JPS63314758A - Cylindrical sealed type alkaline storage battery - Google Patents

Cylindrical sealed type alkaline storage battery

Info

Publication number
JPS63314758A
JPS63314758A JP62150612A JP15061287A JPS63314758A JP S63314758 A JPS63314758 A JP S63314758A JP 62150612 A JP62150612 A JP 62150612A JP 15061287 A JP15061287 A JP 15061287A JP S63314758 A JPS63314758 A JP S63314758A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode
separator
negative electrode
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62150612A
Other languages
Japanese (ja)
Inventor
Isao Matsumoto
功 松本
Hiroshi Kawano
川野 博志
Shoichi Ikeyama
正一 池山
Hiromichi Ogawa
小川 博通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62150612A priority Critical patent/JPS63314758A/en
Publication of JPS63314758A publication Critical patent/JPS63314758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve the characteristic without largely reducing the electron conductivity of the whole positive electrode when cracks occur on the positive electrode by partially applying the electron conductivity to a separator and electrically insulating the unsintered positive electrode from a negative electrode as a whole. CONSTITUTION:The portion B of a separator 1 is stuck to the portion A having conductivity and not applied with nickel plating with a polyamide adhesive C, the portion B is in contact with an unsintered nickel positive electrode 3, the portion A is in contact with a cadmium negative electrode 2, and the positive electrode 3 and the negative electrode 2 are electrically insulated from each other with the portion A. The negative electrode 2 and the positive electrode 3 are spirally wound via the separator 1 and inserted into a battery jar 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非焼結式正極を用いた密閉形アルカリ蓄電池
の充放電特性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in the charging and discharging characteristics of sealed alkaline storage batteries using non-sintered positive electrodes.

従来の技術 現在密閉形アルカリ蓄電池を代表する系は、正極活物質
にニッケル酸化物を、負極活物質にカドミウムを用いた
円筒密閉形ニッケル・カドミウム蓄電池であり1通称二
カド電池と称するものである。通常、−この電池に使用
される正極は焼結式正極であり、ニッケルの焼結基体の
内部にニッケル塩を含浸充填しついで活物質に転化して
作製されるもので、機械的強度に優れるとともに充放電
特性等にも優秀な電極である。しかし、最近はこの電池
に対しても高エネルギー密度化の要望が強く。
Conventional technology The system that currently represents sealed alkaline storage batteries is a cylindrical sealed nickel-cadmium storage battery that uses nickel oxide as the positive electrode active material and cadmium as the negative electrode active material, and is commonly known as a two-cadmium battery. . Usually, - the positive electrode used in this battery is a sintered positive electrode, which is made by impregnating and filling the inside of a sintered nickel base with nickel salt and converting it into an active material, which has excellent mechanical strength. It is also an excellent electrode in terms of charge and discharge characteristics. However, recently there has been a strong demand for higher energy density for these batteries.

正極に関しては、上記した基体に代って金属使用量の少
ない孔あき板やスクリーンまたはスポンジ状ニッケル多
孔体を使用し、ニッケル酸化物粉末を高密度に塗着また
は充填した非焼結式電極が検討されている。ここで、孔
あき板やスクリーンを支持体とし、その両側に活物質粉
末を塗着した電極を塗着式電極、スポンジ状ニッケル多
孔体を支持体とし、その中に活物質粉末を充填した電極
を発泡メタル式電極と称することにする。このうち発泡
メタル式電極は一部実用化され始めたが、これら非焼結
式電極には焼結式電極と比べて次のような共通した問題
点が残されている。すなわち、支持体に使用する金属量
が少ないことに起因して電極の機械的強度が劣る結果、
渦巻き状の電極加工時などには亀裂が多く発生し、充放
電特性を低下させる点および充放電の繰返しにより電極
が膨張する結果、活物質粉末と集電の役割りを兼ねた支
持体との接触力が低下し、前記と同様に充放電特性の劣
化をきたす点である。
Regarding the positive electrode, a non-sintered electrode that uses a perforated plate, screen, or sponge-like porous nickel material with a small amount of metal in place of the above-mentioned substrate, and is coated or filled with nickel oxide powder at a high density. It is being considered. Here, an electrode with a perforated plate or screen as a support and active material powder coated on both sides is a coated electrode, and an electrode with a sponge-like porous nickel material as a support and active material powder filled in it. will be referred to as a foamed metal electrode. Among these, some foamed metal electrodes have begun to be put into practical use, but these non-sintered electrodes still have the following common problems compared to sintered electrodes. In other words, the mechanical strength of the electrode is poor due to the small amount of metal used in the support.
When processing spiral electrodes, many cracks occur, which deteriorates the charge and discharge characteristics, and as a result of the electrode expanding due to repeated charging and discharging, the bond between the active material powder and the support that also serves as a current collector deteriorates. This is the point where the contact force decreases and the charge/discharge characteristics deteriorate as described above.

発泡メタル式電極においては、支持体が三次元骨格を有
していて焼結基板に近く、塗着式電極と比べて前記課題
を大きく改善したがまだ充分とはいえない。
In foamed metal electrodes, the support has a three-dimensional skeleton and is similar to a sintered substrate, and although this problem has been greatly improved compared to painted electrodes, it is still not sufficient.

そこで、従来からこれらの課題解決のために以下の提案
がなされてきた。
Therefore, the following proposals have been made to solve these problems.

(1)塗着式の場合、導電性粉末とともに結着性に優れ
る樹脂粉末や樹脂製繊維を活物質中に混在させて活物質
粉末どおしの電子伝導度を高め、同時に結合力を向上さ
せる。
(1) In the case of the coating type, resin powder or resin fibers with excellent binding properties are mixed with the conductive powder in the active material to increase the electronic conductivity between the active material powders and improve the bonding strength at the same time. let

(2)  (1)をさらに進めて、樹脂繊維の代りに導
電性の金属やカーボンより成る繊維を用いる。
(2) Taking (1) further, fibers made of conductive metal or carbon are used instead of resin fibers.

(3)塗着式の場合、電極表面を導電性粉末あるいは金
属をメッキして電極を導電剤で被覆する。
(3) In the case of the paint type, the electrode surface is plated with conductive powder or metal, and the electrode is coated with a conductive agent.

(4)発泡メタル式の場合、支持体であるスポンジ状ニ
ッケル多孔体中に、あらかじめ金属製のワイヤーまたは
リボンを厚さ方向と直角方向に入れ、渦巻き状の加工時
に生ずる亀裂を抑制する。
(4) In the case of the foam metal type, a metal wire or ribbon is placed in advance in a direction perpendicular to the thickness direction into the sponge-like nickel porous material that is the support to suppress cracks that occur during spiral processing.

発明が解決しようとする問題点 上記(1) 、 (2)の方法は、塗着式電極としては
機械的強度および電子伝導度を改善するが、結着剤の結
着力はまだ充分といえず、とくに充放電の繰返しで生じ
る電極の膨張の際は、支持体(この場合は板状)との接
触劣化が大きくなり支持体から隔る部分、つまり電極表
面付近の活物質が作用しにくくなる。ここで、結着剤の
量を増加させると結着剤により充放電反応に支障をきた
す。
Problems to be Solved by the Invention Although the methods (1) and (2) above improve the mechanical strength and electronic conductivity of a coated electrode, the binding force of the binder is still insufficient. In particular, when the electrode expands due to repeated charging and discharging, contact with the support (in this case, a plate) deteriorates significantly, and the active material near the electrode surface, which is separated from the support, becomes less effective. . Here, if the amount of the binder is increased, the binder will interfere with the charge/discharge reaction.

(3)の方法は、製法が複雑化するとともに電極にに大
きな亀裂が発生した時には亀裂部の両側は電気的に絶縁
され、充放電特性を充分改善させるに至らない。
In method (3), the manufacturing method becomes complicated, and when a large crack occurs in the electrode, both sides of the crack are electrically insulated, and the charge/discharge characteristics cannot be sufficiently improved.

(4)の方法は、改善方法としては優れているが、通常
の薄い支持体内部に長いワイヤーやリボンを挿入する操
作が複雑である。
Method (4) is an excellent improvement method, but the operation of inserting a long wire or ribbon into the inside of a normal thin support is complicated.

本発明は、上記した従来の問題点を解消し、非焼結式正
極を用いた円筒密閉形アルカリ蓄電池における充放電特
性を改良し、製法も容易な蓄電池を提供することを目的
とする。
It is an object of the present invention to solve the above-mentioned conventional problems, improve the charging and discharging characteristics of a cylindrical sealed alkaline storage battery using a non-sintered positive electrode, and provide a storage battery that is easy to manufacture.

問題点を解決するための手段 この問題点の解決のため、本発明は非焼結式正極と負極
をセパレータを介して渦巻き状に加工する電極群におい
て、セパレータの非焼結式正極側に導電性を付与したも
のである。
Means for Solving the Problem In order to solve this problem, the present invention provides an electrode group in which a non-sintered positive electrode and a negative electrode are processed into a spiral shape with a separator interposed therebetween, in which a conductive material is added to the non-sintered positive electrode side of the separator. It has been given a gender.

作用 この構成によれば、渦巻き状に電極を加工した時に電極
に亀裂が生じても、亀裂の両側を電気的に接続し、また
充放電の繰返しによる電極膨張が起きても、電極表面の
活物質と支持体との接触が一部でも劣化していなければ
、電極表面全体の活物質と支持体との電気的接触を助け
る作用を果す結果、充放電特性の向上がはかれることと
なる。
Function: According to this structure, even if a crack occurs in the electrode when the electrode is processed into a spiral shape, both sides of the crack can be electrically connected, and even if the electrode expands due to repeated charging and discharging, the electrode surface remains active. If the contact between the substance and the support is not degraded even in part, the charge/discharge characteristics will be improved as a result of promoting electrical contact between the active material and the support over the entire electrode surface.

実施例 以下本発明の実施例を第1図から第3図を参照して説明
する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS. 1 to 3.

第1図は、セパレータを介して、非焼結式ニッケル正極
とカドミウム負極とで構成される発電素子群を有するニ
ッケル・カドミウム蓄電池の構造を示す。セパレータ1
は、線径的10μm、長さ約20111のポリアミド系
繊維の不織布で構成されており、Bで示す部分は約6μ
mの厚さになるようにニッケルメッキされて表面抵抗約
0.50/口の導電性を有し、このBはニッケルメッキ
が施されていないムと、ポリアミド系の接着剤Cで接着
されている。4はアルカリ電解液と気泡が混在する部分
である。上記Bは非焼結式ニッケル正極3と接し、ムは
カドミウム負極2と接しているが、正極3と負極2はム
により電気的に絶縁される。なお。
FIG. 1 shows the structure of a nickel-cadmium storage battery having a power generation element group consisting of a non-sintered nickel positive electrode and a cadmium negative electrode with a separator interposed therebetween. Separator 1
is made of polyamide fiber non-woven fabric with a linear diameter of 10 μm and a length of approximately 20111, and the portion indicated by B is approximately 6 μm in length.
It is nickel-plated to a thickness of m and has a surface resistance of about 0.50/hole, and this B is bonded to a non-nickel-plated m with a polyamide adhesive C. There is. 4 is a portion where alkaline electrolyte and air bubbles coexist. B is in contact with the non-sintered nickel positive electrode 3, and M is in contact with the cadmium negative electrode 2, but the positive electrode 3 and the negative electrode 2 are electrically insulated by M. In addition.

セパレータ1の繊維はポリプロピレン系でもポリアクリ
ル系でも良く、B部のメッキ材料は、Ni以外でも耐電
解液性の金属であればよい。またそれらをメッキ以外の
方法、たとえば蒸着やスパッタ法を用いて付着させても
よい。
The fibers of the separator 1 may be polypropylene-based or polyacrylic-based, and the plating material for portion B may be any metal other than Ni that is resistant to electrolyte. They may also be deposited using a method other than plating, such as vapor deposition or sputtering.

第2図は、ニカド電池における本発明の構造をさらに詳
細に説明したもので、第2図五は汎用の二カド電池の構
造を示し、負極2と正極3はセパレータ1を介して渦巻
き状に捲回されて電槽8に挿入されている。図中5は安
全弁、6は正極端子、7は蓋を示す。第2図Bは第2図
五の電極群の一部を拡大したもので、外周側に亀裂9を
生じた非焼結式ニッケル正極3に導電性を有する先述の
Bで示す導電性が付与された不織布が接し、絶縁性の不
織布部分ムはカドミウム負極2に接して、正極、負極、
セパレータが渦巻き状に捲回されている。当然であるが
、上記正極の内周側も同様にBと接し負極はムと接して
いる。
FIG. 2 shows a more detailed explanation of the structure of the present invention in a nickel-cadmium battery. FIG. It is rolled up and inserted into the battery case 8. In the figure, 5 is a safety valve, 6 is a positive terminal, and 7 is a lid. Figure 2B is an enlarged view of a part of the electrode group in Figure 25, and shows that the non-sintered nickel positive electrode 3 with cracks 9 on the outer periphery is given conductivity as indicated by B above. The insulating nonwoven fabric is in contact with the cadmium negative electrode 2, and the positive electrode, negative electrode,
The separator is spirally wound. Naturally, the inner peripheral side of the positive electrode is also in contact with B, and the negative electrode is in contact with M.

第3図は、ムムサイズのニカド電池における放電特性を
示す。非焼結式ニッケル正極として発泡メタル式ニッケ
ル正極を、カドミウム負極として汎用のペースト式カド
ミウム負極を使用し、セパレータとしては、第1図に示
した構成のものを用い、また電解液として約e、s m
ol/I!の濃度のKOH水溶液を用いて第2図表のよ
うな構成で電池を作製した。なお、正極寸法は、幅39
1i1.長さ66襲、厚さ約0.7wIkで、その活物
質の理論量は約800mAhとした。これに対して負極
寸法は、幅39Ws、長さ80m1m1.厚さ約o、e
xで、その活物質の理論量は約1700mAllのもの
を使用した。
FIG. 3 shows the discharge characteristics of a micro-sized Ni-Cd battery. A foamed metal nickel positive electrode was used as the non-sintered nickel positive electrode, a general-purpose paste cadmium negative electrode was used as the cadmium negative electrode, the separator had the configuration shown in Figure 1, and the electrolyte was approximately e.g. s m
ol/I! A battery was fabricated using a KOH aqueous solution having a concentration of . In addition, the positive electrode dimensions are width 39
1i1. The length was 66 mm, the thickness was about 0.7 wIk, and the theoretical amount of active material was about 800 mAh. On the other hand, the negative electrode dimensions are width 39Ws and length 80m1m1. Thickness approx. o, e
x, and the theoretical amount of the active material used was about 1700 mAll.

またセパレータは、厚さ0.26鶴であり、そのうち厚
さ約0.11111はニッケルメッキ(メッキ厚5μm
)されたものである。
The separator has a thickness of 0.26mm, of which about 0.1111mm thick is nickel plated (plating thickness is 5μm).
).

上記のムムサイズのニカド電池(公称容量700mAh
 )を0.10mム(70mム)で16時間充電し、0
.20m(14otaム)で1vの電圧まで放電する操
作を9回繰返したのち、10回目に放電条件のうち放電
電流を1Cmム(70Qllム)に高めたときの放電特
性を図中のCで示した。なお、Cは試作した電池10セ
ルの平均値である。また、比較例として、本発明のセパ
レータと電池への組込み法を採用せず、通常のボリアミ
ド不織布のみを使用した電池の同条件での放電特性をD
として示した。
The above Mumu size Ni-Cd battery (nominal capacity 700mAh)
) at 0.10 mm (70 mm) for 16 hours,
.. After repeating the operation of discharging to a voltage of 1 V at 20 m (14 Otam) 9 times, the discharge characteristics when the discharge current was increased to 1 Cm (70 Qllm) under the discharge conditions at the 10th time are shown by C in the figure. Ta. Note that C is the average value of 10 experimentally manufactured batteries. In addition, as a comparative example, the discharge characteristics of a battery using only an ordinary polyamide nonwoven fabric without adopting the method of incorporating the separator and battery of the present invention under the same conditions were measured at D.
It was shown as

第3図では、非焼結式ニッケル正極の一例に発泡メタル
式ニッケル正極を用いた場合の放電特性を示したが、塗
着式ニッケル正極を用いた場合にも本発明による効果が
同様に認められた。
Figure 3 shows the discharge characteristics when a foamed metal type nickel positive electrode is used as an example of a non-sintered type nickel positive electrode, but the effect of the present invention was similarly observed when a painted type nickel positive electrode was used. It was done.

発明の効果 以上の説明から明らかなように、非焼結式ニッケル正極
と接する部分に電子伝導性を付与したセパレータを用い
たニカド電池は、渦巻き状の電極加工時に前記正極に亀
裂が生じても正極全体の電子伝導度を大きく低下させな
い結果、放電電圧および放電容竜を改善できるという効
果が得られる。
Effects of the Invention As is clear from the above explanation, a nickel-cadmium battery using a separator that has electron conductivity in the part that comes into contact with a non-sintered nickel positive electrode can withstand cracks in the positive electrode when forming a spiral electrode. As a result of not greatly reducing the electron conductivity of the entire positive electrode, the effect of improving the discharge voltage and discharge capacity can be obtained.

なお、この効果は充放電サイクルが経過する程。Note that this effect increases over time as the charge/discharge cycle progresses.

顕著に認められた。Remarkably recognized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるセパレータの概略図、
第2図五は本発明の実施例における二カド電池の構造を
示し、Bはその一部を拡大した断面図、第3図は放電特
性の比較を示す図である。 1・・・・・・セパレータ、ム・・・・・・セパレータ
の樹脂りけの部分、B・・・・・・ムにニッケルメッキ
を施した部分、2・・・・・・カドミウム負極、3・・
・・・・非焼結式ニッケル正極、4・・・・・・電解液
と気泡の混在部分、6・・・・・・安全弁、6・・・・
・・正極端子、7・・・・・・蓋、8・・・・・・電槽
兼負極端子、9・・・・・・亀裂。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 1−−cハシレータ ?−−−レリト′功ムia円ミ1 3−一一二ノクル正通 4゛゛アルカリ1ケ解ソZと:C,)ど力1゛与工工ろ
七?介第3図 辰宜電気量(幅h) へ  て
FIG. 1 is a schematic diagram of a separator in an embodiment of the present invention,
FIG. 25 shows the structure of a two-cadmium cell according to an embodiment of the present invention, B is a partially enlarged sectional view, and FIG. 3 is a diagram showing a comparison of discharge characteristics. 1... Separator, Mu... Resin part of the separator, B... Nickel plated part on Mu, 2... Cadmium negative electrode, 3...
...Non-sintered nickel positive electrode, 4... Mixed part of electrolyte and bubbles, 6... Safety valve, 6...
... Positive terminal, 7... Lid, 8... Battery case and negative terminal, 9... Crack. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1--c Hasilator? ---Lerit 'Kongmu Ia Enmi 1 3-112 Nokuru Seitong 4' Alkali 1 Kei So Z and :C,) Doki 1' Yoko Ku R 7? To Figure 3 Tatsuyoshi electrical quantity (width h)

Claims (2)

【特許請求の範囲】[Claims] (1)非焼結式正極、セパレータ、負極およびアルカリ
電解液とで構成される発電要素群を密閉容器に収納して
なる密閉形アルカリ蓄電池において、前記セパレータは
、前記非焼結式正極と接する面近傍だけが電子伝導度を
有し、全体としては非焼結式正極と負極とを電気的に絶
縁していることを特徴とする円筒密閉形アルカリ蓄電池
(1) In a sealed alkaline storage battery in which a power generation element group consisting of a non-sintered positive electrode, a separator, a negative electrode, and an alkaline electrolyte is housed in a sealed container, the separator is in contact with the non-sintered positive electrode. A sealed cylindrical alkaline storage battery characterized by having electronic conductivity only in the vicinity of the surface and electrically insulating the non-sintered positive electrode and negative electrode as a whole.
(2)セパレータはニッケルメッキにより被覆された樹
脂製繊維で構成された不織布と、樹脂製繊維だけで構成
された不織布とが張り合わされ一体化されていることを
特徴とする特許請求の範囲第1項記載の円筒密閉形アル
カリ蓄電池。
(2) Claim 1, characterized in that the separator is a nonwoven fabric made of resin fibers coated with nickel plating and a nonwoven fabric made only of resin fibers, which are laminated and integrated. Sealed cylindrical alkaline storage battery as described in .
JP62150612A 1987-06-17 1987-06-17 Cylindrical sealed type alkaline storage battery Pending JPS63314758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62150612A JPS63314758A (en) 1987-06-17 1987-06-17 Cylindrical sealed type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62150612A JPS63314758A (en) 1987-06-17 1987-06-17 Cylindrical sealed type alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS63314758A true JPS63314758A (en) 1988-12-22

Family

ID=15500685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62150612A Pending JPS63314758A (en) 1987-06-17 1987-06-17 Cylindrical sealed type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS63314758A (en)

Similar Documents

Publication Publication Date Title
US4224392A (en) Nickel-oxide electrode structure and method of making same
JP2006524901A (en) Battery using electrode pellet with embedded internal electrode
JPS6157661B2 (en)
US3853624A (en) High energy density iron-nickel battery
US3895960A (en) Diffusion-bonded battery electrode plaques
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JP3387158B2 (en) Zinc plate
JP2002503873A (en) Prismatic electrochemical cell
JP3972417B2 (en) Sealed metal oxide-zinc storage battery and manufacturing method thereof
JP2959560B1 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
CN1407647A (en) Closed battery
JPS63314758A (en) Cylindrical sealed type alkaline storage battery
EP1624508A3 (en) Nickel-hydrogen storage battery
JP3116681B2 (en) Non-sintered nickel electrode and its manufacturing method
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JP3534723B2 (en) Sodium sulfur secondary battery
JPH0736333B2 (en) Sealed alkaline storage battery
JPH07107848B2 (en) Non-sintered positive electrode for alkaline storage battery
JP3371734B2 (en) Method for producing electrode for alkaline storage battery
JPS63259963A (en) Enclosed type alkaline storage battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JPH11288726A (en) Electrode for alkaline storage battery, its manufacture, and alkaline storage battery