JPH11288726A - Electrode for alkaline storage battery, its manufacture, and alkaline storage battery - Google Patents

Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Info

Publication number
JPH11288726A
JPH11288726A JP10088475A JP8847598A JPH11288726A JP H11288726 A JPH11288726 A JP H11288726A JP 10088475 A JP10088475 A JP 10088475A JP 8847598 A JP8847598 A JP 8847598A JP H11288726 A JPH11288726 A JP H11288726A
Authority
JP
Japan
Prior art keywords
iron
nickel
storage battery
substrate
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10088475A
Other languages
Japanese (ja)
Inventor
Kota Asano
剛太 浅野
Yasushi Nakamura
靖志 中村
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10088475A priority Critical patent/JPH11288726A/en
Publication of JPH11288726A publication Critical patent/JPH11288726A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive iron sintered substrate and an inexpensive alkaline storage battery using it, by improving the iron sintered substrate having three-dimensionally continuous space used for the alkaline storage battery. SOLUTION: This alkaline storage battery is constituted by nickel-plating an iron powder sintered substrate having three-dimensionally continuous space, and filling active material powder into the space part of the substrate 1. Here, nickel-iron alloy layers 3a, 3b are formed on the surface of an iron base portion of the substrate 1, and nickel density is higher than iron density in the alloy layers 3a formed under the nickel-plate layers 2, while the nickel density is lower than the iron density in the alloy layer 3b formed on the iron base portion without the nickel layers 2 thereon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池に
関するもので、とくに三次元的に連続した空間を有する
鉄焼結基体を改良して、この安価な基体及びこれを用い
た安価なアルカリ蓄電池を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery, and more particularly, to an improved iron sintered substrate having a three-dimensionally continuous space, and to provide an inexpensive substrate and an inexpensive alkaline storage battery using the same. To provide.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が急速に進む中、これらの電源として小形且つ軽量で
高エネルギー密度を有する二次電池への要望が高まりつ
つある。市場では、とくに高容量で、安価な二次電池が
要望されている。このため、ニッケル−カドミウム蓄電
池やニッケル−水素蓄電池などに代表されるアルカリ蓄
電池のコストダウンが強く要望されている。
2. Description of the Related Art In recent years, as portable devices and cordless devices have been rapidly advanced, demands for small, lightweight, and high energy density secondary batteries as power sources for these devices have been increasing. In the market, there is a demand for particularly high-capacity and inexpensive secondary batteries. For this reason, there is a strong demand for cost reduction of alkaline storage batteries typified by nickel-cadmium storage batteries and nickel-hydrogen storage batteries.

【0003】アルカリ蓄電池用電極には、三次元的に連
続した空間を有する純ニッケルを主成分としたスポンジ
状基体に活物質を充填したものが使用されている。しか
し、この基体は、それを用いた電池の材料、部品コスト
の約1/4を占める程、高価な材料である。
[0003] As an electrode for an alkaline storage battery, a sponge-like substrate mainly composed of pure nickel having a three-dimensionally continuous space and filled with an active material is used. However, this substrate is an expensive material so as to account for about 1/4 of the material and parts cost of the battery using the substrate.

【0004】このため、アルカリ蓄電池の材料コストを
下げるために上記の純ニッケルの基体の代替えとして、
表面をニッケルメッキした三次元的に連続した空間を有
する鉄粉末焼結基体を用い、これに活物質を充填したも
のが提案されている。
[0004] Therefore, in order to reduce the material cost of the alkaline storage battery, as an alternative to the above-mentioned pure nickel base,
There has been proposed an iron powder sintered substrate having a three-dimensionally continuous space whose surface is nickel-plated and filled with an active material.

【0005】また、この鉄粉末焼結基体の製造方法は、
三次元的に連続した空間を有する合成樹脂芯体、例えば
発泡ポリウレタン樹脂芯体に鉄粉末スラリーを塗布後、
熱処理して発泡ウレタン樹脂芯体を除去するとともに残
った鉄粉末を焼結するものであった。
[0005] Further, the method for producing the iron powder sintered substrate is as follows.
After applying an iron powder slurry to a synthetic resin core having a three-dimensionally continuous space, for example, a foamed polyurethane resin core,
The heat treatment was performed to remove the urethane foam core and to sinter the remaining iron powder.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような鉄粉末焼結基体は、その表面にニッケルメッキを
施しているが、その複雑な3次元構造のため、完全には
鉄素地を被覆できておらず、一部にニッケルメッキの施
されてない部分(ピンホール部分)が存在する。
However, the iron powder sintered substrate as described above has its surface plated with nickel, but because of its complicated three-dimensional structure, it cannot be completely covered with an iron substrate. And there is a portion (pinhole portion) where no nickel plating is applied.

【0007】このため、この鉄粉末焼結基体を用いて構
成したアルカリ蓄電池は、その基体のニッケルメッキの
施されていない部分、すなわち鉄露出部からアルカリ電
解液に鉄が溶出することによって、その電池の初期の充
放電及び長期保存後の電池特性に悪影響を及ぼす。
For this reason, in an alkaline storage battery constituted by using this iron powder sintered substrate, iron is eluted into the alkaline electrolyte from a portion of the substrate not subjected to nickel plating, that is, an exposed portion of iron. It adversely affects the initial charge and discharge of the battery and the battery characteristics after long-term storage.

【0008】また、その電池の電極内に保護膜としての
鉄の酸化物を形成するためには、充電時に酸素過電圧を
低減し充電効率を下げることが必要となるが、このこと
が活物質の利用率を低減することにもなるため、電池と
して十分な出力が出せないという問題があった。
Further, in order to form an oxide of iron as a protective film in the electrode of the battery, it is necessary to reduce the oxygen overvoltage during charging to lower the charging efficiency. There is a problem that the output cannot be sufficiently output as a battery because the utilization factor is also reduced.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、三次元的に連続した空間を有する鉄粉末焼
結基体にニッケルメッキを施し、この基体の空間部分に
活物質粉末を充填したアルカリ蓄電池用電極であって、
この基体の鉄素地の表面部分には鉄とニッケルの合金層
を形成していて、この合金層のうち、ニッケルメッキ層
の下側に形成されたものは鉄よりもニッケルの濃度が高
く、ニッケルメッキ層のない鉄素地部分に形成されたも
のは鉄よりもニッケルの濃度が低いものとした。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an iron powder sintered substrate having a three-dimensionally continuous space, which is subjected to nickel plating. An electrode for a filled alkaline storage battery,
An alloy layer of iron and nickel is formed on a surface portion of the iron base of the base. Of these alloy layers, those formed below the nickel plating layer have a higher nickel concentration than iron, and Those formed on the iron base without the plating layer were assumed to have a lower nickel concentration than iron.

【0010】[0010]

【発明の実施の形態】本発明の請求項1記載の発明は、
前記内容の電極を指向したものであり、とくにこの基体
の鉄素地の表面部分には鉄とニッケルの合金層を形成し
ていて、この合金層のうち、ニッケルメッキ層の下側に
形成されたものは鉄よりもニッケルの濃度が高く、ニッ
ケルメッキ層のない鉄素地部分に形成されたものは鉄よ
りもニッケルの濃度が低いものとした。
BEST MODE FOR CARRYING OUT THE INVENTION
It is directed to the electrode of the above-mentioned contents, and in particular, an alloy layer of iron and nickel is formed on the surface portion of the iron base material of the base, and the alloy layer is formed under the nickel plating layer of the alloy layer. Those having a higher nickel concentration than iron had a lower nickel concentration than iron formed on an iron base without a nickel plating layer.

【0011】これは、鉄粉末焼結基体の表面部分には、
鉄素地とニッケルメッキによって得られたニッケルとが
固溶拡散することによってニッケルメッキ層の有無に関
係なく鉄とニッケルの合金層を形成し、耐食性を向上す
るものとした。そして、この電極を用いてアルカリ蓄電
池を構成すると、この電極を構成している鉄焼結基体の
表面部分が、ニッケルメッキ層または耐食性に富んだ鉄
とニッケルの合金層によってかならず保護されるため、
電池を充放電したり長期に保存しても、鉄焼結基体から
アルカリ電解液に鉄が溶出することがない。
[0011] This is because the surface portion of the iron powder sintered substrate has
An iron-nickel alloy layer is formed regardless of the presence or absence of a nickel plating layer by solid solution diffusion of the iron base and nickel obtained by nickel plating, thereby improving corrosion resistance. When an alkaline storage battery is constructed using this electrode, the surface portion of the iron sintered substrate constituting this electrode is always protected by a nickel plating layer or an alloy layer of iron and nickel having high corrosion resistance.
Even when the battery is charged and discharged or stored for a long period of time, iron does not elute from the sintered iron substrate into the alkaline electrolyte.

【0012】このため、この鉄焼結基体は、ニッケル焼
結基体に代わって、アルカリ蓄電池の電極に用いること
ができ、従来のニッケル粉末焼結基体を用いた電池と同
等の特性を得ることができ、しかも鉄を使用しているの
で安価な基体及びアルカリ蓄電池を提供することができ
る。
For this reason, this iron sintered substrate can be used for an electrode of an alkaline storage battery instead of a nickel sintered substrate, and can obtain the same characteristics as a battery using a conventional nickel powder sintered substrate. In addition, since iron is used, an inexpensive substrate and an alkaline storage battery can be provided.

【0013】請求項2に記載の発明は、前記の電極にお
いて、鉄粉末焼結基体の表面部分に形成するニッケルメ
ッキ層の厚みを規定したものであり、これは、鉄の骨格
径に対して1/10〜1/2の範囲が、鉄素地の保護す
るために好ましいものである。
According to a second aspect of the present invention, in the above-mentioned electrode, the thickness of the nickel plating layer formed on the surface portion of the iron powder sintered substrate is defined, which is defined by the diameter of the iron skeleton. The range of 1/10 to 1/2 is preferable for protecting the iron base.

【0014】請求項5に記載の発明は、三次元的に連続
した空間を有する鉄粉末焼結基体にニッケルメッキを施
し、この基体の空間部分に活物質粉末を充填したアルカ
リ蓄電池用電極の製造方法であって、この基体は、三次
元的に連続した空間を有する鉄粉末焼結基体にその鉄の
骨格径の1/10〜1/2の厚みのニッケルメッキを施
し、この基体を650〜720℃の還元雰囲気下で5〜
20分間加熱することによって、鉄素地表面とニッケル
を互いに固溶拡散させ、鉄焼結粉末の表面部分に鉄とニ
ッケルの合金層を形成するものである。この合金層の状
態は、ニッケルメッキ層の下側に形成されたものは鉄よ
りニッケルの濃度が高く、ニッケルの施されていない鉄
素地部分に形成されたものは鉄よりニッケルの濃度が低
いものが形成されている。このように、ニッケルメッキ
層と鉄素地を利用して耐食性に富んだ鉄とニッケルの合
金層を鉄素地の表面部分に形成して、鉄焼結基体を保護
するものである。
According to a fifth aspect of the present invention, there is provided a method for manufacturing an electrode for an alkaline storage battery in which a nickel powder is applied to a sintered iron powder substrate having a three-dimensionally continuous space, and a space portion of the substrate is filled with an active material powder. In this method, an iron powder sintered base having a three-dimensionally continuous space is nickel-plated to a thickness of 1/10 to 1/2 of the iron skeleton diameter, and the base is coated with 650 to 650. Under a reducing atmosphere at 720 ° C.,
By heating for 20 minutes, the surface of the iron substrate and nickel are dissolved and diffused with each other, and an alloy layer of iron and nickel is formed on the surface portion of the iron sintered powder. The condition of this alloy layer is that the one formed under the nickel plating layer has a higher nickel concentration than iron, and the one formed on the iron base where nickel is not applied has a lower nickel concentration than iron. Are formed. In this way, an iron-nickel alloy layer having high corrosion resistance is formed on the surface of the iron base using the nickel plating layer and the iron base to protect the sintered iron base.

【0015】[0015]

【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0016】まず、本発明の実施例における鉄粉末焼結
体の作製方法を、以下の第1〜第3の工程に分けた。
First, the method for producing the iron powder sintered body in the embodiment of the present invention was divided into the following first to third steps.

【0017】第1の工程として、三次元的に連続した約
600μmの気孔を有するポリウレタン樹脂芯体を用意
した。別途にFe23の微粉末と金属鉄を7:3の比率
(重量比)でフェノール樹脂と混合した。このスラリー
を用意し、これを発泡ポリウレタン樹脂表面に20μm
の厚さで塗布して、90℃で乾燥した。
In the first step, a polyurethane resin core having three-dimensionally continuous pores of about 600 μm was prepared. Separately Fe 2 0 3 powder and metallic iron 7 were mixed with phenolic resin in 3 ratio (weight ratio). Prepare this slurry and apply it to the foamed polyurethane resin surface by 20 μm.
And dried at 90 ° C.

【0018】第2の工程として、この鉄スラリーを表面
に塗布した発泡ポリウレタン樹脂を水素雰囲気で110
0℃,30分間熱処理して、ポリウレタン樹脂芯体を除
去するとともに鉄粉末どうしを焼結して鉄粉末焼結体1
を形成した。このときの、鉄骨格径は約20μmであ
る。
In a second step, the foamed polyurethane resin coated with the iron slurry on its surface is heated to 110
Heat treatment at 0 ° C. for 30 minutes to remove the polyurethane resin core and sinter the iron powders to form a sintered iron powder 1
Was formed. The diameter of the iron skeleton at this time is about 20 μm.

【0019】第3の工程として、この焼結体1を塩酸水
溶液に浸漬して不純物除去の前処理を行い、ついで硫酸
ニッケル浴で10A/dm2の電流密度で5μmのニッ
ケルメッキを施した。そして水洗を行い、この基体を水
素の還元雰囲気下にて700℃で10分間加熱処理を行
い、鉄とニッケルを互いに拡散させることによって、鉄
素地の表面部分に鉄とニッケルの合金層を形成した実施
例の基体aを作製した。この基体表面の模式断面図を図
1に示す。図1中、1は焼結した鉄粉末、2はニッケル
メッキ層、3aはニッケルメッキ層の下側に形成された
鉄とニッケルの合金層、3bはニッケルメッキのない鉄
素地部分に形成された鉄とニッケルの合金層を示す。
As a third step, the sintered body 1 was immersed in an aqueous hydrochloric acid solution to perform a pretreatment for removing impurities, and then subjected to nickel plating of 5 μm in a nickel sulfate bath at a current density of 10 A / dm 2 . Then, the substrate was washed with water, and the substrate was subjected to a heat treatment at 700 ° C. for 10 minutes in a reducing atmosphere of hydrogen to diffuse iron and nickel to each other, thereby forming an alloy layer of iron and nickel on the surface portion of the iron substrate. The substrate a of the example was produced. FIG. 1 shows a schematic sectional view of the substrate surface. In FIG. 1, 1 is a sintered iron powder, 2 is a nickel plating layer, 3a is an alloy layer of iron and nickel formed under the nickel plating layer, and 3b is formed on an iron base without nickel plating. 3 shows an alloy layer of iron and nickel.

【0020】この合金層は、オージェ電子分光装置を用
いて分析することにより、鉄とニッケルの合金層である
ことを確認した。また、この合金層のうち、ニッケルメ
ッキ層の下側に形成されたものは鉄よりもニッケルの濃
度が高く、ニッケルメッキ層のない鉄素地部分に形成さ
れたものは鉄よりもニッケルの濃度が低いことも確認し
た。
This alloy layer was analyzed using an Auger electron spectrometer to confirm that it was an alloy layer of iron and nickel. Also, of this alloy layer, the one formed under the nickel plating layer has a higher nickel concentration than iron, and the one formed on the iron base without the nickel plating layer has a nickel concentration higher than iron. It was confirmed that it was low.

【0021】この鉄とニッケルの合金層は、アルカリ水
溶液中で安定であり、電池の充放電による電位の変化に
よってもアルカリ電解液に溶出することはない。
The alloy layer of iron and nickel is stable in an alkaline aqueous solution, and does not elute into an alkaline electrolyte even when a potential changes due to charging and discharging of a battery.

【0022】上記の基体aを用いて、実施例のアルカリ
蓄電池用正極aを以下の方法で作製した。まず、水酸化
ニッケルを主体とする活物質と水とを混合してペースト
状活物質を作製し、これを基体に充填し、乾燥した後、
プレス成型し、所定の寸法に切断した。ついでリード片
の一端を溶接して、実施例のアルカリ蓄電池用正極aを
作製した。
Using the above-mentioned substrate a, a positive electrode a for an alkaline storage battery of an example was produced by the following method. First, a paste-like active material is prepared by mixing an active material mainly composed of nickel hydroxide and water, and the paste-like active material is filled and dried.
It was press-molded and cut into predetermined dimensions. Then, one end of the lead piece was welded to produce a positive electrode a for an alkaline storage battery of the example.

【0023】別途に、前記同様の三次元的に連続した約
600μmの気孔を有する発泡ポリウレタン樹脂芯体
に、Fe23の微粉末と金属鉄を7:3の比率(重量
比)でフェノール樹脂と混合したスラリーを塗布して、
水素雰囲気中で1100℃,30分間熱処理して、ポリ
ウレタン樹脂芯体を除去するとともに鉄粉末が焼結した
鉄焼結基体を作製した。この鉄焼結基体にも上記と同じ
方法で厚さ5μmのニッケルメッキを施し、500℃で
加熱処理を加え、比較例の鉄焼結基体bを作製した。
[0023] Separately, the foamed polyurethane resin core body having a pore similar three-dimensionally continuous about 600 .mu.m, Fe 2 0 3 powder and metallic iron 7: phenol 3 ratio (by weight) Apply the slurry mixed with the resin,
Heat treatment was performed at 1100 ° C. for 30 minutes in a hydrogen atmosphere to remove the polyurethane resin core and to produce an iron sintered substrate in which iron powder was sintered. This iron sintered substrate was also subjected to nickel plating with a thickness of 5 μm in the same manner as described above, and was subjected to a heat treatment at 500 ° C. to produce an iron sintered substrate b of a comparative example.

【0024】このとき、基体bのニッケルメッキの施さ
れていない部分は、オージェ電子分光装置を用いて分析
したところ、ニッケルと鉄の合金層は形成されておら
ず、金属鉄、つまり鉄素地が露出していることを確認し
た。
At this time, the portion of the substrate b not subjected to nickel plating was analyzed using an Auger electron spectrometer. As a result, no alloy layer of nickel and iron was formed, and metallic iron, that is, It was confirmed that it was exposed.

【0025】この基体bに水酸化ニッケルを主体とする
活物質を充填し、乾燥した後、プレス成型し、所定の寸
法に切断した。この後、リード片の一端を溶接したもの
を比較例のアルカリ蓄電池用正極bを作製した。
The substrate b was filled with an active material mainly composed of nickel hydroxide, dried, pressed, and cut into a predetermined size. Thereafter, one end of the lead piece was welded to produce a positive electrode b for an alkaline storage battery of a comparative example.

【0026】負極4は、酸化カドミウムを主体とするペ
ーストを、鉄にニッケルメッキしたパンチングメタル芯
材に塗着し、乾燥後、水洗、乾燥させ、所定の寸法に切
断して作製した。
The negative electrode 4 was produced by applying a paste mainly composed of cadmium oxide to a punched metal core material obtained by plating nickel on iron, drying, washing with water, drying, and cutting to a predetermined size.

【0027】上記で作製した正極aと負極4と、この両
者間にポリプロピレン製セパレータ5を介在させて渦巻
状に捲回して極板群を構成し、これをニッケルメッキし
た鉄製の電池ケース6に挿入し、このケース6内にアル
カリ電解液を所定量注入後、このケース6の上部を正極
端子を兼ねる封口板7で密閉し、公称容量1400mA
hをもったAサイズの円筒型ニッケル−カドミウム蓄電
池Aを構成した。この電池Aの半裁断面図を図2に示
す。
The positive electrode a and the negative electrode 4 produced as described above, and a polypropylene separator 5 interposed therebetween, are spirally wound to form an electrode plate group, which is formed in a nickel-plated iron battery case 6. After inserting a predetermined amount of the alkaline electrolyte into the case 6, the upper portion of the case 6 is sealed with a sealing plate 7 also serving as a positive electrode terminal, and has a nominal capacity of 1400 mA.
Thus, an A-size cylindrical nickel-cadmium storage battery A having a length h was constructed. FIG. 2 shows a half sectional view of the battery A.

【0028】この正極Aの代わりに、正極bを用いた以
外は、電池Aと同様な構成とした比較例の電池Bを構成
した。
A battery B of a comparative example was constructed in the same manner as the battery A except that the positive electrode b was used instead of the positive electrode A.

【0029】次に実施例の電池Aと比較例の電池Bの正
極活物質の利用率を求めた。この試験方法は、電池A,
Bをそれぞれ、20℃の雰囲気下で、0.1C(140
mA)の電流の大きさで12時間充電を行い、0.2C
(280mA)の電流の大きさで端子電圧が1Vに低下
するまで放電を行ったときの放電容量を求めた。各電池
における正極活物質の充填容量(水酸化ニッケルは29
8mAh/g)に対する上記放電容量の割合を正極活物
質の利用率として求めた。この結果を(表1)に示す。
Next, the utilization rates of the positive electrode active materials of the battery A of the example and the battery B of the comparative example were determined. This test method was performed for Battery A,
B at 20 ° C. in an atmosphere of 0.1 C (140
The battery is charged for 12 hours at a current of
The discharge capacity when discharging was performed at a current magnitude of (280 mA) until the terminal voltage dropped to 1 V was determined. The filling capacity of the positive electrode active material in each battery (nickel hydroxide is 29
The ratio of the discharge capacity to 8 mAh / g) was determined as the utilization rate of the positive electrode active material. The results are shown in (Table 1).

【0030】[0030]

【表1】 [Table 1]

【0031】(表1)に示すように、実施例の電池Aは
正極活物質の利用率が95%以上を示しており、90%
弱の電池Bよりも5%以上向上している。
As shown in Table 1, in the battery A of the example, the utilization rate of the positive electrode active material was 95% or more, and 90% or more.
It is more than 5% higher than the weak battery B.

【0032】次に、20℃雰囲気下で、電池A,Bそれ
ぞれを0.2C(280mA)の電流の大きさで放電し
た状態で保存放置し、ついで充電する方式で2ヵ月毎の
初期容量に対しての充電回復特性を測定した。回復特性
の試験条件は、20℃で、0.1C(140mA)の電
流の大きさで充電を12時間行い、0.2C(280m
A)の大きさの電流で端子電圧が1Vに低下するまで放
電を行ったときの放電容量を求め、当初の公称容量を1
00%としたときの放電容量比を回復特性とした。この
結果を図3に示す。
Next, in a 20 ° C. atmosphere, each of the batteries A and B was discharged and stored at a current of 0.2 C (280 mA) in a state of being discharged, and then was charged. The charge recovery characteristics were measured. The test conditions for the recovery characteristics were as follows: charging was performed at 20 ° C. with a current of 0.1 C (140 mA) for 12 hours;
The discharge capacity at the time of discharging until the terminal voltage is reduced to 1 V with the current of the magnitude of A) is obtained, and the initial nominal capacity is set to 1
The discharge capacity ratio at the time of being set to 00% was taken as the recovery characteristic. The result is shown in FIG.

【0033】図3に示すように、約1年保存しても実施
例の電池Aは当初容量の約90%まで容量が回復してお
り、比較例の電池Bよりも30%以上も回復特性が向上
している。
As shown in FIG. 3, even after being stored for about one year, the capacity of the battery A of the embodiment has recovered to about 90% of the initial capacity, and the recovery characteristics of the battery B of the comparative example are more than 30%. Is improving.

【0034】つづいて、電池A,Bのそれぞれを、40
℃で、1C(1400mA)の電流の大きさで充電を
1.2時間行い、1C(1400mA)の電流の大きさ
で端子電圧が1Vに低下するまで放電を行うことを1サ
イクルとして、それぞれの電池の充放電を繰り返したと
きの初期容量に対する容量維持率を求め、これを電池の
寿命特性とした。その結果を図4に示す。
Subsequently, each of the batteries A and B is
The charging was performed at a current of 1 C (1400 mA) at 1.2 ° C. for 1.2 hours, and the discharging was performed until the terminal voltage decreased to 1 V at a current of 1 C (1400 mA). The capacity retention ratio with respect to the initial capacity when the battery was repeatedly charged and discharged was determined, and this was taken as the battery life characteristic. FIG. 4 shows the results.

【0035】図4に示すように、充放電を800サイク
ル行った時点でも、実施例の電池Aは初期容量の90%
の容量を確保している。しかし、電池Bは充放電を10
0サイクル行った時点で、すでに初期容量の80%にま
で容量が低下しており、さらに充放電を800サイクル
まで行った時点では初期容量の約30%まで大幅に低下
している。
As shown in FIG. 4, even after 800 cycles of charge / discharge, the battery A of the embodiment had 90% of the initial capacity.
Capacity is secured. However, battery B has 10 charge / discharge cycles.
The capacity has already been reduced to 80% of the initial capacity when 0 cycles have been performed, and has significantly decreased to about 30% of the initial capacity when charging and discharging have been performed up to 800 cycles.

【0036】この理由としては、比較例の電池Bは、そ
の基体bにはニッケルメッキの施されていない部分、つ
まり鉄素地の露出部分があり、この部分が電池内部で直
接アルカリ電解液に触れ、充放電時に容易に鉄がアルカ
リ電解液中に溶出し、さらに正極の活物質中に取り込ま
れ、絶縁物質であるFeOOHが形成される。そのた
め、電池Bは、正極活物質の利用率の低下および酸素過
電圧低下による充電効率の低下を招き、その結果、放電
特性、寿命特性、及び放電放置した後の容量回復特性が
電池Aよりも大きく低下したものである。
The reason for this is that, in the battery B of the comparative example, the base b has a portion not subjected to nickel plating, that is, an exposed portion of the iron base, and this portion is directly exposed to the alkaline electrolyte inside the battery. At the time of charge and discharge, iron is easily eluted into the alkaline electrolyte and further taken into the active material of the positive electrode to form FeOOH, which is an insulating material. Therefore, the battery B causes a decrease in the utilization efficiency of the positive electrode active material and a decrease in the charging efficiency due to a decrease in the oxygen overvoltage. As a result, the discharge characteristics, the life characteristics, and the capacity recovery characteristics after the discharge standing are larger than those of the battery A. It has fallen.

【0037】これに対して、電池Aは、鉄焼結基体表面
全ての部分、すなわちニッケルメッキ層の下側とニッケ
ルメッキの施されていない鉄素地部分にも、耐食性の富
んだ鉄とニッケルの合金層が形成されているために、電
池の電位変化に左右されることなく、電池Aは、その基
体の鉄素地がアルカリ電解液中に溶出しないために、正
極活物質の利用率の低下および酸素過電圧低下による充
電効率の低下はほとんどなく、電池としての放電特性、
寿命特性及び放電放置した後の容量回復特性がよくなっ
たものである。
On the other hand, in the battery A, all parts of the surface of the iron sintered substrate, that is, the lower side of the nickel plating layer and the iron base part on which the nickel plating is not applied are also provided with the highly corrosion-resistant iron and nickel. Since the alloy layer is formed, the battery A is not affected by a change in the potential of the battery, and since the iron base of the base does not elute into the alkaline electrolyte, the utilization rate of the positive electrode active material decreases and There is almost no decrease in charging efficiency due to a decrease in oxygen overvoltage, and discharge characteristics as a battery,
The life characteristics and the capacity recovery characteristics after being left for discharge are improved.

【0038】上記の実施例では、その基体の鉄焼結体の
表面部分に、鉄の骨格径20μmに対して約5μmの厚
みのニッケルメッキ層を形成した。ここで、鉄とニッケ
ルを相互に拡散させて、耐食性に富んだ鉄とニッケルの
合金層を鉄焼結基体の表面部分に十分な厚みに形成する
には、当初のニッケルメッキ層の厚みとしては、鉄の骨
格径に対して1/10〜1/2の範囲に保つことが好ま
しい。
In the above-described embodiment, a nickel plating layer having a thickness of about 5 μm was formed on the surface of the iron sintered body as the base body with respect to the iron skeleton diameter of 20 μm. Here, in order to diffuse iron and nickel to each other and form an alloy layer of iron and nickel having a high corrosion resistance to a sufficient thickness on the surface portion of the iron sintered substrate, the thickness of the initial nickel plating layer is as follows. It is preferable to keep the iron skeleton diameter in the range of 1/10 to 1/2.

【0039】また、上記の基体aは、三次元的に連続し
た空間を有する鉄粉末焼結基体にニッケルメッキを施
し、この基体を700℃の水素の還元雰囲気下で10分
間加熱することによって鉄素地の表面部分に鉄とニッケ
ルの合金層を形成した。発明者らの検討によれば、ニッ
ケルメッキ後の基体を650〜720℃の還元雰囲気下
で5〜20分間の範囲で加熱することによって、鉄素地
の表面部分に実施例とほぼ同様な鉄とニッケルの合金層
を形成することができた。
The above-mentioned substrate a is formed by applying nickel plating to a sintered iron powder substrate having a three-dimensionally continuous space, and heating the substrate in a reducing atmosphere of hydrogen at 700 ° C. for 10 minutes. An alloy layer of iron and nickel was formed on the surface of the substrate. According to the study of the inventors, by heating the substrate after nickel plating in a reducing atmosphere at 650 to 720 ° C. for 5 to 20 minutes, the surface portion of the iron base is made of substantially the same iron as the example. A nickel alloy layer could be formed.

【0040】さらに、実施例では、基体aを用いて正極
Aを作製したが、負極に基体aを用いてもよく、さらに
正極と負極の両方の基体として基体aを用いてもよい。
Further, in the examples, the positive electrode A was produced using the substrate a. However, the substrate a may be used as the negative electrode, and the substrate a may be used as both the positive electrode and the negative electrode.

【0041】[0041]

【発明の効果】以上のように本発明は、三次元的に連続
した空間を有する鉄粉末焼結基体にニッケルメッキを施
し、この基体の空間部分に活物質粉末を充填したアルカ
リ蓄電池用電極であって、前記基体の鉄素地の表面部分
には鉄とニッケルの合金層を形成していて、この合金層
のうち、ニッケルメッキ層の下側に形成されたものは鉄
よりもニッケルの濃度が高く、ニッケルメッキ層のない
鉄素地部分に形成されたものは鉄よりもニッケルの濃度
が低いものとした。この電極を用いて、アルカリ蓄電池
を構成することによって、その中の基体はアルカリ電解
液に接触しても鉄が溶出しないため、良好な正極活物質
の利用率、および長期間にわたる信頼性の向上を図った
安価なアルカリ蓄電池を提供することができる。
As described above, the present invention relates to an electrode for an alkaline storage battery in which a nickel powder is applied to a sintered iron powder substrate having a three-dimensionally continuous space and a space portion of the substrate is filled with an active material powder. An alloy layer of iron and nickel is formed on the surface portion of the iron base of the base. Of these alloy layers, those formed under the nickel plating layer have a nickel concentration higher than that of iron. Those formed on an iron base portion which was high and had no nickel plating layer were assumed to have a lower nickel concentration than iron. By constructing an alkaline storage battery using these electrodes, iron does not elute from the substrate in contact with the alkaline electrolyte, so that a good utilization rate of the positive electrode active material and an improvement in reliability over a long period of time are obtained. Thus, an inexpensive alkaline storage battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における鉄焼結基体の表面を示
す模式断面図
FIG. 1 is a schematic cross-sectional view showing a surface of a sintered iron substrate according to an embodiment of the present invention.

【図2】同ニッケル−カドミウム蓄電池の半裁断面図FIG. 2 is a half sectional view of the nickel-cadmium storage battery.

【図3】同電池の保存期間と容量回復率との関係を示す
FIG. 3 is a diagram showing a relationship between a storage period and a capacity recovery rate of the battery.

【図4】同電池の充放電サイクルと容量維持率との関係
を示す図
FIG. 4 is a diagram showing a relationship between a charge / discharge cycle and a capacity retention ratio of the battery.

【符号の説明】[Explanation of symbols]

1 鉄粉末焼結体 2 ニッケルメッキ層 3a 鉄とニッケルの合金層 3b 鉄とニッケルの合金層 4 負極 5 セパレータ 6 電池ケース 7 封口板 DESCRIPTION OF SYMBOLS 1 Iron powder sintered body 2 Nickel plating layer 3a Iron-nickel alloy layer 3b Iron-nickel alloy layer 4 Negative electrode 5 Separator 6 Battery case 7 Sealing plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】三次元的に連続した空間を有する鉄粉末焼
結基体にニッケルメッキを施し、この基体の空間部分に
活物質粉末を充填したアルカリ蓄電池用電極であって、
前記基体の鉄素地の表面部分には鉄とニッケルの合金層
を形成していて、この合金層のうち、ニッケルメッキ層
の下側に形成されたものは鉄よりもニッケルの濃度が高
く、ニッケルメッキ層のない鉄素地部分に形成されたも
のは鉄よりもニッケルの濃度が低いアルカリ蓄電池用電
極。
1. An electrode for an alkaline storage battery in which a nickel powder is applied to a sintered iron powder base having a three-dimensionally continuous space and a space portion of the base is filled with an active material powder,
An alloy layer of iron and nickel is formed on the surface portion of the iron base of the base, and among these alloy layers, those formed under the nickel plating layer have a higher nickel concentration than iron, and The electrode formed on the iron base without the plating layer is an electrode for an alkaline storage battery having a lower nickel concentration than iron.
【請求項2】前記ニッケルメッキ層の厚みは、鉄の骨格
径に対して1/10〜1/2である請求項1記載のアル
カリ蓄電池用電極。
2. The electrode for an alkaline storage battery according to claim 1, wherein the thickness of the nickel plating layer is 1/10 to 1/2 with respect to the skeleton diameter of iron.
【請求項3】ニッケル正極と、負極と、セパレータと、
アルカリ電解液とから構成したアルカリ蓄電池であっ
て、前記正極および/または負極は、三次元的に連続し
た空間を有する鉄粉末焼結基体にニッケルメッキを施
し、その空間部分に活物質粉末を充填した電極であっ
て、前記基体の鉄素地の表面部分には鉄とニッケルの合
金層を形成していて、この合金層のうち、ニッケルメッ
キ層の下側に形成されたものは鉄よりもニッケルの濃度
が高く、ニッケルメッキ層のない部分の上部に形成され
たものは鉄よりもニッケルの濃度が低いアルカリ蓄電
池。
3. A nickel positive electrode, a negative electrode, a separator,
An alkaline storage battery comprising: an alkaline electrolyte; wherein the positive electrode and / or the negative electrode are formed by applying nickel plating to an iron powder sintered substrate having a three-dimensionally continuous space, and filling the space with an active material powder. Electrode, wherein an alloy layer of iron and nickel is formed on a surface portion of the iron base of the base, and an alloy layer formed under the nickel plating layer is more nickel than iron. An alkaline storage battery having a high concentration of nickel and having a nickel concentration lower than that of iron formed on a portion having no nickel plating layer.
【請求項4】前記ニッケルメッキ層の厚みは、鉄の骨格
径に対して1/10〜1/2である請求項3記載のアル
カリ蓄電池用電極。
4. The electrode for an alkaline storage battery according to claim 3, wherein the thickness of the nickel plating layer is 1/10 to 1/2 with respect to the iron skeleton diameter.
【請求項5】三次元的に連続した空間を有する鉄粉末焼
結基体にニッケルメッキを施し、この基体の空間部分に
活物質粉末を充填したアルカリ蓄電池用電極の製造方法
であって、前記基体は、三次元的に連続した空間を有す
る鉄粉末焼結基体にその鉄の骨格径の1/10〜1/2
の厚みのニッケルメッキを施し、この基体を650〜7
20℃の還元雰囲気下で5〜20分間加熱することによ
って鉄素地の表面部分に鉄とニッケルの合金層を形成す
るアルカリ蓄電池用電極の製造方法。
5. A method for producing an electrode for an alkaline storage battery in which a nickel powder is applied to a sintered iron powder substrate having a three-dimensionally continuous space and a space portion of the substrate is filled with an active material powder. Is an iron powder sintered substrate having a three-dimensionally continuous space, which is 1/10 to 1/2 of the iron skeleton diameter.
This substrate is subjected to nickel plating having a thickness of
A method for producing an electrode for an alkaline storage battery, wherein an alloy layer of iron and nickel is formed on a surface portion of an iron substrate by heating in a reducing atmosphere at 20 ° C. for 5 to 20 minutes.
JP10088475A 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery Pending JPH11288726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10088475A JPH11288726A (en) 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10088475A JPH11288726A (en) 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11288726A true JPH11288726A (en) 1999-10-19

Family

ID=13943812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10088475A Pending JPH11288726A (en) 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11288726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
US9748560B2 (en) 2011-07-28 2017-08-29 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Similar Documents

Publication Publication Date Title
JP5119577B2 (en) Nickel metal hydride battery
JPS6157661B2 (en)
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JP3972417B2 (en) Sealed metal oxide-zinc storage battery and manufacturing method thereof
JP2959560B1 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP6719101B2 (en) Nickel-hydrogen battery and manufacturing method thereof
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JPH11288726A (en) Electrode for alkaline storage battery, its manufacture, and alkaline storage battery
JP3831535B2 (en) Secondary battery
JPH11288725A (en) Electrode for alkaline storage battery, its manufacture, and alkaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
US6803148B2 (en) Nickel positive electrode plate and akaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH05283071A (en) Activation of metal hydride storage battery
JP2008181825A (en) Nickel electrode for alkaline cell
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
US20130122352A1 (en) Sintered nickel positive electrode, method for manufacturing the same, and alkaline storage battery including the sintered nickel positive electrode
JP4626130B2 (en) Nickel-hydrogen storage battery
JP3267156B2 (en) Nickel hydride rechargeable battery
JP3371734B2 (en) Method for producing electrode for alkaline storage battery
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP2589750B2 (en) Nickel cadmium storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207