JP2004158169A - Optical disk device and light branching device - Google Patents

Optical disk device and light branching device Download PDF

Info

Publication number
JP2004158169A
JP2004158169A JP2003352720A JP2003352720A JP2004158169A JP 2004158169 A JP2004158169 A JP 2004158169A JP 2003352720 A JP2003352720 A JP 2003352720A JP 2003352720 A JP2003352720 A JP 2003352720A JP 2004158169 A JP2004158169 A JP 2004158169A
Authority
JP
Japan
Prior art keywords
light
optical disk
objective lens
photodetector
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003352720A
Other languages
Japanese (ja)
Inventor
Seiji Nishiwaki
青児 西脇
Yoichi Saito
陽一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003352720A priority Critical patent/JP2004158169A/en
Publication of JP2004158169A publication Critical patent/JP2004158169A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical disk device capable of simultaneously dealing with configurations of two radiated light sources without causing an offtrack during tracking control even when there is eccentricity in the disk diameter direction of an objective lens and an eccentric light hologram substrate, and also to provide a light branching means. <P>SOLUTION: A light from a radiated light source 1 is reflected on the signal surface 6a of an optical disk, passed through an objective lens 5 to enter light branching means 2, 4, and divided into four image limits Ak (k=1, 2, 3, 4) at two straight lines crossing an optical axis 7. A photodetector 9 is divided into at least four areas Bk. Each of lights made incident on the image limit Ak by the light branching means 2, 4 generates a primary diffracted light ak to be projected to the area Bk on the photodetector 9. The cuts of the primary diffracted lights a2 and a3 by the x axis are almost superposed on the boundary lines B2 and B3, and the distributions of the primary diffracted lights a1 and a4 are isolated from each other on the photodetector 9. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は光ディスクに信号を記録、又は光ディスクの信号を再生するために使われる光ディスク装置及び光分岐装置に関するものである。   The present invention relates to an optical disk device and an optical branching device used for recording a signal on an optical disk or reproducing a signal from the optical disk.

従来の技術として、例えば特許文献1がある。ここではこの先例に基づき、一部を修正して図9から図10を用いて説明する。図9は従来例に於ける光ディスク装置の断面構成を示しており、放射光源1とその周辺に関する側面図も下に付け加えている。   As a conventional technique, for example, there is Patent Document 1. Here, based on this precedent, a part will be described with reference to FIGS. FIG. 9 shows a cross-sectional configuration of an optical disk device in a conventional example, and a side view of the radiation light source 1 and its periphery is added below.

図9に於いて光検出基板9上に取り付けられた半導体レーザー等の放射光源1を出射するレーザー光は、光検出基板9上に取り付けられた反射ミラー10を反射して、コリメートレンズ4により平行光に変換され、偏光性ホログラム基板2を透過し、1/4波長板3により直線偏光(S波又はP波)から円偏光に変換され、対物レンズ5により集光されて光ディスク基材6の信号面6a上に収束する。   In FIG. 9, a laser beam emitted from a radiation light source 1 such as a semiconductor laser mounted on a light detection substrate 9 reflects on a reflection mirror 10 mounted on the light detection substrate 9, and is collimated by a collimating lens 4. It is converted into light, transmitted through the polarizing hologram substrate 2, converted from linearly polarized light (S wave or P wave) into circularly polarized light by the 1 / wavelength plate 3, condensed by the objective lens 5, and It converges on the signal surface 6a.

信号面6aを反射する光は、対物レンズ5を経て、1/4波長板3により直線偏光(P波又はS波)に変換され、偏光性ホログラム基板2内のホログラム面2aに入射し、これを回折して光軸7を対称軸とする1次回折光8、−1次回折光8’に分岐し、コリメートレンズ4を経て各回折光が収束性の光となり、光検出基板9上の検出面9aに入射する。1/4波長板3はホログラム面2aと同一の基板上に構成され、対物レンズ6と一体で移動する。検出面9aはコリメートレンズ4の焦平面位置(すなわち光源1の仮想発光点位置)にほぼ位置する。   The light reflected from the signal surface 6a passes through the objective lens 5, is converted into linearly polarized light (P wave or S wave) by the 1 / wavelength plate 3, and is incident on the hologram surface 2a in the polarizing hologram substrate 2. Is diffracted into a first-order diffracted light 8 and a -1st-order diffracted light 8 ′ having the optical axis 7 as a symmetry axis, and each diffracted light becomes convergent light via the collimating lens 4. 9a. The 波長 wavelength plate 3 is formed on the same substrate as the hologram surface 2 a and moves integrally with the objective lens 6. The detection surface 9a is located substantially at the focal plane position of the collimator lens 4 (that is, the virtual light emitting point position of the light source 1).

図10は、従来例における光ディスク装置の検出面(図10A)とホログラム面(図10B)の構成を示しており、ともに光ディスク側からホログラム面側、光検出面側を見た場合である。ホログラム面2aと光軸7との交点を20として、ホログラム面2aは点20で直交する2直線(X軸、Y軸)で4分割され、さらにそれぞれの象限でX軸に沿った短冊で領域21B、21F、22B、22F、23B、23F、24B、24Fに分割される。   FIG. 10 shows a configuration of a detection surface (FIG. 10A) and a hologram surface (FIG. 10B) of an optical disk device in a conventional example, and both show a case where the hologram surface side and the light detection surface side are viewed from the optical disk side. Assuming that the intersection point between the hologram surface 2a and the optical axis 7 is 20, the hologram surface 2a is divided into four straight lines (X-axis and Y-axis) orthogonal to each other at the point 20, and each quadrant has a rectangular area along the X-axis. 21B, 21F, 22B, 22F, 23B, 23F, 24B, and 24F.

一方、検出面9aと光軸7との交点を点90、点90で直交しX軸、Y軸に平行な2直線をx軸、y軸として、y軸の+側にy軸に沿った櫛歯状のフォーカス検出セルF1a、F2a、F1b、F2b、F1c、F2c、F1d、F2d、F1e、F2eが配置され、y軸の−側に台形状のトラッキング検出セル7T1、7T2、7T3、7T4が配置されている。これらの検出セルはy軸に対して対称形をなしている。なお、放射光源1の発光点1aから出射する光はx軸と交わり紙面に直交する面内をx軸と平行に進み、反射ミラー10により光軸方向(点90を通り紙面に直交する方向)に反射している。   On the other hand, the point of intersection of the detection surface 9a and the optical axis 7 is a point 90, and two straight lines perpendicular to the point 90 and parallel to the X axis and the Y axis are the x axis and the y axis. Comb-shaped focus detection cells F1a, F2a, F1b, F2b, F1c, F2c, F1d, F2d, F1e, and F2e are arranged, and trapezoidal tracking detection cells 7T1, 7T2, 7T3, and 7T4 are provided on the minus side of the y-axis. Are located. These detection cells are symmetric with respect to the y-axis. The light emitted from the light emitting point 1a of the radiation light source 1 intersects the x-axis and travels in a plane perpendicular to the plane of the paper in parallel with the x-axis. Is reflected.

ホログラム面2aの第1象限での櫛歯領域21B、21Fを回折する1次回折光81B、81Fは検出セルF2a、F1bを跨る光スポット81BS、81FSに、−1次回折光81B’、81F’は検出セル7T1に収まる光スポット81BS’、81FS’に集光する。第2象限での櫛歯領域22B、22Fを回折する1次回折光82B、82Fは検出セルF1b、F2bを跨る光スポット82BS、82FSに、−1次回折光82B’、82F’は検出セル7T2に収まる光スポット82BS’、82FS’に集光する。   The first-order diffracted lights 81B and 81F diffracting the comb-tooth regions 21B and 21F in the first quadrant of the hologram surface 2a are detected by light spots 81BS and 81FS crossing the detection cells F2a and F1b, and the -1st-order diffracted lights 81B 'and 81F' are detected. The light is condensed on light spots 81BS 'and 81FS' that fit in the cell 7T1. The first-order diffracted lights 82B and 82F diffracting the comb-tooth regions 22B and 22F in the second quadrant fall in the light spots 82BS and 82FS that straddle the detection cells F1b and F2b, and the -1st-order diffracted lights 82B 'and 82F' fall in the detection cell 7T2. The light is focused on the light spots 82BS 'and 82FS'.

第3象限での櫛歯領域23B、23Fを回折する1次回折光83B、83Fは検出セルF1d、F2dを跨る光スポット83BS、83FSに、−1次回折光83B’、83F’は検出セル7T3に収まる光スポット83BS’、83FS’に集光する。第4象限での櫛歯領域24B、24Fを回折する1次回折光84B、84Fは検出セルF2d、F1eを跨る光スポット84BS、84FSに、−1次回折光84B’、84F’は検出セル7T4に収まる光スポット84BS’、84FS’に集光する。   The first-order diffracted lights 83B and 83F diffracting the comb-teeth regions 23B and 23F in the third quadrant fall in the light spots 83BS and 83FS that straddle the detection cells F1d and F2d, and the -1st-order diffracted lights 83B 'and 83F' fall in the detection cell 7T3. Light is condensed on light spots 83BS 'and 83FS'. The first-order diffracted lights 84B and 84F diffracting the comb-tooth regions 24B and 24F in the fourth quadrant fall in the light spots 84BS and 84FS that straddle the detection cells F2d and F1e, and the -1st-order diffracted lights 84B 'and 84F' fall in the detection cell 7T4. The light is focused on the light spots 84BS 'and 84FS'.

1次回折光81B、82B、83B、84Bは検出面9aの奥側(ホログラム面2aから遠ざかる側)で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布と相似であり、−1次回折光81B’、82B’、83B’、84B’は検出面9aの手前(ホログラム面2aに近づく側)で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布を点20に対し反転した形状に相似である。   The first-order diffracted lights 81B, 82B, 83B, and 84B are lights that are condensed on the back side of the detection surface 9a (on the side away from the hologram surface 2a), so that the spot shape on the detection surface 9a is different from the light distribution on the hologram surface 2a. Since the -1st-order diffracted lights 81B ', 82B', 83B ', and 84B' are light rays that converge before the detection surface 9a (on the side approaching the hologram surface 2a), the spot shape on the detection surface 9a has a hologram shape. This is similar to a shape in which the light distribution on the surface 2 a is inverted with respect to the point 20.

1次回折光81F、82F、83F、84Fは検出面9aの手前で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布を点20に対し反転した形状に相似であり、−1次回折光81F’、82F’、83F’、84F’は検出面9aの奥で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布に相似である。   Since the first-order diffracted lights 81F, 82F, 83F, and 84F are lights that converge before the detection surface 9a, the spot shape on the detection surface 9a is similar to a shape obtained by inverting the light distribution on the hologram surface 2a with respect to the point 20. Since the -1st-order diffracted lights 81F ', 82F', 83F ', and 84F' are lights condensed behind the detection surface 9a, the spot shape on the detection surface 9a is similar to the light distribution on the hologram surface 2a. It is.

検出セルのいくつかは導通されており、結果として以下の6つの信号が得られるように構成されている。
F1=検出セルF1aで得られる信号+検出セルF1bで得られる信号
+検出セルF1cで得られる信号+検出セルF1dで得られる信号
+検出セルF1eで得られる信号
F2=検出セルF2aで得られる信号+検出セルF2bで得られる信号
+検出セルF2cで得られる信号+検出セルF2dで得られる信号
+検出セルF2eで得られる信号
T1=検出セル7T1で得られる信号
T2=検出セル7T2で得られる信号
T3=検出セル7T3で得られる信号
T4=検出セル7T4で得られる信号
図10に於いて、y軸が光ディスク6の半径方向として、光ディスク信号面へのフォーカスエラー信号FE、光ディスクトラックへのトラッキングエラー信号TE、光ディスク信号面の再生信号RFは次式に基づいて検出される。
Some of the detection cells are conductive and are configured to result in the following six signals.
F1 = signal obtained by detection cell F1a + signal obtained by detection cell F1b + signal obtained by detection cell F1c + signal obtained by detection cell F1d + signal obtained by detection cell F1e F2 = signal obtained by detection cell F2a + Signal obtained by detection cell F2b + Signal obtained by detection cell F2c + Signal obtained by detection cell F2d + Signal obtained by detection cell F2e T1 = Signal obtained by detection cell 7T1 T2 = Signal obtained by detection cell 7T2 T3 = signal obtained by the detection cell 7T3 T4 = signal obtained by the detection cell 7T4 In FIG. 10, the y-axis is the radial direction of the optical disk 6, the focus error signal FE on the optical disk signal surface, and the tracking error on the optical disk track. The signal TE and the reproduction signal RF of the optical disk signal surface are detected based on the following equation.

FE=F1−F2 (数1)
TE=T1+T2−T3−T4 (数2)
RF=F1+F2+T1+T2+T3+T4 (数3)
特開2000−132848号公報
FE = F1-F2 (Equation 1)
TE = T1 + T2-T3-T4 (Equation 2)
RF = F1 + F2 + T1 + T2 + T3 + T4 (Equation 3)
JP 2000-132848 A

このような従来の光ディスク装置においては、以下の問題があった。一般に、光ディスクトラックに対するオフトラック量をΔ、対物レンズ5及び偏光性ホログラム基板2のディスク径方向(Y軸方向)に沿った偏心をδとすると、(数2)によるTE信号は適切な係数a,bを用いて次式で関係づけられる。   Such a conventional optical disk device has the following problems. In general, assuming that the off-track amount with respect to the optical disk track is Δ and the eccentricity of the objective lens 5 and the polarizing hologram substrate 2 along the disk radial direction (Y-axis direction) is δ, the TE signal obtained by (Equation 2) has an appropriate coefficient a , B using the following equation.

TE=aΔ+bδ (数4)
即ち従来例のように、(数2)に従っているTE検出法では、対物レンズ5及びこれと一体で動く偏光性ホログラム基板2のディスク径方向に沿った偏心に伴い(この偏心はトラッキング制御時には必ず発生する)、オフセットが発生することになる。TEがδの関数となる理由は、放射光源1から出射する光が近軸で強く、光軸から離れるに従い弱くなるような不均一な強度分布を示すことに起因し、対物レンズ5及び偏光性ホログラム基板2の径方向に沿った偏心により、ホログラム面2a上の戻り光80の強度分布がX軸に対して非対称となるためである。
TE = aΔ + bδ (Equation 4)
That is, as in the conventional example, in the TE detection method according to (Equation 2), the eccentricity of the objective lens 5 and the polarizing hologram substrate 2 that moves integrally with the objective lens 5 along the disk radial direction (this eccentricity is always required during tracking control). Occurs) and an offset occurs. The reason why TE is a function of δ is that the light emitted from the radiation light source 1 has a non-uniform intensity distribution such that it is strong in the paraxial direction and becomes weaker as the distance from the optical axis increases. This is because the intensity distribution of the return light 80 on the hologram surface 2a becomes asymmetric with respect to the X axis due to the eccentricity of the hologram substrate 2 along the radial direction.

光ディスクがDVD−RAM等の、案内溝の深さが深く(光学的な深さD=λ/6程度、ただしλは光源の波長)、ピッチが広い(溝ピッチΛ=1.21〜1.48μm程度)光ディスクの時には、溝での回折効果により、ホログラム面2a上の戻り光80の強度分布がY軸方向にほぼ均一となるので、ほぼ係数b=0となり、問題はない。しかし、DVD−RやDVD−RW等の、案内溝の深さが浅く(光学的な深さD=λ/10〜λ/20程度)、ピッチが狭い(溝ピッチΛ=0.74μm程度)光ディスクの時には、戻り光80の非対称性が高まり、係数b≠0となる。   When the optical disk is a DVD-RAM or the like, the depth of the guide groove is deep (optical depth D = approximately λ / 6, where λ is the wavelength of the light source), and the pitch is wide (groove pitch Λ = 1.21 to 1.48 μm) In the case of an optical disk, since the intensity distribution of the return light 80 on the hologram surface 2a becomes substantially uniform in the Y-axis direction due to the diffraction effect in the groove, the coefficient b becomes substantially zero, and there is no problem. However, an optical disk such as a DVD-R or DVD-RW having a shallow guide groove (optical depth D = approximately λ / 10 to λ / 20) and a narrow pitch (groove pitch Λ = 0.74 μm) In this case, the asymmetry of the return light 80 increases, and the coefficient b ≠ 0.

一般にトラッキング制御はTE=0となるように行われるので、b≠0の時には(数4)より、
Δ=−bδ/a (数5)
のオフトラックが発生する。
In general, tracking control is performed so that TE = 0, so that when b ≠ 0, from (Equation 4),
Δ = −bδ / a (Equation 5)
Off-track occurs.

一例として、溝深さD=λ/12、Λ=0.74μmのディスクに対してはb/a=2.4/10000程度であり、δ=200μmとすると、Δ=0.048μmのオフトラックが発生する。これはトラックピッチ0.74μmのディスクにとっては無視できない大きさであり、トラック飛びや再生信号の劣化、記録時における隣接トラック信号の劣化等の原因となる。   As an example, for a disk having a groove depth D = λ / 12 and Λ = 0.74 μm, b / a = about 2.4 / 10000, and when δ = 200 μm, an off-track of Δ = 0.048 μm occurs. This is a size that cannot be ignored for a disc having a track pitch of 0.74 μm, and causes track skipping, deterioration of a reproduction signal, deterioration of an adjacent track signal at the time of recording, and the like.

本発明は、前記従来の問題を解決するため、対物レンズ及び偏光性ホログラム基板のディスク径方向に沿った偏心があっても、トラッキング制御時にオフトラックが発生しない光ディスク装置を提供するとともに、光検出基板上に近接して設けられた2つの放射光源の構成にも同時に対応できる光ディスク装置と光分岐手段を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention provides an optical disc device in which off-track does not occur during tracking control even if there is an eccentricity of an objective lens and a polarizing hologram substrate along a disc radial direction in order to solve the conventional problem. It is an object of the present invention to provide an optical disk device and an optical branching means that can simultaneously cope with the configuration of two radiation light sources provided close to each other on a substrate.

前記目的を達成するため本発明の第1番目の光ディスク装置は、放射光源と、対物レンズと、光分岐手段と、光検出器を含む光ディスク装置であって、前記放射光源を出る光は前記対物レンズを経て光ディスクの信号面上に集光し、前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射し、前記光分岐手段は光軸と交わる2直線(光ディスク径方向に平行なy軸とこれに直交するx軸)で4個の象限Ak(ただしk=1,2,3,4)に分割され、前記光検出器は少なくとも4つの領域Bkに区分けされ、前記光分岐手段により前記象限Akに入射する光は1次回折光akを派生して前記光検出器上の領域Bkにそれぞれ投射され、前記1次回折光a2とa3の前記x軸による切り口は前記領域B2とB3の境界線上にほぼ重なり、前記1次回折光a1とa4の分布は前記光検出器上で互いに分離していることを特徴とする。   In order to achieve the above object, a first optical disk device of the present invention is an optical disk device including a radiation light source, an objective lens, a light splitting unit, and a photodetector, wherein light emitted from the radiation light source is the objective light. The light condensed on the signal surface of the optical disk via the lens, the light reflected on the signal surface is incident on the optical branching unit via the objective lens, and the light branching unit is connected to two straight lines intersecting the optical axis (in the radial direction of the optical disk). The quadrant is divided into four quadrants Ak (where k = 1, 2, 3, 4) by a parallel y-axis and an x-axis orthogonal thereto, and the photodetector is divided into at least four regions Bk. The light incident on the quadrant Ak by the branching means derives a first-order diffracted light ak and is projected on each of the regions Bk on the photodetector, and cuts of the first-order diffracted lights a2 and a3 by the x-axis correspond to the region B2. B1 substantially overlaps the boundary line, The distribution of the second-order diffracted lights a1 and a4 is characterized in that they are separated from each other on the photodetector.

前記領域Bk(ただしk=1,2,3,4)での検出信号をCkとし、mを1以上の数値として、前記光ディスクのトラッキングエラー信号TEをTE=C1−C4−(C2−C3)/mにより生成することが好ましい。   The detection signal in the area Bk (where k = 1, 2, 3, 4) is Ck, m is a numerical value of 1 or more, and the tracking error signal TE of the optical disk is TE = C1-C4- (C2-C3). / M.

また、前記光分岐手段により象限Akに入射する光は、−1次回折光ak'(ただしk=1,2,3,4)を派生し、前記−1次回折光a2'は実質的なy軸方位に対して反転することなく検出面上に結像し、前記−1次回折光a3'は実質的なy軸方位に対して反転して検出面上に結像することが好ましい。   The light incident on the quadrant Ak by the light splitting means derives a -1st-order diffracted light ak '(where k = 1, 2, 3, 4), and the -1st-order diffracted light a2' is substantially y-axis. It is preferable that an image is formed on the detection surface without inversion with respect to the azimuth, and the -1st-order diffracted light a3 ′ is imaged on the detection surface with inversion with respect to the substantial y-axis azimuth.

本発明の第2番目の光ディスク装置は、第1の放射光源と、第2の放射光源と、対物レンズと、光分岐手段と、光検出器からなり、前記第1及び第2の放射光源は前記光検出器上に構成され、前記第1の放射光源を出る光は前記対物レンズを経て第1の光ディスクの信号面上に集光し、前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射し、前記光分岐手段は光軸と交わる2直線(光ディスク径方向に平行なy軸とこれに直交するx軸)で4個の象限Ak(ただしk=1,2,3,4)に分割され、前記光検出器は少なくとも4つの領域Bkに区分けされ、前記光分岐手段により前記象限Akに入射する光は1次回折光akを派生して前記光検出器上の領域Bkにそれぞれ投射され、前記第2の放射光源を出て第1の放射光源とは異なる波長の光は前記対物レンズを経て第2の光ディスクの信号面上に集光し、前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射し、前記光分岐手段により前記象限Akに入射する光は1次回折光bkを派生して前記光検出器上の領域Bkにそれぞれ投射されることを特徴とする。   A second optical disk device according to the present invention includes a first radiation light source, a second radiation light source, an objective lens, a light branching unit, and a photodetector, wherein the first and second radiation light sources are Light emitted from the first radiation light source, which is formed on the photodetector, is focused on a signal surface of a first optical disc through the objective lens, and light reflected from the signal surface is passed through the objective lens. The light enters the light splitting means, and the light splitting means is divided into four quadrants Ak (where k = 1, 2, and 4) by two straight lines intersecting the optical axis (the y axis parallel to the optical disk radial direction and the x axis orthogonal thereto). 3, 4), the photodetector is divided into at least four regions Bk, and the light incident on the quadrant Ak by the light branching unit derives a first-order diffracted light ak to generate a region on the photodetector. Bk, respectively, exits the second radiation source and is different from the first radiation source The light having the wavelength is condensed on the signal surface of the second optical disk via the objective lens, and the light reflected on the signal surface is incident on the light splitting means via the objective lens, and the light is split by the light splitting means into the quadrant. The light incident on Ak derives the first-order diffracted light bk and is projected on each of the regions Bk on the photodetector.

前記1次回折光a2とa3、又はb2とb3の前記x軸による切り口は前記領域B2とB3の境界線上にほぼ重なり、前記1次回折光a1とa4、又はb1とb4の分布は前記光検出器上で互いに分離していることが好ましい。   The cut of the first-order diffracted lights a2 and a3 or b2 and b3 along the x-axis substantially overlaps the boundary between the regions B2 and B3, and the distribution of the first-order diffracted lights a1 and a4 or b1 and b4 is determined by the photodetector. Preferably, they are separated from each other.

また、前記領域Bk(ただしk=1,2,3,4)での検出信号をCkとし、mを1以上の数値として、前記第1又は第2の光ディスクのトラッキングエラー信号TEをTE=C1−C4−(C2−C3)/mにより生成することが好ましい。   The detection signal in the area Bk (where k = 1, 2, 3, 4) is Ck, m is a numerical value of 1 or more, and the tracking error signal TE of the first or second optical disk is TE = C1. It is preferred to be formed by -C4- (C2-C3) / m.

また、前記光分岐手段により象限Akに入射する光は、−1次回折光ak'又はbk'(ただしk=1,2,3,4)を派生し、前記−1次回折光a2'又はb2'は実質的なy軸方位に対して反転することなく検出面上に結像し、前記−1次回折光a3'又はb3'は実質的なy軸方位に対して反転して検出面上に結像することが好ましい。   The light incident on the quadrant Ak by the light branching unit derives the -1st-order diffracted light ak 'or bk' (k = 1, 2, 3, 4), and the -1st-order diffracted light a2 'or b2'. Forms an image on the detection surface without being inverted with respect to the substantial y-axis direction, and the -1st-order diffracted light a3 'or b3' is formed on the detection surface with being inverted with respect to the substantial y-axis direction. It is preferred to image.

また、本発明の光ディスク装置及び光分岐手段は、第1の放射光源と、第2の放射光源と、対物レンズと、光分岐手段と、光検出器からなり、前記光分岐手段は周期的な凹凸断面に複屈折性の媒質を充填した構造を有し、前記第1の放射光源を出る波長λ1の光は前記光分岐手段に入射して周期的にほぼ2nπ(ただしnは0以外の整数)の位相差をなす光に変換され、前記光は前記対物レンズを経て第1の光ディスクの信号面上に集光し、前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射して周期的にほぼ2nπ+α(ただしαは0以外の実数)の位相差をなす光に変換され、前記光の回折光が前記光検出器に入射し検出され、前記第2の放射光源を出る波長λ2の光は前記光分岐手段に入射して周期的にほぼ2nπλ1/λ2の位相差をなす光に変換され、前記光は前記対物レンズを経て第2の光ディスクの信号面上に集光し、前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射して周期的にほぼ(2nπ+α)λ1/λ2の位相差をなす光に変換され、前記光の回折光が前記光検出器に入射し検出されることを特徴とする。   Also, the optical disc apparatus and the light branching means of the present invention comprise a first radiation light source, a second radiation light source, an objective lens, a light branching means, and a photodetector, wherein the light branching means is a periodic light source. It has a structure in which an uneven cross section is filled with a birefringent medium, and light having a wavelength of λ1 emitted from the first radiation light source is incident on the light branching means and is periodically substantially 2nπ (where n is an integer other than 0) ) Is converted into light having a phase difference, and the light is condensed on the signal surface of the first optical disc via the objective lens, and the light reflected on the signal surface is transmitted to the light splitting means via the objective lens. The light is periodically converted into light having a phase difference of approximately 2nπ + α (where α is a real number other than 0), and the diffracted light of the light is detected by being incident on the photodetector. The outgoing light of wavelength λ2 is incident on the optical branching means and periodically becomes approximately 2nπλ1 / λ2. The light is converted into light having a phase difference, the light is condensed on the signal surface of the second optical disk via the objective lens, and the light reflected on the signal surface is incident on the light splitting means via the objective lens. The light is periodically converted into light having a phase difference of approximately (2nπ + α) λ1 / λ2, and the diffracted light of the light is incident on the photodetector and detected.

上記の様な構成により、トラッキング制御時に発生するオフトラックをキャンセルすることができる。また、2つの近接した放射光源を有する構成に対しても同一の光検出器でそれぞれの光源光に対する制御信号や再生信号を検出するとともに、トラッキング制御時に発生するオフトラックをキャンセルすることができ、特に一方の光源に対しては、如何なる光ディスク基材の複屈折条件でも回折効率がゼロになることがなく、確実に光ディスク信号を検出することが可能となる。   With the above-described configuration, it is possible to cancel off-track generated during tracking control. In addition, for a configuration having two adjacent radiation light sources, the same photodetector can detect a control signal and a reproduction signal for each light source light, and cancel off-track generated during tracking control, In particular, for one light source, the diffraction efficiency does not become zero under any birefringence condition of the optical disk substrate, and the optical disk signal can be reliably detected.

本発明によれば、対物レンズ及び偏光性ホログラム基板に、光ディスクの径方向に沿った偏心があっても、トラッキング制御時に発生するオフトラックをキャンセルすることができる。また、2つの近接した放射光源を有する構成に対しても同一の光検出器で制御信号や再生信号を検出するとともに、トラッキング制御時に発生するオフトラックをキャンセルすることができ、特に一方の光源に対しては、いかなる光ディスク基材の複屈折条件でも回折効率がゼロになることがなく、確実に光ディスク信号を検出することができる。   According to the present invention, even if the objective lens and the polarizing hologram substrate have eccentricity along the radial direction of the optical disk, it is possible to cancel off-track generated during tracking control. Also, for a configuration having two adjacent radiation light sources, the same photodetector can detect a control signal and a reproduction signal, and can cancel off-track generated during tracking control. On the other hand, the diffraction efficiency does not become zero under any birefringence condition of the optical disk base material, and the optical disk signal can be reliably detected.

本発明は、放射光源を出た光は対物レンズを経て光ディスクの信号面上に集光し、前記信号面からの反射光を4分割し、そのうちの2つを分離し、残りの2つを検出器の繋ぎ目が重なるように配置し、それぞれの組み合わせから差信号を検出し、これらの差信号の演算でトラッキングエラー(TE)信号を検出することに特徴がある。これにより、本発明は、対物レンズ及び偏光性ホログラム基板のディスク径方向に沿った偏心があっても、トラッキング制御時にオフトラックが発生しない光ディスク装置が提供できる。また、光検出基板上に近接して設けられた2つの放射光源の構成にも同時に対応できる光ディスク装置と光分岐手段を提供できる。   According to the present invention, light emitted from a radiation light source is condensed on a signal surface of an optical disk via an objective lens, reflected light from the signal surface is divided into four parts, two of which are separated, and the other two are separated. It is characterized in that the joints of the detectors are arranged so as to overlap each other, a difference signal is detected from each combination, and a tracking error (TE) signal is detected by calculating these difference signals. As a result, the present invention can provide an optical disk device in which off-track does not occur during tracking control even if the objective lens and the polarizing hologram substrate have eccentricity along the disk radial direction. In addition, it is possible to provide an optical disk device and an optical branching unit that can simultaneously cope with the configuration of two radiation light sources provided close to each other on the light detection substrate.

(実施の形態1)
以下本発明の実施の形態1を図1から図3に基づいて説明する。なお従来例と共通の要素については、同一の符号により説明する。図1は実施の形態1に於ける光ディスク装置の断面構成を示しており、放射光源1とその周辺に関する側面図も下に付け加えている。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. Elements common to the conventional example will be described using the same reference numerals. FIG. 1 shows a cross-sectional configuration of the optical disk device according to the first embodiment, and a side view relating to the radiation light source 1 and its periphery is also added below.

図1に於いて光検出基板9上に取り付けられた半導体レーザー等の放射光源1を出射するレーザー光は、光検出基板9上に取り付けられた反射ミラー10を反射して、コリメートレンズ4により平行光に変換され、光分岐手段である偏光性ホログラム基板2を透過し、1/4波長板3により直線偏光(S波又はP波)から円偏光に変換され、対物レンズ5により集光されて光ディスク基材6の信号面6a上に収束する。信号面6aを反射する光は対物レンズ5を経て、1/4波長板3により直線偏光(P波又はS波)に変換され、偏光性ホログラム基板2内のホログラム面2aに入射し、これを回折して光軸7を対称軸とする1次回折光8、−1次回折光8’に分岐し、コリメートレンズ4を経て各回折光が収束性の光となり、検出器9上の検出面9aに入射する。   In FIG. 1, a laser beam emitted from a radiation light source 1 such as a semiconductor laser mounted on a light detection substrate 9 reflects on a reflection mirror 10 mounted on the light detection substrate 9, and is collimated by a collimating lens 4. The light is converted into light, passes through the polarizing hologram substrate 2 as a light branching unit, is converted from linearly polarized light (S wave or P wave) into circularly polarized light by the quarter wavelength plate 3, and is condensed by the objective lens 5. It converges on the signal surface 6a of the optical disk substrate 6. The light reflected from the signal surface 6a passes through the objective lens 5, is converted into linearly polarized light (P wave or S wave) by the quarter wavelength plate 3, and is incident on the hologram surface 2a in the polarizing hologram substrate 2, and The light is diffracted and split into a first-order diffracted light 8 and a -1st-order diffracted light 8 ′ having the optical axis 7 as a symmetry axis, and each of the diffracted lights becomes a convergent light through the collimating lens 4. Incident.

1/4波長板3はホログラム面2aと同一の基板上に構成され、対物レンズ6と一体で移動する。検出面9aはコリメートレンズ4の焦平面位置(すなわち光源1の仮想発光点位置)にほぼ位置する。ホログラム2による戻り光の回折効率は例えば0次光が0%程度、±1次光がそれぞれ41%程度である。   The 波長 wavelength plate 3 is formed on the same substrate as the hologram surface 2 a and moves integrally with the objective lens 6. The detection surface 9a is located substantially at the focal plane position of the collimator lens 4 (that is, the virtual light emitting point position of the light source 1). The diffraction efficiency of the return light by the hologram 2 is, for example, about 0% for the zero-order light and about 41% for the ± first-order lights.

図2は実施の形態1における光ディスク装置の光検出面(図2A)とホログラム面(図2B)の構成を示しており、ともに光ディスク側からホログラム面側、光検出面側を見た場合である。ホログラム面2aと光軸7との交点を20として、ホログラム面2aは点20で直交する2直線(X軸、Y軸)で4分割され、さらにその第1象限と第4象限がX軸に沿った短冊で領域21B、21F、24B、24Fに分割され、第2象限は領域22、第3象限は領域23である。   FIG. 2 shows a configuration of a light detection surface (FIG. 2A) and a hologram surface (FIG. 2B) of the optical disk device according to the first embodiment, both showing a case where the hologram surface side and the light detection surface side are viewed from the optical disk side. . Assuming that the intersection point between the hologram surface 2a and the optical axis 7 is 20, the hologram surface 2a is divided into four by two straight lines (X axis and Y axis) orthogonal to each other at the point 20, and the first quadrant and the fourth quadrant are divided into the X axis. It is divided into regions 21B, 21F, 24B, and 24F by strips along it, and the second quadrant is a region 22, and the third quadrant is a region 23.

一方、検出面9aと光軸7との交点を点90、点90で直交しX軸、Y軸に平行な2直線をx軸、y軸として、y軸の+側にy軸に沿った櫛歯状のフォーカス検出セルF1a、F2a、F1b、F2b、F1c、F2cが配置され、y軸の−側に方形状のトラッキング検出セル7T1、7T2、7T3、7T4が配置されている。これらの検出セルはy軸に対して対称形をなしている。なお、放射光源1の発光点1aから出射する光はx軸と交わり紙面に直交する面内をx軸と平行に進み、反射ミラー10により光軸方向(点90を通り紙面に直交する方向)に反射している。   On the other hand, the point of intersection of the detection surface 9a and the optical axis 7 is a point 90, and two straight lines perpendicular to the point 90 and parallel to the X axis and the Y axis are the x axis and the y axis. Comb-shaped focus detection cells F1a, F2a, F1b, F2b, F1c, and F2c are arranged, and square tracking detection cells 7T1, 7T2, 7T3, and 7T4 are arranged on the negative side of the y-axis. These detection cells are symmetric with respect to the y-axis. The light emitted from the light emitting point 1a of the radiation light source 1 intersects the x-axis and travels in a plane perpendicular to the plane of the paper in parallel with the x-axis. Is reflected.

ホログラム面2aの第1象限での櫛歯領域21B、21Fを回折する1次回折光81B、81Fは検出セルF2a、F1bを跨る光スポット81BS、81FSに、−1次回折光81B’、81F’は検出セル7T1に収まる光スポット81BS’、81FS’に、第2象限の領域22を回折する1次回折光82は検出セルF1b、F2bを跨る光スポット82Sに、−1次回折光82’は検出セル7T2に収まる光スポット82S’に、第3象限の領域23を回折する1次回折光83は検出セルF1b、F2bを跨る光スポット83Sに、−1次回折光83’は検出セル7T3に収まる光スポット83S’に、第4象限での櫛歯領域24B、24Fを回折する1次回折光84B、84Fは検出セルF2b、F1cを跨る光スポット84BS、84FSに、−1次回折光84B’、84F’は検出セル7T4に収まる光スポット84BS’、84FS’に集光する。   The first-order diffracted lights 81B and 81F diffracting the comb-tooth regions 21B and 21F in the first quadrant of the hologram surface 2a are detected by light spots 81BS and 81FS crossing the detection cells F2a and F1b, and the -1st-order diffracted lights 81B 'and 81F' are detected. The first-order diffracted light 82 diffracting the second quadrant area 22 into the light spots 81BS 'and 81FS' that fit in the cell 7T1, the light spot 82S straddling the detection cells F1b and F2b, and the -1st-order diffracted light 82 'into the detection cell 7T2. The first-order diffracted light 83 diffracting the third quadrant region 23 into the light spot 82S 'that fits into the light spot 83S that straddles the detection cells F1b and F2b, and the -1st-order diffracted light 83' into the light spot 83S 'that fits in the detection cell 7T3. , The first-order diffracted lights 84B, 84F diffracting the comb teeth regions 24B, 24F in the fourth quadrant are light spots 84BS that straddle the detection cells F2b, F1c. The 84FS, -1-order diffracted light 84B ', 84F' are light spots 84BS fit into the detection cell 7T4 ', 84FS' focused on.

図3は、光ディスク信号面6aに対する合焦点時での、実施の形態1に於ける光軸に沿った断面での光検出面9a前後での集光点位置を示しており、図3Aは1次回折光81B、84B、81F、84Fと−1次回折光81B’、84B’、81F’、84F’の場合、図3Bは1次回折光82と−1次回折光82’の場合、図3Cは1次回折光83と−1次回折光83’の場合である。なお、各回折光に対応した0次の回折成分は検出面9a上の点90に集光するが、0次光の回折効率がほぼゼロなので、実際には光が照射されない。   FIG. 3 shows the focal point positions before and after the light detection surface 9a in a cross section along the optical axis in the first embodiment at the time of focusing on the optical disk signal surface 6a. For the first-order diffracted lights 81B, 84B, 81F, 84F and the -1st-order diffracted lights 81B ', 84B', 81F ', 84F', FIG. 3B shows the first-order diffracted light 82 and the -1st-order diffracted light 82 ', and FIG. This is the case of the folded light 83 and the -1st-order diffracted light 83 '. The 0th-order diffraction component corresponding to each diffracted light is condensed on a point 90 on the detection surface 9a, but the light is not actually irradiated because the diffraction efficiency of the 0th-order light is almost zero.

図3Aに示すように、ホログラム面2aにより回折される光80のうち第1象限、第4象限で夫々回折される1次回折光81B、84Bは検出面9aの奥のL1の距離の位置の点8Bに集光し、−1次回折光81B’、84B’は検出面9aの手前のL1の距離の位置の点8B’に集光する(光線行路を実線で表示)。またホログラム面2aにより回折される光80のうち第1象限、第4象限で夫々回折される1次回折光81F、84Fは検出面9aの手前のL2の距離の位置の点8Fに集光し、−1次回折光81F’、84F’は検出面9aの奥のL2の距離の位置の点8F’に集光する(光線行路を点線で表示)。ただし、L2は近似的にL1に等しい。   As shown in FIG. 3A, of the light 80 diffracted by the hologram surface 2a, the first-order diffracted lights 81B and 84B diffracted in the first quadrant and the fourth quadrant, respectively, are points at the position of the distance L1 behind the detection surface 9a. 8B, and the -1st-order diffracted lights 81B 'and 84B' are condensed at a point 8B 'located at a distance of L1 in front of the detection surface 9a (light ray paths are indicated by solid lines). Also, of the light 80 diffracted by the hologram surface 2a, the first-order diffracted lights 81F and 84F diffracted in the first quadrant and the fourth quadrant, respectively, converge on a point 8F at a distance of L2 before the detection surface 9a, The -1st-order diffracted lights 81F 'and 84F' are condensed at a point 8F 'located at a distance of L2 behind the detection surface 9a (the ray trajectories are indicated by dotted lines). However, L2 is approximately equal to L1.

図3Bに示すように、ホログラム面2aにより回折される光80のうち第2象限で回折される1次回折光82は紙面に平行な断面と紙面に直交する断面とで集光点がことなり、紙面に直交する断面では検出面9aの奥のL1の距離の位置の点82xに集光し(この回折光を82Xで表示する)、紙面に平行な断面では検出面9aの奥のL3の距離の位置の点82yに集光する(この回折光を82Yで表示する)。一方、第2象限で回折される−1次回折光82’は紙面に平行な断面と紙面に直交する断面とで集光点がことなり、紙面に直交する断面では検出面9aの手前のL1の距離の位置の点82x’に集光し(この回折光を82X’で表示する)、紙面に平行な断面では検出面9aの手前のL3の距離の位置の点82y’に集光する(この回折光を82Y’で表示する)
図3Cに示すように、ホログラム面2aにより回折される光80のうち第3象限で回折される1次回折光83は紙面に平行な断面と紙面に直交する断面とで集光点がことなり、紙面に直交する断面では検出面9aの手前のL1の距離の位置の点83xに集光し(この回折光を83Xで表示する)、紙面に平行な断面では検出面9aの奥にL3の距離の位置の点83yに集光する(この回折光を83Yで表示する)。一方、第3象限で回折される−1次回折光83’も紙面に平行な断面と紙面に直交する断面とで集光点がことなり、紙面に直交する断面では検出面9aの奥のL1の距離の位置の点83x’に集光し(この回折光を83X’で表示する)、紙面に平行な断面では検出面9aの手前のL3の距離の位置の点83y’に集光する(この回折光を83Y’で表示する)
図2、図3から、1次回折光81B、84Bは検出面9aの奥側(ホログラム面2aから遠ざかる側)で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布と相似であり、−1次回折光81B’、84B’は検出面9aの手前(ホログラム面2aに近づく側)で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布を点20に対し反転した形状に相似である。
As shown in FIG. 3B, among the light 80 diffracted by the hologram surface 2a, the first-order diffracted light 82 diffracted in the second quadrant has a different condensing point between a cross section parallel to the paper surface and a cross section orthogonal to the paper surface. In a section perpendicular to the plane of the paper, the light is condensed at a point 82x located at a distance L1 behind the detection surface 9a (this diffracted light is indicated by 82X). In a section parallel to the plane of the paper, the distance between L3 behind the detection surface 9a (The diffracted light is indicated by 82Y). On the other hand, the −1st-order diffracted light 82 ′ diffracted in the second quadrant has a different condensing point between a cross section parallel to the paper surface and a cross section orthogonal to the paper surface. The light is condensed on a point 82x 'at a distance position (this diffracted light is indicated by 82X'), and is condensed on a point 82y 'at a distance L3 in front of the detection surface 9a in a cross section parallel to the paper surface. (The diffracted light is indicated by 82Y ')
As shown in FIG. 3C, among the light 80 diffracted by the hologram surface 2a, the first-order diffracted light 83 diffracted in the third quadrant has different condensing points in a cross section parallel to the paper and a cross section orthogonal to the paper. In a cross section orthogonal to the paper surface, light is condensed at a point 83x at a position of L1 in front of the detection surface 9a (this diffracted light is indicated by 83X), and in a cross section parallel to the paper surface, the distance of L3 is behind the detection surface 9a. (The diffracted light is indicated by 83Y). On the other hand, the -1st-order diffracted light 83 ′ diffracted in the third quadrant also has different condensing points between a section parallel to the plane of the paper and a section perpendicular to the plane of the paper. The light is condensed at a point 83x 'at a distance position (this diffracted light is indicated by 83X'), and is condensed at a point 83y 'at a distance L3 in front of the detection surface 9a in a cross section parallel to the paper surface. Diffracted light is indicated by 83Y ')
2 and 3, since the first-order diffracted lights 81B and 84B are lights condensed on the back side of the detection surface 9a (the side away from the hologram surface 2a), the spot shape on the detection surface 9a has a spot shape on the hologram surface 2a. Similar to the light distribution, the -1st-order diffracted lights 81B 'and 84B' are lights condensed in front of the detection surface 9a (on the side approaching the hologram surface 2a), so that the spot shape on the detection surface 9a is on the hologram surface 2a. Is similar to the shape obtained by inverting the light distribution at the point 20 with respect to the point 20.

1次回折光81F、84Fは検出面9aの手前で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布を点20に対し反転した形状に相似であり、−1次回折光81F’、84F’は検出面9aの奥で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布に相似である。   Since the first-order diffracted lights 81F and 84F are lights that converge before the detection surface 9a, the spot shape on the detection surface 9a is similar to a shape obtained by inverting the light distribution on the hologram surface 2a with respect to the point 20; Since the first-order diffracted lights 81F 'and 84F' are lights condensed behind the detection surface 9a, the spot shape on the detection surface 9a is similar to the light distribution on the hologram surface 2a.

また1次回折光82は紙面に平行な断面と紙面に直交する断面とも検出面9aの奥側で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布をY方向に引き延ばした形状に相似であり、−1次回折光82’は紙面に平行な断面と紙面に直交する断面とも検出面9aの手前で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布を点20に対し反転させY軸方向に引き延ばした形状に相似である。   Further, since the first-order diffracted light 82 is a light that is condensed on the back side of the detection surface 9a in both a cross section parallel to the paper surface and a cross section orthogonal to the paper surface, the spot shape on the detection surface 9a is represented by Y Since the -1st-order diffracted light 82 ′ is a light that converges in front of the detection surface 9a in both the cross section parallel to the paper surface and the cross section orthogonal to the paper surface, the spot shape on the detection surface 9a is This is similar to a shape in which the light distribution on the hologram surface 2a is inverted with respect to the point 20 and elongated in the Y-axis direction.

さらに、1次回折光83は紙面に直交する断面では検出面9aの手前で集光し、紙面に平行な断面では検出面9aの奥で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布をY軸に対し反転し、Y軸方向に引き延ばした形状に相似であり、−1次回折光83’は紙面に直交する断面では検出面9aの奥で集光し、紙面に平行な断面では検出面9aの手前で集光する光なので、検出面9a上でのスポット形状はホログラム面2a上での光分布をX軸に対し反転させ、Y軸方向に引き延ばした形状に相似である。   Further, since the first-order diffracted light 83 condenses before the detection surface 9a in a cross section orthogonal to the paper surface and converges behind the detection surface 9a in a cross section parallel to the paper surface, the spot shape on the detection surface 9a is The light distribution on the hologram surface 2a is inverted with respect to the Y-axis and is similar to a shape elongated in the Y-axis direction, and the -1st-order diffracted light 83 'is focused at the depth of the detection surface 9a in a cross section orthogonal to the paper surface. On the other hand, in a section parallel to the plane of the drawing, since the light is focused before the detection surface 9a, the spot shape on the detection surface 9a is obtained by inverting the light distribution on the hologram surface 2a with respect to the X axis and extending in the Y axis direction. Similar in shape.

光スポット81BS’、81FS’と光スポット84BS’、84FS’はそれぞれ光検出器7T1と7T4の内部に完全に収まっているが、光スポット82S’と83S’はy軸方向に繋がったスポットであり、かつ両者の繋ぎ目が光検出器7T2と7T3の分割線7Taにほぼ一致するのが特徴である。また、ホログラム面2a上の光分布に対し、光スポット82SがY軸に関して反転しないのに対し、光スポット83SがY軸に関して反転していることも特徴である。   The light spots 81BS 'and 81FS' and the light spots 84BS 'and 84FS' are completely contained inside the photodetectors 7T1 and 7T4, respectively, but the light spots 82S 'and 83S' are spots connected in the y-axis direction. And the joint between the two substantially coincides with the dividing line 7Ta of the photodetectors 7T2 and 7T3. In addition, the light spot 82S is not inverted with respect to the Y axis, whereas the light spot 83S is inverted with respect to the Y axis with respect to the light distribution on the hologram surface 2a.

検出セルのいくつかは導通されており、結果として以下の6つの信号が得られるように構成されている。
F1=検出セルF1aで得られる信号+検出セルF1bで得られる信号
+検出セルF1cで得られる信号
F2=検出セルF2aで得られる信号+検出セルF2bで得られる信号
+検出セルF2cで得られる信号
T1=検出セル7T1で得られる信号
T2=検出セル7T2で得られる信号
T3=検出セル7T3で得られる信号
T4=検出セル7T4で得られる信号
図2に於いて、y軸が光ディスク6の半径方向として、光ディスク信号面へのフォーカスエラー信号FE、光ディスクトラックへのトラッキングエラー信号TE、光ディスク信号面の再生信号RFは、それぞれ次式に基づいて検出される。
Some of the detection cells are conductive and are configured to result in the following six signals.
F1 = signal obtained from detection cell F1a + signal obtained from detection cell F1b + signal obtained from detection cell F1c F2 = signal obtained from detection cell F2a + signal obtained from detection cell F2b + signal obtained from detection cell F2c T1 = signal obtained from the detection cell 7T1 = signal obtained from the detection cell 7T2 T3 = signal obtained from the detection cell 7T3 = signal obtained from the detection cell 7T4 In FIG. The focus error signal FE on the optical disk signal surface, the tracking error signal TE on the optical disk track, and the reproduction signal RF on the optical disk signal surface are detected based on the following equations.

FE=F1−F2 (数6)
TE=(T1−T4)−(T2−T3)/m (数7)
RF=F1+F2+T1+T2+T3+T4 (数8)
一般に光ディスクのディフォーカスに対する光検出面上での光スポットの振る舞いは、各スポットの集光点位置と光検出面9aとの相対位置関係で決まる。特にFE信号に関係するのはx方向のスポット形状であり、この形状を決定するのが図3に於ける光スポットの紙面に直交する断面内の集光点位置と光検出面9aとの相対位置関係である。
FE = F1-F2 (Equation 6)
TE = (T1-T4)-(T2-T3) / m (Equation 7)
RF = F1 + F2 + T1 + T2 + T3 + T4 (Equation 8)
In general, the behavior of the light spot on the light detection surface with respect to the defocus of the optical disc is determined by the relative positional relationship between the condensing point position of each spot and the light detection surface 9a. Particularly, the shape of the spot in the x-direction is related to the FE signal, and the shape of the spot is determined by the relative position between the light-condensing point position in the cross section orthogonal to the paper surface of the light spot in FIG. It is a positional relationship.

従来例の光スポット82FS、83BSは光ディスクのディフォーカスに対して、光スポット83FS、82BSと同じ振る舞いをするので、光スポット82FS、83BSがなくてもFE信号の特性は同じである。また、実施の形態1の光スポット81BS、81FS、82S、83S,84BS、84FSのx軸方向の拡がりは従来例の光スポット81BS等のx軸方向の拡がりと同じである。   Since the light spots 82FS and 83BS of the conventional example have the same behavior as the light spots 83FS and 82BS with respect to the defocus of the optical disk, the characteristics of the FE signal are the same without the light spots 82FS and 83BS. Further, the spread of the light spots 81BS, 81FS, 82S, 83S, 84BS, and 84FS in the x-axis direction in the first embodiment is the same as the spread of the light spot 81BS and the like in the conventional example in the x-axis direction.

従って、光ディスクのディフォーカスに対して、光スポット81BS、81FS、84BS、84FSは従来例と同じ振る舞いであり、紙面に直交する断面内の集光点位置関係が同じであることから、光スポット82Sは従来例の光スポット82BS、光スポット83Sは従来例の光スポット83FSと同じ振る舞いをする(光スポット82S、83Sは光スポット82BS、83FSに比べy軸方向に広がっているが、FE検出に対する振る舞いはx軸方向の拡がり方で決まるので、FE信号の特性は同じである)。従って、実施の形態1のFE信号特性は従来例と同じものになる。   Accordingly, the light spots 81BS, 81FS, 84BS, and 84FS have the same behavior with respect to the defocus of the optical disk as in the conventional example, and the light spot 82S has the same position of the light-converging point in the cross section orthogonal to the paper surface. The light spot 82BS and the light spot 83S of the conventional example have the same behavior as the light spot 83FS of the conventional example (the light spots 82S and 83S are wider in the y-axis direction than the light spots 82BS and 83FS, but have a behavior for FE detection. Is determined by the spread in the x-axis direction, so that the characteristics of the FE signal are the same.) Therefore, the FE signal characteristics of the first embodiment are the same as those of the conventional example.

信号(T1−T4)と信号(T2−T3)は基本的にはオフトラックに関して同じ信号となるが、異なる特性も存在する。例えば、光ディスクトラックに対するオフトラック量をΔ、対物レンズ5及びこれと一体で動く偏光性ホログラム基板2のディスク径方向(Y軸方向)に沿った偏心をδとすると、信号(T1−T4)は、従来例と同じ係数a,bを用いて次式で関係づけられる。   The signal (T1-T4) and the signal (T2-T3) are basically the same signal for off-track, but have different characteristics. For example, assuming that the off-track amount with respect to the optical disk track is Δ and the eccentricity of the objective lens 5 and the polarizing hologram substrate 2 moving integrally therewith along the disk radial direction (Y-axis direction) is δ, the signal (T1-T4) is Are related by the following equation using the same coefficients a and b as in the conventional example.

T1−T4=aΔ+bδ (数9)
これに対し、信号(T2−T3)は、次式で関係づけられる。
T1−T4 = aΔ + bδ (Equation 9)
On the other hand, the signal (T2-T3) is related by the following equation.

T2−T3=aΔ+b'δ (数10)
信号(T1−T4)がδの関数となる理由は、従来例と同じく放射光源1から出射する光が近軸で強く、光軸から離れるに従い弱くなるような不均一な強度分布を示すことに起因し、対物レンズ5及び偏光性ホログラム基板2の径方向に沿った偏心により、ホログラム面2a上の戻り光80の強度分布がX軸に対して非対称となるためである。
T2−T3 = aΔ + b′δ (Equation 10)
The reason why the signal (T1−T4) is a function of δ is that the light emitted from the radiation light source 1 exhibits a non-uniform intensity distribution such that the light emitted from the radiation light source 1 is strong in the paraxial direction and becomes weaker as the distance from the optical axis increases. This is because, due to the eccentricity of the objective lens 5 and the polarizing hologram substrate 2 along the radial direction, the intensity distribution of the return light 80 on the hologram surface 2a becomes asymmetric with respect to the X axis.

一方、信号(T2−T3)のδに対する依存性が信号(T1−T4)に於ける依存性と異なる理由(b’≠b)は、上述のホログラム面2a上の戻り光80の強度分布がX軸に対して非対称となることに加えて、検出面9a上での光スポットが対物レンズ5及び偏光性ホログラム基板2の径方向に沿った偏心に伴ってy軸方向にシフトすることの影響が存在するためである。   On the other hand, the reason why the dependence of the signal (T2−T3) on δ is different from the dependence on the signal (T1−T4) (b ′ ≠ b) is that the intensity distribution of the return light 80 on the hologram surface 2a is In addition to being asymmetric with respect to the X-axis, the effect of the light spot on the detection surface 9a shifting in the y-axis direction with the radial eccentricity of the objective lens 5 and the polarizing hologram substrate 2 This is because there is.

すなわち、光スポット81BS’、81FS’と光スポット84BS’、84FS’はそれぞれ光検出器7T1と7T4の内部に完全に収まっているので、光スポットがy軸方向にシフトしても光量のシフトは発生しないが(これは従来例と同じである)、光スポット82S’と83S’はy軸方向に繋がったスポットで、かつ両者の繋ぎ目が光検出器7T2と7T3の分割線にほぼ一致するので、これらのスポットが一体となってy軸方向にシフトすると分割線を跨いだ光量のシフトが存在することになる。   That is, since the light spots 81BS 'and 81FS' and the light spots 84BS 'and 84FS' are completely contained in the photodetectors 7T1 and 7T4, respectively, even if the light spot is shifted in the y-axis direction, the light amount shifts. Although it does not occur (this is the same as the conventional example), the light spots 82S 'and 83S' are spots connected in the y-axis direction, and the joint between the two substantially coincides with the dividing line of the photodetectors 7T2 and 7T3. Therefore, when these spots are integrally shifted in the y-axis direction, there is a shift in the amount of light straddling the dividing line.

光ディスクがDVD−RAM等の案内溝の深さが深く(光学的な深さD=λ/6程度、ただしλは光源の波長)、ピッチが広い(溝ピッチΛ=1.21〜1.48μm程度)光ディスクの時には、溝での回折効果により、ホログラム面2a上の戻り光80の強度分布がY軸方向にほぼ均一となるので、ほぼ係数b=0となる。このときは、係数m=∞、すなわちTE=(T1−T4)とすると、トラッキング制御時(TE=0)でのオフトラックはゼロである。   Optical discs such as DVD-RAMs with a deep guide groove (optical depth D = approximately λ / 6, where λ is the wavelength of the light source) and a wide pitch (groove pitch Λ = 1.21 to 1.48 μm) In the case of, the intensity distribution of the return light 80 on the hologram surface 2a becomes substantially uniform in the Y-axis direction due to the diffraction effect at the groove, so that the coefficient b becomes substantially zero. At this time, if the coefficient m = ∞, that is, TE = (T1−T4), the off-track during tracking control (TE = 0) is zero.

DVD−RやDVD−RW等の案内溝の深さが浅く(光学的な深さD=λ/10〜λ/20程度)、ピッチが狭い(溝ピッチΛ=0.74μm程度)光ディスクの時には、戻り光80の非対称性が高まり、係数b≠0となる。仮に(数7)での係数mをm=b’/bを満たすように設定すると、(数7)、(数9)、(数10)より
TE=(1−1/m)aΔ (数11)
となる。従って、対物レンズ5及びこれと一体で動く偏光性ホログラム基板2の偏心δの影響がほぼ除去されており、偏心δが存在しても、トラッキング制御時(TE=0)でのオフトラックはゼロである。
In the case of an optical disk such as a DVD-R or DVD-RW having a shallow guide groove (optical depth D = approximately λ / 10 to λ / 20) and a narrow pitch (groove pitch Λ = 0.74 μm), The asymmetry of the return light 80 increases, and the coefficient b ≠ 0. If the coefficient m in (Equation 7) is set so as to satisfy m = b '/ b, TE = (1-1 / m) aΔ (Equation 7), (Equation 9), and (Equation 10). 11)
It becomes. Therefore, the influence of the eccentricity δ of the objective lens 5 and the polarizing hologram substrate 2 moving integrally therewith is almost eliminated, and even if the eccentricity δ exists, the off-track during tracking control (TE = 0) is zero. It is.

なお、係数比b’/bの大きさはほぼ光学系と光ディスクの溝形状によって決まる値であり、DVD−RやDVD−RWの光ディスクの場合、係数b'は係数bの2〜4倍程度の大きさとなる。また、上記実施例では光スポット82S’と83S’はy軸方向に繋がったスポットとして説明したが、これらがx軸方向にシフトして乖離しても偏心δの影響を除去する効果には変わりはない。   The magnitude of the coefficient ratio b '/ b is substantially determined by the optical system and the groove shape of the optical disk. In the case of a DVD-R or DVD-RW optical disk, the coefficient b' is about 2 to 4 times the coefficient b. It becomes the size of. In the above embodiment, the light spots 82S 'and 83S' are described as spots connected in the y-axis direction. However, even if these light spots are shifted and deviated in the x-axis direction, the effect of removing the influence of the eccentricity δ is changed. There is no.

また、発光点位置1aがy軸方向にずれると、光スポット82S’と83S’の繋ぎ目が光検出器7T2と7T3の分割線7Taからずれるので、信号(T2−T3)にオフセットが加わるが、この成分は初期学習により除去できる。さらに発光点位置1aがy軸方向にずれても、光スポット82S’、83S’はy軸方向に広がっているので、ずれ量のスポット径に対する比率を小さく押さえられ、この誤差の余裕度を広げられている。   If the light emitting point position 1a is shifted in the y-axis direction, the joint between the light spots 82S 'and 83S' is shifted from the dividing line 7Ta of the photodetectors 7T2 and 7T3, so that an offset is added to the signal (T2-T3). , This component can be removed by initial learning. Furthermore, even if the light emitting point position 1a is displaced in the y-axis direction, the light spots 82S 'and 83S' are spread in the y-axis direction, so that the ratio of the displacement amount to the spot diameter can be kept small, and the margin of error can be increased. Have been.

なお、光検出面9aはコリメートレンズ4の焦平面位置にあるとして説明したが、その近傍であってもよく、光源と光検出器を同一の基板に配置したが、別々であってもよい。   Although the light detection surface 9a has been described as being located at the focal plane position of the collimator lens 4, it may be near the light detection surface 9a, and the light source and the light detector are arranged on the same substrate, but may be separate.

(実施の形態2)
以下本発明の実施の形態2を図4に基づいて説明する。実施の形態2は偏光ホログラム面2aのパターンと光検出器面9a上の検出パターン及びその上の光分布が異なる以外は全て実施の形態1と同じであり、共通する部分の説明は省略し、実施の形態1と共通の要素については同一の番号を振って説明する。図4は実施の形態2におけるホログラムパターンと光検出パターンとその上の光分布の様子を示しており、ともに光ディスク側からホログラム面(図4B)側、光検出面(図4A)側を見た場合である。
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is the same as the first embodiment except that the pattern of the polarization hologram surface 2a, the detection pattern on the photodetector surface 9a and the light distribution thereon are different, and the description of the common parts is omitted. Elements common to the first embodiment will be described with the same numbers. FIG. 4 shows the state of the hologram pattern, the light detection pattern, and the light distribution thereon, according to the second embodiment. When viewed from the optical disk side, the hologram surface (FIG. 4B) side and the light detection surface (FIG. 4A) side are both viewed. Is the case.

ホログラム面2aと光軸7との交点を20として、ホログラム面2aは点20で直交する2直線(X軸、Y軸)で4分割され、その第1象限は領域21B、第2象限は領域22、第3象限は領域23、第4象限は領域24Fである。   Assuming that the intersection point between the hologram surface 2a and the optical axis 7 is 20, the hologram surface 2a is divided into four by two straight lines (X axis and Y axis) orthogonal to each other at the point 20, the first quadrant is an area 21B, and the second quadrant is an area. 22, the third quadrant is a region 23, and the fourth quadrant is a region 24F.

検出面9aと光軸7との交点を点90、点90で直交しX軸、Y軸に平行な2直線をx軸、y軸として、y軸の+側にy軸に沿った櫛歯状のフォーカス検出セルF1a、F2a、F1b、F2b、F1c、F2cが配置され、y軸の−側に方形状のトラッキング検出セル7T1、7T2、7T3、7T4が配置されている。これらの検出セルはy軸に対して対称形をなしている。なお、放射光源1の発光点1aから出射する光はx軸と交わり紙面に直交する面内をx軸と平行に進み、反射ミラー10により光軸方向(点90を通り紙面に直交する方向)に反射している。   The point of intersection of the detection surface 9a and the optical axis 7 is a point 90, and two straight lines perpendicular to the point 90 and parallel to the X axis and the Y axis are the x axis and the y axis, and the comb teeth along the y axis on the + side of the y axis Focus detection cells F1a, F2a, F1b, F2b, F1c, F2c are arranged, and square tracking detection cells 7T1, 7T2, 7T3, 7T4 are arranged on the negative side of the y-axis. These detection cells are symmetric with respect to the y-axis. The light emitted from the light emitting point 1a of the radiation light source 1 intersects the x-axis and travels in a plane perpendicular to the plane of the paper in parallel with the x-axis. Is reflected.

ホログラム面2aの第1象限21Bを回折する1次回折光81Bは検出セルF2a、F1bを跨る光スポット81BSに、−1次回折光81B’は検出セル7T1に収まる光スポット81BS’に集光する。第2象限の領域22を回折する1次回折光82は検出セルF1b、F2bを跨る光スポット82Sに、−1次回折光82’は検出セル7T2に収まる光スポット82S’に集光する。   The first-order diffracted light 81B diffracted in the first quadrant 21B of the hologram surface 2a is focused on the light spot 81BS straddling the detection cells F2a and F1b, and the -1st-order diffracted light 81B 'is focused on the light spot 81BS' that fits in the detection cell 7T1. The first-order diffracted light 82 diffracting the area 22 in the second quadrant is focused on the light spot 82S straddling the detection cells F1b and F2b, and the -1st-order diffracted light 82 'is focused on the light spot 82S' that fits in the detection cell 7T2.

第3象限の領域23を回折する1次回折光83は検出セルF1b、F2bを跨る光スポット83Sに、−1次回折光83’は検出セル7T3に収まる光スポット83S’に集光する。第4象限での領域24Fを回折する1次回折光84Fは検出セルF2b、F1cを跨る光スポット84FSに、−1次回折光84F’は検出セル7T4に収まる光スポット84FS’に集光する。   The first-order diffracted light 83 diffracting the region 23 in the third quadrant converges on a light spot 83S straddling the detection cells F1b and F2b, and the -1st-order diffracted light 83 'converges on a light spot 83S' that fits in the detection cell 7T3. The first-order diffracted light 84F diffracting the area 24F in the fourth quadrant is focused on the light spot 84FS that straddles the detection cells F2b and F1c, and the -1st-order diffracted light 84F 'is focused on the light spot 84FS' that fits in the detection cell 7T4.

光ディスク信号面6aに対する合焦点時での、光軸に沿った断面での光検出器前後での集光点位置は実施の形態1と同じであり、図3に於いて1次回折光81F、84B、及び−1次回折光81F’、84B’を省いたものと同じである。従って図3に於いて、図3Aでは本実施例での1次回折光81B、84Fと−1次回折光81B’、84F’の場合、図3Bでは本実施例での1次回折光82と−1次回折光82’の場合、図3Cでは本実施例での1次回折光83と−1次回折光83’の場合に相当する。   At the time of focusing on the optical disk signal surface 6a, the focal point positions before and after the photodetector in the cross section along the optical axis are the same as in the first embodiment, and the first-order diffracted lights 81F and 84B in FIG. , And −1st-order diffracted light 81F ′, 84B ′. Therefore, in FIG. 3A, in FIG. 3A, in the case of the first-order diffracted lights 81B and 84F and the −1st-order diffracted lights 81B ′ and 84F ′ in the present embodiment, and in FIG. In the case of the folded light 82 ', FIG. 3C corresponds to the case of the first-order diffracted light 83 and the -1st-order diffracted light 83' in this embodiment.

実施の形態1での光スポット81FS、84BSは光ディスクのディフォーカスに対して、光スポット84FS、81BSと同じ振る舞いをするので、光スポット81FS、84BSがなくてもFE信号の特性は同じである。実施の形態2は実施の形態1に於ける光スポット81FS、84BSを省いた形態であり、対物レンズ5及び偏光性ホログラム基板2の径方向に沿った偏心に対して、実施の形態1と同じ原理で同じ効果が得られるのは明らかである。   Since the light spots 81FS and 84BS in the first embodiment behave the same as the light spots 84FS and 81BS with respect to the defocus of the optical disk, the characteristics of the FE signal are the same without the light spots 81FS and 84BS. The second embodiment is a form in which the light spots 81FS and 84BS in the first embodiment are omitted, and is the same as the first embodiment with respect to the eccentricity of the objective lens 5 and the polarizing hologram substrate 2 along the radial direction. It is clear that the same effect can be obtained in principle.

(実施の形態3)
以下、本発明の実施の形態3を図5から図7に基づいて説明する。実施の形態3は、光源からの発光点が2つに増えたことと、光分岐手段である偏光ホログラム基板2の構造が変わったことと、偏光ホログラム面2aのパターンと光検出器面9a上の検出パターン及びその上の光分布が異なること以外は全て実施の形態1と同じであり、共通する部分の説明は省略し、実施の形態1と共通の要素については同一の番号を振って説明する。
(Embodiment 3)
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. In the third embodiment, the number of light emitting points from the light source is increased to two, the structure of the polarization hologram substrate 2 which is a light branching unit is changed, the pattern of the polarization hologram surface 2a and the position on the photodetector surface 9a are changed. Are the same as in the first embodiment except that the detection pattern and the light distribution thereover are different, the description of the common parts is omitted, and the same elements as those in the first embodiment are denoted by the same reference numerals. I do.

図5は実施の形態3に於ける光ディスク装置の断面構成を示しており、放射光源1とその周辺に関する側面図も下に付け加えている。図5に於いて光検出基板9上に取り付けられた半導体レーザー等の放射光源1の第1の発光点1aを出射する第1のレーザー光(波長λ1)は、光検出基板9上に取り付けられた反射ミラー10を反射して、コリメートレンズ4により平行光に変換され、偏光性ホログラム基板2を透過し、1/4波長板3により直線偏光(S波又はP波)から円偏光に変換され、対物レンズ5により集光されて第1の光ディスク基材6の信号面6a上に収束する。   FIG. 5 shows a cross-sectional configuration of the optical disk device according to the third embodiment, and a side view relating to the radiation light source 1 and its periphery is also added below. In FIG. 5, a first laser beam (wavelength λ1) emitted from the first light emitting point 1a of the radiation light source 1 such as a semiconductor laser mounted on the light detection substrate 9 is mounted on the light detection substrate 9. The reflected light is reflected by the reflecting mirror 10, converted into parallel light by the collimating lens 4, transmitted through the polarizing hologram substrate 2, and converted from linearly polarized light (S wave or P wave) into circularly polarized light by the 4 wavelength plate 3. The light is condensed by the objective lens 5 and converges on the signal surface 6a of the first optical disc substrate 6.

信号面6aを反射する光は対物レンズ5を経て、1/4波長板3により直線偏光(P波又はS波)に変換され、偏光性ホログラム基板2内のホログラム面2aに入射し、これを回折して光軸7を対称軸とする1次回折光8、−1次回折光8’に分岐し、コリメートレンズ4を経て各回折光が収束性の光となり、検出器9上の検出面9aに入射する。1/4波長板3はホログラム面2aと同一の基板上に構成され、対物レンズ6と一体で移動する。検出面9aはコリメートレンズ4の焦平面位置(すなわち発光点1aの仮想発光点位置)にほぼ位置する。ホログラム面2aによる戻り光の回折効率は例えば0次光が0%程度、±1次光がそれぞれ41%程度である。   The light reflected from the signal surface 6a passes through the objective lens 5, is converted into linearly polarized light (P wave or S wave) by the quarter wavelength plate 3, and is incident on the hologram surface 2a in the polarizing hologram substrate 2, and The light is diffracted and split into a first-order diffracted light 8 and a -1st-order diffracted light 8 ′ having the optical axis 7 as a symmetry axis, and each of the diffracted lights becomes a convergent light through the collimating lens 4. Incident. The 波長 wavelength plate 3 is formed on the same substrate as the hologram surface 2 a and moves integrally with the objective lens 6. The detection surface 9a is located substantially at the focal plane position of the collimating lens 4 (that is, the virtual light emitting point position of the light emitting point 1a). The diffraction efficiency of the return light by the hologram surface 2a is, for example, about 0% for the zero-order light and about 41% for the ± first-order lights.

さらに、放射光源1は第1のレーザー光とは異なる波長の光を発光でき、放射光源1の第2の発光点1a’を出射する第2のレーザー光(波長λ2、ただしλ2>λ1)は、光検出基板9上に取り付けられた反射ミラー10を反射して、コリメートレンズ4により平行光に変換され、偏光性ホログラム基板2を透過し(一部は回折する)、1/4波長板3により直線偏光(S波又はP波)から楕円偏光に変換され、対物レンズ5により集光されて第2の光ディスク基材6’の信号面6a’上に収束する。   Further, the radiation light source 1 can emit light having a wavelength different from that of the first laser light, and the second laser light (wavelength λ2, where λ2> λ1) emitted from the second light emitting point 1a ′ of the radiation light source 1 is Is reflected by a reflecting mirror 10 mounted on a light detection substrate 9, converted into parallel light by a collimating lens 4, transmitted (partially diffracted) through the polarizing hologram substrate 2, and Is converted from linearly polarized light (S wave or P wave) into elliptically polarized light, condensed by the objective lens 5, and converges on the signal surface 6a 'of the second optical disk substrate 6'.

信号面6a’を反射する光は、対物レンズ5を経て、1/4波長板3を経て、偏光性ホログラム基板2内のホログラム面2aに入射し、これを回折して光軸7’を対称軸とする1次回折光11、−1次回折光11’に分岐し、コリメートレンズ4を経て各回折光が収束性の光となり、検出器9上の検出面9aに入射する。なお、光ディスク基材6はDVD等の複屈折が小さいディスクであり、光ディスク基材6’はCD等の複屈折が大きいディスクである。   The light reflected from the signal surface 6a 'passes through the objective lens 5, passes through the quarter-wave plate 3, enters the hologram surface 2a in the polarizing hologram substrate 2, and diffracts the light to symmetrically align the optical axis 7'. The light is branched into the first-order diffracted light 11 and the -1st-order diffracted light 11 ′ having the axes, and each of the diffracted lights becomes convergent light through the collimator lens 4 and is incident on the detection surface 9 a on the detector 9. The optical disk substrate 6 is a disk having a low birefringence such as a DVD, and the optical disk substrate 6 'is a disk having a large birefringence such as a CD.

図6は、実施の形態3に於ける偏光ホログラム基板2と1/4波長板3の断面構成を示している。偏光ホログラム基板2は均質な屈折率の透明基板2Aと2C(透明基板2Aの屈折率をnaとする)の間に複屈折率性の媒質2Bを挟んだ構成であり、透明基板2Aの媒質2Bに面した表面には深さdのグレーティングが形成されている。   FIG. 6 shows a cross-sectional configuration of the polarization hologram substrate 2 and the quarter-wave plate 3 in the third embodiment. The polarization hologram substrate 2 has a configuration in which a birefringent medium 2B is sandwiched between transparent substrates 2A and 2C having a uniform refractive index (na is the refractive index of the transparent substrate 2A). A grating having a depth d is formed on the surface facing.

基板2Cの反対側の表面には波長λ1の光に対して1/4波長板の働きをなす1/4波長板3が張り合わされており、その進相軸はX軸、Y軸に対し45度の角度をなす方位にある。光の伝搬方向にZ軸をとり、ホログラム面2aに平行な面内にX軸、Y軸をとり、媒質2Bの屈折率をx方向nx、y方向nyとする。実際には屈折率は波長の関数であるが、可視〜赤外の近傍では差が小さく、同じ値で代用することにする。また図6ではグレーティングの方位がY軸に沿った形で示しているが、任意の方位を向いてよい。さらに、2つの光ともその往路光12a(光源1から偏光ホログラム2側に向かう光)の偏光方向はY方向にある。   A 4 wavelength plate 3 serving as a 波長 wavelength plate for the light of wavelength λ1 is bonded to the surface on the opposite side of the substrate 2C, and its fast axis is 45 ° with respect to the X axis and the Y axis. The azimuth is in degrees. The Z axis is set in the light propagation direction, the X axis and the Y axis are set in a plane parallel to the hologram surface 2a, and the refractive index of the medium 2B is defined as x direction nx and y direction ny. Actually, the refractive index is a function of the wavelength, but the difference is small in the vicinity of visible to infrared light, and the same value is used instead. Further, FIG. 6 shows the orientation of the grating along the Y axis, but the orientation may be arbitrary. Further, the polarization direction of the outward light 12a (the light traveling from the light source 1 toward the polarization hologram 2) of the two lights is in the Y direction.

ここで、グレーティングの深さdと各屈折率の間に次式が成り立つものとする。   Here, it is assumed that the following expression holds between the grating depth d and each refractive index.

(na−ny)d=Nλ1 (数12)
(na−nx)d=nλ1+λ1/2 (数13)
ただし、Nは0以外の整数、nは整数である。
(Na-ny) d = Nλ1 (Equation 12)
(Na-nx) d = nλ1 + λ1 / 2 (Equation 13)
Here, N is an integer other than 0, and n is an integer.

従来例や実施の形態1での偏光ホログラムはいわばN=0の形態であるが、本実施例ではN≠0が特徴である。   The polarization hologram in the conventional example and the first embodiment has a so-called N = 0 form, but this embodiment is characterized by N ≠ 0.

まず、波長λ1の光の場合、往路光12aの偏光方向がY方向にあるので、(数12)より、偏光ホログラム基板2を透過することでグレーティングの凹凸間でNλ1の位相差(すなわち2πの位相差)が発生する。この位相差は実質的には位相差がないものと同じであり、媒質2Bを透過した光12bはグレーティングによる回折が発生しない。光12bは偏光方向がY方向のままであり、1/4波長板3を透過することで、円偏光の光12cとなる。光ディスク信号面6aからの復路光13aの偏光状態は光ディスク基板6に複屈折がないとして、光12cと同じ円偏光であり、1/4波長板3を透過することで偏光方向がX方向の直線偏光の光13bとなる。   First, in the case of the light having the wavelength λ1, the polarization direction of the outward light 12a is in the Y direction. Therefore, from equation (12), the phase difference of Nλ1 between the concave and convex portions of the grating (that is, 2π Phase difference). This phase difference is substantially the same as that having no phase difference, and the light 12b transmitted through the medium 2B is not diffracted by the grating. The polarization direction of the light 12b remains in the Y direction, and the light 12b passes through the quarter-wave plate 3 to become circularly polarized light 12c. The polarization state of the return light 13a from the optical disk signal surface 6a is the same circular polarization as that of the light 12c, assuming that the optical disk substrate 6 has no birefringence. It becomes the polarized light 13b.

従って、(数13)より、偏光ホログラム基板2を透過することでグレーティングの凹凸間でnλ1+λ1/2の位相差(すなわちπの位相差)が発生し、基板2Aを透過したあとの光13cはグレーティングによる強い回折(0次光が0%程度、±1次光がそれぞれ41%程度)が発生する。   Accordingly, according to (Equation 13), when the light passes through the polarization hologram substrate 2, a phase difference of nλ1 + λ1 / 2 (ie, a phase difference of π) is generated between the concave and convex portions of the grating. (0% light is about 0% and ± 1st light is about 41% each).

次に、波長λ2の光の場合、往路光12aの偏光方向がY方向にあるので、(数12)より、偏光ホログラム基板2を透過することでグレーティングの凹凸間でλ2−Nλ1の位相差(すなわち2π(1−Nλ1/λ2)の位相差)が発生する。一般には媒質2Bを透過した光12bはグレーティングによる回折が発生するが、0次回折光だけが信号の記録再生に関係し、他の高次(1次以上)の回折光は除去の対称である迷光成分となるので、往路に於ける高次の回折光については以下の議論で無視する。   Next, in the case of the light having the wavelength λ2, the polarization direction of the outward light 12a is in the Y direction. Therefore, according to (Equation 12), by transmitting through the polarization hologram substrate 2, the phase difference of λ2−Nλ1 between the concave and convex portions of the grating ( That is, a phase difference of 2π (1-Nλ1 / λ2) occurs. Generally, the light 12b transmitted through the medium 2B undergoes diffraction due to the grating, but only the 0th-order diffracted light is involved in recording and reproduction of signals, and other higher-order (first-order or higher) diffracted light is symmetrical to removal stray light. Since it becomes a component, higher-order diffracted light on the outward path is ignored in the following discussion.

光12bは偏光方向がY方向のままであり、1/4波長板3(波長λ2の光にとっては1/4×λ1/λ2波長板に相当)を透過することで、楕円偏光の光12cとなる。光ディスク信号面6a’からの復路光13aの偏光状態は光ディスク基板6’に複屈折があるとして円偏光、楕円偏光から直線偏光まで考えられ、1/4波長板3を透過した後の光13bの偏光方向はX方向からY方向までを網羅すると考えなければならない。   The polarization direction of the light 12b remains in the Y direction, and is transmitted through the を wavelength plate 3 (corresponding to a / 4 × λ1 / λ2 wavelength plate for light of the wavelength λ2), thereby forming the elliptically polarized light 12c. Become. The polarization state of the return light 13a from the optical disk signal surface 6a 'is considered to be birefringent from the optical disk substrate 6', from circularly polarized light, elliptically polarized light to linearly polarized light, and the light 13b after passing through the quarter wavelength plate 3 is considered. It must be considered that the polarization direction covers the X direction to the Y direction.

従って、(数13)より、偏光ホログラム基板2を透過することでグレーティングの凹凸間でλ2−nλ1−λ1/2とλ2−Nλ1の位相差(すなわち2π{1−(n+1/2)λ1/λ2}と2π(1−Nλ1/λ2)の位相差)が混在しており、一般には基板2を透過したあとの光13cはグレーティングによる回折が発生し、光ディスク基板6’の如何なる複屈折条件でも回折効率がゼロになることはない。   Therefore, according to (Equation 13), the phase difference between λ2-nλ1-λ1 / 2 and λ2-Nλ1 between the concave and convex portions of the grating by transmitting through the polarization hologram substrate 2 (that is, 2π {1- (n + 1/2) λ1 / λ2). } And 2π (1−Nλ1 / λ2) are mixed. Generally, the light 13c transmitted through the substrate 2 is diffracted by the grating and diffracted under any birefringence condition of the optical disk substrate 6 ′. Efficiency never goes to zero.

例えば、λ1=660nm、λ2=792nm、N=1、n=0の場合、往路での±1次光の回折効率は10%程度(位相差はπ/3)であるのに対し、復路での位相差は7π/6とπ/3が混在し、前者の±1次光の回折効率は38%、後者の±1次光の回折効率は10%程度となり、複屈折条件により10〜38%の回折効率をとる。またλ1=660nm、λ2=792nm、N=1、n=1の場合、往路での±1次光の回折効率は10%程度(位相差はπ/3)であるのに対し、復路での位相差は-π/2とπ/3が混在し、前者の±1次光の回折効率は20%、後者の±1次光の回折効率は10%程度となり、複屈折条件により10〜20%の回折効率をとる。   For example, when λ1 = 660 nm, λ2 = 792 nm, N = 1, and n = 0, the diffraction efficiency of ± first-order light on the outward path is about 10% (the phase difference is π / 3), while the diffraction efficiency on the return path is about 10%. Has a phase difference of 7π / 6 and π / 3, the former ± 1st-order light diffraction efficiency is 38%, and the latter ± 1st-order light diffraction efficiency is about 10%. % Diffraction efficiency. When λ1 = 660 nm, λ2 = 792 nm, N = 1, and n = 1, the diffraction efficiency of ± first-order light on the outward path is about 10% (the phase difference is π / 3), while the diffraction efficiency on the return path is about 10%. The phase difference is a mixture of -π / 2 and π / 3, the former ± 1st-order light has a diffraction efficiency of 20%, and the latter ± 1st-order light has a diffraction efficiency of about 10%. % Diffraction efficiency.

いずれも光ディスク基板6’の如何なる複屈折条件でも回折効率が10%を下回ることがなく、CDディスクなどの複屈折の大きな光ディスクに対しても、確実に光ディスク信号が光検出器に検出される効果がある。従って、波長λ2の光に対しては、往路での光伝達効率や復路での光検出効率は若干劣るが、光ディスク基板の複屈折影響に対して安定した信号検出性能を確保できる。   In any case, the diffraction efficiency does not fall below 10% under any birefringence condition of the optical disk substrate 6 ', and the optical disk signal is reliably detected by the photodetector even for an optical disk having a large birefringence such as a CD disk. There is. Therefore, for the light of wavelength λ2, the light transmission efficiency on the outward path and the light detection efficiency on the return path are slightly inferior, but stable signal detection performance can be secured against the influence of birefringence of the optical disk substrate.

なお、図6では媒質2Bを複屈折性の材料としたが、基板2Aまたは2A,2Bとも複屈折性の材料であっても良い。   In FIG. 6, the medium 2B is made of a birefringent material, but the substrate 2A or 2A, 2B may be made of a birefringent material.

図7A、Bは、別の例に係る偏光ホログラム基板2の断面図を示している。図7Aに示した偏光ホログラム基板2は、LiNbO3結晶の媒質200Aにパターニングでプロトン交換領域200Bを形成した後、その一部をエッチングしたものである。プロトン交換領域200Bは、図6のY軸方向に形成しているが、任意の方向でもよい。 7A and 7B are cross-sectional views of a polarization hologram substrate 2 according to another example. The polarization hologram substrate 2 shown in FIG. 7A is obtained by forming a proton exchange region 200B by patterning a medium 200A of LiNbO 3 crystal and then etching a part thereof. The proton exchange region 200B is formed in the Y-axis direction in FIG. 6, but may be in any direction.

図7Aのような偏光ホログラム基板2の一例として、プロトン交換領域200BのP波入射方向の屈折率neが2.33、S波入射方向の屈折率noが2.24、媒質200AのP波入射方向の屈折率neが2.20、S波入射方向の屈折率noが2.28、エッチング深さh1が0.46μm、プロトン交換深さh2が2.1μmのものが挙げられる。   As an example of the polarization hologram substrate 2 as shown in FIG. 7A, the proton exchange region 200B has a refractive index ne of 2.33 in the P-wave incident direction, a refractive index no of 2.24 in the S-wave incident direction, and a P-wave incidence of the medium 200A. The refractive index no in the direction is 2.20, the refractive index no in the S-wave incident direction is 2.28, the etching depth h1 is 0.46 μm, and the proton exchange depth h2 is 2.1 μm.

図7Bに示した偏光ホログラム基板2は、LiNbO3結晶の媒質210Aにパターニングでプロトン交換領域210Bを形成し、さらにその上にパターニングでTa23膜を形成したものである。プロトン交換領域210Bは、図6のY軸方向に形成しているが、任意の方向でもよい。 In the polarization hologram substrate 2 shown in FIG. 7B, a proton exchange region 210B is formed by patterning on a LiNbO 3 crystal medium 210A, and a Ta 2 O 3 film is further formed thereon by patterning. The proton exchange region 210B is formed in the Y-axis direction in FIG. 6, but may be in any direction.

図7Bのような偏光ホログラム基板2の一例として、媒質210A及びプロトン交換領域210Bの屈折率が前記図7Aの一例と同様で、Ta23膜の屈折率nが2.10、膜厚tが0.30μmで、プロトン交換深さh2が2.1μmのものが挙げられる。 As an example of the polarization hologram substrate 2 as shown in FIG. 7B, the refractive index of the medium 210A and the proton exchange region 210B is the same as that of the example of FIG. 7A, the refractive index n of the Ta 2 O 3 film is 2.10, and the film thickness t. Is 0.30 μm and the proton exchange depth h2 is 2.1 μm.

図7A、Bにおいて、破線は、波長λ1(0.66μm)の光が偏光ホログラム基板2を透過した場合の透過波面を示しており、位相差λ1が発生しているが、この位相差は実質的に位相差がないものと同じである。これ以外においても、これらの各図に示した偏光ホログラム基板2の作用は、図6に示したものと同様であり、波長λ1、λ2の双方の光に対して、確実に回折効率を得ることができる。   7A and 7B, a broken line indicates a transmitted wavefront when light having a wavelength λ1 (0.66 μm) has passed through the polarization hologram substrate 2, and a phase difference λ1 is generated. This is the same as that without any phase difference. Other than this, the operation of the polarization hologram substrate 2 shown in each of these figures is the same as that shown in FIG. 6, and it is possible to surely obtain diffraction efficiency for both lights of wavelengths λ1 and λ2. Can be.

図8は実施の形態3における光検出パターンとその上の光分布の様子を示しており、光ディスク側からホログラム面側を見た場合である。ホログラムパターンや光軸に沿った断面での光検出器前後での集光点位置は実施の形態1のものと同じであり、その説明を省略する。光検出パターンも形状がy方向に延びた以外は、実施の形態1と同じであり、その説明を省略する。   FIG. 8 shows a state of a light detection pattern and light distribution on the light detection pattern according to the third embodiment, when the hologram surface side is viewed from the optical disk side. The hologram pattern and the focal point positions before and after the photodetector in the cross section along the optical axis are the same as those in the first embodiment, and a description thereof will be omitted. The light detection pattern is the same as that of the first embodiment except that the shape extends in the y direction, and the description thereof is omitted.

図8Aは、第1の発光点1aを出射する第1のレーザー光に対する戻り光の光スポットの様子、図8Bは第2の発光点1a’を出射する第2のレーザー光に対する戻り光の光スポットの様子を示している。   FIG. 8A shows the state of the light spot of the return light with respect to the first laser light emitted from the first light emitting point 1a, and FIG. 8B shows the light of the return light with respect to the second laser light emitted from the second light emitting point 1a '. The state of the spot is shown.

図8Aにおいて、光スポット82S’、83S’の繋ぎ目はy軸方向に計って点90からl1の距離にある(光スポット82S、83Sの繋ぎ目も同様)。光スポット81FS’、81BS’の繋ぎ目と光スポット84FS’、84BS’の繋ぎ目はともにy軸方向に計って点90からl1+l1’の距離にある(光スポット81FS、81BSの繋ぎ目と光スポット84FS、84BSの繋ぎ目も同様)。   In FIG. 8A, the joint between the light spots 82S 'and 83S' is located at a distance of 11 from the point 90 as measured in the y-axis direction (the same applies to the joint between the light spots 82S and 83S). The joint between the light spots 81FS 'and 81BS' and the joint between the light spots 84FS 'and 84BS' are located at a distance of l1 + l1 'from the point 90 when measured in the y-axis direction (the joint between the light spots 81FS and 81BS and the light spot). 84FS, 84BS joint).

一方、図8Bにおいて、光スポット82S’、83S’の繋ぎ目はy軸方向に計って点90’からl2の距離にある(光スポット82S、83Sの繋ぎ目も同様)。光スポット81FS’、81BS’の繋ぎ目と光スポット84FS’、84BS’の繋ぎ目はともにy軸方向に計って点90’からl2+l2’の距離にある(光スポット81FS、81BSの繋ぎ目と光スポット84FS、84BSの繋ぎ目も同様)。発光点1aと1a’の間、すなわち点90と90’の間はy軸に沿ってεだけ離れている。ここで、以下の関係が成り立つとする。   On the other hand, in FIG. 8B, the joint between the light spots 82S 'and 83S' is located at a distance of 12 from the point 90 'measured in the y-axis direction (the same applies to the joint between the light spots 82S and 83S). The joint between the light spots 81FS 'and 81BS' and the joint between the light spots 84FS 'and 84BS' are both located in the y-axis direction at a distance of l2 + l2 'from the point 90' (the joint between the light spots 81FS and 81BS and the light). The same applies to the joint between the spots 84FS and 84BS). The distance between the light emitting points 1a and 1a ', that is, between the points 90 and 90', is separated by [epsilon] along the y-axis. Here, it is assumed that the following relationship is established.

l2=l1+ε (数14)
このとき、第1のレーザー光に対して光スポット82S’と83S’の繋ぎ目が光検出器7T2と7T3の分割線7Taにほぼ一致すれば、第2のレーザー光に対しても一致することになる。
l2 = l1 + ε (Equation 14)
At this time, if the joint between the light spots 82S 'and 83S' substantially coincides with the division line 7Ta of the photodetectors 7T2 and 7T3 with respect to the first laser light, it also coincides with the second laser light. become.

一方、仮想発光点(すなわち点90、90’)からの距離は近似的に回折角に比例し、回折角は近似的に波長に比例するので、次式が成り立つ。   On the other hand, the distance from the virtual light emitting point (i.e., the points 90 and 90 ') is approximately proportional to the diffraction angle, and the diffraction angle is approximately proportional to the wavelength.

l2/l1=l2’/l1’=λ2/λ1 (数15)
例えば、λ1=660nm、λ2=792nm、ε=100μmの場合、l1=500μm、l2=600μmとなる。
l2 / l1 = l2 '/ l1' = λ2 / λ1 (Equation 15)
For example, when λ1 = 660 nm, λ2 = 792 nm, and ε = 100 μm, l1 = 500 μm and l2 = 600 μm.

本実施例の光検出パターンは形状がy方向に延びているので、波長が異なっても光スポット81FS’、81BS’及び光スポット84FS’、84BS’は光検出器7T1、7T4の内部に収まっている。また、光スポット82S、83S、及び光スポット81FS、81BS及び光スポット84FS、84BSはx軸方向の広がりが小さく、ほとんどy軸に沿った配置となっており、波長が異なってもy軸に沿ってシフトするだけなので、FE信号に与える影響は小さい。   Since the shape of the light detection pattern of this embodiment extends in the y direction, the light spots 81FS 'and 81BS' and the light spots 84FS 'and 84BS' fall within the photodetectors 7T1 and 7T4 even if the wavelengths are different. I have. Further, the light spots 82S and 83S, and the light spots 81FS and 81BS and the light spots 84FS and 84BS have a small spread in the x-axis direction and are arranged almost along the y-axis. Therefore, the influence on the FE signal is small.

従って、2つのレーザー光に対して良好なFE信号特性を堅持しつつ、対物レンズ5及び偏光性ホログラム基板2の径方向に沿った偏心に対しても、実施の形態1と同じ原理で同じ効果が得られる。   Therefore, while maintaining good FE signal characteristics with respect to the two laser beams, the same effect as that of the first embodiment can be obtained with respect to the eccentricity of the objective lens 5 and the polarizing hologram substrate 2 along the radial direction. Is obtained.

以上のように、本発明は光ディスク装置や光分岐装置に用いることができ、対物レンズ及び偏光性ホログラム基板に光ディスクの径方向に沿った偏心があっても、トラッキング制御時に発生するオフトラックをキャンセルすることができる。   As described above, the present invention can be used for an optical disk device or an optical branching device, and cancels off-track generated during tracking control even if the objective lens and the polarizing hologram substrate have eccentricity along the radial direction of the optical disk. can do.

また、2つの近接した放射光源を有する構成に対しても、同一の光検出器で制御信号や再生信号を検出するとともに、トラッキング制御時に発生するオフトラックをキャンセルすることができ、特に一方の光源に対しては、いかなる光ディスク基材の複屈折条件でも回折効率がゼロになることがなく、確実に光ディスク信号を検出することができる。このため、2つの放射光源を有する光ディスク装置や光分岐装置に有用である。   Further, even for a configuration having two adjacent radiation light sources, the same light detector can detect a control signal and a reproduction signal, and can cancel off-track generated during tracking control. However, the diffraction efficiency does not become zero under any birefringence condition of the optical disk substrate, and the optical disk signal can be detected reliably. Therefore, it is useful for an optical disk device or an optical branching device having two radiation light sources.

本発明の実施の形態1における光ディスク装置の断面構成図。FIG. 1 is a cross-sectional configuration diagram of an optical disc device according to a first embodiment of the present invention. 本発明の実施の形態1における光ディスク装置の検出面の構成図。FIG. 2 is a configuration diagram of a detection surface of the optical disc device according to the first embodiment of the present invention. 本発明の実施の形態1における光ディスク装置のホログラム面の構成図。FIG. 2 is a configuration diagram of a hologram surface of the optical disc device according to the first embodiment of the present invention. 本発明の実施の形態1における光ディスク信号面に対する合焦点時での、光軸に沿った断面の光検出器前後での集光点位置を示す説明図であり、1次回折光81B、84B、81F、84Fと−1次回折光81B’、84B’、81F’、84F’の場合の図。FIG. 8 is an explanatory diagram showing the positions of condensing points before and after the photodetector in a cross section along the optical axis when focusing on the optical disk signal surface according to the first embodiment of the present invention, and showing first-order diffracted lights 81B, 84B, and 81F. , 84F and −1st-order diffracted light 81B ′, 84B ′, 81F ′, 84F ′. 本発明の実施の形態1における光ディスク信号面に対する合焦点時での、光軸に沿った断面の光検出器前後での集光点位置を示す説明図であり、1次回折光82と−1次回折光82’の場合の図。FIG. 7 is an explanatory diagram showing the converging point positions before and after the photodetector in the cross section along the optical axis at the time of focusing on the optical disc signal surface according to the first embodiment of the present invention. The figure in the case of folding light 82 '. 本発明の実施の形態1における光ディスク信号面に対する合焦点時での、光軸に沿った断面の光検出器前後での集光点位置を示す説明図であり、1次回折光83と−1次回折光83’の場合の図。FIG. 4 is an explanatory diagram showing the converging point positions before and after the photodetector in a cross section along the optical axis at the time of focusing on the optical disc signal surface according to the first embodiment of the present invention. The figure in the case of folding light 83 '. 本発明の実施の形態2における光検出パターンとその上の光分布の様子を示す説明図。FIG. 9 is an explanatory diagram showing a state of a light detection pattern and a light distribution thereon on the second embodiment of the present invention. 本発明の実施の形態2におけるホログラムパターンを示す説明図。FIG. 7 is an explanatory diagram showing a hologram pattern according to the second embodiment of the present invention. 本発明の実施の形態3における光ディスク装置の断面構成図。FIG. 13 is a sectional configuration diagram of an optical disc device according to a third embodiment of the present invention. 本発明の実施の形態3における偏光ホログラム2と1/4波長板3の断面構成図。FIG. 7 is a cross-sectional configuration diagram of a polarization hologram 2 and a 波長 wavelength plate 3 according to a third embodiment of the present invention. 本発明の実施の形態3における別の例の偏光ホログラムの断面構成図。FIG. 13 is a sectional configuration diagram of another example of the polarization hologram according to the third embodiment of the present invention. 本発明の実施の形態3におけるさらに別の例の偏光ホログラムの断面構成図Sectional view of yet another example of a polarization hologram according to Embodiment 3 of the present invention. 本発明の実施の形態3における第1の発光点1aを出射する第1のレーザー光に対する戻り光の光スポットの様子を示す図。FIG. 13 is a diagram showing a state of a light spot of return light with respect to a first laser beam emitted from a first light emitting point 1a according to the third embodiment of the present invention. 本発明の実施の形態3における第2の発光点1a’を出射する第2のレーザー光に対する戻り光の光スポットの様子を示す図。FIG. 14 is a diagram illustrating a state of a light spot of return light with respect to a second laser beam emitted from a second light emitting point 1a ′ according to the third embodiment of the present invention. 従来例に於ける光ディスク装置の断面構成図。FIG. 2 is a cross-sectional configuration diagram of an optical disk device in a conventional example. 従来例における光ディスク装置の検出面の構成図。FIG. 4 is a configuration diagram of a detection surface of an optical disk device in a conventional example. 従来例における光ディスク装置のホログラム面の構成図。FIG. 3 is a configuration diagram of a hologram surface of an optical disc device in a conventional example.

符号の説明Explanation of reference numerals

1 光源
2 偏光性ホログラム基板
2a ホログラム面
4 コリメートレンズ
3 1/4波長板
5 対物レンズ
6 光ディスク基材
6a 光ディスク信号面
7 光軸
8 1次回折光
8’ −1次回折光
9 光検出基板
9a 光検出面
10 反射ミラー
Reference Signs List 1 light source 2 polarizing hologram substrate 2a hologram surface 4 collimating lens 3 1/4 wavelength plate 5 objective lens 6 optical disk substrate 6a optical disk signal surface 7 optical axis 8 first-order diffracted light 8'-first-order diffracted light 9 light detection substrate 9a light detection Surface 10 Reflecting mirror

Claims (9)

放射光源と、対物レンズと、光分岐手段と、光検出器を含む光ディスク装置であって、
前記放射光源を出る光は前記対物レンズを経て光ディスクの信号面上に集光し、
前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射し、
前記光分岐手段は光軸と交わる2直線(光ディスク径方向に平行なy軸とこれに直交するx軸)で4個の象限Ak(ただしk=1,2,3,4)に分割され、
前記光検出器は少なくとも4つの領域Bkに区分けされ、
前記光分岐手段により前記象限Akに入射する光は1次回折光akを派生して前記光検出器上の領域Bkにそれぞれ投射され、
前記1次回折光a2とa3の前記x軸による切り口は前記領域B2とB3の境界線上にほぼ重なり、
前記1次回折光a1とa4の分布は前記光検出器上で互いに分離していることを特徴とする光ディスク装置。
An optical disc device including a radiation light source, an objective lens, a light branching unit, and a photodetector,
Light emitted from the radiation light source is focused on the signal surface of the optical disk via the objective lens,
Light reflected from the signal surface enters the light splitting means via the objective lens,
The light splitting means is divided into four quadrants Ak (where k = 1, 2, 3, 4) by two straight lines intersecting the optical axis (a y-axis parallel to the optical disk radial direction and an x-axis orthogonal thereto),
The photodetector is divided into at least four regions Bk;
The light incident on the quadrant Ak by the light branching unit derives a first-order diffracted light ak and is respectively projected on a region Bk on the photodetector.
The cuts of the first-order diffracted lights a2 and a3 along the x-axis substantially overlap the boundary between the regions B2 and B3,
An optical disk device, wherein the distributions of the first-order diffracted lights a1 and a4 are separated from each other on the photodetector.
前記領域Bk(ただしk=1,2,3,4)での検出信号をCkとし、mを1以上の数値として、前記光ディスクのトラッキングエラー信号TEをTE=C1−C4−(C2−C3)/mにより生成する請求項1に記載の光ディスク装置。   The detection signal in the area Bk (where k = 1, 2, 3, 4) is Ck, m is a numerical value of 1 or more, and the tracking error signal TE of the optical disk is TE = C1-C4- (C2-C3). The optical disk device according to claim 1, wherein the optical disk device is generated by / m. 前記光分岐手段により前記象限Akに入射する光は−1次回折光ak'(ただしk=1,2,3,4)を派生し、前記−1次回折光a2'は実質的なy軸方位に対して反転することなく検出面上に結像し、前記−1次回折光a3'は実質的なy軸方位に対して反転して検出面上に結像する請求項1又は2に記載の光ディスク装置。   The light incident on the quadrant Ak by the light branching unit derives a -1st-order diffracted light ak '(where k = 1, 2, 3, 4), and the -1st-order diffracted light a2' has a substantial y-axis orientation. 3. The optical disk according to claim 1, wherein an image is formed on the detection surface without being inverted, and the -1st-order diffracted light a3 'is inverted with respect to a substantial y-axis direction and formed on the detection surface. apparatus. 第1の放射光源と、第2の放射光源と、対物レンズと、光分岐手段と、光検出器を含む光ディスク装置であって、
前記第1及び第2の放射光源は前記光検出器上に構成され、
前記第1の放射光源を出る光は前記対物レンズを経て第1の光ディスクの信号面上に集光し、
前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射し、
前記光分岐手段は光軸と交わる2直線(光ディスク径方向に平行なy軸とこれに直交するx軸)で4個の象限Ak(ただしk=1,2,3,4)に分割され、
前記光検出器は少なくとも4つの領域Bkに区分けされ、
前記光分岐手段により前記象限Akに入射する光は1次回折光akを派生して前記光検出器上の領域Bkにそれぞれ投射され、
前記第2の放射光源を出て第1の放射光源とは異なる波長の光は前記対物レンズを経て第2の光ディスクの信号面上に集光し、
前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射し、前記光分岐手段により前記象限Akに入射する光は1次回折光bkを派生して前記光検出器上の領域Bkにそれぞれ投射されることを特徴とする光ディスク装置。
An optical disc device including a first radiation light source, a second radiation light source, an objective lens, a light branching unit, and a photodetector,
The first and second radiation sources are configured on the photodetector;
The light exiting the first radiation source is focused on the signal surface of the first optical disc via the objective lens,
Light reflected from the signal surface enters the light splitting means via the objective lens,
The light splitting means is divided into four quadrants Ak (where k = 1, 2, 3, 4) by two straight lines intersecting the optical axis (a y-axis parallel to the optical disk radial direction and an x-axis orthogonal thereto),
The photodetector is divided into at least four regions Bk;
The light incident on the quadrant Ak by the light branching unit derives a first-order diffracted light ak and is respectively projected on a region Bk on the photodetector.
Light having a wavelength different from that of the first radiation light source exiting from the second radiation light source is condensed on the signal surface of the second optical disk via the objective lens,
The light reflected from the signal surface is incident on the light splitting means via the objective lens, and the light incident on the quadrant Ak by the light splitting means derives a first-order diffracted light bk to generate an area Bk on the photodetector. An optical disk device characterized by being projected onto each of optical disks.
前記1次回折光a2とa3、又はb2とb3の前記x軸による切り口は前記領域B2とB3の境界線上にほぼ重なり、前記1次回折光a1とa4、又はb1とb4の分布は前記光検出器上で互いに分離している請求項4に記載の光ディスク装置。   The cut of the first-order diffracted lights a2 and a3 or b2 and b3 along the x-axis substantially overlaps the boundary between the regions B2 and B3, and the distribution of the first-order diffracted lights a1 and a4 or b1 and b4 is determined by the photodetector. The optical disk device according to claim 4, wherein the optical disk device is separated from each other. 前記領域Bk(ただしk=1,2,3,4)での検出信号をCkとし、mを1以上の数値として、前記第1又は第2の光ディスクのトラッキングエラー信号TEをTE=C1−C4−(C2−C3)/mにより生成する請求項4又は5に記載の光ディスク装置。   The detection signal in the area Bk (where k = 1, 2, 3, 4) is Ck, m is a numerical value of 1 or more, and the tracking error signal TE of the first or second optical disk is TE = C1-C4. The optical disk device according to claim 4, wherein the optical disk device is generated by − (C2−C3) / m. 前記光分岐手段により前記象限Akに入射する光は−1次回折光ak'又はbk'(ただしk=1,2,3,4)を派生し、前記−1次回折光a2'又はb2'は実質的なy軸方位に対して反転することなく検出面上に結像し、前記−1次回折光a3'又はb3'は実質的なy軸方位に対して反転して検出面上に結像する請求項4〜6のいずれかに記載の光ディスク装置。   The light incident on the quadrant Ak by the light branching unit derives a -1st-order diffracted light ak 'or bk' (k = 1, 2, 3, 4), and the -1st-order diffracted light a2 'or b2' is substantially An image is formed on the detection surface without being inverted with respect to a typical y-axis azimuth, and the -1st-order diffracted light a3 'or b3' is formed on the detection surface with being inverted with respect to the substantial y-axis azimuth. An optical disk device according to any one of claims 4 to 6. 第1の放射光源と、第2の放射光源と、対物レンズと、光分岐手段と、光検出器を含む光ディスク装置であって、
前記光分岐手段は周期的な凹凸断面に複屈折性の媒質を充填した構造であり、
前記第1の放射光源を出る波長λ1の光は前記光分岐手段に入射して周期的にほぼ2nπ(ただしnは0以外の整数)の位相差をなす光に変換され、
前記光は前記対物レンズを経て第1の光ディスクの信号面上に集光し、
前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射して周期的にほぼ2nπ+α(ただしαは0以外の実数)の位相差をなす光に変換され、前記光の回折光が前記光検出器に入射し検出され、
前記第2の放射光源を出る波長λ2の光は前記光分岐手段に入射して周期的にほぼ2nπλ1/λ2の位相差をなす光に変換され、
前記光は前記対物レンズを経て第2の光ディスクの信号面上に集光し、
前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射して周期的にほぼ(2nπ+α)λ1/λ2の位相差をなす光に変換され、
前記光の回折光が前記光検出器に入射し検出されることを特徴とする光ディスク装置。
An optical disc device including a first radiation light source, a second radiation light source, an objective lens, a light branching unit, and a photodetector,
The light branching means has a structure in which a birefringent medium is filled in a periodic uneven cross section,
The light of wavelength λ1 that exits the first radiation light source enters the light branching unit and is periodically converted into light having a phase difference of approximately 2nπ (where n is an integer other than 0),
The light is focused on the signal surface of the first optical disc via the objective lens,
The light reflected from the signal surface is incident on the light splitting means via the objective lens, and is periodically converted into light having a phase difference of approximately 2nπ + α (where α is a real number other than 0). Is incident on the photodetector and detected,
The light of wavelength λ2 exiting the second radiation light source is incident on the light branching means and is periodically converted into light having a phase difference of approximately 2nπλ1 / λ2,
The light is focused on the signal surface of the second optical disc via the objective lens,
The light reflected from the signal surface is incident on the light splitting means via the objective lens, and is periodically converted into light having a phase difference of approximately (2nπ + α) λ1 / λ2,
An optical disc device, wherein the diffracted light of the light is incident on the photodetector and detected.
第1の放射光源と、第2の放射光源と、対物レンズと、光分岐手段と、光検出器を含む光分岐装置であって、
前記光分岐手段は周期的な凹凸断面に複屈折性の媒質を充填した構造であり、
前記第1の放射光源を出る波長λ1の光は前記光分岐手段に入射して周期的にほぼ2nπ(ただしnは0以外の整数)の位相差をなす光に変換され、
前記光は前記対物レンズを経て第1の光ディスクの信号面上に集光し、
前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射して周期的にほぼ2nπ+α(ただしαは0以外の実数)の位相差をなす光に変換され、前記光の回折光が前記光検出器に入射し検出され、
前記第2の放射光源を出る波長λ2の光は前記光分岐手段に入射して周期的にほぼ2nπλ1/λ2の位相差をなす光に変換され、
前記光は前記対物レンズを経て第2の光ディスクの信号面上に集光し、
前記信号面を反射する光は前記対物レンズを経て前記光分岐手段に入射して周期的にほぼ(2nπ+α)λ1/λ2の位相差をなす光に変換され、
前記光の回折光が前記光検出器に入射し検出されることを特徴とする光分岐装置。

An optical branching device including a first radiation source, a second radiation source, an objective lens, a light branching unit, and a photodetector,
The light branching means has a structure in which a birefringent medium is filled in a periodic uneven cross section,
The light of wavelength λ1 that exits the first radiation light source enters the light branching unit and is periodically converted into light having a phase difference of approximately 2nπ (where n is an integer other than 0),
The light is focused on the signal surface of the first optical disc via the objective lens,
The light reflected from the signal surface is incident on the light splitting means via the objective lens, and is periodically converted into light having a phase difference of approximately 2nπ + α (where α is a real number other than 0). Is incident on the photodetector and detected,
The light of wavelength λ2 exiting the second radiation light source is incident on the light branching means and is periodically converted into light having a phase difference of approximately 2nπλ1 / λ2,
The light is focused on the signal surface of the second optical disc via the objective lens,
The light reflected from the signal surface is incident on the light splitting means via the objective lens, and is periodically converted into light having a phase difference of approximately (2nπ + α) λ1 / λ2,
An optical branching device, wherein the diffracted light of the light enters the photodetector and is detected.

JP2003352720A 2002-10-18 2003-10-10 Optical disk device and light branching device Withdrawn JP2004158169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003352720A JP2004158169A (en) 2002-10-18 2003-10-10 Optical disk device and light branching device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002304913 2002-10-18
JP2003352720A JP2004158169A (en) 2002-10-18 2003-10-10 Optical disk device and light branching device

Publications (1)

Publication Number Publication Date
JP2004158169A true JP2004158169A (en) 2004-06-03

Family

ID=32828007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352720A Withdrawn JP2004158169A (en) 2002-10-18 2003-10-10 Optical disk device and light branching device

Country Status (1)

Country Link
JP (1) JP2004158169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655539B1 (en) 2004-12-14 2006-12-08 엘지전자 주식회사 Apparatus for optical pick-up
JP2007042230A (en) * 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd Optical pickup and optical disk device
JPWO2006054383A1 (en) * 2004-11-16 2008-05-29 松下電器産業株式会社 Optical pickup device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006054383A1 (en) * 2004-11-16 2008-05-29 松下電器産業株式会社 Optical pickup device
US7830773B2 (en) 2004-11-16 2010-11-09 Panasonic Corporation Optical pickup for recording and reproducing information with a plurality of types of optical information recording mediums
KR100655539B1 (en) 2004-12-14 2006-12-08 엘지전자 주식회사 Apparatus for optical pick-up
JP2007042230A (en) * 2005-08-04 2007-02-15 Matsushita Electric Ind Co Ltd Optical pickup and optical disk device
JP4577142B2 (en) * 2005-08-04 2010-11-10 パナソニック株式会社 Optical pickup and optical disk apparatus

Similar Documents

Publication Publication Date Title
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
JP4896884B2 (en) Optical head
JP2005339766A (en) Optical disk apparatus
JP4955085B2 (en) Optical head and optical disk device including optical head
US20090016191A1 (en) Optical head device
US20040105375A1 (en) Optical information processor and optical element
US20090028036A1 (en) Optical disc device
JP2001290017A (en) Diffraction device for two wavelengths and optical head device
JP4751444B2 (en) Optical disk device
JPH07130022A (en) Optical head device and optical element
WO2004097819A1 (en) Optical diffraction device and optical information processing device
JP2003288733A (en) Aperture-limiting element and optical head device
JP2004158169A (en) Optical disk device and light branching device
KR20090033080A (en) Optical pickup apparatus, optical recording medium driving apparatus, and signal recording/reproducing method
KR100985422B1 (en) Double-wavelength light source unit and optical head device
JP3300536B2 (en) Displacement measuring device and optical pickup
JP4222988B2 (en) Optical pickup device and optical disk device
US20040081043A1 (en) Optical disk device and optical splitting device
JP4985081B2 (en) Optical head device
JP4336332B2 (en) Optical head and optical disk apparatus
JP2011060405A (en) Optical head
KR100657297B1 (en) Method of radial tilt detection and optical recording and/or reproducing apparatus for realizing it
JP2009151877A (en) Optical pickup device
JP2001093167A (en) Method and device for detecting focus error of optical head
JP2009289355A (en) Optical head device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109