JP3371734B2 - Method for producing electrode for alkaline storage battery - Google Patents

Method for producing electrode for alkaline storage battery

Info

Publication number
JP3371734B2
JP3371734B2 JP03159697A JP3159697A JP3371734B2 JP 3371734 B2 JP3371734 B2 JP 3371734B2 JP 03159697 A JP03159697 A JP 03159697A JP 3159697 A JP3159697 A JP 3159697A JP 3371734 B2 JP3371734 B2 JP 3371734B2
Authority
JP
Japan
Prior art keywords
iron
substrate
skeleton
electrode plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03159697A
Other languages
Japanese (ja)
Other versions
JPH10228903A (en
Inventor
剛太 浅野
健一 青木
始 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP03159697A priority Critical patent/JP3371734B2/en
Publication of JPH10228903A publication Critical patent/JPH10228903A/en
Application granted granted Critical
Publication of JP3371734B2 publication Critical patent/JP3371734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、アルカリ蓄電池用
電極に関するものであり、特に三次元的に連続した気孔
をもつ鉄焼結体を改良して、その表面をニッケルで被覆
して基体を構成し、この基体に活物質を充填した安価な
アルカリ蓄電池用電極を提供するものである。 【0002】 【従来の技術】アルカリ蓄電池用電極には、三次元的に
連続した気孔をもつ純ニッケルを主成分とした基体に活
物質を充填したものが使用されている。しかし、この基
体は、それを用いた電池の材料、部品全コストの約1/
4を占める程、高価な材料である。 【0003】このため、アルカリ蓄電池用電極の材料コ
ストを下げるために上記の純ニッケルの基体の代替とし
て、表面をニッケルメッキした三次元的に連続した気孔
をもつ鉄焼結体の基体を用い、これに活物質を充填した
ものが提案されている。 【0004】この鉄焼結体の基体の製造方法は、三次元
的に連続した気孔をもつ合成樹脂芯体、例えば発泡ウレ
タン樹脂芯体に鉄粉末スラリーを塗布後、熱処理して発
泡ウレタン樹脂芯体を除去するとともに鉄相互を焼結
し、ついでこの焼結体をニッケルメッキするものであ
る。 【0005】 【発明が解決しようとする課題】しかしながら、上記の
三次元的に気孔を持つ合成樹脂芯体は、その気孔が外部
は大きく、内部は小さくなるという特徴があるので、そ
の骨格は内部が細く、外部が太くなる。このため、鉄粉
末スラリーをこの合成樹脂芯体に塗布し、焼結処理して
合成樹脂芯体を除去して作製された鉄焼結体の骨格は、
合成樹脂芯体の骨格に沿った形になり、外部は太く、内
部は細い状態になってしまう。また、その表面は、鉄粉
末が焼結したものなので、鉄粉末間での凹凸が生じる。 【0006】このように鉄焼結体は、その内外部の骨格
に太さの違いやその表面に凹凸があるために、鉄焼結体
全体を通じてほぼ等しい厚さでニッケルメッキをするに
は、数回メッキを繰り返す必要があり、生産性が低下す
るという問題があった。 【0007】もしニッケルメッキを数回繰り返さないで
一回だけすると、鉄焼結体にニッケルメッキが施されて
いない部分が生じ、この鉄の露出部分がアルカリ電解液
に触れることになる。 【0008】この場合、通常電池として使用される正極
電位であれば問題はない。しかし、電池の保存による自
己放電、または電池使用機器のリーク電流等により電池
電圧が低下し、正極電位が−0.8V以下に移行する
と、鉄がHFeO2 -となってアルカリ電解液中に溶出す
る。これによって、電池特性に悪影響を及ぼす。 【0009】また、上記基体に活物質を充填した電極を
所定の寸法に切断し、例えば正極板として用いてアルカ
リ蓄電池を構成する場合、この正極板と負極板と、この
両者間にセパレータを介して渦巻状に巻回して極板群を
構成するときに、正極板に引張や曲げなどの力が加わ
り、その基体に部分的な破断が発生し、その基体の電気
抵抗を上昇させ、その結果、電池の内部抵抗が上昇する
という問題がある。 【0010】これは、上記の鉄焼結基体の骨格に太い部
分と細い部分があり、この細い部分は、機械的強度が低
く、正極板に引張や曲げの力が加わったときに破断する
ことがあるためである。 【0011】本発明は、上記課題を解決するものであ
り、三次元的に連続した気孔をもつ鉄焼結体を改良し
て、その表面をニッケルで被覆して基体を構成し、この
基体に活物質を充填した安価なアルカリ蓄電池用電極を
提供することを目的とする。 【0012】 【課題を解決するための手段】本発明は、三次元的に連
続した気孔をもつ基体に活物質を充填するアルカリ蓄電
池用電極の製造方法であって、その気体は、鉄粉末の焼
結体から構成されていて、その気孔を形成する骨格部分
が基体の厚み全体を通じてほぼ等しい太さであり、かつ
その表面はニッケルで被覆されている製造法とした。 【0013】 【発明の実施の形態】本発明は、前記内容としたもので
あり、この鉄焼結基体は、その気孔を形成する骨格部分
がその基体の厚み全体を通じてほぼ等しい太さであり、
このようにその基体の骨格部分には、強度の低い細い骨
格部分がなく、これを用いて極板群を構成してもその基
体に破断が生じることがない。したがって、その基体の
破断による電気抵抗の上昇を抑制することができる。 【0014】また、この鉄焼結基体は、その骨格部分が
その基体全体を通じてほぼ等しい太さであるので、その
気孔を形成する骨格が基体全体を通じてほぼ等しい厚さ
でニッケル被覆でき、アルカリ電解液との接触を防止で
きる。 【0015】請求項記載の発明は、三次元的に連続し
た気孔をもつ基体に活物質を充填した電極の製造法であ
って、前記基体は、三次元的に連続した気孔をもつ合成
樹脂芯体に鉄粉末のスラリーを塗布し、乾燥した後、鉄
アルコキシドのアルコール溶液に浸漬、乾燥して前記合
成樹脂芯体に施した鉄骨格としての外形寸法をほぼ等し
くし、かつその表面を平滑状態にした後、熱処理して前
記合成樹脂芯体を除去するとともに鉄相互を焼結し、つ
いでこの焼結体をニッケルで被覆した後に、活物質を充
填するアルカリ蓄電池用電極の製造方法としたものであ
る。 【0016】この場合、合成樹脂芯体に鉄粉末のスラリ
ーを塗布し、乾燥して、その合成樹脂芯体に施した鉄骨
格は、外部が太く、内部は細い状態であるが、鉄アルコ
キシド溶液に浸漬して乾燥することで、特にこの内部の
細い骨格部分に鉄が多く付着して、その鉄骨格の外径寸
法をほぼ等しくすることができる。また、合成樹脂芯体
に施した鉄骨格は、鉄粉末によって形成されているので
その表面に凹凸部分が生じるが、鉄アルコキシド溶液に
浸漬して乾燥することでその表面を平滑にできる。 【0017】そして、この鉄骨格を施した合成樹脂芯体
を熱処理して、この合成樹脂芯体を除去するとともに鉄
相互を焼結し、鉄焼結体が構成される。この鉄焼結体の
骨格は、合成樹脂芯体を除去する前の形状が残り、それ
は焼結体の厚み全体を通じてほぼ等しい太さで、かつそ
の表面は平滑状態にある。したがって、この鉄焼結体の
表面をニッケルで均一に被覆した基体にでき、これに活
物質を充填すれば安価なアルカリ蓄電池用電極を簡単に
構成できる。 【0018】 【実施例】次に、本発明の具体例を説明する。 【0019】まず、鉄焼結体の作製を以下の第1〜第4
で説明する。 【0020】第1に、三次元的に連続した約500μm
の気孔を有するポリウレタン樹脂芯体1をFe23の微
粉末とフェノール樹脂の混合スラリー2中に投入し、ポ
リウレタン樹脂1表面に鉄粉末スラリー2を塗布し、9
0℃で乾燥した。 【0021】第2に、ポリウレタン樹脂1に鉄粉末スラ
リー2を塗布したものを鉄アルコキシド3溶液中に浸漬
し、90℃で乾燥することを2回繰り返した。このとき
の第1回目の鉄アルコキシド付着部を3aとし、同じく
第2回目を3bとした。このポリウレタン樹脂1に鉄粉
末スラリー2と鉄アルコキシド3の付着によって施した
鉄骨格の状態の模式断面図を図1に示す。 【0022】この図1に示すように鉄粉末スラリー2を
塗布したポリウレタン樹脂芯体1の骨格に鉄アルコキシ
ド3を付着することによって、細い部分1aに鉄アルコ
キシド3aと3bが付着し、太い部分1bの太さとほぼ
等しい太さにでき、かつその表面を平滑にすることがで
きる。 【0023】このときの鉄アルコキシド3溶液は、Fe
(NO33・9H2Oと、2−メトキシエタノール(C
3OCH2CH2OH)と2,4−ペンタジオン(CH3
COCH2COCH3)との混合溶液をモル比で2:20
の割合で30℃の恒温槽中で2時間攪拌し、調整した。 【0024】第3に、第2の鉄骨格を表面に形成された
ポリウレタン樹脂1を1400℃で30分間熱処理して
ポリウレタン樹脂芯体1を除去するとともに鉄粉末2と
鉄アルコキシド3が焼結して鉄焼結体4が形成される。
なお、この鉄焼結体4は、外径寸法がほぼ等しく、かつ
その表面は平滑状態である。 【0025】第4に、この鉄焼結体4に硫酸ニッケル浴
を用いて電流密度10A/dm2でニッケルメッキ5を
施して基体6を作製した。この基体6の骨格部分の模式
断面図を図2に示す。なお、このニッケルメッキの回数
は、1回とした。 【0026】この基体6を用いて本発明のアルカリ蓄電
池用正極板7を作製する。水酸化ニッケルを主体とする
活物質と水とを混合してペースト状活物質を作製し、こ
れを基体6に充填し、乾燥した後、プレス成型し、所定
の寸法に切断し、リード片の一端をスポット溶接して本
発明のアルカリ蓄電池用正極板7を作製した。 【0027】比較のため従来の基体8も作製した。これ
は三次元的に連続した約500μmの気孔を有するポリ
ウレタン樹脂芯体1をFe23の微粉末とフェノール樹
脂の混合スラリー2中に投入し、ポリウレタン樹脂1表
面に鉄粉末スラリー2を塗布し、1400℃で30分間
熱処理してポリウレタン樹脂芯体1を除去するとともに
鉄相互を焼結させて鉄焼結体9を作製した。この鉄焼結
体9に上記と同じ方法でニッケルメッキ10をして従来
の基体8を作製した。この骨格部分の模式断面図を図3
に示す。 【0028】この基体8に上記で作製したペースト状活
物質を充填し、乾燥した後、プレス成型し、所定の寸法
に切断し、リード片をスポット溶接したものを従来の正
極板11とした。 【0029】上記で作製した本発明の正極板7を用い
て、ニッケル−カドミウム蓄電池Aを構成した。負極板
12は、酸化カドミウムを主体とする活物質ペーストを
ニッケルメッキした鉄製のパンチングメタル芯材に塗着
し、乾燥した後、アルカリ溶液に浸漬、水洗、乾燥さ
せ、所定の寸法に切断して作製した。この正極板7と負
極板12と、この両者間にポリプロピレン製セパレータ
13を介して渦巻状に巻回して極板群を構成し、これを
鉄製の電池ケース14に挿入し、アルカリ電解液を注入
した後、正極端子を兼ねる封口板15で密閉し、公称容
量100mAhの4/5Aサイズの円筒型ニッケル−
カドミウム蓄電池Aを構成し、その説明図を図4に示
す。また、正極板7の代わりに正極板11を使用して同
様な構成とした電池を電池Bとした。 【0030】次に本発明の実施例による基体6と従来の
基体8の極板群構成前を初期の基体抵抗として測定した
結果を(表1)に示す。 【0031】 【表1】 【0032】この基体抵抗の測定方法としては、その基
体を1×10cmの寸法に切断し、その基体端部より電
流1Aを流したときの基体両端の電圧を測定し、このと
きの電気抵抗を算出したものを初期の基体抵抗とした。
また、正極板と、負極板と、セパレータとからなる渦巻
状極板群を構成した後、正極板を取り出し、この正極板
を酢酸溶液で溶解し、残った基体から上記方法と同様に
基体抵抗を測定した結果を極板群構成後の基体抵抗と
し、同じく(表1)に示す。 【0033】(表1)に示すように、本発明の実施例に
おける基体6は、従来の基体8よりも初期の基体抵抗が
低く、また極板群構成後の基体抵抗の上昇も低くなって
いる。図3に示すように従来の鉄焼結体9の骨格部分
は、焼結して除去される前のポリウレタン樹脂芯体の表
面形状に沿うために、太い部分9aと細い部分9bが形
成される。この細い部分9bの基体抵抗が太い部分9a
より高くなるので、従来の基体8の抵抗は本発明におけ
る基体6の抵抗より50mΩも高くなる。また、極板群
構成時に、図3に示すような基体8の細い部分9bが破
断することがあるので、(表1)に示すように従来の基
体8は極板群構成後のその基体抵抗は初期のそれの3倍
になっている。 【0034】これに対して本発明における基体6は、図
1に示すようにポリウレタン樹脂芯体に鉄粉末スラリー
を塗布した後に、さらに鉄アルコキシドを付着させるこ
とによって、特にその骨格の細い部分を太くして、太い
部分とほぼ等しい太さに骨格を形成し、焼結処理してポ
リウレタン樹脂を除去するので、図2に示すように鉄焼
結体4は細い部分がなく、ほぼ等しい太さになり、また
その表面は、鉄粉末の凹凸部分を鉄アルコキシドによっ
て平滑に形成されるので、ニッケルメッキ5も平滑に行
える。このため、本発明における基体6の初期の抵抗
は、従来の基体8のそれよりも50mΩも低くなってい
る。 【0035】また、本発明における基体6は細い骨格部
分がなく等しい太さの骨格を形成しているために極板群
を構成しても鉄焼結基体6の骨格部分が破断することが
なく、極板群構成後の基体6の抵抗は、60mΩであ
り、初期のそれより10mΩだけ高くなるだけで、ほと
んど上昇していない。 【0036】次に、本発明の実施例による正極板7を用
いて構成した電池Aと従来の正極板9を用いて構成した
電池Bの内部抵抗を測定し、その結果を(表1)に示
す。この(表1)に示すように電池Aの方が電池Bより
も内部抵抗は低くなっている。これは、上記で説明した
極板群構成後のそれぞれの基体の抵抗がそれぞれの構成
した電池に連動しているためである。 【0037】さらに、上記電池A,Bの過放電後の容量
回復性を以下のように調べた。まず、初期の放電容量を
測定した電池A,Bをそれぞれ10kΩ相当の抵抗をつ
ないで放電したまま、3ヵ月間、温度65℃の雰囲気に
放置した。これを温度20℃、充電電流1Cで1.5時
間充電した後、放電電流1Cで1.0Vまで放電し、そ
の放電容量を測定し、容量回復性を調べた。その結果、
電池Aは、容量回復性が97%であったの対し、電池B
は、85%しか回復しなかった。 【0038】電池Bは、従来の正極板11を用いている
ので、その基体8は極板群構成時にその骨格の一部に破
断が生じる。これに加えて鉄粉末の焼結した間に凹凸が
あるため一回のニッケルメッキだけではむらがあり、特
にその破断部で鉄が露出し、これがアルカリ電解液に溶
けて電池特性に悪影響を及ぼすために容量回復性が85
%と悪くなったものである。 【0039】電池Aは、本発明の正極板7を用いている
ので、その基体6は極板群構成時にその骨格に破断がな
く、またその鉄焼結体4の表面は平滑であるので、この
鉄焼結体4を用いて構成する基体6は一回のニッケルメ
ッキだけでもピンホール等のないニッケルメッキができ
る。このため、電池Aは、過放電しても鉄の溶出がほと
んど起こらなく、その容量回復性が97%と従来より優
れたものとなった。 【0040】 【発明の効果】以上のように本発明によれば、電極基体
は、その気孔を形成する骨格部分が基体の厚み全体を通
じてほぼ等しい太さであり、かつその表面はニッケルで
被覆されているものとしたことで、その基体は従来より
も低い電気抵抗が得られ、かつ従来よりも強度が強くな
る。 【0041】このため、その基体を用いてアルカリ蓄電
池用電極として、例えば正極板を構成することにより、
負極板とセパレータとで極板群を構成しても、その基体
の破断がなく、かつその電気抵抗の上昇も抑制できる。
しかもこの基体はニッケルの代わりに、ニッケルを表面
に被覆した鉄焼結体の基体を用いて構成しているので安
価なアルカリ蓄電池用電極を提供である。 【0042】また、この電極を用いてアルカリ蓄電池を
構成しても、その電池の過放電後の容量回復性も優れた
ものが得られる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for an alkaline storage battery, and more particularly to an improved iron sintered body having three-dimensionally continuous pores. An object of the present invention is to provide an inexpensive electrode for an alkaline storage battery in which a surface is coated with nickel to form a substrate, and the substrate is filled with an active material. 2. Description of the Related Art As an electrode for an alkaline storage battery, an electrode obtained by filling an active material into a base material composed of pure nickel having three-dimensionally continuous pores as a main component is used. However, this base material is about 1/100 of the material and parts cost of the battery using it.
The more occupied, the more expensive the material. [0003] Therefore, in order to reduce the material cost of the electrode for an alkaline storage battery, as an alternative to the above-mentioned pure nickel substrate, a substrate of a three-dimensionally continuous pore-formed iron sintered body having a nickel-plated surface is used. One in which an active material is filled is proposed. [0004] This method of manufacturing a substrate of an iron sintered body is based on a method in which an iron powder slurry is applied to a synthetic resin core having three-dimensionally continuous pores, for example, a urethane foam resin core, and then heat-treated. The body is removed and the iron is sintered together, and then the sintered body is plated with nickel. [0005] However, the above-mentioned synthetic resin core having three-dimensional pores is characterized in that the pores are large on the outside and small on the inside. But thin and thick outside. For this reason, the skeleton of the iron sintered body produced by applying the iron powder slurry to this synthetic resin core, sintering and removing the synthetic resin core,
The shape follows the skeleton of the synthetic resin core, and the outside becomes thick and the inside becomes thin. In addition, since the surface of the iron powder is a sintered product of the iron powder, unevenness occurs between the iron powders. As described above, since the iron sintered body has a difference in thickness between its inner and outer skeletons and irregularities on its surface, it is necessary to perform nickel plating with a substantially equal thickness throughout the entire iron sintered body. It is necessary to repeat plating several times, and there is a problem that productivity is reduced. If the nickel plating is repeated only once instead of several times, a portion where the nickel plating is not applied to the iron sintered body occurs, and the exposed portion of the iron comes into contact with the alkaline electrolyte. In this case, there is no problem as long as the potential of the positive electrode is normally used as a battery. However, when the battery voltage decreases due to self-discharge due to storage of the battery or a leak current of a battery-using device, and the positive electrode potential shifts to −0.8 V or less, iron becomes HFeO 2 and elutes into the alkaline electrolyte. I do. This has an adverse effect on battery characteristics. Further, when an electrode in which the base is filled with an active material is cut into a predetermined size and used as, for example, a positive electrode plate to form an alkaline storage battery, a separator is interposed between the positive electrode plate and the negative electrode plate. When forming a group of electrodes by spirally winding them, a force such as tension or bending is applied to the positive electrode plate, causing partial breakage of the base, increasing the electrical resistance of the base, and as a result, However, there is a problem that the internal resistance of the battery increases. [0010] This is because the skeleton of the iron sintered substrate has a thick portion and a thin portion, and the thin portion has low mechanical strength and is broken when a tensile or bending force is applied to the positive electrode plate. Because there is. The present invention has been made to solve the above-mentioned problems, and an iron sintered body having three-dimensionally continuous pores is improved, and its surface is coated with nickel to form a base. An object is to provide an inexpensive electrode for an alkaline storage battery filled with an active material. The present invention is a method for manufacturing an electrode for an alkaline storage battery in which a substrate having three-dimensionally continuous pores is filled with an active material, wherein the gas is an iron powder. The manufacturing method was made of a sintered body, in which the skeleton portions forming the pores had substantially the same thickness throughout the entire thickness of the substrate, and the surface was coated with nickel. [0013] DETAILED DESCRIPTION OF THE INVENTION This onset bright is obtained by said contents, the iron sintered substrate has a skeleton portion forming the pores be approximately equal thickness throughout the thickness of the substrate ,
As described above, the skeleton portion of the base does not have a thin skeleton portion having low strength, and even if the electrode plate group is formed using the skeleton portion, the base does not break. Therefore, an increase in electric resistance due to the breakage of the base can be suppressed. In addition, since the skeleton portion of the iron sintered substrate has a substantially equal thickness throughout the entire substrate, the skeleton forming the pores can be nickel-coated with a substantially equal thickness throughout the entire substrate, and an alkaline electrolyte can be formed. Contact can be prevented. According to the first aspect of the present invention, there is provided a method of manufacturing an electrode in which a substrate having three-dimensionally continuous pores is filled with an active material, wherein the substrate is made of a synthetic resin having three-dimensionally continuous pores. The core powder is coated with a slurry of iron powder, dried, then immersed in an alcohol solution of iron alkoxide, dried to make the outer dimensions of the iron skeleton applied to the synthetic resin core substantially equal, and the surface thereof is smoothed. After that, the heat treatment was performed to remove the synthetic resin core, sinter the iron, and then coat the sintered body with nickel, and then fill the active material with a method for producing an electrode for an alkaline storage battery. Things. In this case, a slurry of iron powder is applied to the synthetic resin core, dried, and the iron skeleton applied to the synthetic resin core has a thick outer portion and a thinner inner portion. By drying by dipping in, the iron skeleton adheres particularly to the thin skeleton inside, and the outer diameter of the iron skeleton can be made substantially equal. Further, since the iron skeleton applied to the synthetic resin core is formed of iron powder, the surface thereof has irregularities. However, the surface can be smoothed by immersing in an iron alkoxide solution and drying. Then, the synthetic resin core provided with the iron skeleton is subjected to a heat treatment to remove the synthetic resin core and sinter each other to form an iron sintered body. The skeleton of the iron sintered body remains in a shape before the removal of the synthetic resin core, which has substantially the same thickness throughout the thickness of the sintered body, and has a smooth surface. Therefore, a substrate in which the surface of the iron sintered body is uniformly coated with nickel can be formed, and if this is filled with an active material, an inexpensive electrode for an alkaline storage battery can be easily formed. Next, specific examples of the present invention will be described. First, the production of an iron sintered body is described in the following first to fourth.
Will be described. First, three-dimensionally continuous about 500 μm
The polyurethane resin core 1 having the pores described above is charged into a mixed slurry 2 of fine powder of Fe 2 O 3 and a phenol resin, and the iron powder slurry 2 is applied to the surface of the polyurethane resin 1, and 9
Dried at 0 ° C. Second, the process of dipping a polyurethane resin 1 coated with an iron powder slurry 2 in an iron alkoxide 3 solution and drying it at 90 ° C. was repeated twice. At this time, the first portion where the iron alkoxide was attached was 3a, and the second portion was 3b. FIG. 1 is a schematic cross-sectional view showing the state of an iron skeleton obtained by attaching an iron powder slurry 2 and an iron alkoxide 3 to the polyurethane resin 1. As shown in FIG. 1, by attaching iron alkoxide 3 to the skeleton of polyurethane resin core 1 coated with iron powder slurry 2, iron alkoxides 3a and 3b adhere to thin portion 1a and thick portion 1b And the surface can be made smooth. At this time, the iron alkoxide 3 solution is made of Fe
(NO 3) 3 · 9H 2 and O, 2-methoxyethanol (C
H 3 OCH 2 CH 2 OH) and 2,4-pentadione (CH 3
COCH 2 COCH 3 ) in a molar ratio of 2:20
At a constant temperature of 30 ° C. for 2 hours. Third, the polyurethane resin 1 having the second iron skeleton formed on the surface is heat-treated at 1400 ° C. for 30 minutes to remove the polyurethane resin core 1, and the iron powder 2 and the iron alkoxide 3 are sintered. Thus, an iron sintered body 4 is formed.
The iron sintered body 4 has substantially the same outer diameter and has a smooth surface. Fourth, a nickel base 5 was applied to the iron sintered body 4 at a current density of 10 A / dm 2 using a nickel sulfate bath to prepare a base 6. FIG. 2 shows a schematic sectional view of the skeleton portion of the base 6. The number of times of this nickel plating was one. Using this substrate 6, a positive electrode plate 7 for an alkaline storage battery of the present invention is produced. An active material mainly composed of nickel hydroxide is mixed with water to prepare a paste-like active material, which is filled in a substrate 6, dried, pressed, cut into a predetermined size, and cut into a predetermined size. One end was spot-welded to produce a positive electrode plate 7 for an alkaline storage battery of the present invention. For comparison, a conventional substrate 8 was also prepared. In this method, a polyurethane resin core 1 having three-dimensionally continuous pores of about 500 μm is put into a mixed slurry 2 of fine powder of Fe 2 O 3 and a phenol resin, and an iron powder slurry 2 is applied to the surface of the polyurethane resin 1. Then, a heat treatment was performed at 1400 ° C. for 30 minutes to remove the polyurethane resin core 1 and sinter the iron with each other to produce an iron sintered body 9. This iron sintered body 9 was nickel-plated 10 in the same manner as described above to produce a conventional substrate 8. FIG. 3 is a schematic sectional view of the skeleton.
Shown in The base material 8 was filled with the paste-like active material prepared above, dried, press-molded, cut into a predetermined size, and spot-welded lead pieces to obtain a conventional positive electrode plate 11. Using the positive electrode plate 7 of the present invention produced as described above, a nickel-cadmium storage battery A was constructed. Negative electrode plate 12, an active material paste mainly composed of oxide mosquitoes Dominion um was coated on punching metal core material made of iron plated with nickel, was dried, immersed in an alkaline solution, washed with water, dried, cut into a predetermined size It was produced. The positive electrode plate 7 and the negative electrode plate 12 are spirally wound between the two with a polypropylene separator 13 interposed therebetween to form an electrode plate group, which is inserted into an iron battery case 14 and injected with an alkaline electrolyte. after, sealed with a sealing plate 15 also serving as a positive electrode terminal, nominal capacity 1 5 00mAh of 4 / 5A size cylindrical nickel -
The cadmium storage battery A is constituted, and its explanatory view is shown in FIG. A battery having the same configuration using the positive electrode plate 11 instead of the positive electrode plate 7 was referred to as a battery B. Next, Table 1 shows the results of measuring the initial substrate resistance of the base 6 according to the embodiment of the present invention and the conventional base 8 before forming the electrode plate group. [Table 1] As a method of measuring the resistance of the substrate, the substrate is cut into a size of 1 × 10 cm, the voltage at both ends of the substrate when a current of 1 A flows from the end of the substrate, and the electric resistance at this time is measured. The calculated value was used as the initial substrate resistance.
Further, after forming a spiral electrode group consisting of a positive electrode plate, a negative electrode plate, and a separator, the positive electrode plate is taken out, the positive electrode plate is dissolved with an acetic acid solution, and the substrate resistance is removed from the remaining substrate in the same manner as described above. Is measured as the substrate resistance after forming the electrode plate group, and is also shown in Table 1. As shown in Table 1, the substrate 6 according to the embodiment of the present invention has a lower initial substrate resistance than the conventional substrate 8, and also has a lower increase in the substrate resistance after forming the electrode plate group. I have. As shown in FIG. 3, the skeleton portion of the conventional iron sintered body 9 has a thick portion 9a and a thin portion 9b to conform to the surface shape of the polyurethane resin core before being removed by sintering. . The portion 9a where the base resistance of the thin portion 9b is large
As a result, the resistance of the conventional substrate 8 is higher by 50 mΩ than the resistance of the substrate 6 in the present invention. Further, when the electrode group is formed, the thin portion 9b of the base 8 as shown in FIG. 3 may be broken. Therefore, as shown in (Table 1), the conventional base 8 has the substrate resistance after forming the electrode group. Is three times that of the early days. On the other hand, as shown in FIG. 1, the base 6 of the present invention is formed by applying an iron powder slurry to a polyurethane resin core and then further adhering iron alkoxide to make the thin portion of the skeleton particularly thick. Then, the skeleton is formed to have a thickness substantially equal to the thick portion, and the sintering process is performed to remove the polyurethane resin. Therefore, as shown in FIG. In addition, since the surface of the iron powder is formed smoothly with the iron alkoxide, the nickel plating 5 can be made smooth. Therefore, the initial resistance of the substrate 6 in the present invention is lower by 50 mΩ than that of the conventional substrate 8. Further, since the base 6 in the present invention does not have a thin skeleton portion and forms a skeleton of the same thickness, the skeleton portion of the iron sintered base 6 is not broken even when an electrode plate group is formed. The resistance of the base 6 after the construction of the electrode plate group is 60 mΩ, which is only 10 mΩ higher than the initial resistance, and hardly increases. Next, the internal resistances of the battery A using the positive electrode plate 7 according to the embodiment of the present invention and the battery B using the conventional positive electrode plate 9 were measured, and the results are shown in Table 1. Show. As shown in (Table 1), the internal resistance of the battery A is lower than that of the battery B. This is because the resistance of each of the bases after the above-described construction of the electrode group is linked to the respective configured batteries. Further, the capacity recoverability of the batteries A and B after overdischarge was examined as follows. First, the batteries A and B, whose initial discharge capacities were measured, were each left in an atmosphere of a temperature of 65 ° C. for 3 months while being discharged by connecting a resistance equivalent to 10 kΩ. The battery was charged at a temperature of 20 ° C. and a charging current of 1 C for 1.5 hours, and then discharged to a voltage of 1.0 V at a discharging current of 1 C. The discharge capacity was measured and the capacity recovery was examined. as a result,
Battery A had a capacity recovery of 97%, whereas battery B
Recovered only 85%. Since the battery B uses the conventional positive electrode plate 11, a part of the skeleton of the base 8 is broken when the electrode plate group is formed. In addition to this, there is unevenness during the sintering of iron powder, so there is unevenness in only one nickel plating, especially iron is exposed at the broken part, which dissolves in alkaline electrolyte and adversely affects battery characteristics 85 capacity recovery
The percentage is worse. Since the battery A uses the positive electrode plate 7 of the present invention, the base 6 of the battery A does not break in the frame when the electrode group is formed, and the surface of the iron sintered body 4 is smooth. The substrate 6 formed by using the iron sintered body 4 can be nickel-plated without pinholes or the like only by one-time nickel plating. For this reason, the battery A hardly eluted iron even when overdischarged, and its capacity recovery was 97%, which was superior to the conventional battery. As described above, according to the present invention, in the electrode substrate, the skeleton portion forming the pores has substantially the same thickness throughout the entire thickness of the substrate, and the surface is coated with nickel. As a result, the base has a lower electric resistance than before and has a higher strength than before. For this reason, by forming, for example, a positive electrode plate as an electrode for an alkaline storage battery using the base,
Even if the electrode plate group is constituted by the negative electrode plate and the separator, the base is not broken and the increase in the electric resistance can be suppressed.
In addition, since this base is constituted by using a base made of an iron sintered body whose surface is coated with nickel instead of nickel, an inexpensive electrode for an alkaline storage battery can be provided. Even when an alkaline storage battery is formed using this electrode, a battery having excellent capacity recovery after overdischarge can be obtained.

【図面の簡単な説明】 【図1】本発明における合成樹脂に施された鉄骨格を示
す模式断面図 【図2】同基体の骨格を示す模式断面図 【図3】従来の基体を示す模式断面図 【図4】本発明の実施例におけるニッケル−カドミウム
蓄電池の構成図 【符号の説明】 1 合成樹脂芯体 2 鉄粉末スラリー 3 鉄アルコキシド 4 鉄焼結体 5 ニッケルメッキ 6 基体 7 正極板 12 負極板 13 セパレータ 14 電池ケース 15 封口板
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing an iron skeleton applied to a synthetic resin in the present invention. FIG. 2 is a schematic cross-sectional view showing a skeleton of the base. FIG. 3 is a schematic view showing a conventional base. 4 is a cross-sectional view of a nickel-cadmium storage battery according to an embodiment of the present invention. [Description of References] 1 Synthetic resin core 2 Iron powder slurry 3 Iron alkoxide 4 Iron sintered body 5 Nickel plating 6 Base 7 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Battery case 15 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−45366(JP,A) 特開 昭56−26366(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/26 H01M 4/66 H01M 4/80 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-9-45366 (JP, A) JP-A-56-26366 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/26 H01M 4/66 H01M 4/80

Claims (1)

(57)【特許請求の範囲】 【請求項1】三次元的に連続した気孔をもつ基体に活物
質を充填した電極の製造法であって、前記基体は、三次
元的に連続した気孔をもつ合成樹脂芯体に鉄粉末のすら
りーを塗布し、乾燥した後、鉄アルコキシドのアルコー
ル溶液に浸漬、乾燥して前記合成樹脂芯体に施した鉄骨
格としての外形寸法をほぼ等しくし、かつその表面を平
滑状態にした後、熱処理により前記合成樹脂芯体を除去
するとともに鉄相互を燒結し、ついでこの燒結体の表面
をニッケルで被覆した後に、活物質を充填するアルカリ
蓄電池用電極の製造方法。
(57) [Claim 1] A method for producing an electrode in which a substrate having three-dimensionally continuous pores is filled with an active material, wherein the substrate has three-dimensionally continuous pores. After applying a slurry of iron powder to the synthetic resin core having, after drying, immersing in an alcohol solution of iron alkoxide, drying to make the outer dimensions of the iron skeleton applied to the synthetic resin core substantially equal, and After the surface is made smooth, the synthetic resin core is removed by heat treatment, and the iron is sintered together. Then, after the surface of the sintered body is coated with nickel, an active material is filled to produce an electrode for an alkaline storage battery. Method.
JP03159697A 1997-02-17 1997-02-17 Method for producing electrode for alkaline storage battery Expired - Fee Related JP3371734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03159697A JP3371734B2 (en) 1997-02-17 1997-02-17 Method for producing electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03159697A JP3371734B2 (en) 1997-02-17 1997-02-17 Method for producing electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH10228903A JPH10228903A (en) 1998-08-25
JP3371734B2 true JP3371734B2 (en) 2003-01-27

Family

ID=12335588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03159697A Expired - Fee Related JP3371734B2 (en) 1997-02-17 1997-02-17 Method for producing electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3371734B2 (en)

Also Published As

Publication number Publication date
JPH10228903A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3819570B2 (en) Cylindrical alkaline storage battery using non-sintered electrodes
US4091181A (en) Rechargeable galvanic cell
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JP3371734B2 (en) Method for producing electrode for alkaline storage battery
JP3768041B2 (en) Alkaline storage battery
JP2959560B1 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3738125B2 (en) Alkaline storage battery using non-sintered electrode and method for manufacturing the same
JP3644427B2 (en) Cadmium negative electrode and nickel cadmium storage battery containing the same
JP3953139B2 (en) Non-sintered nickel electrode for alkaline storage battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JPH11288725A (en) Electrode for alkaline storage battery, its manufacture, and alkaline storage battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JP4215407B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP4530555B2 (en) Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery
JP3158416B2 (en) Cathode plate for paste-type nickel cadmium storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JP2002279979A (en) Electrode for battery, and method of manufacturing the electrode
JP3685726B2 (en) Method for producing sintered cadmium negative electrode
JPS61135054A (en) Manufacture of nickel electrode for alkaline secondary battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JPS63314758A (en) Cylindrical sealed type alkaline storage battery
JPH04303564A (en) Manufacture of battery plate
JPH0482164A (en) Electrode plate for battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees