はCD用となる。
As shown in FIG. 1, the luminous flux in the region diffracted by θ degrees is ± f from the optical axis 109 in the Y-axis direction according to the principle of optical imaging.
An image is formed at a point ± P1 shifted by × tan (θ). Here, f is the focal length of the light collecting optical system 108. Ie CD
Does not contribute to the image forming point P of the light transmitted through the circular region 110 set as the aperture for use. It can also be seen that if the value of the diffraction angle θ is sufficiently large, the light beam in the region diffracted by θ degrees will not be incident on the condensing optical system 108 at all. The effective aperture in these states is for a CD.

【0017】次に回折光学素子104のθ度回折する部
位106の回折機能を電気信号により停止させ0度回折
する部位にする。この状態では有効光束111は回折光
学素子104をそのまま素通りし、集光光学系108に
より結像点Pに結像される。よってこの状態では実効的
な開口はDVD用となる。
Next, the diffraction function of the portion 106 diffracted by θ degrees of the diffractive optical element 104 is stopped by an electric signal to make the portion diffracted 0 degrees. In this state, the effective light beam 111 passes through the diffractive optical element 104 as it is, and is imaged on the image forming point P by the condensing optical system 108. Therefore, in this state, the effective aperture is for DVD.

【0018】前項の説明で明らかなように、電気信号で
回折光学素子104の回折機能を制御することで集光光
学系108の実効的な開口数を切り替え可能となる。
As is apparent from the above description, the effective numerical aperture of the condensing optical system 108 can be switched by controlling the diffractive function of the diffractive optical element 104 with an electric signal.

【0019】(第2の実施の形態)次に、図2に本発明
における第2の実施形態について説明する。基本的には
図1に示した第1の実施形態と同様であるが、電気信号
で容易に制御可能な回折光学素子として平行配向型液晶
からなる液晶回折光学素子を用いている。最初に本実施
形態の理解を容易にするため、平行配向型液晶の動作、
回折現象等について簡単に説明する。
(Second Embodiment) Next, FIG. 2 illustrates a second embodiment of the present invention. Basically, it is the same as the first embodiment shown in FIG. 1, but a liquid crystal diffractive optical element made of a parallel alignment type liquid crystal is used as a diffractive optical element which can be easily controlled by an electric signal. First, in order to facilitate understanding of the present embodiment, the operation of the parallel alignment type liquid crystal,
The diffraction phenomenon and the like will be briefly described.

【0020】図3(a)(b)は電気的に制御可能な一
般的な平行配向型液晶素子の構造と作用を模式的に表し
たものである。透明電極がコートされたガラス基盤30
1に液晶分子302が挟まれている。入射側及び出射側
ガラス基盤は配向軸303の方向がY軸方向となってい
る。液晶分子302はその長軸方向を配向軸方向にそろ
える性質と、連続体として振る舞う性質とから図3
(a)に示す様に、液晶分子302は平行に並びこれを
平行配向もしくはホモジェニアス配向という。
FIGS. 3A and 3B schematically show the structure and operation of a general parallel alignment type liquid crystal element which can be electrically controlled. Glass substrate 30 coated with a transparent electrode
1 sandwich the liquid crystal molecules 302. The direction of the orientation axis 303 of the entrance-side and exit-side glass substrates is the Y-axis direction. The liquid crystal molecules 302 have the property of aligning the major axis direction with the alignment axis direction and the property of behaving as a continuum from FIG.
As shown in (a), the liquid crystal molecules 302 are arranged in parallel, and this is called parallel alignment or homogenous alignment.

【0021】この平行配向型液晶素子に直線偏光304
が入射すると、その偏光軸が配向軸303と同方向のと
きは、液晶分子302の誘電異方性のため直線偏光30
4は直線偏光を保ったまま液晶分子302の長軸方向に
沿って伝搬する。このさい液晶分子302の長軸方向の
屈折率をn1、液晶層厚をdとすると液晶層内を進む直
線偏光304の光路長はn1×dとなる。
A linearly polarized light 304 is applied to the parallel alignment type liquid crystal element.
Is incident, when its polarization axis is in the same direction as the orientation axis 303, the linearly polarized light 30
4 propagates along the long axis direction of the liquid crystal molecules 302 while maintaining linearly polarized light. In this case, assuming that the refractive index in the major axis direction of the liquid crystal molecules 302 is n1 and the thickness of the liquid crystal layer is d, the optical path length of the linearly polarized light 304 traveling in the liquid crystal layer is n1 × d.

【0022】次にガラス基盤301にコートされた透明
電極を介して液晶分子にZ軸方向の電界を加えると、図
3(b)に示す様に液晶分子302の長軸が電界の方向
であるZ軸方向に並んで静止する。この状態をホメオト
ロピックという。このときは液晶層内を進む直線偏光3
04はやはり直線偏光を保持したまま伝搬する。このと
き液晶分子302の短軸方向の屈折率をn2とすると液
晶層内を進む直線偏光304の光路長はn2×dとなる
事がわかる。すなわち電圧を加える前後で直線偏光30
4に対する屈折率をn1からn2に、よって光路長を
(n1-n2)×dだけ変えたことになる。また加える電
圧を制御することでこれらの中間状態をつくる事も可能
である。また理想的に近いホモジェニアス状態にするに
は液晶層に液晶が電界で動き始める直前の微小な電圧を
加えておくと良いことも知られている。
Next, when an electric field in the Z-axis direction is applied to the liquid crystal molecules through the transparent electrode coated on the glass substrate 301, the major axis of the liquid crystal molecules 302 is the direction of the electric field as shown in FIG. Stand still in the Z-axis direction. This state is called homeotropic. In this case, linearly polarized light 3 traveling in the liquid crystal layer
04 also propagates while maintaining linearly polarized light. At this time, assuming that the refractive index of the liquid crystal molecules 302 in the minor axis direction is n2, the optical path length of the linearly polarized light 304 traveling in the liquid crystal layer is n2 × d. That is, the linearly polarized light 30 before and after the voltage is applied.
This means that the refractive index for No. 4 has been changed from n1 to n2, and thus the optical path length has been changed by (n1−n2) × d. It is also possible to create these intermediate states by controlling the applied voltage. It is also known that it is better to apply a minute voltage to the liquid crystal layer just before the liquid crystal starts to move by an electric field in order to make the liquid crystal layer close to an ideal homogenous state.

【0023】図4は一般的なバイナリー型のおよそ透明
な位相型回折格子による光の回折現象を表したもので、
簡単なため平面に投影した断面図で描いてある。ピッチ
Pで繰り返しn1とn2の異なる屈折率を持った厚さd
の位相型回折格子401にレーザー光402が入射する
と、回折効果により出射レーザー光が回折を起こす。こ
こでは簡単のためレーザー光402は位相型回折格子4
01に対して垂直に入射するとする。このとき普通はそ
のまま素通りする光である0次光403と、それぞれθ
方向及び−θ方向に回折する1次光404及び−1次光
405が発生する(より回折角の大きい高次の回折光も
発生するが、割合が小さいため無視した)。このとき回
折角θはSin(θ)=λ/Pで決定される。ここでλ
はレーザー光402の波長である。
FIG. 4 shows a diffraction phenomenon of light by a general binary type approximately transparent phase type diffraction grating.
For simplicity, it is drawn in a sectional view projected on a plane. Thickness d having different refractive indices n1 and n2 repeatedly at pitch P
When the laser beam 402 is incident on the phase type diffraction grating 401, the output laser beam is diffracted by the diffraction effect. Here, for the sake of simplicity, the laser beam 402 is the phase type diffraction grating 4.
It is assumed that the light is incident perpendicular to 01. At this time, the zero-order light 403, which is light that normally passes through as it is, and θ
The first-order light 404 and the -1st-order light 405 diffracted in the direction and the −θ direction are generated (higher-order diffracted light having a larger diffraction angle is also generated, but is ignored because the ratio is small). At this time, the diffraction angle θ is determined by Sin (θ) = λ / P. Where λ
Is the wavelength of the laser light 402.

【0024】このときレーザー光402に対するn1と
n2の領域の面積がほぼ等しく、光路長差(n1−n
2)×dがλ/2+nλ(n:0,1,2・・・・)で
あるときこれをロンキー格子といい0次光403は消滅
する事が知られている。また光路長差(n1−n2)×
dがmλ(m:1,2,3・・・・)でかつピッチPで
繰り返して屈折率をn1からn2まで連続的に滑らかに
変化させたとき、これをブレーズド格子といい1次光4
04のみが発生する事が知られている。また実際はn1
からn2まで16ステップ以上で段階的に変化させれば
ほぼ理想的なブレーズド格子になる事も知られ、これを
マルチレベルバイナリー格子という。また一般に位相型
回折格子は不透明な部分のある振幅型回折格子より光利
用効率が高く有利である。
At this time, the areas of the regions n1 and n2 with respect to the laser beam 402 are substantially equal, and the optical path length difference (n1-n
2) When xd is λ / 2 + nλ (n: 0, 1, 2,...), This is called a Ronchi grating, and it is known that the zero-order light 403 disappears. The optical path length difference (n1-n2) ×
When d is mλ (m: 1, 2, 3,...) and the refractive index is repeatedly changed at a pitch P, the refractive index is continuously and smoothly changed from n1 to n2.
It is known that only 04 occurs. Actually, n1
It is also known that an almost ideal blazed grating can be obtained by changing stepwise from 16 to n2 in 16 steps or more, and this is called a multilevel binary grating. In general, a phase type diffraction grating is advantageous in that it has higher light utilization efficiency than an amplitude type diffraction grating having an opaque portion.

【0025】図5(a)(b)は電気的に制御可能な液晶回
折光学素子501の断面構造を描いたものである。液晶
分子502はその長軸方向がY軸方向に一致して平行配
向され、長軸方向の屈折率をn1、短軸方向の屈折率を
n2とする。また片側のガラス基盤にはストライプ状の
透明電極503がピッチPで形成されている。またもう
片方のガラス基盤には透明電極がほぼ全面にコートされ
ている。このときこの液晶回折光学素子501にY軸方
向の直線偏光レーザー光504が入射する。
FIGS. 5A and 5B illustrate the cross-sectional structure of a liquid crystal diffraction optical element 501 that can be electrically controlled. The liquid crystal molecules 502 are aligned in parallel with the major axis direction coincident with the Y axis direction, and the refractive index in the major axis direction is n1 and the refractive index in the minor axis direction is n2. Further, on one side of the glass substrate, stripe-shaped transparent electrodes 503 are formed at a pitch P. A transparent electrode is coated on almost the entire surface of the other glass substrate. At this time, the linearly polarized laser light 504 in the Y-axis direction enters the liquid crystal diffraction optical element 501.

【0026】このとき図5(a)に示すように液晶回折光
学素子501に電圧が加えられていないときは直線偏光
504に対して屈折率が一様にn1となる。従って回折
は起こらず直線偏光504は素通りして出射光508に
なる。厳密には透明電極503によりわずかな回折を生
じてしまうが、透明電極503の屈折率と液晶分子50
2の長軸方向の屈折率とが同じになるようにすれば透明
電極503による回折は生じない。
At this time, as shown in FIG. 5A, when no voltage is applied to the liquid crystal diffraction optical element 501, the refractive index for the linearly polarized light 504 becomes n1 uniformly. Therefore, no diffraction occurs, and the linearly polarized light 504 passes through to become the output light 508. Strictly speaking, slight diffraction occurs due to the transparent electrode 503.
If the refractive index in the major axis direction is the same, diffraction by the transparent electrode 503 does not occur.

【0027】次に図5(b)に示すように、透明電極50
3に電源から十分な電圧を加えるとその部分の液晶分子
502はZ軸方向の電界によりホメオトロピック状態と
なる。その結果、直線偏光504に対しピッチPで屈折
率がn1とn2を繰り返す構造となる。従って図4とま
ったく同等なバイナリー型の位相型回折格子として機能
し、0次光505、1次光506、及び−1次光507
が発生する。この際、前述したロンキー格子の条件を満
たせば0次光505は発生しない。また同様に前述した
マルチレベルバイナリー格子の条件を満たせば1次光5
06しか発生しない。しかしマルチレベル化のためには
透明電極503をより細かなピッチで刻み、かつ段階的
に電圧を変化させて加える必要がある。
Next, as shown in FIG.
When a sufficient voltage is applied to the liquid crystal molecule 3 from the power supply, the liquid crystal molecules 502 in that portion are brought into a homeotropic state by an electric field in the Z-axis direction. As a result, the linearly polarized light 504 has a structure in which the refractive index repeats n1 and n2 at the pitch P. Therefore, it functions as a binary-type phase-diffraction grating completely identical to that in FIG. 4, and has a zero-order light 505, a first-order light 506, and a −1-order light 507.
Occurs. At this time, if the condition of the Ronchi grating is satisfied, the zero-order light 505 is not generated. Similarly, if the above-described condition of the multilevel binary grating is satisfied, the primary light 5
06 only. However, for multi-leveling, it is necessary to cut the transparent electrode 503 at a finer pitch and change the voltage stepwise to apply the voltage.

【0028】ここから図2を用いて本発明による第2の
実施形態を説明する。簡単のため図2はYZ平面である
2次元に投影して描いた。実際は光軸209を回転軸と
した回転対照となる。基本的には図1に示した実施形態
と同じであるが、電気的に制御可能な回折光学素子とし
て液晶回折光学素子205が用いられ、その基本的な構
造及び動作は図3及び図5と同じである。直線偏光であ
るレーザー光203の偏光軸の方向と液晶回折光学素子
205の液晶配向軸の方向はほぼ一致し共にY軸方向で
ある。
Next, a second embodiment of the present invention will be described with reference to FIG. For simplicity, FIG. 2 is drawn by projecting on a two-dimensional plane, which is a YZ plane. Actually, it becomes a rotation reference with the optical axis 209 as a rotation axis. Basically the same as the embodiment shown in FIG. 1, but a liquid crystal diffractive optical element 205 is used as an electrically controllable diffractive optical element, and its basic structure and operation are the same as those shown in FIGS. Is the same. The direction of the polarization axis of the laser beam 203 which is linearly polarized light and the direction of the liquid crystal alignment axis of the liquid crystal diffraction optical element 205 substantially coincide with each other, and are both Y-axis directions.

【0029】直線偏光レーザー光源201から出射し、
コリメートレンズ202で平行平面波にされたレーザー
光203は液晶回折光学素子204を透過し回折を生じ
る。液晶回折光学素子204は入射光を0度回折する部
位205と、電源から電圧を加える事で回折素子として
機能し入射光をθ度回折する部位206とで構成され
る。
Emitted from the linearly polarized laser light source 201,
The laser light 203 converted into a parallel plane wave by the collimator lens 202 is transmitted through the liquid crystal diffraction optical element 204 and causes diffraction. The liquid crystal diffractive optical element 204 includes a portion 205 that diffracts incident light by 0 degrees, and a portion 206 that functions as a diffractive element by applying a voltage from a power source and diffracts incident light by θ degrees.

【0030】θ度回折する部位206を透過しθ度回折
したレーザー光207は集光光学系208の光軸209
を中心としたほぼ円形領域210(斜線表示)以外に入
射する。この円形領域210は集光光学系208に本来
入射すべき有効光束211の一部分であり、有効光束2
11によりつくられる開口より小さくなっている事がわ
かる。ここでは有効光束211による開口をDVD用
に、円形領域210による開口をCD用に設定する。
The laser beam 207 transmitted through the portion 206 diffracted by θ degrees and diffracted by θ degrees is applied to the optical axis 209 of the focusing optical system 208.
Is incident on a region other than the substantially circular region 210 (shown by oblique lines) centered at. This circular area 210 is a part of the effective light beam 211 that should originally be incident on the condensing optical system 208, and the effective light beam 2
It can be seen that it is smaller than the opening created by 11. Here, the opening by the effective light beam 211 is set for DVD, and the opening by the circular region 210 is set for CD.

【0031】図2に示すようにθ度回折した領域の光束
は、光学結像の原理より光軸209からY軸方向に±f
×tan(θ)だけずれた点±P1に結像する。ここで
fは集光光学系208の焦点距離である。すなわちCD
用の開口に設定した円形領域210を透過した光の結像
点Pに寄与しない。更にレンズ外周部に角度θで斜めに
入射する光であるから収差が大きく焦点を結ばない可能
性も考えられる。また回折角θの値が十分大きければθ
度回折した領域の光束は集光光学系208にはまったく
入射しなくなる事もわかる。これらの状態での実効的な
開口はCD用となる。
As shown in FIG. 2, the light flux in the region diffracted by θ degrees is ± f from the optical axis 209 in the Y-axis direction according to the principle of optical imaging.
An image is formed at a point ± P1 shifted by × tan (θ). Here, f is the focal length of the condensing optical system 208. Ie CD
Does not contribute to the image forming point P of the light transmitted through the circular region 210 set as the aperture for use. Furthermore, since the light is obliquely incident on the outer peripheral portion of the lens at an angle θ, the aberration may be large and the light may not be focused. If the value of the diffraction angle θ is sufficiently large, θ
It can also be seen that the luminous flux in the region diffracted to a degree is not incident on the light collecting optical system 208 at all. The effective aperture in these states is for a CD.

【0032】次に電圧印可を停止し液晶回折光学素子2
04のθ度回折する部位206の回折機能を停止させ0
度回折する部位にする。この状態では有効光束211は
液晶回折光学素子204をそのまま素通りし、集光光学
系208により結像点Pに結像される。よってこの状態
では実効的な開口はDVD用となる。
Next, the voltage application is stopped and the liquid crystal diffraction optical element 2
04, the diffraction function of the part 206 diffracted by θ degrees is stopped and 0
To the part where diffraction occurs. In this state, the effective light beam 211 passes through the liquid crystal diffraction optical element 204 as it is, and is imaged at the image forming point P by the condensing optical system 208. Therefore, in this state, the effective aperture is for DVD.

【0033】図6に液晶回折光学素子204の電極形状
を示す。中央に直径rの円形領域601があり、その外
周部に中心を円形領域601と同じくする同心円状の複
数の輪帯がピッチPで配置された輪帯領域602があ
る。輪帯領域602には引き出し電極線603が配置さ
れ電極部604に接続される。電極部604から輪帯領
域602に適当な電圧を印可すれば輪帯領域602は回
折光学素子として機能する。円形領域601は0度回折
させる領域すなわち素通しの領域である。
FIG. 6 shows the electrode shape of the liquid crystal diffractive optical element 204. A circular area 601 having a diameter r is provided at the center, and an annular area 602 in which a plurality of concentric annular zones having the same center as the circular area 601 is arranged at a pitch P is provided at an outer peripheral portion thereof. A lead electrode line 603 is arranged in the annular zone 602 and connected to the electrode portion 604. When an appropriate voltage is applied from the electrode section 604 to the annular zone 602, the annular zone 602 functions as a diffractive optical element. The circular area 601 is an area that is diffracted by 0 degrees, that is, a transparent area.

【0034】図2において0度回折する部位205は電
極や液晶層がなくても、また単にくり貫かれた素通しの
領域でも入射光は回折しないため基本的な効果は同じで
ある。しかしこの場合は液晶層がある領域と比べ光路長
が変わってしまうためDVD用に使用する際は入射直線
偏光の部分的な位相変調が生じる。よって集光光学系2
10あるいはその他の光学系を用いて補正しなければな
らない可能性が生じる。
In FIG. 2, the portion 205 diffracted by 0 degrees has the same basic effect even if it has no electrode or liquid crystal layer, and does not diffract incident light even in a transparent region which is simply hollowed out. However, in this case, the optical path length is changed as compared with the region where the liquid crystal layer is located, so that when used for DVD, partial phase modulation of incident linearly polarized light occurs. Therefore, the condensing optical system 2
There is a possibility that correction must be made using 10 or other optical system.

【0035】ここで具体的な回折角θや回折した光の焦
点位置の光軸209からのY軸方向のずれ(図2でPか
ら±P1の距離)の効果について試算する。一般的な液
晶素子の製造においては電極のピッチは20ミクロン程
度で、また光ピックアップ用の集光レンズの焦点距離は
4mm程度、光源である半導体レーザーの波長は0.6
5ミクロン程度であるから回折角θは、前述した式(S
in(θ)=λ/P)より決められθの値は1.86
度、従って前述した式(±f×tan(θ))よりずれ
量は約130ミクロンとなる。光ディスク装置の場合、
集光スポット直径は1ミクロン以下であるため十分なず
れ量である。
Here, the effect of the specific diffraction angle θ and the shift of the focal position of the diffracted light from the optical axis 209 in the Y-axis direction (distance ± P1 from P in FIG. 2) will be calculated. In the manufacture of a general liquid crystal element, the electrode pitch is about 20 microns, the focal length of a condenser lens for an optical pickup is about 4 mm, and the wavelength of a semiconductor laser as a light source is 0.6.
Since the diffraction angle θ is about 5 microns, the diffraction angle θ
in (θ) = λ / P), and the value of θ is 1.86.
Degree, and therefore the amount of deviation is about 130 microns from the above-described equation (± f × tan (θ)). For an optical disk device,
Since the focused spot diameter is 1 micron or less, it is a sufficient shift amount.

【0036】図2で液晶回折光学素子204のθ度回折
する部位206は21項で述べたロンキー格子の条件を
満たせば0次光は発生せず、前述したマルチレベルバイ
ナリー格子の条件を満たせば1次光しか発生しない。ロ
ンキー格子として用いた場合はそれぞれ±θ方向に回折
する±1次光が発生する。この場合は、図2や前述のず
れ量の式(±f×tan(θ))からも明らかなように
P1点には1次光と光軸209に対して対称な部分から
−θ方向に回折した−1次光がほぼ重なる。同様に−P
1点においては1次光と光軸209に対して対称な部分
から−θ方向に回折した−1次光がほぼ重なる。1次光
と−1次光は相対位相差は半波長のため両者が重なり干
渉し合うと消滅してしまう事が考えられ都合がよい。
In FIG. 2, a portion 206 of the liquid crystal diffractive optical element 204 that diffracts by θ degrees does not generate zero-order light if it satisfies the condition of the Ronchi grating described in the paragraph 21, and if it satisfies the condition of the multilevel binary grating described above. Only primary light is generated. When used as a Ronchi grating, ± first-order lights which are diffracted in ± θ directions are generated. In this case, as is clear from FIG. 2 and the above-described equation of the amount of deviation (± f × tan (θ)), the point P1 is shifted from the portion symmetrical with respect to the primary light and the optical axis 209 in the −θ direction. The diffracted -1st order light substantially overlaps. Similarly, -P
At one point, the primary light and the −1st-order light diffracted in the −θ direction from a portion symmetrical with respect to the optical axis 209 substantially overlap. The first-order light and the -1st-order light have a relative phase difference of half a wavelength, so that when they overlap with each other and interfere with each other, they can be eliminated, which is convenient.

【0037】また液晶回折光学素子204は偏光板等を
必要としない位相型回折格子として用いているため原理
的には光量ロスは生じない。実際の測定においては光量
ロスは15%程度であったが、液晶ガラス基盤に無反射
コートを施せば10%以下にする事は可能である。
Since the liquid crystal diffractive optical element 204 is used as a phase type diffraction grating which does not require a polarizing plate or the like, no loss of light quantity occurs in principle. In the actual measurement, the light quantity loss was about 15%, but it can be reduced to 10% or less by applying a non-reflection coating to the liquid crystal glass substrate.

【0038】[0038]

【発明の効果】今までの説明から明らかなように本発明
における液晶回折光学素子を用いた光学装置は簡単な構
成で且つあまり光量をロスすることなく開口数を電気的
に簡単に切り替える事ができる。この事はDVD−R、
すなわち書き込みあるいは書き換え可能なデジタルバー
サタイルディスクの光学系において、CDの再生を兼ね
備えた光ピックアップに有効である。なぜなら光源とし
ての半導体レーザの光出力アップは困難な問題であるか
らである。更に回折により光を除去するため、散乱等を
用いる方法と比べて除去した光がランダムに拡散するこ
とがないので散乱ノイズすなわち迷光ノイズとなりにく
い。また、レーザー光の波長が変わっても電気信号によ
り液晶素子の位相変調量を制御することで容易に対応可
能である。
As is clear from the above description, the optical device using the liquid crystal diffractive optical element according to the present invention has a simple configuration and can easily switch the numerical aperture easily without losing a large amount of light. it can. This is DVD-R,
That is, in a digital versatile disk optical system capable of writable or rewritable, the present invention is effective for an optical pickup having a function of reproducing a CD. This is because increasing the light output of a semiconductor laser as a light source is a difficult problem. Further, since the light is removed by diffraction, the removed light does not diffuse at random as compared with the method using scattering or the like, so that it is less likely to be scattered noise, that is, stray light noise. Further, even if the wavelength of the laser light changes, it can be easily handled by controlling the amount of phase modulation of the liquid crystal element by an electric signal.

【0039】また本発明における液晶素子は現在の複雑
なマトリクス画素構造を持ったパソコン用等の液晶表示
パネルと比べ、サイズも小さく構造も非常に簡単なため
製造も容易である。また本実施例においては電気制御可
能な回折光学素子として液晶素子を使用したがビスマス
シリコンオキサイド(BSO)やニオブ酸リチウムなど
の固体結晶、あるいはPLZTなどの電気光学セラミク
スを用いてもよい。しかしこれらの物質は有効動作電圧
が数百から数千ボルトもあるため有効動作電圧が数ボル
トである液晶と比べて駆動が困難である。
The liquid crystal element of the present invention is small in size and very simple in structure, and therefore easy to manufacture, as compared with a liquid crystal display panel for a personal computer or the like having a current complicated matrix pixel structure. In this embodiment, a liquid crystal element is used as the electrically controllable diffractive optical element. However, a solid crystal such as bismuth silicon oxide (BSO) or lithium niobate, or an electro-optical ceramic such as PLZT may be used. However, these materials have an effective operating voltage of hundreds to thousands of volts, so that they are more difficult to drive than liquid crystals having an effective operating voltage of several volts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態における光学装置の構
成例である。
FIG. 1 is a configuration example of an optical device according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態における光学装置の構
成例である。
FIG. 2 is a configuration example of an optical device according to a second embodiment of the present invention.

【図3】本発明の第2の実施形態において、電気的に制
御可能な平行配向型液晶素子の作用を表した図である。
FIG. 3 is a diagram illustrating an operation of an electrically controllable parallel alignment type liquid crystal element in a second embodiment of the present invention.

【図4】一般的なバイナリー型の位相型回折格子による
光の回折現象を表した図である。
FIG. 4 is a diagram showing a light diffraction phenomenon by a general binary phase diffraction grating.

【図5】本発明の第2の実施形態において、電気的に制
御可能な液晶回折光学素子の基本的な断面構造を表した
図である。
FIG. 5 is a diagram showing a basic cross-sectional structure of a liquid crystal diffractive optical element that can be electrically controlled in a second embodiment of the present invention.

【図6】本発明の第2の実施形態における液晶回折光学
素子の透明電極形状を表した図である。
FIG. 6 is a diagram illustrating a transparent electrode shape of a liquid crystal diffractive optical element according to a second embodiment of the present invention.

【図7】従来技術における光学装置の構成例を表した図
である。
FIG. 7 is a diagram illustrating a configuration example of an optical device according to a conventional technique.

【符号の説明】[Explanation of symbols]

101、レーザー光源 201、701、直線偏光レーザー光源 102、202、702、コリーメートレンズ 103、203、402、レーザー光 703、直線偏光 104、回折光学素子 204、501、液晶回折光学素子 704、偏光軸 705、90度TN型液晶素子 105、205、0度回折する部位 106、206、θ度回折する部位 107、207、θ度回折したレーザー光 108、208、706、712、集光光学系 707、偏光板 109、209、光軸 110、210、601、円形領域 111、211、有効光束 708、713、集光スポット 709、光ディスク 710、光分離素子 711、分離された光束 714、光検出素子 301、ガラス基盤 302、502、液晶分子 303、配向軸 304、直線偏光 401、位相型回折格子 403、505、0次光 404、506、1次光 405、507、-1次光 503、透明電極 504、直線偏光レーザー光 508、出射光 602、輪帯領域 603、引き出し電極線 604、電極部 101, laser light sources 201, 701, linearly polarized laser light sources 102, 202, 702, collimate lenses 103, 203, 402, laser light 703, linearly polarized light 104, diffractive optical elements 204, 501, liquid crystal diffractive optical element 704, polarization axis 705, 90 degree TN type liquid crystal element 105, 205, 0 degree diffracted part 106, 206, θ degree diffracted part 107, 207, θ degree diffracted laser beam 108, 208, 706, 712, condensing optical system 707, Polarizing plates 109, 209, optical axes 110, 210, 601, circular regions 111, 211, effective light beams 708, 713, condensed spot 709, optical disk 710, light separating element 711, separated light beam 714, light detecting element 301, Glass substrates 302, 502, liquid crystal molecules 303, alignment axis 304, linear polarization 401, phase type diffraction gratings 403, 505, zero-order light 404, 506, first-order light 405, 507, minus first-order light 503, transparent electrode 504, linearly polarized laser light 508, emission light 602, annular zone 603, extraction Electrode wire 604, electrode part

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 少なくともレーザー光を出射するレーザ
ー光源と該レーザー光を回折する回折光学素子と該回折
光学素子を透過した光束を集光する集光光学系とから構
成される光学装置において、回折光学素子の回折機能は
電気信号で制御され、かつ制御される領域は集光光学系
で集光される光束の一部分の領域に作用する事を特徴と
する光学装置。
1. An optical apparatus comprising at least a laser light source for emitting laser light, a diffractive optical element for diffracting the laser light, and a condensing optical system for condensing a light beam transmitted through the diffractive optical element. An optical device, wherein a diffraction function of an optical element is controlled by an electric signal, and a controlled area acts on a partial area of a light beam condensed by a condensing optical system.
【請求項2】 少なくともレーザー光を出射するレーザ
ー光源と該レーザー光を回折する回折光学素子と該回折
光学素子を透過した光束を集光する集光光学系とから構
成される光学装置において、回折光学素子は入射レーザ
ー光を0度回折する部位とθ度回折する部位とから構成
され、前記0度回折する部位は集光光学系により利用さ
れる有効光束中の光軸を中心としたほぼ円形領域に作用
し、前記θ度回折する部位は前記有効光束中の前記円形
領域以外の領域に作用し、前記回折光学素子の回折機能
は電気信号で制御される事を特徴とする光学装置。
2. An optical apparatus comprising at least a laser light source for emitting laser light, a diffractive optical element for diffracting the laser light, and a condensing optical system for condensing a light beam transmitted through the diffractive optical element. The optical element is composed of a part that diffracts the incident laser light by 0 degree and a part that diffracts by 0 degree, and the part that diffracts by 0 degree is substantially circular centered on the optical axis in the effective light beam used by the condensing optical system. The optical device, wherein the portion that acts on a region and diffracts by θ degrees acts on a region other than the circular region in the effective light beam, and a diffraction function of the diffractive optical element is controlled by an electric signal.
【請求項3】 電気信号で制御可能な回折光学素子とし
て液晶回折光学素子を用いた事を特徴とする特許請求の
範囲第1項記載の光学装置。
3. The optical device according to claim 1, wherein a liquid crystal diffractive optical element is used as the diffractive optical element that can be controlled by an electric signal.
【請求項4】 レーザー光として直線偏光レーザー光
を、また電気信号で制御可能な回折光学素子として液晶
回折光学素子を用い、かつ該液晶回折光学素子は平行配
向型液晶素子から構成され、前記直線偏光レーザー光の
偏光軸方向は前記液晶回折光学素子の液晶分子配向軸の
方向とほぼ一致した事を特徴とする特許請求の範囲第1
項記載の光学装置。
4. A linearly polarized laser beam as a laser beam, and a liquid crystal diffractive optical element as a diffractive optical element controllable by an electric signal, wherein the liquid crystal diffractive optical element comprises a parallel alignment type liquid crystal element. 2. The liquid crystal diffraction optical element according to claim 1, wherein the direction of the polarization axis of the polarized laser light substantially coincides with the direction of the liquid crystal molecule alignment axis of the liquid crystal diffraction optical element.
The optical device according to the item.
【請求項5】 レーザー光として直線偏光レーザー光
を、また電気信号で制御可能な回折光学素子として液晶
回折光学素子を用い、かつ該液晶回折光学素子は平行配
向型液晶素子から構成され、前記直線偏光レーザー光の
偏光軸方向は前記液晶回折光学素子の液晶分子配向軸の
方向とほぼ一致し、前記平行配向型液晶素子の位相変調
量は前記直線偏光レーザー光の波長の半波長プラス波長
の整数倍程度もしくは波長の整数倍程度とした事を特徴
とする特許請求の範囲第1項記載の光学装置。
5. A linearly polarized laser beam as a laser beam, and a liquid crystal diffractive optical element as a diffractive optical element controllable by an electric signal, wherein the liquid crystal diffractive optical element comprises a parallel alignment type liquid crystal element. The direction of the polarization axis of the polarized laser light substantially coincides with the direction of the liquid crystal molecule alignment axis of the liquid crystal diffraction optical element, and the phase modulation amount of the parallel alignment type liquid crystal element is a half wavelength of the wavelength of the linearly polarized laser light plus an integer of the wavelength. 2. The optical device according to claim 1, wherein the optical device is set to be approximately twice or an integral multiple of the wavelength.
【請求項6】 電気信号で制御可能な回折光学素子とし
て液晶回折光学素子を用いた事を特徴とした特許請求の
範囲第2項記載の光学装置。
6. The optical device according to claim 2, wherein a liquid crystal diffractive optical element is used as the diffractive optical element that can be controlled by an electric signal.
【請求項7】 レーザー光として直線偏光レーザー光
を、また電気信号で制御可能な回折光学素子として液晶
回折光学素子を用い、かつ該液晶回折光学素子は平行配
向型液晶素子から構成され、前記直線偏光レーザー光の
偏光軸方向は前記液晶回折光学素子の液晶分子配向軸の
方向とほぼ一致した事を特徴とする特許請求の範囲第2
項記載の光学装置。
7. A linearly polarized laser beam as a laser beam, and a liquid crystal diffractive optical element as a diffractive optical element which can be controlled by an electric signal, wherein the liquid crystal diffractive optical element comprises a parallel alignment type liquid crystal element. 2. The liquid crystal diffraction optical element according to claim 1, wherein the direction of the polarization axis of the polarized laser light substantially coincides with the direction of the liquid crystal molecule alignment axis of the liquid crystal diffraction optical element.
The optical device according to the item.
【請求項8】 レーザー光として直線偏光レーザー光
を、また電気信号で制御可能な回折光学素子として液晶
回折光学素子を用い、かつ該液晶回折光学素子は平行配
向型液晶素子から構成され、前記直線偏光レーザー光の
偏光軸方向は前記液晶回折光学素子の液晶分子配向軸の
方向とほぼ一致し、前記平行配向型液晶素子の位相変調
量は前記直線偏光レーザー光の波長の半波長プラス波長
の整数倍程度もしくは波長の整数倍程度とした事を特徴
とする特許請求の範囲第2項記載の光学装置。
8. A linearly polarized laser beam as a laser beam, and a liquid crystal diffractive optical element as a diffractive optical element controllable by an electric signal, wherein the liquid crystal diffractive optical element is composed of a parallel alignment type liquid crystal element. The direction of the polarization axis of the polarized laser light substantially coincides with the direction of the liquid crystal molecule alignment axis of the liquid crystal diffraction optical element, and the phase modulation amount of the parallel alignment type liquid crystal element is a half wavelength of the wavelength of the linearly polarized laser light plus an integer of the wavelength. 3. The optical device according to claim 2, wherein the optical device is set to about twice or an integral multiple of the wavelength.
JP09885998A 1998-04-10 1998-04-10 Optical device Expired - Fee Related JP4668365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09885998A JP4668365B2 (en) 1998-04-10 1998-04-10 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09885998A JP4668365B2 (en) 1998-04-10 1998-04-10 Optical device

Publications (2)

Publication Number Publication Date
JPH11296900A true JPH11296900A (en) 1999-10-29
JP4668365B2 JP4668365B2 (en) 2011-04-13

Family

ID=14230961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09885998A Expired - Fee Related JP4668365B2 (en) 1998-04-10 1998-04-10 Optical device

Country Status (1)

Country Link
JP (1) JP4668365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015454A (en) * 2000-06-30 2002-01-18 Pioneer Electronic Corp Liquid crystal unit for correction of aberration, optical pickup device and device fo correction of aberration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015454A (en) * 2000-06-30 2002-01-18 Pioneer Electronic Corp Liquid crystal unit for correction of aberration, optical pickup device and device fo correction of aberration

Also Published As

Publication number Publication date
JP4668365B2 (en) 2011-04-13

Similar Documents

Publication Publication Date Title
US6278548B1 (en) Polarizing diffraction grating and magneto-optical head made by using the same
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
JP2655077B2 (en) Optical head device
JP2001059905A (en) Diffraction type optical element and optical pickup using this diffraction type optical element
JP4148648B2 (en) Optical device
JP4343337B2 (en) Optical device
JPH08278477A (en) Diffraction element, optical head and optical recording and reproducing device
JPH07130022A (en) Optical head device and optical element
WO2010013592A1 (en) Optical unit, control method, and optical information recording/reproducing device
US6556532B2 (en) Optical pickup device
JPS63241735A (en) Optical pickup
JP4668365B2 (en) Optical device
JP3885251B2 (en) Optical anisotropic diffraction grating, driving method thereof, and optical head device using the same
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
JP2000215506A (en) Optical device
JP2618957B2 (en) Polarizing optical element
JP2687606B2 (en) Optical pickup
JPH11328711A (en) Optical device
JP3830537B2 (en) Optical device
JP3831090B2 (en) Optical device
JP2010009690A (en) Optical head device
JPH0729233A (en) Magneto-optical head
JP2004158169A (en) Optical disk device and light branching device
JPH02165023A (en) Cross type diffraction lattice and polarizing rotation detector using same
JPH0887773A (en) Super-high resolution optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080416

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees