JP2000215506A - Optical device - Google Patents

Optical device

Info

Publication number
JP2000215506A
JP2000215506A JP11018492A JP1849299A JP2000215506A JP 2000215506 A JP2000215506 A JP 2000215506A JP 11018492 A JP11018492 A JP 11018492A JP 1849299 A JP1849299 A JP 1849299A JP 2000215506 A JP2000215506 A JP 2000215506A
Authority
JP
Japan
Prior art keywords
optical
liquid crystal
spatial light
linearly polarized
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11018492A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hashimoto
信幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP11018492A priority Critical patent/JP2000215506A/en
Publication of JP2000215506A publication Critical patent/JP2000215506A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable simple switching of the number of openings of an optical system and to realize ultrahigh resolution by constituting the space modulation element of a part functioning as a diffraction type lens element and a part functioning as a rotary polarization optical element, and controlling functions of the diffraction type lens element and the rotary polarization optical element by an electrical signal. SOLUTION: When the function of a diffraction type lens element 105 is stopped and the function of the rotary polarization optical system 106 is made valid, since linearly polarized light passing through the optical rotating optical element 106 and linear polarization light passing through the diffraction type lens element 105 intersect orthogonally to each other, ultrahigh resolution is produced. The number of openings for an optical device is decided by a condenser lens 107, read and write of DVD are performed in this state. Next, when a function of the optical rotating optical element 106 is stopped and a function of the diffraction type lens element 105 is made valid, ultrahigh resolution will not be produced. The focal distance of an optical device is made a combined focal distance by the diffraction type optical element 106 and the condenser lens 107, it is assumed that the number of openings is varied as compared with that of the condenser lens 107 only, and reading of a CD is performed in this state.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学系の開口数を実
効的に切り替える可変開口技術及び回折限界で決定され
る光学系の理論解像度を実効的に切り替え、等価的に光
源の波長を切り替える効果を持つ超解像光学技術を応用
した光学装置に関する。特には最近の光ディスク装置に
おいて光ピックアップの実効的な開口数と実効的な光源
波長を切り替え、DVD(デジタルバーサタイルディス
ク)とCD−ROM、CD−R(書き込み型CD)及び
CD−RW(書き換え型CD)用といった異なる開口数
の集光光学系と異なる発振波長のレーザー光源を必要と
する光ピックアップを、一種の集光レンズと一種の波長
のレーザー光源から構成可能な光ピックアップを提供す
る光学装置に関する。
The present invention relates to a variable aperture technique for effectively switching the numerical aperture of an optical system and an effect of effectively switching the theoretical resolution of an optical system determined by a diffraction limit and equivalently switching the wavelength of a light source. The present invention relates to an optical device to which a super-resolution optical technology having the above is applied. In particular, the effective numerical aperture of an optical pickup and the effective light source wavelength are switched in a recent optical disk device, and DVD (digital versatile disk), CD-ROM, CD-R (write-type CD) and CD-RW (rewritable-type) An optical device that provides an optical pickup that requires a condensing optical system having a different numerical aperture and a laser light source having a different oscillation wavelength, such as for a CD), using a kind of condensing lens and a kind of wavelength laser light source. About.

【0002】[0002]

【従来の技術】従来技術の理解を容易にするため、光学
系の開口数について簡単に説明する。幾何光学的にほぼ
無収差で設計された光学系においては点像は無限小のス
ポットで結像するが、実際は光の波動性による回折の影
響でスポットは有限の広がりを持つ。この時、結像もし
くは集光に寄与する光学系の開口数をNAとすると、ス
ポットの広がりの物理的定義はk×λ÷NAで表され
る。ここでλは光の波長、kは光学系に定まる定数で普
通は1から2前後の値をとる。NAは光学系の有効入射
瞳直径D(一般的には有効光束の直径)と焦点距離fの
比D/fに比例する。この式で表されるスポットの広が
りが理論解像限界となり回折限界といわれる。
2. Description of the Related Art To facilitate understanding of the prior art, the numerical aperture of an optical system will be briefly described. In an optical system designed with almost no aberration in geometrical optics, a point image is formed as an infinitely small spot. However, in reality, the spot has a finite spread due to diffraction due to the wave nature of light. At this time, assuming that the numerical aperture of the optical system contributing to image formation or light collection is NA, the physical definition of the spread of the spot is represented by k × λ ÷ NA. Here, λ is the wavelength of light, and k is a constant determined by the optical system and usually takes a value of about 1 to 2. NA is proportional to the ratio D / f between the effective entrance pupil diameter D of the optical system (generally, the diameter of the effective light beam) and the focal length f. The spread of the spot represented by this equation becomes the theoretical resolution limit and is called the diffraction limit.

【0003】先の式から明らかなように、光学系の理論
解像度は開口数に大きく左右される。一般に光ディスク
の場合、光ピックアップの集光光学系(対物レンズ)の
開口数はCDやCD−ROM用では0.45程度、より解像
度が要求されるDVD用では、0.6 程度である。また、
光ディスク基盤の厚さはCD用が1.2 mm、DVD用が0.
6mm と異なりかつ各厚みに対して収差が最適化されて集
光光学系が設計されているため、CDとDVDとでは同
一の開口数を持つ集光光学系は共用不可能である。この
事はより高い開口数を持つDVD用の集光レンズもその
ままではCD用に使用できない事を意味する。
[0003] As is apparent from the above equation, the theoretical resolution of an optical system largely depends on the numerical aperture. In general, in the case of an optical disc, the numerical aperture of the converging optical system (objective lens) of the optical pickup is about 0.45 for a CD or CD-ROM, and about 0.6 for a DVD that requires higher resolution. Also,
The thickness of the optical disc substrate is 1.2 mm for CD and 0 for DVD.
Since the focusing optical system is designed different from 6 mm and the aberration is optimized for each thickness, the focusing optical system having the same numerical aperture cannot be shared between CD and DVD. This means that a condenser lens for DVD having a higher numerical aperture cannot be used for CD as it is.

【0004】また更にCD−R(書き込み型CD)やC
D−RW(書き換え型CD)の場合はディスクの感光特
性の関係から波長が780nm程度のレーザーを使用しな
ければならない制約があり、DVD用の650nmから6
70nm程度のレーザーを用いる事は不可能である。また
DVDはCDより高い解像度を要求されるため現状では
CD用の780nmのレーザー光源を用いる事ができな
い。従って最近主流になりつつあるDVD、CD、CD
−Rに対応する光ディスク装置においては、異なる二種
の対物レンズと異なる二種の波長のレーザー光源を用意
する必要がある。
Further, CD-Rs (write-type CDs) and C
In the case of a D-RW (rewritable CD), there is a restriction that a laser having a wavelength of about 780 nm must be used due to the photosensitive characteristics of the disc.
It is impossible to use a laser of about 70 nm. In addition, since a DVD requires a higher resolution than a CD, a 780 nm laser light source for a CD cannot be used at present. Therefore, DVDs, CDs, and CDs that are becoming mainstream recently
In an optical disk device compatible with -R, it is necessary to prepare two different types of objective lenses and laser light sources of two different wavelengths.

【0005】そこでこの問題を解決するため、一台の機
器の中に2種類の光ピックアップを設置する方法や、見
かけ上は一台のピックアップだが、中に二つのレーザー
光源と二つの対物レンズを設置する方法、または二つの
レーザー光源と波長フィルタを設置し波長フィルタによ
って一方の光源に対する対物レンズの実効的な開口を変
える方法が用いられていた。
[0005] In order to solve this problem, two types of optical pickups are installed in one device, or two laser light sources and two objective lenses are used in the device. A method has been used in which two laser light sources and a wavelength filter are provided, and the effective aperture of the objective lens for one of the light sources is changed by the wavelength filter.

【0006】次に従来例の一つを図7に示す。これは光
ディスクへの適用を前提としたものである。簡単のため
断面図としかつ本発明の本質とは関係のない検出光学系
の部分は省いた。波長670nmの第1のレーザ光源70
1から出射しハーフミラー702を透過後コリメートレ
ンズ703で平面波にされた第1のレーザー光704は
波長フィルタ705を透過し集光レンズ706により光
ディスク707に集光される。波長フィルタ705は中
央部が丸くくり貫かれ、かつ波長670nm付近の光だけ
を選択的に透過する。この状態でDVD用あるいはDV
D−ROM(RAM)用の光学系として機能する
Next, one of the conventional examples is shown in FIG. This is based on application to an optical disk. For the sake of simplicity, a sectional view is shown, and portions of the detection optical system which are not related to the essence of the present invention are omitted. First laser light source 70 having a wavelength of 670 nm
The first laser light 704 emitted from 1 and transmitted through the half mirror 702 and converted into a plane wave by the collimating lens 703 is transmitted through the wavelength filter 705 and condensed on the optical disk 707 by the condenser lens 706. The wavelength filter 705 has a rounded center portion and selectively transmits only light near a wavelength of 670 nm. In this state for DVD or DV
Functions as an optical system for D-ROM (RAM)

【0007】次に波長780nmの第2のレーザー光源7
08から出射し、ハーフミラー702で反射後コリメー
トレンズ703で平面波にされた第2のレーザー光70
9は波長フィルタ705のくり貫かれ部分のみを透過し
て集光光学系706により光ディスク707に集光され
る。この時、図7から明らかなように第2のレーザー光
709は第1のレーザー光704より細い光束径となっ
て集光光学系706に入射する。すなわち集光光学系7
06の実効的な開口数が小さくなる。この状態でCDや
CD−ROMあるいはCD−R(RW)用として機能す
る。
Next, a second laser light source 7 having a wavelength of 780 nm
08, reflected by the half mirror 702, and converted into a plane wave by the collimating lens 703.
Numeral 9 passes through only the cut-out portion of the wavelength filter 705 and is condensed on the optical disk 707 by the condensing optical system 706. At this time, as is clear from FIG. 7, the second laser light 709 has a light beam diameter smaller than that of the first laser light 704 and enters the condensing optical system 706. That is, the condensing optical system 7
06 is reduced in effective numerical aperture. In this state, it functions as a CD, CD-ROM, or CD-R (RW).

【0008】[0008]

【発明が解決しようとする課題】しかしながら従来例に
おいては、一台の機器に2つのピックアップを設置する
ために、機器構成が複雑になり、且つスペースの点でも
不利になる。また、一台のピックアップに二つのレーザ
ー光源と二つの対物レンズを設置する事や、二つのレー
ザー光源と波長フィルタを設置することは、光学系の構
成や光軸等の位置合わせが複雑となり、かつハーフミラ
ー等を用いて二つの光源からの光軸を合成するため光利
用率が大幅に低減されるという問題がある。
However, in the conventional example, since two pickups are installed in one device, the structure of the device becomes complicated and the space is disadvantageous. In addition, installing two laser light sources and two objective lenses in one pickup, or installing two laser light sources and a wavelength filter complicates the alignment of the optical system configuration and optical axis, etc. In addition, since the optical axes from the two light sources are combined using a half mirror or the like, there is a problem that the light utilization rate is significantly reduced.

【0009】本発明の目的は、上記問題点を解決し、電
気的に簡単に光学系の開口数を切り替え可能で、かつ電
気的に簡単に超解像が実現可能な光学装置を提供するも
のである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical device which solves the above-mentioned problems and which can easily switch the numerical aperture of an optical system easily and can realize super-resolution easily and electrically. It is.

【0010】[0010]

【課題を解決するための手段】本発明における光学装置
は、少なくともレーザー光を変調する空間光変調素子と
空間光変調素子で変調された光束を集光する集光レンズ
とから構成される光学装置で、空間光変調素子は少なく
とも回折型レンズ素子として機能する部位と旋光光学素
子として機能する部位とから構成され、かつ回折型レン
ズ素子及び旋光光学素子の機能は電気信号で制御される
事を特徴とする。
An optical device according to the present invention comprises at least a spatial light modulator for modulating a laser beam and a condenser lens for condensing a light beam modulated by the spatial light modulator. The spatial light modulator is composed of at least a part functioning as a diffractive lens element and a part functioning as an optical rotation element, and the functions of the diffraction lens element and the optical rotation element are controlled by electric signals. And

【0011】また前記旋光光学素子として機能する部位
は集光レンズで集光される光束の光軸を中心としたほぼ
円形領域に作用する事を特徴とする。
Further, the portion functioning as the optical rotatory optical element is characterized in that it acts on a substantially circular region centered on the optical axis of the light beam condensed by the condenser lens.

【0012】更にはレーザー光源として直線偏光レーザ
ー光源を、空間光変調素子として液晶空間光変調素子を
用い、かつ液晶空間光変調素子の回折型レンズ素子とし
て機能する部位は平行配向型液晶素子から構成され、旋
光光学素子として機能する部位は90度ツイストネマテ
ィック型液晶素子から構成され、かつ直線偏光レーザー
光源の偏光軸方向は液晶空間光変調素子の直線偏光入射
側の液晶分子配向軸の方向とほぼ一致した事を特徴とす
る。
Further, a linearly polarized laser light source is used as a laser light source, a liquid crystal spatial light modulator is used as a spatial light modulator, and a portion functioning as a diffractive lens element of the liquid crystal spatial light modulator is composed of a parallel alignment type liquid crystal element. The part functioning as an optical rotation optical element is composed of a 90-degree twisted nematic liquid crystal element, and the direction of the polarization axis of the linearly polarized laser light source is substantially the same as the direction of the liquid crystal molecule alignment axis on the side of the linearly polarized light incident side of the liquid crystal spatial light modulator. The feature is that they match.

【0013】[0013]

【発明の実施の形態】(第1の実施の形態)本発明の実
施形態の理解を容易にするために、偏光を用いた光学系
の超解像効果及び電気信号で、機能を制御可能な回折型
レンズ素子である液晶フレネルレンズを用いた一般的な
可変焦点光学装置について簡単に説明する。最初に偏光
を用いた光学系の超解像効果を図8を用いて簡単に説明
する。図8は、偏光を用いた超解像光学装置の構成例で
ある。簡単のため断面図で描いたが実際は光軸803を
回転軸とした回転対称形である。図8に示すように収差
のよく補正された集光レンズ801に波長λの直線偏光
レーザー光802が入射し、集光レンズ801の光軸8
03上のP点に点像804を結ぶ。このとき前述したよ
うに点像804は波動光学的な広がりを持ち、その広が
りはkλf/d表される。これが波動光学的に決定され
る理論限界である。ここでkは光学系に固有の定数、f
は集光レンズ801から点像804までの距離、dは直
線偏光レーザー光802の光束径である。ただしdは集
光レンズ801の有効径以下でなくてはならない。また
簡単のため直線偏光レーザー光802は平行光とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) To facilitate understanding of an embodiment of the present invention, the function can be controlled by the super-resolution effect of an optical system using polarized light and electric signals. A general variable focus optical device using a liquid crystal Fresnel lens which is a diffraction lens element will be briefly described. First, the super-resolution effect of an optical system using polarized light will be briefly described with reference to FIG. FIG. 8 is a configuration example of a super-resolution optical device using polarized light. Although drawn in a cross-sectional view for simplicity, it is actually a rotationally symmetric shape with the optical axis 803 as a rotation axis. As shown in FIG. 8, a linearly polarized laser beam 802 having a wavelength λ is incident on a converging lens 801 whose aberration is well corrected, and the optical axis 8 of the converging lens 801 is changed.
A point image 804 is formed at a point P on 03. At this time, the point image 804 has a wave optical spread as described above, and the spread is represented by kλf / d. This is the theoretical limit determined by wave optics. Where k is a constant specific to the optical system, f
Is the distance from the condenser lens 801 to the point image 804, and d is the beam diameter of the linearly polarized laser light 802. However, d must be smaller than the effective diameter of the condenser lens 801. For simplicity, the linearly polarized laser light 802 is parallel light.

【0014】ここで旋光光学素子805を集光レンズ8
01の手前に設置する。旋光光学素子805の機能は中
央部分(図8で斜線部分)806を通過した直線偏光と
中央部分以外を通過した直線偏光の偏光軸を直交させ
る。また旋光光学素子805は光軸803に対して軸対
称に設置するのが普通である。このとき超解像現象が生
じ点像804の広がりは小さくなることが知られてい
る。またこの小さくなる割合は中央部806の大きさに
比例する事が知られる。しかし余りに大きくすると点像
804に大きなサイドバンドが発生し三つ山のスポット
になり不都合が多い。また当然のことながら中央部80
6が大きくなりすぎて直線偏光レーザー光802がすべ
て中央部806を通過しては超解像現象は生じない。普
通は直線偏光レーザー光802の光束径に対する中央部
分806の割合(図3でr/d)が20%程度であると
き点像804は理論限界より15%程度小さくなる。す
なわちレーザー光の波長を15%短くしたのと同じ効果
が生じる。また旋光光学素子を電気信号で制御し旋光性
を失わせれば超解像は生じなくなる。
Here, the optical rotation optical element 805 is connected to the condenser lens 8.
Installed before 01. The function of the optical rotation optical element 805 is to make the polarization axes of the linearly polarized light passing through the central portion (hatched portion in FIG. 8) 806 and the linearly polarized light passing through other than the central portion orthogonal. Also, the optical rotation optical element 805 is usually installed symmetrically with respect to the optical axis 803. At this time, it is known that the super-resolution phenomenon occurs and the spread of the point image 804 is reduced. It is also known that the rate of decrease is proportional to the size of the central portion 806. However, if the size is too large, a large side band is generated in the point image 804, resulting in a three-mountain spot, which is inconvenient. Of course, the central part 80
6 becomes too large, and all the linearly polarized laser light 802 passes through the central portion 806, so that the super-resolution phenomenon does not occur. Normally, when the ratio (r / d in FIG. 3) of the central portion 806 to the beam diameter of the linearly polarized laser light 802 is about 20%, the point image 804 is about 15% smaller than the theoretical limit. That is, the same effect as when the wavelength of the laser light is shortened by 15% is obtained. If the optical rotatory optical element is controlled by an electric signal to lose optical rotation, super-resolution will not occur.

【0015】次に液晶フレネルレンズを用いた可変焦点
光学装置について図9を用いて簡単に説明する。簡単の
ため断面図で描いたが、実際は光軸903を回転軸とし
た回転対称形である。液晶フレネルレンズ901には焦
点距離f1のレンズとして機能するフレネルレンズのパ
ターンを持った透明電極が形成され、透明電極に適当な
電圧を与えることで液晶フレネルレンズ901がレンズ
として機能する。このときこの光学装置の焦点距離は液
晶フレネルレンズ901と集光レンズ902の合成焦点
距離となり、レーザー光904はP2点に集光する。ま
た電圧を与えないときは液晶フレネルレンズ901はレ
ンズとして機能しないため、この光学装置の焦点距離は
集光レンズ902の焦点距離となり、レーザー光904
はP1点に集光する。従って液晶フレネルレンズ901
に電圧を与える前後で、この光学装置の焦点距離すなわ
ち開口数を変えたことになる。
Next, a variable focus optical device using a liquid crystal Fresnel lens will be briefly described with reference to FIG. Although drawn in a cross-sectional view for simplicity, it is actually a rotationally symmetric shape with the optical axis 903 as a rotation axis. A transparent electrode having a pattern of a Fresnel lens functioning as a lens having a focal length f1 is formed on the liquid crystal Fresnel lens 901, and by applying an appropriate voltage to the transparent electrode, the liquid crystal Fresnel lens 901 functions as a lens. At this time, the focal length of this optical device is the combined focal length of the liquid crystal Fresnel lens 901 and the condenser lens 902, and the laser light 904 is focused on point P2. When no voltage is applied, the liquid crystal Fresnel lens 901 does not function as a lens, so that the focal length of this optical device is the focal length of the condenser lens 902 and the laser light 904
Focuses on point P1. Therefore, the liquid crystal Fresnel lens 901
This means that the focal length of the optical device, that is, the numerical aperture, is changed before and after the voltage is applied.

【0016】次に本発明における第1の実施形態の光学
装置を図1を用いて説明する。本実施形態における光学
装置は、DVD(RAM)、CD、CD−R(W)すべ
てに対応可能な光ピックアップ用の光学装置を前提とし
たものである。簡単のため図1はYZ平面である2次元
に投影して描いた。実際は光軸109を回転軸とした回
転対称形となる。また本発明と直接には関係しない検出
光学系の部分は省いた。図1に示すように本実施形態に
おける光学装置は、波長780nm程度の直線偏光レーザ
ー光源101から出射し、コリメートレンズ102で平
行平面波にされた直線偏光レーザー光103は空間光変
調素子104に入射する。空間光変調素子104は少な
くとも回折型レンズ素子105として機能する部位(左
斜線表示)と旋光光学素子106として機能する部位
(右斜線表示)とから構成され、それぞれの機能が電気
信号により制御される。また回折型レンズ素子105と
して機能する部位は焦点距離f1のレンズとして機能
し、旋光光学素子106として機能する部位は他の部位
と比べ入射直線偏光の偏光軸を90度回転する機能を持
つ。また旋光光学素子106として機能する部位は集光
レンズ107の光軸を中心としたほぼ円形領域108に
作用す。
Next, an optical device according to a first embodiment of the present invention will be described with reference to FIG. The optical device according to the present embodiment is based on an optical device for an optical pickup capable of supporting all DVDs (RAMs), CDs, and CD-Rs (W). For simplicity, FIG. 1 is drawn by projecting onto a two-dimensional YZ plane. Actually, it has a rotationally symmetric shape with the optical axis 109 as the rotation axis. In addition, parts of the detection optical system that are not directly related to the present invention are omitted. As shown in FIG. 1, the optical device according to the present embodiment emits from a linearly polarized laser light source 101 having a wavelength of about 780 nm, and a linearly polarized laser beam 103 converted into a parallel plane wave by a collimating lens 102 enters a spatial light modulator 104. . The spatial light modulator 104 includes at least a portion functioning as a diffractive lens element 105 (shown with diagonally left lines) and a portion functioning as an optical rotation element 106 (showing diagonally right lines), and each function is controlled by an electric signal. . The part functioning as the diffractive lens element 105 functions as a lens having a focal length f1, and the part functioning as the optical rotation element 106 has a function of rotating the polarization axis of incident linearly polarized light by 90 degrees as compared with other parts. The portion functioning as the optical rotation optical element 106 acts on a substantially circular region 108 centered on the optical axis of the condenser lens 107.

【0017】最初に回折型レンズ素子105の機能は停
止し、旋光光学素子106の機能を有効とする。このと
き旋光光学素子106を通過した直線偏光と回折型レン
ズ素子105を通過した直線偏光は互いに直交するため
超解像が生じる。またこの際この光学装置の開口数は集
光レンズ107により決定されることがわかる。また前
述の超解像の説明に述べたが、15%程度の超解像を行
うなら直線偏光レーザー光103の光束に対する旋光光
学素子106の断面割合は20%程度となる。この状態
をDVDの読み書きに用いる。
First, the function of the diffractive lens element 105 is stopped, and the function of the optical rotation optical element 106 is made effective. At this time, the linearly polarized light that has passed through the optical rotatory optical element 106 and the linearly polarized light that has passed through the diffractive lens element 105 are orthogonal to each other, resulting in super-resolution. At this time, it is understood that the numerical aperture of the optical device is determined by the condenser lens 107. As described in the description of the super-resolution, if the super-resolution of about 15% is performed, the cross-sectional ratio of the optical rotation optical element 106 to the light beam of the linearly polarized laser beam 103 is about 20%. This state is used for reading and writing of the DVD.

【0018】次に旋光光学素子106の機能は停止し、
回折型レンズ素子105の機能を有効とする。この状態
では超解像は生じなくなる。またこのとき、この光学装
置の焦点距離は回折型光学素子106と集光レンズ10
7の合成焦点距離となり、集光レンズ107のみの場合
と比較して開口数を変えたことになる。この状態をCD
の読み取りに用いる。
Next, the function of the optical rotation optical element 106 stops,
The function of the diffractive lens element 105 is made effective. In this state, super-resolution does not occur. At this time, the focal length of this optical device is determined by the diffraction optical element 106 and the condenser lens 10.
The combined focal length is 7, which means that the numerical aperture has been changed as compared with the case where only the condenser lens 107 is used. This state is CD
Used for reading.

【0019】厳密に言えば、回折型レンズ素子105の
中心部分は旋光光学素子106であるためレンズとして
の作用はほとんどない。しかし、DVDとCDの開口数
切り替えに必要な回折型レンズ素子の焦点距離は数十m
mから数百mmであるため、もともと中心付近はレンズ
としての作用はあまり必要ない。また先に述べたように
15%程度の超解像を行う場合は、旋光光学素子106
が中心付近にしめる断面割合は20%程度のためあまり
影響がない。
Strictly speaking, the central part of the diffractive lens element 105 is the optical rotatory optical element 106, so that it has almost no function as a lens. However, the focal length of the diffractive lens element required for switching the numerical aperture between DVD and CD is several tens of meters.
Since the distance is from m to several hundred mm, the vicinity of the center originally does not require much action as a lens. Further, as described above, when super-resolution of about 15% is performed, the optical rotation optical element 106 is used.
However, since the cross-sectional ratio that can be set near the center is about 20%, there is not much influence.

【0020】前項の説明で明らかなように、回折型レン
ズ素子105の機能と旋光光学素子106の機能を制御
することで光学装置の実効的な開口数を切り替え、レー
ザーの実効的な波長を切り替え可能となる。
As is clear from the above description, the effective numerical aperture of the optical device is switched by controlling the function of the diffractive lens element 105 and the function of the optical rotation optical element 106, and the effective wavelength of the laser is switched. It becomes possible.

【0021】(第2の実施形態)次に本発明における第
2の実施形態の光学装置について説明する。基本的には
図1に示した第1の実施形態と同様であるが、電気信号
で容易に制御可能な回折型レンズ素子及び旋光光学素子
として、それぞれ平行配向型液晶素子と90度ツイスト
ネマティック液晶素子から構成される液晶空間光変調素
子を用いている。最初に本実施形態の理解を容易にする
ため、平行配向型液晶素子及び90度ツイストネマティ
ック型液晶素子の動作、回折現象等について簡単に説明
する。
(Second Embodiment) Next, an optical device according to a second embodiment of the present invention will be described. Basically, it is the same as the first embodiment shown in FIG. 1, except that a parallel alignment type liquid crystal element and a 90-degree twisted nematic liquid crystal are used as a diffraction type lens element and an optical rotatory optical element which can be easily controlled by an electric signal. A liquid crystal spatial light modulator composed of elements is used. First, in order to facilitate understanding of the present embodiment, operations, diffraction phenomena, and the like of the parallel alignment type liquid crystal element and the 90-degree twisted nematic type liquid crystal element will be briefly described.

【0022】図3(a)(b)は電気的に制御可能な一
般的な平行配向型液晶素子と90度ツイストネマティッ
ク型液晶素子の構造と作用を模式的に表したものであ
る。透明電極がコートされたガラス基板301に液晶分
子302が挟まれている。入射側のガラス基板は配向軸
303の方向がY軸方向で出射側ガラス基板は配向軸3
03の方向が上半分がY軸方向、下半分はX軸方向とな
っている。液晶分子302はその長軸方向を配向軸方向
にそろえる性質と、連続体として振る舞う性質とから図
3(a)に示す様に、上側半分の液晶分子302は平行
に並びこれを平行配向もしくはホモジェニアス配向とい
い、下側半分の液晶分子302は90度捻れこれを90
度ツイストネマティック配向という。
FIGS. 3 (a) and 3 (b) schematically show the structure and operation of a general electrically controllable parallel alignment type liquid crystal element and a 90 ° twist nematic type liquid crystal element. Liquid crystal molecules 302 are sandwiched between glass substrates 301 coated with transparent electrodes. The incident side glass substrate has the orientation axis 303 in the Y-axis direction and the exit side glass substrate has the orientation axis 3
In the direction 03, the upper half is the Y-axis direction and the lower half is the X-axis direction. As shown in FIG. 3A, the liquid crystal molecules 302 are aligned in a parallel or homogenous manner, as shown in FIG. 3A, from the property of aligning the major axis direction to the orientation axis direction and the property of behaving as a continuum. This is called alignment, and the liquid crystal molecules 302 in the lower half are twisted 90 degrees.
Degree of twist nematic orientation.

【0023】この液晶素子に直線偏光304が入射する
と、その偏光軸が配向軸303と同方向のときは、液晶
分子302の誘電異方性のため直線偏光304は直線偏
光を保ったまま液晶分子302の長軸方向に沿って伝搬
する。したがって90度ツイストネマティック領域では
出射直線偏光はX軸方向に90度回転する。このさい液
晶分子302の長軸方向の屈折率をn1、液晶層厚をLと
すると液晶層内を進む直線偏光304の光路長はn1×L
となる。
When linearly polarized light 304 is incident on the liquid crystal element, when the polarization axis is in the same direction as the alignment axis 303, the linearly polarized light 304 is kept linearly polarized due to the dielectric anisotropy of the liquid crystal molecule 302. It propagates along the long axis direction of 302. Therefore, in the 90-degree twisted nematic region, the output linearly polarized light rotates 90 degrees in the X-axis direction. In this case, assuming that the refractive index in the major axis direction of the liquid crystal molecules 302 is n1 and the thickness of the liquid crystal layer is L, the optical path length of the linearly polarized light 304 traveling in the liquid crystal layer is n1 × L
Becomes

【0024】次にガラス基板301にコートされた透明
電極を介して液晶分子にZ軸方向の電界を加えると、図
3(b)に示す様に液晶分子302の長軸が電界の方向
であるZ軸方向に並んで静止する。この状態をホメオト
ロピックという。このときは液晶層内を進む直線偏光3
04はやはり直線偏光を保持したまま伝搬する。また9
0度ツイストネマティック領域の旋光性は失われる。こ
のとき液晶分子302の短軸方向の屈折率をn2とする
と、液晶層内を進む直線偏光304の光路長は、n2×L
となる事がわかる。すなわち電圧を加える前後で直線偏
光304に対する屈折率をn1からn2に、よって光路長を
(n1-n2) ×Lだけ変えたことになる。また加える電圧を
制御することでこれらの中間状態をつくる事も可能であ
る。また理想的に近いホモジェニアス状態にするには液
晶層に液晶が電界で動き始める直前の微小な電圧を加え
ておくと良いことも知られている。
Next, when an electric field in the Z-axis direction is applied to the liquid crystal molecules via the transparent electrode coated on the glass substrate 301, the major axis of the liquid crystal molecules 302 is the direction of the electric field as shown in FIG. Stand still in the Z-axis direction. This state is called homeotropic. In this case, linearly polarized light 3 traveling in the liquid crystal layer
04 also propagates while maintaining linearly polarized light. 9
Optical rotation in the 0 degree twisted nematic region is lost. At this time, assuming that the refractive index in the minor axis direction of the liquid crystal molecules 302 is n2, the optical path length of the linearly polarized light 304 traveling in the liquid crystal layer is n2 × L
It turns out that it becomes. That is, before and after the voltage is applied, the refractive index for the linearly polarized light 304 is changed from n1 to n2, and thus the optical path length is changed.
This means that (n1-n2) × L has been changed. It is also possible to create these intermediate states by controlling the applied voltage. It is also known that a small voltage immediately before the liquid crystal starts moving by an electric field should be applied to the liquid crystal layer in order to make the liquid crystal layer close to an ideal homogenous state.

【0025】図4は一般的なバイナリー型のおよそ透明
な位相型回折格子による光の回折現象を表したもので、
簡単なため平面に投影した断面図で描いてある。ピッチ
Pで繰り返しn1とn2の異なる屈折率を持った厚さdの位
相型回折格子401にレーザー光402が入射すると、
回折効果により出射レーザー光が回折を起こす。ここで
は簡単のためレーザー光402は位相型回折格子401
に対して垂直に入射するとする。このとき普通は、その
まま素通りする光である0次光403と、それぞれθ方
向及び−θ方向に回折する1次光404及び−1次光4
05が発生する(より回折角の大きい高次の回折光も発
生するが、割合が小さいため無視した)。このとき回折
角θはsin(θ)=λ/Pで決定される。ここでλはレーザ
ー光402の波長である。
FIG. 4 shows a light diffraction phenomenon by a general binary type approximately transparent phase type diffraction grating.
For simplicity, it is drawn in a sectional view projected on a plane. When a laser beam 402 is incident on a phase type diffraction grating 401 having a thickness d and having a different refractive index of n1 and n2 repeatedly at a pitch P,
The emitted laser light is diffracted by the diffraction effect. Here, for simplicity, the laser beam 402 is a phase type diffraction grating 401.
It is assumed that the light is perpendicularly incident on. At this time, usually, the zero-order light 403, which is light passing through as it is, and the first-order light 404 and the minus first-order light 4 diffracted in the θ direction and the −θ direction, respectively.
05 (higher-order diffracted light having a larger diffraction angle is also generated, but is ignored because the ratio is small). At this time, the diffraction angle θ is determined by sin (θ) = λ / P. Here, λ is the wavelength of the laser light 402.

【0026】このときレーザー光402に対するn1とn2
の領域の面積がほぼ等しく、光路長差(n1-n2) ×Lがλ
/2であるときこれをロンキー格子といい0次光403は
消滅する事が知られている。また光路長差(n1-n2) ×L
がλでかつピッチPで繰り返して屈折率をn1からn2まで
連続的に滑らかに変化させたとき、これをブレーズド格
子といい1次光404のみが発生する事が知られてい
る。また実際はn1からn2まで16ステップ以上で段階的
に変化させればほぼ理想的なブレーズド格子になる事も
知られ、これをマルチレベルバイナリー格子という。ま
た一般に位相型回折格子は不透明な部分のある振幅型回
折格子より光利用効率が高く有利である。一般的に知ら
れるように、この回折格子のピッチを連続的に変えてい
けば、様々なレンズ効果を持たせることが可能で、その
代表的なものはフレネルレンズである。
At this time, n1 and n2 with respect to the laser beam 402
Are almost equal in area, and the optical path length difference (n1-n2) × L is λ
When it is / 2, this is called a Ronchi grating, and it is known that the zero-order light 403 disappears. Optical path length difference (n1-n2) x L
It is known that when the refractive index is repeatedly changed at λ and the pitch P to continuously and smoothly change the refractive index from n1 to n2, this is called a blazed grating and only primary light 404 is generated. Actually, it is also known that an ideal blazed grating can be obtained by changing stepwise from n1 to n2 in 16 steps or more, which is called a multilevel binary grating. In general, a phase type diffraction grating is advantageous in that it has higher light utilization efficiency than an amplitude type diffraction grating having an opaque portion. As is generally known, by continuously changing the pitch of the diffraction grating, various lens effects can be provided, and a typical one is a Fresnel lens.

【0027】図5(a)(b)は電気的に制御可能な液晶回折
光学素子501の断面構造を描いたものである。液晶分
子502はその長軸方向がY軸方向に一致して平行配向
され、長軸方向の屈折率をn1、短軸方向の屈折率をn2と
する。また片側のガラス基盤にはストライプ状の透明電
極503がピッチPで形成されている。またもう片方の
ガラス基盤には透明電極がほぼ全面にコートされてい
る。このときこの液晶回折光学素子501にY軸方向の
直線偏光レーザー光504が入射する。
FIGS. 5A and 5B illustrate the cross-sectional structure of a liquid crystal diffraction optical element 501 that can be electrically controlled. The liquid crystal molecules 502 are aligned in parallel so that the major axis direction coincides with the Y axis direction, and the refractive index in the major axis direction is n1 and the refractive index in the minor axis direction is n2. Further, on one side of the glass substrate, stripe-shaped transparent electrodes 503 are formed at a pitch P. A transparent electrode is coated on almost the entire surface of the other glass substrate. At this time, the linearly polarized laser light 504 in the Y-axis direction enters the liquid crystal diffraction optical element 501.

【0028】このとき図5(a) に示すように液晶回折光
学素子501に電圧が加えられていないときは直線偏光
504に対して屈折率が一様にn1となる。従って回折は
起こらず直線偏光504は素通りして出射光508にな
る。厳密には透明電極503によりわずかな回折を生じ
てしまうが、透明電極503の屈折率と液晶分子502
の長軸方向の屈折率とが同じになるようにすれば透明電
極503による回折は生じない。
At this time, as shown in FIG. 5A, when no voltage is applied to the liquid crystal diffraction optical element 501, the refractive index for the linearly polarized light 504 becomes n1 uniformly. Therefore, no diffraction occurs, and the linearly polarized light 504 passes through to become the output light 508. Strictly speaking, slight diffraction is caused by the transparent electrode 503, but the refractive index of the transparent electrode 503 and the liquid crystal molecules 502
If the refractive index in the major axis direction is the same, diffraction by the transparent electrode 503 does not occur.

【0029】次に図5(b) に示すように、透明電極50
3に電源から十分な電圧を加えるとその部分の液晶分子
502はZ軸方向の電界によりホメオトロピック状態と
なる。その結果、直線偏光504に対しピッチPで屈折
率がn1とn2を繰り返す構造となる。従って図4とまった
く同等なバイナリー型の位相型回折格子として機能し、
0次光505、1次光506、及び−1次光507が発
生する。この際、前述したロンキー格子の条件を満たせ
ば0次光505は発生しない。また前述したマルチレベ
ルバイナリー格子の条件を満たせば1次光506しか発
生しない。しかしマルチレベル化のためには透明電極5
03をより細かなピッチで刻み、かつ段階的に電圧を変
化させて加える必要がある。
Next, as shown in FIG.
When a sufficient voltage is applied to the liquid crystal molecule 3 from the power supply, the liquid crystal molecules 502 in that portion are brought into a homeotropic state by an electric field in the Z-axis direction. As a result, the linearly polarized light 504 has a structure in which the refractive index repeats n1 and n2 at the pitch P. Therefore, it functions as a binary phase diffraction grating exactly equivalent to FIG.
Zero-order light 505, first-order light 506, and -1st-order light 507 are generated. At this time, if the condition of the Ronchi grating is satisfied, the zero-order light 505 is not generated. If the above-described condition of the multi-level binary grating is satisfied, only the primary light 506 is generated. However, for multi-leveling, the transparent electrode 5
03 needs to be chopped at a finer pitch, and the voltage must be changed in a stepwise manner.

【0030】ここから図2を用いて本発明による第2の
実施形態における光学装置について説明する。第2の実
施形態における光学装置は、DVD、CD、CD−Rす
べてに対応可能な光ピックアップ用の光学装置を前提と
したものである。簡単のため図2はYZ平面である2次
元に投影して描いた。実際は光軸209を回転軸とした
回転対照となる。また本発明と直接には関係しない検出
光学系の部分は省いた。
Next, an optical device according to a second embodiment of the present invention will be described with reference to FIG. The optical device according to the second embodiment is based on an optical device for an optical pickup that can support all DVDs, CDs, and CD-Rs. For simplicity, FIG. 2 is drawn by projecting on a two-dimensional plane, which is a YZ plane. Actually, it becomes a rotation reference with the optical axis 209 as a rotation axis. In addition, parts of the detection optical system that are not directly related to the present invention are omitted.

【0031】第2の実施形態における光学装置は、波長
780nm程度の直線偏光レーザ光源201から出射し、
コリメートレンズ202で平行平面波にされた直線偏光
レーザー光203は液晶空間光変調素子204に入射す
る。液晶空間光変調素子204はその液晶分子配向軸は
直線偏光レーザー光源201の偏光軸方向とほぼ一致し
共にY軸方向である。また液晶空間光変調素子204は
少なくとも平行配向型液晶素子から構成される回折型レ
ンズ素子205として機能する部位(左斜線表示)と9
0度ツイストネマティック液晶から構成され旋光光学素
子206として機能する部位(右斜線表示)から構成さ
れ、それぞれの機能が電気信号により制御される。また
回折型レンズ素子205として機能する部位は焦点距離
f1のレンズとして機能し、旋光光学素子206として
機能する部位は他の部位と比べ入射直線偏光の偏光軸を
90度回転する機能を持つ。また旋光光学素子206と
して機能する部位は集光レンズ207の光軸を中心とし
たほぼ円形領域208に作用する。
The optical device according to the second embodiment emits light from a linearly polarized laser light source 201 having a wavelength of about 780 nm,
The linearly polarized laser light 203 converted into a parallel plane wave by the collimator lens 202 enters a liquid crystal spatial light modulator 204. The liquid crystal spatial light modulating element 204 has its liquid crystal molecule alignment axis substantially coincident with the direction of the polarization axis of the linearly polarized laser light source 201, and both directions are in the Y-axis direction. The liquid crystal spatial light modulating element 204 functions as a diffractive lens element 205 composed of at least a parallel alignment type liquid crystal element (shown by diagonal left) and 9.
It is composed of a portion (displayed with diagonal right) that is composed of a 0-degree twisted nematic liquid crystal and functions as the optical rotation optical element 206, and each function is controlled by an electric signal. The part functioning as the diffractive lens element 205 functions as a lens having a focal length f1, and the part functioning as the optical rotation element 206 has a function of rotating the polarization axis of incident linearly polarized light by 90 degrees as compared with other parts. The portion functioning as the optical rotation optical element 206 acts on a substantially circular region 208 centered on the optical axis of the condenser lens 207.

【0032】最初に回折型レンズ素子205の機能は停
止し、旋光光学素子206の機能を有効とする。このと
き旋光光学素子206を通過した直線偏光と回折型レン
ズ素子205を通過した直線偏光は互いに直交するため
超解像が生じる。またこの際この光学装置の開口数は集
光レンズ207により決定されることがわかる。また前
述の超解像の説明に述べたが、15%程度の超解像を行
うなら直線偏光レーザー光203の光束に対する旋光光
学素子206の断面割合は20%程度となる。この状態
をDVDの読み書きに用いる。
First, the function of the diffractive lens element 205 stops, and the function of the optical rotation element 206 is made effective. At this time, the linearly polarized light that has passed through the optical rotatory optical element 206 and the linearly polarized light that has passed through the diffractive lens element 205 are orthogonal to each other, resulting in super-resolution. At this time, it is understood that the numerical aperture of the optical device is determined by the condenser lens 207. As described in the description of the super-resolution, if the super-resolution of about 15% is performed, the cross-sectional ratio of the optical rotation optical element 206 to the light beam of the linearly polarized laser beam 203 is about 20%. This state is used for reading and writing of the DVD.

【0033】次に旋光光学素子206の機能は停止し、
回折型レンズ素子205の機能を有効とする。この状態
では超解像は生じなくなる。またこのとき、この光学装
置の焦点距離は回折型光学素子206と集光レンズ20
7の合成焦点距離となり、集光レンズ207のみの場合
と比較して開口数を変えたことになる。このことは別の
解釈をすれば、集光レンズ207でCDを読み取るとき
に発生する球面収差を回折型レンズ素子で補正すると考
えることができる。この状態をCDの読み取りに用い
る。
Next, the function of the optical rotation optical element 206 stops,
The function of the diffraction lens element 205 is made effective. In this state, super-resolution does not occur. At this time, the focal length of the optical device is the same as that of the diffractive optical element 206 and the condenser lens 20.
The composite focal length is 7, which means that the numerical aperture has been changed compared to the case where only the condenser lens 207 is used. In other words, it can be considered that the spherical aberration generated when reading the CD with the condenser lens 207 is corrected by the diffractive lens element. This state is used for reading a CD.

【0034】厳密に言えば、回折型レンズ素子205の
中心部分は旋光光学素子206であるためレンズとして
の作用はほとんどない。しかし、DVDとCDの開口数
切り替えに必要な回折型レンズ素子の焦点距離は数十m
mから数百mmであるため、もともと中心付近はレンズ
としての作用はあまり必要ない。これは先の別解釈によ
ればCDの読み取り時に生じる球面収差はレンズ口径の
3乗に比例し、中心付近はあまり影響しない。更に先に
述べたように15%程度の超解像を行う場合は、旋光光
学素子206が中心付近にしめる断面割合は20%程度
のためあまり影響がない。
Strictly speaking, the central part of the diffractive lens element 205 is the optical rotatory optical element 206, so that it has almost no function as a lens. However, the focal length of the diffractive lens element required for switching the numerical aperture between DVD and CD is several tens of meters.
Since the distance is from m to several hundred mm, the vicinity of the center originally does not require much action as a lens. According to another interpretation, the spherical aberration generated at the time of reading a CD is proportional to the cube of the lens aperture, and has little effect near the center. Furthermore, as described above, when super-resolution of about 15% is performed, the cross-sectional ratio of the optical rotation optical element 206 near the center is about 20%, so that there is not much effect.

【0035】前述の説明で明らかなように、回折型レン
ズ素子205の機能と旋光光学素子206の機能を制御
することで光学装置の実効的な開口数を切り替え、レー
ザーの実効的な波長を切り替え可能となる。また回折型
レンズ素子205を動作させた状態をDVDの読み書き
用の開口数に設定することも可能だが、この場合は回折
型レンズ素子の効率を高くしないとDVDへの書き込み
が必要な場合は光パワーが不足する。
As is apparent from the above description, by controlling the function of the diffractive lens element 205 and the function of the optical rotation optical element 206, the effective numerical aperture of the optical device is switched, and the effective wavelength of the laser is switched. It becomes possible. It is also possible to set the operating state of the diffractive lens element 205 to the numerical aperture for reading and writing a DVD, but in this case, if writing to the DVD is necessary unless the efficiency of the diffractive lens element is increased, Insufficient power.

【0036】次に前記液晶空間光変調素子204の電極
形状について図6を用いて説明する。前記液晶空間光変
調素子の電極は、中央に円形領域601と、その外周部
に中心を円形領域601と同じくする同心円状の複数の
輪帯が配置された輪帯領域602とを有し、それぞれが
端子電極603に接続されている。図6はフレネルゾー
ンプレートの輪帯形状を表している。但し、模式的に表
したため輪帯の数は4本しか描かれていないが、実際は
数十から数百本の輪帯がある。前記端子電極603を介
して電気信号が加えられると、輪帯領域602は回折型
レンズとして機能し、同時に円形領域601は旋光性が
消失する。
Next, the electrode shape of the liquid crystal spatial light modulator 204 will be described with reference to FIG. The electrode of the liquid crystal spatial light modulator has a circular region 601 in the center and a ring region 602 in which a plurality of concentric rings having the same center as the circular region 601 are arranged on the outer periphery thereof. Are connected to the terminal electrode 603. FIG. 6 shows the annular shape of the Fresnel zone plate. However, only four ring zones are illustrated because they are schematically illustrated, but there are actually several tens to several hundreds of annular zones. When an electric signal is applied through the terminal electrode 603, the annular zone 602 functions as a diffractive lens, and at the same time, the optical rotation of the circular zone 601 disappears.

【0037】また前記液晶空間光変調素子204は、偏
光板等を必要としない位相型素子として用いているため
原理的には光量ロスは生じない。実際の測定においては
光量ロスは15%程度であったが、液晶ガラス基盤に無
反射コートを施せば10%以下にする事は可能である。
Further, since the liquid crystal spatial light modulation element 204 is used as a phase type element which does not require a polarizing plate or the like, no light quantity loss occurs in principle. In the actual measurement, the light quantity loss was about 15%, but it can be reduced to 10% or less by applying a non-reflection coating to the liquid crystal glass substrate.

【0038】[0038]

【発明の効果】今までの説明から明らかなように本発明
における液晶空間光変調素子を用いた光学装置は、簡単
な構成で且つあまり光量をロスすることなく開口数を電
気的に簡単に切り替える事ができ、かつ電気的に簡単に
超解像を起こし等価的に光源の波長を短くする事が可能
となる。この事は特にDVD−RAMすなわち書き込み
あるいは書き換え可能なデジタルバーサタイルディスク
の光学系において、CD及びCD−Rの再生記録を兼ね
備えた光ピックアップに有効である。なぜなら光源とし
ての半導体レーザの光出力アップは困難な問題で、かつ
CD−Rを読むためには波長780nm程度の光源が必要
で、波長660nm程度のDVD用の光源が使用不可能だ
からである。
As is clear from the above description, the optical device using the liquid crystal spatial light modulator according to the present invention has a simple configuration and can easily switch the numerical aperture easily without losing a large amount of light. The super resolution can be easily caused electrically and the wavelength of the light source can be equivalently shortened. This is particularly effective for an optical pickup having both reproduction and recording of CD and CD-R in an optical system of a DVD-RAM, that is, a writable or rewritable digital versatile disk. This is because increasing the light output of a semiconductor laser as a light source is a difficult problem, and a light source having a wavelength of about 780 nm is required to read a CD-R, and a light source for DVD having a wavelength of about 660 nm cannot be used.

【0039】また本発明における液晶空間光変調素子は
現在の複雑なマトリクス画素構造を持ったパソコン用等
の液晶表示パネルと比べ、サイズも小さく構造も非常に
簡単なため製造も容易である。また本実施例においては
電気制御可能な空間光変調素子として液晶空間光変調素
子を使用したが、ビスマスシリコンオキサイド(BS
O)やニオブ酸リチウムなどの固体結晶、あるいはPL
ZTなどの電気光学セラミクスを用いてもよい。しかし
これらの物質は有効動作電圧が数百から数千ボルトもあ
るため有効動作電圧が数ボルトである液晶の方が直接に
CMOSのLSI等で駆動できるため有利である。
The liquid crystal spatial light modulator according to the present invention is small in size and very simple in structure as compared with current liquid crystal display panels for personal computers having a complicated matrix pixel structure, so that it is easy to manufacture. In this embodiment, the liquid crystal spatial light modulator is used as the electrically controllable spatial light modulator. However, bismuth silicon oxide (BS
O) or solid crystals such as lithium niobate, or PL
Electro-optic ceramics such as ZT may be used. However, since these materials have an effective operating voltage of several hundred to several thousand volts, a liquid crystal having an effective operating voltage of several volts is advantageous because it can be directly driven by a CMOS LSI or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態における光学装置の構
成例である。
FIG. 1 is a configuration example of an optical device according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態における光学装置の構
成例である。
FIG. 2 is a configuration example of an optical device according to a second embodiment of the present invention.

【図3】本発明の第2の実施形態において、電気的に制
御可能な平行配向型液晶素子の作用を表した図である。
FIG. 3 is a diagram illustrating an operation of an electrically controllable parallel alignment type liquid crystal element in a second embodiment of the present invention.

【図4】一般的なバイナリー型の位相型回折格子による
光の回折現象を表した図である。
FIG. 4 is a diagram showing a light diffraction phenomenon by a general binary phase diffraction grating.

【図5】本発明の第2の実施形態において、電気的に制
御可能な液晶回折光学素子の基本的な断面構造を表した
図である。
FIG. 5 is a diagram showing a basic cross-sectional structure of a liquid crystal diffractive optical element that can be electrically controlled in a second embodiment of the present invention.

【図6】本発明の第2の実施形態における液晶空間光変
調素子の透明電極形状を表した図である。
FIG. 6 is a diagram illustrating a shape of a transparent electrode of a liquid crystal spatial light modulator according to a second embodiment of the present invention.

【図7】従来技術における光学装置の構成例を表した図
である。
FIG. 7 is a diagram illustrating a configuration example of an optical device according to a conventional technique.

【図8】偏光を用いた超解像光学装置の構成例である。FIG. 8 is a configuration example of a super-resolution optical device using polarized light.

【図9】液晶フレネルレンズを用いた可変焦点光学装置
の構成例を表した図である。
FIG. 9 is a diagram illustrating a configuration example of a variable focus optical device using a liquid crystal Fresnel lens.

【符号の説明】[Explanation of symbols]

101、201、直線偏光レーザー光源 102、202、703、コリーメートレンズ 103、203、504、802、直線偏光レーザー光 104、空間光変調素子 105、205、回折型レンズ素子 106、206、805、旋光光学素子 107、207、706、801、902、集光レンズ 108、208、円形領域 109、209、803、903、光軸 203、504、直線偏光レーザー光 204、液晶空間光変調素子 301、ガラス基板 302、502、液晶分子 303、配向軸 304、直線偏光 401、位相型回折格子 402、904、レーザー光 403、505、0次光 404、506、1次光 405、507、−1次光 501、液晶回折光学素子 503、透明電極 508、出射光 601、円形領域 602、輪帯領域 603、端子電極 701、第1のレーザー光源 702、ハーフミラー 704、第1のレーザー光 705、波長フィルタ 707、光ディスク 708、第2のレーザー光源 709、第2のレーザー光 804、点像 806、中央部分 901、液晶フレネルレンズ 101, 201, linearly polarized laser light sources 102, 202, 703, collimate lenses 103, 203, 504, 802, linearly polarized laser light 104, spatial light modulators 105, 205, diffractive lens elements 106, 206, 805, optical rotation Optical elements 107, 207, 706, 801, 902, condenser lenses 108, 208, circular areas 109, 209, 803, 903, optical axes 203, 504, linearly polarized laser light 204, liquid crystal spatial light modulator 301, glass substrate 302, 502, liquid crystal molecules 303, alignment axis 304, linearly polarized light 401, phase type diffraction gratings 402, 904, laser beams 403, 505, zero-order light 404, 506, first-order light 405, 507, minus first-order light 501, Liquid crystal diffraction optical element 503, transparent electrode 508, outgoing light 601, circular area 60 , Annular zone 603, terminal electrode 701, first laser light source 702, half mirror 704, first laser light 705, wavelength filter 707, optical disk 708, second laser light source 709, second laser light 804, point Image 806, central part 901, liquid crystal Fresnel lens

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくともレーザー光を変調する空間光
変調素子と該空間光変調素子で変調された光束を集光す
る集光レンズとから構成される光学装置において、該空
間光変調素子は少なくとも回折型レンズ素子として機能
する部位と旋光光学素子として機能する部位とから構成
され、かつ該回折型レンズ素子及び該旋光光学素子の機
能は電気信号で制御される事を特徴とする光学装置。
1. An optical device comprising at least a spatial light modulator for modulating a laser beam and a condenser lens for condensing a light beam modulated by the spatial light modulator, wherein the spatial light modulator is at least diffractive. An optical device comprising a part functioning as a mold lens element and a part functioning as an optical rotation optical element, wherein the functions of the diffractive lens element and the optical rotation optical element are controlled by electric signals.
【請求項2】 少なくともレーザー光を変調する空間光
変調素子と該空間光変調素子で変調された光束を集光す
る集光光学系とから構成される光学装置において、該空
間光変調素子は少なくとも回折型レンズ素子として機能
する部位と旋光光学素子として機能する部位とから構成
され、かつ該回折型レンズ素子及び該旋光光学素子の機
能は電気信号で制御され、かつ該旋光光学素子として機
能する部位は該集光レンズで集光される光束の光軸を中
心としたほぼ円形領域に作用する事を特徴とする光学装
置。
2. An optical device comprising at least a spatial light modulating element for modulating a laser beam and a condensing optical system for condensing a light beam modulated by the spatial light modulating element, wherein the spatial light modulating element is at least A part comprising a part functioning as a diffractive lens element and a part functioning as an optical rotation optical element, and the functions of the diffraction lens element and the optical rotation optical element being controlled by electric signals, and functioning as the optical rotation optical element An optical device characterized by acting on a substantially circular area centered on the optical axis of a light beam condensed by the condenser lens.
【請求項3】 空間光変調素子として液晶空間光変調素
子を用いた事を特徴とした特許請求の範囲第1項記載の
光学装置。
3. The optical device according to claim 1, wherein a liquid crystal spatial light modulator is used as the spatial light modulator.
【請求項4】 空間光変調素子として液晶空間光変調素
子を用いた事を特徴とした特許請求の範囲第2項記載の
光学装置。
4. The optical device according to claim 2, wherein a liquid crystal spatial light modulator is used as the spatial light modulator.
【請求項5】 レーザー光として直線偏光レーザー光
を、空間光変調素子として液晶空間光変調素子を用い、
回折型レンズ素子として機能する部位は平行配向型液晶
素子から構成され、旋光光学素子として機能する部位は
90度ツイストネマティック型液晶素子から構成され、
かつ該直線偏光レーザー光源の偏光軸方向は該平行配向
型液晶素子及び該90度ツイストネマティック型液晶素
子の該直線偏光レーザー光源側の液晶分子配向軸の方向
とほぼ一致した事を特徴とする特許請求の範囲第1項記
載の光学装置。
5. A linearly polarized laser beam as a laser beam and a liquid crystal spatial light modulator as a spatial light modulator,
The part functioning as a diffractive lens element is composed of a parallel alignment type liquid crystal element, and the part functioning as an optical rotation optical element is composed of a 90 degree twist nematic type liquid crystal element.
And a polarization axis direction of the linearly polarized laser light source substantially coincides with a direction of a liquid crystal molecule alignment axis on the side of the linearly polarized laser light source of the parallel alignment type liquid crystal element and the 90 ° twisted nematic type liquid crystal element. The optical device according to claim 1.
【請求項6】 レーザー光として直線偏光レーザー光を
空間光変調素子として液晶空間光変調素子を用い、回折
型レンズ素子として機能する部位は平行配向型液晶素子
から構成され、旋光光学素子として機能する部位は90
度ツイストネマティック型液晶素子から構成され、かつ
該直線偏光レーザー光源の偏光軸方向は該平行配向型液
晶素子及び該90度ツイストネマティック型液晶素子の
該直線偏光レーザー光源側の液晶分子配向軸の方向とほ
ぼ一致した事を特徴とする特許請求の範囲第2項記載の
光学装置。
6. A liquid crystal spatial light modulating element using a linearly polarized laser light as a spatial light modulating element as a laser light, and a portion functioning as a diffractive lens element is constituted by a parallel alignment type liquid crystal element and functioning as an optical rotation optical element. The site is 90
The direction of the polarization axis of the linearly polarized laser light source is composed of the twisted nematic liquid crystal element, and the direction of the liquid crystal molecule alignment axis on the side of the linearly polarized laser light source of the parallel alignment type liquid crystal element and the 90 degree twisted nematic liquid crystal element. 3. The optical device according to claim 2, wherein the optical device substantially coincides with the following.
JP11018492A 1999-01-27 1999-01-27 Optical device Pending JP2000215506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11018492A JP2000215506A (en) 1999-01-27 1999-01-27 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11018492A JP2000215506A (en) 1999-01-27 1999-01-27 Optical device

Publications (1)

Publication Number Publication Date
JP2000215506A true JP2000215506A (en) 2000-08-04

Family

ID=11973132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11018492A Pending JP2000215506A (en) 1999-01-27 1999-01-27 Optical device

Country Status (1)

Country Link
JP (1) JP2000215506A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015454A (en) * 2000-06-30 2002-01-18 Pioneer Electronic Corp Liquid crystal unit for correction of aberration, optical pickup device and device fo correction of aberration
KR100494475B1 (en) * 2003-05-21 2005-06-10 삼성전기주식회사 Optical pick-up and optical write and read apparatus using thereof
WO2006121038A1 (en) * 2005-05-10 2006-11-16 Pioneer Corporation Information apparatus
CN111504970A (en) * 2020-05-06 2020-08-07 浙江大学 Mirror-assisted three-dimensional super-resolution microscopic imaging system and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015454A (en) * 2000-06-30 2002-01-18 Pioneer Electronic Corp Liquid crystal unit for correction of aberration, optical pickup device and device fo correction of aberration
KR100494475B1 (en) * 2003-05-21 2005-06-10 삼성전기주식회사 Optical pick-up and optical write and read apparatus using thereof
WO2006121038A1 (en) * 2005-05-10 2006-11-16 Pioneer Corporation Information apparatus
CN111504970A (en) * 2020-05-06 2020-08-07 浙江大学 Mirror-assisted three-dimensional super-resolution microscopic imaging system and method
CN111504970B (en) * 2020-05-06 2021-11-09 浙江大学 Mirror-assisted three-dimensional super-resolution microscopic imaging system and method

Similar Documents

Publication Publication Date Title
JP3620145B2 (en) Optical head device
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
TW464769B (en) Optical device to vary the numerical aperture
JP4148648B2 (en) Optical device
JPH08278477A (en) Diffraction element, optical head and optical recording and reproducing device
KR100459108B1 (en) Optical pickup and optical device used therefor
JP4343337B2 (en) Optical device
JP2000215506A (en) Optical device
US7002892B2 (en) Optical pickup reproducing apparatus having reading compatibility among recording media with respective recording densities different from one another
JPS63241735A (en) Optical pickup
JPH09211460A (en) Light modulator and optical head device using the same
US6856406B2 (en) Ultra small spot generator
JP2010156906A (en) Liquid crystal optical element and optical pickup device
JPH09197363A (en) Optical modulating element and optical head device
US6025953A (en) Annular shutter mirror
JP2618957B2 (en) Polarizing optical element
JPH11328711A (en) Optical device
JP4668365B2 (en) Optical device
JPH1139704A (en) Optical information reader and recorder
JPH09329704A (en) Optical anisotropic diffraction grating, driving method thereof and optical head device using the same
US6437319B1 (en) Optical device
KR100223860B1 (en) Optical pickup for different disc type
JPH07192302A (en) Optical head device having super high resolution
JPH09161306A (en) Optical disk device
JPH0887773A (en) Super-high resolution optical head device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12