JP3831090B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP3831090B2
JP3831090B2 JP24855097A JP24855097A JP3831090B2 JP 3831090 B2 JP3831090 B2 JP 3831090B2 JP 24855097 A JP24855097 A JP 24855097A JP 24855097 A JP24855097 A JP 24855097A JP 3831090 B2 JP3831090 B2 JP 3831090B2
Authority
JP
Japan
Prior art keywords
light
optical
linearly polarized
liquid crystal
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24855097A
Other languages
Japanese (ja)
Other versions
JPH1186318A (en
Inventor
信幸 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP24855097A priority Critical patent/JP3831090B2/en
Publication of JPH1186318A publication Critical patent/JPH1186318A/en
Application granted granted Critical
Publication of JP3831090B2 publication Critical patent/JP3831090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光学系の実効的な開口数を切り替える技術、特に最近の光ディスク装置の光ピックアップにおいて実効的な開口数を切り替え、DVDやCD−ROM用といった異なる開口数から構成される光ピックアップを一つの光ピックアップで共用可能とする技術に属する。
【0002】
【従来の技術】
従来技術の理解を容易にするため、光学系の開口数について簡単に説明する。幾何光学的にほぼ無収差で設計された光学系においては点像は無限小のスポットで結像されるが、実際は光の波動性による回折の影響でスポットは有限の広がりを持つ。この時、結像もしくは集光に寄与する光学系の開口数をNAとすると、スポットの広がりの物理的定義はk×λ÷NAで表される。ここでλは光の波長、kは光学系に定まる定数で普通は1から2前後の値をとる。NAは光学系の有効入射瞳直径D(一般的には有効光束の直径)と焦点距離fの比D/fに比例する。この式で表されるスポットの広がりが理論解像限界となり回折限界といわれる。
【0003】
先の式から明らかなように、光学系の理論解像度は開口数に大きく左右される。一般に光ディスクの場合の光ピックアップの集光(対物)レンズの開口数はCDやCD−ROM用では0.45程度、DVD(デジタルバーサタイルディスク)用では0.55程度であり、光ディスク基盤の厚みはCD用が約1.2mm、DVD用が約0.6mmである。回折限界まで集光する必要のある光ピックアップの集光レンズは光ディスク基盤の厚みまで考慮に入れて設計される。したがってCDあるいはCDーROMとDVDとでは光ピックアップが共用不可能である。
【0004】
そこでこの問題を解決するため、一台の機器の中に2台のピックアップを設置する方法や、光ピックアップの集光レンズにホログラムを刻み二焦点にする方法、あるいは液晶シャッタを用いて有効入射瞳径を切り替える方法等が用いられている。
【0005】
次に本発明に最も近い従来例を図5に示す。これは光ディスクへの適用を前提としたものである。図を追って説明する。
【0006】
直線偏光レーザ光源501から出射しコリメートレンズ502で平面波にされた直線偏光503は、その偏光軸504が紙面に平行であるY軸方向とする。直線偏光503は90度TN(ツイストネマティック)型液晶素子505により偏光軸504の方向が90度回転しX軸方向となる。集光光学系506により直線偏光503が集光される。この時、中央部が丸く切り抜かれた偏光板507が集光光学系506の手前に設置され、その直線偏光透過軸はY軸方向であるとする。この時、偏光板507と組み合わされた90度TN型液晶素子505の光シャッタ機能により、偏光板のくり貫かれた中央部を透過した直線偏光のみが集光に寄与する。CDの再生にはこの状態で使用する。
【0007】
一方、DVDの再生においては90度TN型液晶素子505にZ方向の電界を加え、後に述べるホメオトロピックの状態にする。この状態では液晶素子に旋光性が無くなるため直線偏光503は偏光板を透過する事ができ先の状態と比べ開口数が大きくなる。この状態においても偏光板の持つ光吸収作用により光量が失われる。また偏光板の中央部がくり貫かれているため、偏光板を透過した直線偏光とそうでない直線偏光に偏光板と空気の屈折率差に起因する光の位相差が生じ、回折限界まで集光する事が困難となる。そのため、くり貫かれた中央部に直線偏光透過軸がX軸方向である同じ種類の偏光板を設置すれば位相差の問題は解決するが、更に光量が失われる事になる。
【0008】
集光光学系506で集光された集光スポット508は光ディスク509で反射されほぼ入射と同じ光路をもどり、光分離素子510で分離された光束511が別の集光光学系512で集光され、集光スポット513が光検出素子514で検出される。
【0009】
【発明が解決しようとする課題】
しかしながら一台の機器に2のピックアップを設置する事は機器構成が複雑になりコストアップにもつながる。また集光レンズにホログラムを刻み二焦点にすると常にどちらか一方の不要な集光スポットを発生しているため、光利用効率が低下する。これはDVD−RAMすなわち書き込み書き換え可能なDVDのような大きな光量を必要とする機器においては問題となる。同様に液晶シャッタを用いる方法においても同じ問題が生じる。
【0010】
【課題を解決するための手段】
そこで本発明においては直線偏光と直線偏光を集光する集光光学系と集光光学系による集光スポットを反射する反射部材と反射光を入射光路から分離する光分離素子と光分離素子による分離光を検出する光検出素子からなる光学装置において、90度旋光光学素子を入射光路中に、直線偏光検波素子を分離光路中に設置した。
【0011】
【発明の実施の形態】
本発明による実施形態を図1に示す。直線偏光レーザ光源101から出射し、コリメートレンズ102で平面波にされた直線偏光103は、その偏光軸104が紙面に平行であるY軸方向とする。直線偏光103は旋光光学素子105を透過後、旋光光学素子105の旋光機能により偏光軸104の方向が回転する。旋光光学素子105は入射直線偏光をX軸方向に向けて90度旋光する部位106(斜線表示した円形領域)と、0度旋光する部位107から構成される。
【0012】
90度旋光する部位106を透過し90度旋光した直線偏光108は集光光学系110の光軸111を中心としたほぼ円形領域112(斜線表示)に入射する。この円形領域112は集光光学系110に入射する有効光束113の一部分であり、有効光束113により構成される開口数より小さくなっている事がわかる。ここでは有効光束113による開口をDVD用に、円形領域112による開口をCD用に設定する。また図1では集光光学系110に入射する光束を制限する絞り等を用いていないため、有効光束113は旋光光学素子105を透過する直線偏光103の光束と一致している。
【0013】
0度旋光する部位107を透過し0度旋光した直線偏光109は円形領域112以外に入射する。円形領域112と円形領域112以外の領域の直線偏光は偏光軸が互いに直交する事がわかる。
【0014】
光ディスク115で反射された集光スポット114はほぼ入射光路と同一光路を戻り集光光学系110を通過後、光分離素子116で分離される。このときの偏光状態は光ディスク115に強い複屈折性や回折の偏光依存性がなければ入射偏光状態が保存され、一般に光ディスクにおいては複屈折は20nm以下で回折による偏光依存も実際上ほとんど発生しない。
【0015】
分離された光束117は別の集光光学系118で再び集光され集光スポット119が光検出素子120で検出される。分離された光束117の中に直線偏光検波素子121をその方位(直線偏光が透過する方位)を90度方向(X軸方向)にして設置すると0度旋光した直線偏光109の光ディスク115で反射された成分が遮光される。なぜなら0度旋光した直線偏光109の偏光軸は直線偏光検波素子121の方位と直交するからである。この状態はCDやCD−ROMの再生に用いる事が可能である。すなわち0度旋光した直線偏光109は集光光学系110の外周部を通過する光束で開口数の大きい部分である。本来はDVD用に使用する部分の一部であり、CD等に使用するとDVD用のディスク基盤と厚みも異なるため大きな収差を持った反射光束となる。この反射光束が集光スポット119の形を崩してしまい、光検出素子120で集光スポット119の対称性の信号を得る際の信号ノイズとなってしまう。しかしこの集光光学系110の外周部を通過した光束の成分を光検出素子120の手前で遮光すれば問題はない。この光学装置をDVD用に使用するためには0度旋光する部位106を90度旋光に切り替えればよい事は明らかである。すなわち分離された光束117において有効光束113の成分すべてが使用されて集光スポット119が形成されるからである。
【0016】
【実施例】
図2に本発明における実施例をあげる。原理確認のための例であり、一般に使用されている光ディスクのピックアップ光学系とはスケールは異なる。基本的には図1に示した実施形態と同様であるが、旋光光学素子として90度ツイストネマティック型液晶を用いている。最初に本実施例の理解を容易にするため、90度ツイストネマティック型液晶を用いた旋光効果について説明する。
【0017】
図3(a)、図3(b)は電気的制御可能な一般的な90度ツイストネマティック型液晶素子の旋光機能を模式的に表したものである。透明電極がコートされたガラス基盤301に液晶分子302が挟まれている。入射側のガラス基盤は配向軸方向303がY軸方向で、出射側のガラス基盤は配向軸方向303が上半分がY軸方向、下半分がX軸方向となっている。液晶分子302はその長軸方向を配向軸方向にそろえる性質と、連続体として振る舞う性質とから図3(a)に示す様に、上半分側では液晶分子302は平行に並びこれをホモジェニアスという。また下半分では液晶分子302は徐々に滑らかに90度回転する。これを90度ツイストネマティックという。
【0018】
この液晶素子に入射直線偏光304が入射すると、液晶分子の誘電異方性のため入射直線偏光304の偏光軸は液晶分子302の長軸方向に沿って伝搬する。すなわち出射直線偏光305の偏光軸は上半分がY方向、下半分がX方向となり互いに直交する。液晶分子の長軸方向の屈折率をn1、短軸方向の屈折率をn2とし、液晶層厚をdとすると液晶層内を進む入射直線偏光304の光路長は上下両方ともにn1×dで表される事もわかる。
【0019】
厳密にいうなら入射直線偏光304が厳密に直線偏光として出射するためには入射直線偏光304の偏光軸の方向が入射側の配向軸303の方向すなわち液晶分子長軸と一致し、かつ2×(n1−n2)×d÷λが3、15、35等のいずれかの平方根である必要が知られている。ここでλは入射光の波長である。しかし使用する光の波長、液晶分子の屈折率及び液晶層の厚みが先の式を厳密にみたさなくてもさほど不都合は生じない。またこの時は入射直線偏光304の偏光軸の方向を入射側の配向軸方向303から故意に多少ずらすとよい。
【0020】
ガラス基盤にコートされた透明電極を介して液晶素子にZ軸方向の電界を加えると、図3(b)に示す様に液晶分子302の長軸が電界の方向であるZ軸方向に並んで静止する。この状態をホメオトロピックという。このとき出射直線偏光305は変化なく入射直線偏光304と同じY軸方向となる。すなわち旋光性はなくなる。またこのときは液晶層内を進む入射直線偏光304の光路長はn2×dである事もわかる。
【0021】
図2を用いて実施例を説明する。基本的には図1に示した実施形態と同じであるが、旋光光学素子として90度ツイストネマティック型の液晶素子205が用いられ、液晶素子205の基本的な構造及び動作は図3(a)(b)と同じであるがホモジェニアス配向は用いていない。直線偏光203が入射する側の液晶素子205の配向軸の方向は偏光軸204の方向とほぼ一致し共にY軸方向である。
【0022】
直線偏光レーザ光源201から出射しコリメートレンズ202で平面波にされた直線偏光203はその偏光軸204が紙面に平行なY軸方向とし液晶素子205に入射する。液晶素子205は電気信号によりホメオトロピック領域207と90度ツイストネマティック領域206に機能領域が分割される。すなわち図3の説明で明らかなようにホメオトロピック領域207は電気信号により透明電極を介して液晶分子に十分な電界が加えられる。またホメオトロピック領域は光軸211を中心とした円形外の領域である。
【0023】
液晶素子205のホメオトロピック領域207を透過し0度旋光した直線偏光209は集光光学系210の光軸211を中心としたほぼ円形領域212以外に入射する。このとき円形領域212は集光光学系210に入射する有効光束213の一部分であり、有効光束213により構成される開口数より小さくなっている事がわかる。ここでは有効光束213による開口をDVD用に、円形領域212による開口をCD用に設定する。また図2では集光光学系210に入射する光束を制限する絞り等を用いていないため、有効光束213は液晶素子205を透過する直線偏光203の光束と一致している。集光光学系210を通過した有効光束213が集光スポット214を形成する。
【0024】
90度ツイストネマティック領域206を透過し90度旋光した直線偏光208は円形領域212に入射する。円形領域212と円形領域212以外の領域の直線偏光は偏光軸が互いに直交している事がわかる。
【0025】
図4に実際に使用した液晶素子の形状を示す。外形がおよそ15mmの正方形で中央部に直径10mmの液晶封入領域401がある。液晶封入領域401の中央部の直径3mmの円形領域以外に対し、電極部405からの電気信号によりホメオトロピック領域402が形成され、円形の領域は電気信号が加えられないため90度ツイストネマティック領域403のままとなる。光が入射する側の液晶分子の配向軸方向404はY軸方向とする。また光軸Zは紙面垂直に進む方向である。電気信号を除去する事で液晶封入領域401の全域を90度ツイストネマティック領域に戻す事が可能である。この構成の液晶素子では中央の円形領域から引き出し電線を出す必要がないため、ホメオトロピックとなる領域402の透明電極に円形領域からの引き出し電線のためのデッドスペースを形成する必要がない。なおこの液晶素子は波長633nmの光に対し前述に示した15の平方根をほぼ満足している。
【0026】
液晶素子205において、ホメオトロピック領域207は液晶層がなくても偏光軸は旋光しないため基本的な効果は同じである。しかしこの場合は液晶層がある領域と比べ光路長が変わるため入射直線偏光の位相変調が生じるため、集光光学系210あるいはその他の光学系を用いて補正しなければならない可能性が生じる。またホメオトロピック領域207を最初からホモジェニアス配向もしくはホメオトロピック配向しても同様の効果を得る事が可能であるが、液晶素子の製作の際に90度ツイストネマティック配向とホメオトロピック配向、もしくはホモジェニアス配向を施す必要があり、このためにはマスクラビングすなわち一方の配向中は他方の配向領域をマスクするなどの比較的複雑な配向手法が必要となる。
【0027】
集光スポット214は光軸211上でほぼ同位置に設置された光ディスク215によりほぼ入射光と同一光路を戻り、集光光学系210を通過後、光分離素子216で分離される。分離された光束217は別の集光光学系218により集光され、集光スポット219を形成する。集光スポット219は光検出素子220により検出される。直線偏光検波素子221の方位(直線偏光が透過する方位)をX軸方向として分離された光束217の光路中に設置する事で円形領域212を透過した成分のみ取り出すことができCD再生が可能となる。また液晶素子205のホメオトロピック領域207の電気信号を除去して90度ツイストネマティック配向(すなわち液晶素子205の全域が90度ツイストネマティックとなる)とすれば有効光束213全体の成分を取り出せるためDVD等に使用可能となる。
【0028】
実際の光学系では直線偏光検波素子221として偏光板を用い、有効光束213の直径は5mmとした。また偏光板の中央部分を円形にくり貫いて円形領域212を透過した成分のみを素通しにしてもかまわない。偏光板は光吸収があるためこの方が光利用率が改善される。しかし光検出素子220としてよく使用されるフォトダイオードは比較的高感度なためさほど問題ではない。
【0029】
液晶素子205は旋光光学素子として使用され、入射光路中においては偏光板等を用いていないので原理的には光量ロスは生じない。実際の測定においては光量ロスは15%程度であったが、液晶ガラス基盤に無反射コートを施せば10%以下にする事は可能である。
【0030】
【発明の効果】
今までの説明から明らかなように本発明における旋光光学素子と直線偏光検波素子を用いた光学装置を光ディスク装置に適用した場合、原理的に書き込み(もしくは読み出し)のための光量をロスすることなく開口数を電気的に簡単に切り替える事ができる。この事は今後有望視されているDVD−RAM、すなわち書き込みあるいは書き換え可能なデジタルバーサタイルディスク装置の光学系において、CDの再生を兼ね備えた光学系として非常に有効である。なぜなら光源としての半導体レーザの光出力アップは困難な問題だからである。
【0031】
また本発明における液晶素子は現在の複雑な構造を持ったパソコン用等の液晶表示パネルと比べ、サイズも小さく構造も非常に簡単なため特に大きなコストアップにはならない。また偏光板も市販の液晶装置に使われている安価な物をそのまま使う事が可能でる。また本発明は透過型光ディスクにおいても同様の効果を得る事が可能である。
【図面の簡単な説明】
【図1】本発明による光学装置の構成例である。
【図2】本発明による光学装置の実施例である。
【図3】電気的に制御可能なツイトネマティック型液晶素子の旋光機能を表した図である。
【図4】図2の実施例に用いた液晶素子の構造を表した図である。
【図5】本発明に最も近い従来技術を表した図である。
【符号の説明】
101、201、501、直線偏光レーザ光源
102、202、502、コリーメートレンズ
103、203、503、直線偏光
104、204、504、偏光軸
105、旋光光学素子
205、液晶素子
505、90度TN型液晶素子
106、90度旋光する部位
206、403、90度ツイストネマティック領域
107、0度旋光する部位
207、402、ホメオトロピック領域
108、208、90度旋光した直線偏光
109、209、0度旋光した直線偏光
110、118、210、218、506、512、集光光学系
507、偏光板
111、211、光軸
112、212、円形領域
113、213、有効光束
114、119、214、219、508、513、集光スポット
115、215、509、光ディスク
116、216、510、光分離素子
117、217、511、分離された光束
120、220、514、光検出素子
121、221、直線偏光検波素子
301、透明電極がコートされたガラス基盤
302、液晶分子
303、404、配向軸方向
304、入射直線偏光
305、出射直線偏光
401、液晶封入領域
405、電極部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for switching an effective numerical aperture of an optical system, particularly an optical pickup configured for different numerical apertures for DVDs and CD-ROMs in an optical pickup of a recent optical disc apparatus. It belongs to the technology that can be shared by two optical pickups.
[0002]
[Prior art]
In order to facilitate understanding of the prior art, the numerical aperture of the optical system will be briefly described. In an optical system designed with almost no aberration in terms of geometric optics, a point image is formed with an infinitely small spot, but in reality, the spot has a finite extent due to the influence of diffraction due to the wave nature of light. At this time, if the numerical aperture of the optical system that contributes to image formation or condensing is NA, the physical definition of the spread of the spot is expressed by k × λ ÷ NA. Here, λ is the wavelength of light, and k is a constant determined by the optical system, and usually takes a value of about 1 to 2. NA is proportional to the ratio D / f of the effective entrance pupil diameter D (generally the diameter of the effective light beam) of the optical system and the focal length f. The spread of the spot expressed by this equation becomes the theoretical resolution limit and is called the diffraction limit.
[0003]
As is clear from the above equation, the theoretical resolution of the optical system greatly depends on the numerical aperture. In general, in the case of an optical disk, the numerical aperture of a condensing (objective) lens of an optical pickup is about 0.45 for a CD or CD-ROM, and about 0.55 for a DVD (digital versatile disk). It is about 1.2 mm for CD and about 0.6 mm for DVD. The condensing lens of the optical pickup that needs to condense to the diffraction limit is designed taking into consideration the thickness of the optical disk substrate. Therefore, the optical pickup cannot be shared between CD or CD-ROM and DVD.
[0004]
Therefore, in order to solve this problem, a method in which two pickups are installed in one device, a method in which a hologram is engraved in a condensing lens of an optical pickup to make two focal points, or an effective entrance pupil using a liquid crystal shutter A method of switching the diameter is used.
[0005]
Next, FIG. 5 shows a conventional example closest to the present invention. This is premised on application to an optical disk. This will be described with reference to the drawings.
[0006]
The linearly polarized light 503 emitted from the linearly polarized laser light source 501 and converted into a plane wave by the collimator lens 502 has a Y axis direction in which the polarization axis 504 is parallel to the paper surface. The direction of the polarization axis 504 of the linearly polarized light 503 is rotated by 90 degrees by the 90-degree TN (twisted nematic) type liquid crystal element 505 and becomes the X-axis direction. The linearly polarized light 503 is condensed by the condensing optical system 506. At this time, it is assumed that a polarizing plate 507 whose center is cut out in a round shape is installed in front of the condensing optical system 506, and its linearly polarized light transmission axis is in the Y-axis direction. At this time, due to the optical shutter function of the 90-degree TN liquid crystal element 505 combined with the polarizing plate 507, only the linearly polarized light transmitted through the central portion of the polarizing plate contributes to the light collection. It is used in this state for CD playback.
[0007]
On the other hand, in reproducing a DVD, an electric field in the Z direction is applied to the 90 ° TN liquid crystal element 505 to bring it into a homeotropic state to be described later. In this state, the liquid crystal element loses optical rotation, so that the linearly polarized light 503 can pass through the polarizing plate and has a larger numerical aperture than the previous state. Even in this state, the amount of light is lost due to the light absorption action of the polarizing plate. In addition, since the central part of the polarizing plate is cut out, the phase difference of the light caused by the refractive index difference between the polarizing plate and the air is generated between the linearly polarized light that has passed through the polarizing plate and the linearly polarized light that is not, and the light is condensed to the diffraction limit. It becomes difficult to do. For this reason, if the same type of polarizing plate having the linearly polarized light transmission axis in the X-axis direction is installed in the central portion that is hollowed out, the problem of phase difference is solved, but the amount of light is further lost.
[0008]
The condensing spot 508 condensed by the condensing optical system 506 is reflected by the optical disk 509 and returns almost the same optical path as the incident light, and the light beam 511 separated by the light separating element 510 is condensed by another condensing optical system 512. The focused spot 513 is detected by the light detecting element 514.
[0009]
[Problems to be solved by the invention]
However, installing two pickups in one device complicates the device configuration and leads to an increase in cost. Further, when a hologram is engraved on the condensing lens to make two focal points, either one of the unnecessary condensing spots is always generated, so that the light utilization efficiency is lowered. This is a problem in a device that requires a large amount of light such as a DVD-RAM, that is, a rewritable DVD. Similarly, the same problem occurs in a method using a liquid crystal shutter.
[0010]
[Means for Solving the Problems]
Therefore, in the present invention, the linearly polarized light and the condensing optical system for condensing the linearly polarized light, the reflecting member for reflecting the condensing spot by the condensing optical system, the light separating element for separating the reflected light from the incident light path, and the separation by the light separating element In an optical device comprising a light detection element for detecting light, a 90-degree optical rotation optical element is installed in the incident optical path, and a linearly polarized wave detection element is installed in the separation optical path.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the invention is shown in FIG. The linearly polarized light 103 emitted from the linearly polarized laser light source 101 and converted into a plane wave by the collimator lens 102 is in the Y-axis direction whose polarization axis 104 is parallel to the paper surface. After the linearly polarized light 103 is transmitted through the optical rotatory optical element 105, the direction of the polarization axis 104 is rotated by the optical rotatory function of the optical rotatory optical element 105. The optical rotatory optical element 105 is composed of a portion 106 (circular region indicated by oblique lines) that rotates incident linearly polarized light 90 degrees in the X-axis direction and a portion 107 that rotates 0 degrees.
[0012]
The linearly polarized light 108 transmitted through the portion 106 that rotates 90 degrees and rotated 90 degrees is incident on a substantially circular region 112 (indicated by oblique lines) centered on the optical axis 111 of the condensing optical system 110. This circular area 112 is a part of the effective light beam 113 incident on the condensing optical system 110, and it can be seen that it is smaller than the numerical aperture formed by the effective light beam 113. Here, the aperture by the effective light beam 113 is set for DVD, and the aperture by the circular region 112 is set for CD. In FIG. 1, the diaphragm or the like that restricts the light beam incident on the condensing optical system 110 is not used, so that the effective light beam 113 coincides with the light beam of the linearly polarized light 103 transmitted through the optical rotation optical element 105.
[0013]
The linearly polarized light 109 transmitted through the portion 107 that rotates at 0 ° and rotated at 0 ° is incident on the area other than the circular region 112. It can be seen that the polarization axes of the linearly polarized light in the circular region 112 and the region other than the circular region 112 are orthogonal to each other.
[0014]
The condensing spot 114 reflected by the optical disk 115 returns almost through the same optical path as the incident optical path, passes through the condensing optical system 110, and is separated by the light separation element 116. If the optical disk 115 does not have strong birefringence or polarization dependency of diffraction, the incident polarization state is preserved. In general, the optical disk 115 has a birefringence of 20 nm or less and practically hardly causes polarization dependence due to diffraction.
[0015]
The separated light beam 117 is condensed again by another condensing optical system 118, and the condensing spot 119 is detected by the light detection element 120. If the linearly polarized light detecting element 121 is installed in the separated light beam 117 with its direction (direction through which the linearly polarized light is transmitted) 90 degrees (X axis direction), it is reflected by the optical disk 115 of the linearly polarized light 109 rotated by 0 degrees. Components are shielded from light. This is because the polarization axis of the linearly polarized light 109 rotated by 0 degrees is orthogonal to the direction of the linearly polarized light detecting element 121. This state can be used for reproduction of a CD or CD-ROM. That is, the linearly polarized light 109 rotated by 0 degree is a portion having a large numerical aperture, which is a light beam passing through the outer peripheral portion of the condensing optical system 110. Originally, it is a part of the portion used for DVD, and when used for CD or the like, it has a different thickness from the disc substrate for DVD, and thus becomes a reflected light beam with large aberration. This reflected light beam breaks the shape of the focused spot 119, and becomes signal noise when the light detection element 120 obtains a symmetrical signal of the focused spot 119. However, there is no problem if the light beam component that has passed through the outer periphery of the condensing optical system 110 is shielded in front of the light detection element 120. Obviously, in order to use this optical apparatus for DVD, the portion 106 that rotates at 0 degree may be switched to 90 degrees. That is, all the components of the effective light beam 113 are used in the separated light beam 117 to form a focused spot 119.
[0016]
【Example】
FIG. 2 shows an embodiment of the present invention. This is an example for confirming the principle, and the scale is different from that of a generally used optical pickup optical system. Basically, it is the same as the embodiment shown in FIG. 1, but a 90 degree twisted nematic type liquid crystal is used as the optical rotation optical element. First, in order to facilitate understanding of the present embodiment, an optical rotation effect using a 90-degree twisted nematic liquid crystal will be described.
[0017]
FIGS. 3A and 3B schematically show the optical rotation function of a general 90-degree twisted nematic liquid crystal element that can be electrically controlled. Liquid crystal molecules 302 are sandwiched between glass substrates 301 coated with transparent electrodes. The glass substrate on the incident side has the alignment axis direction 303 in the Y-axis direction, and the glass substrate on the output side has the alignment axis direction 303 in the Y-axis direction and the lower half in the X-axis direction. The liquid crystal molecules 302 are arranged in parallel on the upper half side as shown in FIG. 3A due to the property of aligning the major axis direction with the alignment axis direction and the property of acting as a continuum, and this is called homogeneous. In the lower half, the liquid crystal molecules 302 rotate 90 degrees gradually and smoothly. This is called 90 degree twisted nematic.
[0018]
When the incident linearly polarized light 304 enters the liquid crystal element, the polarization axis of the incident linearly polarized light 304 propagates along the major axis direction of the liquid crystal molecules 302 due to the dielectric anisotropy of the liquid crystal molecules. That is, the polarization axes of the outgoing linearly polarized light 305 are perpendicular to each other with the upper half in the Y direction and the lower half in the X direction. When the refractive index in the major axis direction of the liquid crystal molecules is n1, the refractive index in the minor axis direction is n2, and the thickness of the liquid crystal layer is d, the optical path length of the incident linearly polarized light 304 traveling in the liquid crystal layer is expressed by n1 × d both above and below. You can see that
[0019]
Strictly speaking, in order for the incident linearly polarized light 304 to be emitted as strictly linearly polarized light, the direction of the polarization axis of the incident linearly polarized light 304 coincides with the direction of the alignment axis 303 on the incident side, that is, the liquid crystal molecule major axis, and 2 × ( It is known that n1−n2) × d ÷ λ needs to be any square root of 3, 15, 35, and the like. Here, λ is the wavelength of incident light. However, even if the wavelength of the light used, the refractive index of the liquid crystal molecules, and the thickness of the liquid crystal layer do not strictly observe the above formula, there is no inconvenience. At this time, the direction of the polarization axis of the incident linearly polarized light 304 may be intentionally shifted somewhat from the orientation axis direction 303 on the incident side.
[0020]
When an electric field in the Z-axis direction is applied to the liquid crystal element through the transparent electrode coated on the glass substrate, the major axis of the liquid crystal molecules 302 is aligned in the Z-axis direction, which is the direction of the electric field, as shown in FIG. Quiesce. This state is called homeotropic. At this time, the outgoing linearly polarized light 305 does not change and is in the same Y-axis direction as the incident linearly polarized light 304. That is, the optical rotation is lost. At this time, it can also be seen that the optical path length of the incident linearly polarized light 304 traveling in the liquid crystal layer is n2 × d.
[0021]
An embodiment will be described with reference to FIG. 1 is basically the same as the embodiment shown in FIG. 1, but a 90-degree twist nematic type liquid crystal element 205 is used as an optical rotatory optical element, and the basic structure and operation of the liquid crystal element 205 are shown in FIG. Same as (b) but does not use homogeneous orientation. The direction of the alignment axis of the liquid crystal element 205 on the side on which the linearly polarized light 203 is incident is substantially the same as the direction of the polarization axis 204 and is the Y-axis direction.
[0022]
The linearly polarized light 203 emitted from the linearly polarized laser light source 201 and converted into a plane wave by the collimator lens 202 is incident on the liquid crystal element 205 with its polarization axis 204 in the Y-axis direction parallel to the paper surface. The liquid crystal element 205 is divided into a functional region into a homeotropic region 207 and a 90-degree twisted nematic region 206 by an electric signal. That is, as is apparent from the description of FIG. 3, a sufficient electric field is applied to the liquid crystal molecules in the homeotropic region 207 through the transparent electrode by an electric signal. The homeotropic region is a region outside a circle centered on the optical axis 211.
[0023]
The linearly polarized light 209 transmitted through the homeotropic region 207 of the liquid crystal element 205 and rotated by 0 degree enters the region other than the substantially circular region 212 centered on the optical axis 211 of the condensing optical system 210. At this time, the circular region 212 is a part of the effective light beam 213 incident on the condensing optical system 210, and it can be seen that it is smaller than the numerical aperture constituted by the effective light beam 213. Here, the opening by the effective light beam 213 is set for DVD, and the opening by the circular region 212 is set for CD. 2 does not use a diaphragm or the like that restricts the light beam incident on the condensing optical system 210, the effective light beam 213 matches the light beam of the linearly polarized light 203 that passes through the liquid crystal element 205. The effective light beam 213 that has passed through the condensing optical system 210 forms a condensing spot 214.
[0024]
The linearly polarized light 208 transmitted through the 90-degree twisted nematic area 206 and rotated by 90 degrees enters the circular area 212. It can be seen that the polarization axes of the linearly polarized light in the circular region 212 and the region other than the circular region 212 are orthogonal to each other.
[0025]
FIG. 4 shows the shape of the liquid crystal element actually used. A liquid crystal sealing region 401 having a square shape with an outer shape of approximately 15 mm and a diameter of 10 mm is provided at the center. A homeotropic region 402 is formed by an electrical signal from the electrode portion 405 in addition to a circular region having a diameter of 3 mm at the center of the liquid crystal sealing region 401, and a 90-degree twist nematic region 403 is not applied to the circular region. Will remain. The alignment axis direction 404 of the liquid crystal molecules on the light incident side is the Y-axis direction. Further, the optical axis Z is a direction that proceeds perpendicular to the paper surface. By removing the electric signal, the entire liquid crystal sealing region 401 can be returned to the 90-degree twisted nematic region. In the liquid crystal element having this configuration, it is not necessary to draw out the lead wire from the central circular region, so that it is not necessary to form a dead space for the lead wire from the circular region in the transparent electrode of the region 402 that is homeotropic. This liquid crystal element substantially satisfies the above-described 15 square root for light having a wavelength of 633 nm.
[0026]
In the liquid crystal element 205, the homeotropic region 207 has the same basic effect because the polarization axis does not rotate even if there is no liquid crystal layer. However, in this case, since the optical path length changes compared to a region where the liquid crystal layer is present, phase modulation of incident linearly polarized light occurs, and therefore there is a possibility that correction must be performed using the condensing optical system 210 or another optical system. The same effect can be obtained by homogenous or homeotropic alignment of the homeotropic region 207 from the beginning. However, a 90 degree twisted nematic alignment and a homeotropic alignment or a homogenous alignment can be used when manufacturing a liquid crystal element. This requires mask rubbing, that is, a relatively complicated alignment technique such as masking the other alignment region during one alignment.
[0027]
The condensing spot 214 returns almost the same optical path as the incident light by the optical disk 215 installed at substantially the same position on the optical axis 211, passes through the condensing optical system 210, and is separated by the light separation element 216. The separated light beam 217 is condensed by another condensing optical system 218 to form a condensing spot 219. The focused spot 219 is detected by the light detection element 220. By installing it in the optical path of the light beam 217 separated with the direction of the linearly polarized light detecting element 221 (the direction through which the linearly polarized light is transmitted) as the X-axis direction, only the component transmitted through the circular region 212 can be taken out and CD reproduction becomes possible. Become. Further, if the electrical signal in the homeotropic region 207 of the liquid crystal element 205 is removed to achieve 90 degree twisted nematic orientation (that is, the entire area of the liquid crystal element 205 becomes 90 degree twisted nematic), the entire component of the effective light beam 213 can be extracted, so Can be used.
[0028]
In an actual optical system, a polarizing plate is used as the linearly polarized wave detecting element 221, and the effective light beam 213 has a diameter of 5 mm. Alternatively, only the component penetrating the circular region 212 through the central portion of the polarizing plate may be passed through. Since the polarizing plate has light absorption, the light utilization rate is improved. However, a photodiode often used as the light detection element 220 has a relatively high sensitivity and is not a problem.
[0029]
The liquid crystal element 205 is used as an optical rotatory optical element and does not use a polarizing plate or the like in the incident optical path. In actual measurement, the light loss was about 15%, but it can be reduced to 10% or less by applying a non-reflective coating to the liquid crystal glass substrate.
[0030]
【The invention's effect】
As is apparent from the above description, when the optical device using the optical rotatory optical element and the linearly polarized light detecting element according to the present invention is applied to an optical disc apparatus, the light amount for writing (or reading) is not lost in principle. The numerical aperture can be easily switched electrically. This is very effective as an optical system for reproducing a CD in an optical system of a DVD-RAM that is expected to be promising in the future, that is, an optical system of a writable or rewritable digital versatile disk device. This is because increasing the light output of the semiconductor laser as the light source is a difficult problem.
[0031]
Further, the liquid crystal element in the present invention is not particularly large in cost because it is small in size and very simple in structure compared with a liquid crystal display panel for a personal computer having a complicated structure. In addition, it is possible to use an inexpensive polarizing plate used in a commercially available liquid crystal device. The present invention can obtain the same effect even in a transmission type optical disc.
[Brief description of the drawings]
FIG. 1 is a structural example of an optical device according to the present invention.
FIG. 2 is an embodiment of an optical device according to the present invention.
FIG. 3 is a diagram illustrating an optical rotation function of an electrically controllable twist nematic liquid crystal element.
4 is a diagram showing a structure of a liquid crystal element used in the embodiment of FIG.
FIG. 5 is a diagram showing a prior art closest to the present invention.
[Explanation of symbols]
101, 201, 501, linearly polarized laser light sources 102, 202, 502, collimate lenses 103, 203, 503, linearly polarized light 104, 204, 504, polarization axis 105, optical rotation optical element 205, liquid crystal element 505, 90 degree TN type Liquid crystal element 106, portions 206, 403, 90-degree twisted nematic region 107, 90-degree twisted nematic region 107, sites 207, 402 that rotate 0-degree, homeotropic regions 108, 208, linearly polarized light 109, 209, 90-degree rotated Linearly polarized light 110, 118, 210, 218, 506, 512, condensing optical system 507, polarizing plates 111, 211, optical axes 112, 212, circular regions 113, 213, effective light beams 114, 119, 214, 219, 508, 513, condensing spots 115, 215, 509, optical disks 116, 216, 10, light separation elements 117, 217, and 511, separated light beams 120, 220 and 514, light detection elements 121 and 221, linear polarization detection element 301, glass substrate 302 coated with a transparent electrode, liquid crystal molecules 303 and 404, Orientation axis direction 304, incident linearly polarized light 305, outgoing linearly polarized light 401, liquid crystal sealing region 405, electrode portion

Claims (2)

直線偏光レーザ光源と該直線偏光レーザ光源から出射した直線偏光を入射し90度旋光する旋光光学素子と該旋光光学素子で旋光された光束を集光する集光光学系と該集光光学系の焦点近傍に設置された光反射部材と、該光反射部材により反射される反射光を入射光から分離する光分離素子と、該光分離素子で分離された分離光束を検出する光検出素子とを備え、前記旋光光学素子は電気信号により旋光性が制御され、該旋光性が制御される部位は前記集光光学系により利用される前記直線偏光の有効光束中の一部分の領域に作用する光学装置において、前記光分離素子と該光検出素子の光路中に直線偏光検波素子を設置し、該直線偏光検波素子の方位は前記直線偏光の方位とほぼ直交させ、かつ前記旋光光学素子として90度ツイストネマティック型液晶素子を用い、該90度ツイストネマティック型液晶素子の旋光性が制御される部位は前記集光光学系により利用される前記直線偏光の有効光束中の光軸を中心としたほぼ円形領域以外の領域であり、前記90度ツイストネマティック型液晶素子の直線偏光入射側の液晶分子の配向軸方向は、前記直線偏光の偏光軸方向とほぼ一致もしくはほぼ直交し、前記90度ツイストネマティック型液晶素子の旋光性が制御される部位は電気信号によりホメオトロピック配向となることを特徴とする光学装置。Linearly polarized laser light source and the converging optical system of the light flux optical rotation in optical rotatory element and revolving optical element for the optical rotation of 90 degrees is incident linearly polarized light emitted from the linearly polarized laser light source for focusing light and the condenser optical system A light reflecting member installed in the vicinity of the focal point; a light separating element that separates reflected light reflected by the light reflecting member from incident light; and a light detecting element that detects a separated light beam separated by the light separating element. wherein the optical rotatory element optical rotation is controlled by an electric signal, an optical device sites revolving light resistance is controlled to act in the area of a portion in the effective light beam of the linearly polarized light to be utilized by the converging optical system in established the linearly polarized light detection element in an optical path of the beam splitter and the light detecting element, the orientation of the linearly polarized light detection element is substantially perpendicular to the orientation of the linearly polarized light, and 90 degrees as the optical rotatory element Tsuisutonema Using Ikku type liquid crystal device, generally circular region sites around the optical axis in the effective light beam of the linearly polarized light to be utilized by the converging optical system in which optical rotation of the 90-degree twisted nematic liquid crystal element is controlled an area other than the alignment direction of liquid crystal molecules of the linearly polarized light incident side of the 90-degree twisted nematic liquid crystal element is substantially coincident or substantially orthogonal to the polarization axis direction of the linearly polarized light, the 90-degree twisted nematic liquid crystal site optical rotation of the device is controlled optical device characterized by comprising a homeotropic orientation by an electric signal. 前記90度ツイストネマティック型液晶素子は、液晶分子の長軸方向の屈折率をn1、短軸方向の屈折率をn2、液晶層厚をd、前記直線偏光の波長をλとし、次式、
2×(n1−n2)×d÷λ
の値が3、15、35のいずれかの平方根にほぼ等しいことを特徴とする請求項1に記載の光学装置。
The 90-degree twisted nematic liquid crystal device has a refractive index in the major axis direction of liquid crystal molecules as n1, a refractive index in the minor axis direction as n2, a liquid crystal layer thickness as d, and the wavelength of the linearly polarized light as λ,
2 × (n1-n2) × d ÷ λ
The optical apparatus according to claim 1, wherein a value of is substantially equal to a square root of any one of 3, 15, and 35 .
JP24855097A 1997-09-12 1997-09-12 Optical device Expired - Fee Related JP3831090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24855097A JP3831090B2 (en) 1997-09-12 1997-09-12 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24855097A JP3831090B2 (en) 1997-09-12 1997-09-12 Optical device

Publications (2)

Publication Number Publication Date
JPH1186318A JPH1186318A (en) 1999-03-30
JP3831090B2 true JP3831090B2 (en) 2006-10-11

Family

ID=17179849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24855097A Expired - Fee Related JP3831090B2 (en) 1997-09-12 1997-09-12 Optical device

Country Status (1)

Country Link
JP (1) JP3831090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8928845B2 (en) * 2005-04-22 2015-01-06 Citizen Holdings Co., Ltd. Liquid crystal optical element, optical device, and aperture control method

Also Published As

Publication number Publication date
JPH1186318A (en) 1999-03-30

Similar Documents

Publication Publication Date Title
JP4896884B2 (en) Optical head
JP2005339766A (en) Optical disk apparatus
JP4148648B2 (en) Optical device
JPH07130022A (en) Optical head device and optical element
JP3624561B2 (en) Optical modulation element and optical head device
JPS63241735A (en) Optical pickup
US6529254B1 (en) Optical element and method for manufacturing the same, and optical apparatus and method for manufacturing the same
JP3831090B2 (en) Optical device
JP3711652B2 (en) Polarization diffraction element and optical head device using the same
WO2007114283A1 (en) Optical pickup and information device
JP3830537B2 (en) Optical device
JPH02178604A (en) Cross diffraction grating and polarized wave rotation detecting device using same
JP2687606B2 (en) Optical pickup
JP4668365B2 (en) Optical device
JP2001060337A (en) Optical pickup device
JP2856980B2 (en) Light head
JP3558963B2 (en) Optical pickup device
WO2009125765A1 (en) Optical information recording and reproducing apparatus and optical information recording and reproducing method
JPH10241191A (en) Optical head and driving method therefor
JP3490527B2 (en) Light head
TW455851B (en) Optical apparatus
KR19980014883A (en) Polarizing liquid crystal hologram manufacturing method and optical pick-up apparatus using the same
JPH03157842A (en) Polarization diffracting element unit and optical pickup device including this unit
JPH05151643A (en) Magneto-optical detecting device
JP2005100503A (en) Optical pickup

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060713

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees