JPH11288725A - Electrode for alkaline storage battery, its manufacture, and alkaline storage battery - Google Patents

Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Info

Publication number
JPH11288725A
JPH11288725A JP10088474A JP8847498A JPH11288725A JP H11288725 A JPH11288725 A JP H11288725A JP 10088474 A JP10088474 A JP 10088474A JP 8847498 A JP8847498 A JP 8847498A JP H11288725 A JPH11288725 A JP H11288725A
Authority
JP
Japan
Prior art keywords
iron
nickel
storage battery
alkaline storage
alloy layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10088474A
Other languages
Japanese (ja)
Inventor
Kota Asano
剛太 浅野
Yasushi Nakamura
靖志 中村
Takashi Yao
剛史 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10088474A priority Critical patent/JPH11288725A/en
Publication of JPH11288725A publication Critical patent/JPH11288725A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive iron sintered substrate and an inexpensive alkaline storage battery using it, by improving the iron sintered substrate having three-dimensionally continuous space used for the alkaline storage battery. SOLUTION: This alkaline storage battery is constituted by filling an active material powder into a space part of an iron powder sintered substrate 1 having three-dimensionally continuous space. Here, a nickel-iron alloy layer 2 is provided on the whole surface of the substrate 1, and the alloy layer 2 is obtained by mutual solution and diffusion of the nickel and the iron formed by nickel plating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ蓄電池に
関するもので、とくに三次元的に連続した空間を有する
鉄焼結基体を改良して、この安価な基体及びこれを用い
た安価なアルカリ蓄電池を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery, and more particularly, to an improved iron sintered substrate having a three-dimensionally continuous space, and to provide an inexpensive substrate and an inexpensive alkaline storage battery using the same. To provide.

【0002】[0002]

【従来の技術】近年、機器のポータブル化、コードレス
化が急速に進む中、これらの電源として小形且つ軽量で
高エネルギー密度を有する二次電池への要望が高まりつ
つある。市場では、とくに高容量で、安価な二次電池が
要望されている。このため、ニッケル−カドミウム蓄電
池やニッケル−水素蓄電池などに代表されるアルカリ蓄
電池のコストダウンが強く要望されている。
2. Description of the Related Art In recent years, as portable devices and cordless devices have been rapidly advanced, demands for small, lightweight, and high energy density secondary batteries as power sources for these devices have been increasing. In the market, there is a demand for particularly high-capacity and inexpensive secondary batteries. For this reason, there is a strong demand for cost reduction of alkaline storage batteries typified by nickel-cadmium storage batteries and nickel-hydrogen storage batteries.

【0003】アルカリ蓄電池用電極には、三次元的に連
続した空間を有する純ニッケルを主成分としたスポンジ
状基体に活物質を充填したものが使用されている。しか
し、この基体は、それを用いた電池の材料、部品コスト
の約1/4を占める程、高価な材料である。
[0003] As an electrode for an alkaline storage battery, a sponge-like substrate mainly composed of pure nickel having a three-dimensionally continuous space and filled with an active material is used. However, this substrate is an expensive material so as to account for about 1/4 of the material and parts cost of the battery using the substrate.

【0004】このため、アルカリ蓄電池の材料コストを
下げるために上記の純ニッケルの基体の代替えとして、
表面をニッケルメッキした三次元的に連続した空間を有
する鉄粉末焼結基体を用い、これに活物質を充填したも
のが提案されている。
[0004] Therefore, in order to reduce the material cost of the alkaline storage battery, as an alternative to the above-mentioned pure nickel base,
There has been proposed an iron powder sintered substrate having a three-dimensionally continuous space whose surface is nickel-plated and filled with an active material.

【0005】また、この鉄粉末焼結基体の製造方法は、
三次元的に連続した空間を有する合成樹脂芯体、例えば
発泡ポリウレタン樹脂芯体に鉄粉末スラリーを塗布後、
熱処理して発泡ウレタン樹脂芯体を除去するとともに残
った鉄粉末を焼結するものであった。
[0005] Further, the method for producing the iron powder sintered substrate is as follows.
After applying an iron powder slurry to a synthetic resin core having a three-dimensionally continuous space, for example, a foamed polyurethane resin core,
The heat treatment was performed to remove the urethane foam core and to sinter the remaining iron powder.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような鉄粉末焼結基体は、その表面にニッケルメッキを
施しているが、その複雑な3次元構造のため、完全には
鉄素地を被覆できておらず、一部にニッケルメッキの施
されてない部分(ピンホール部分)が存在する。
However, the iron powder sintered substrate as described above has its surface plated with nickel, but because of its complicated three-dimensional structure, it cannot be completely covered with an iron substrate. And there is a portion (pinhole portion) where no nickel plating is applied.

【0007】このため、この鉄粉末焼結基体を用いて構
成したアルカリ蓄電池は、その基体のニッケルメッキの
施されていない部分、すなわち鉄露出部からアルカリ電
解液に鉄が溶出することによって、その電池の初期の充
放電及び長期保存後の電池特性に悪影響を及ぼす。
For this reason, in an alkaline storage battery constituted by using this iron powder sintered substrate, iron is eluted into the alkaline electrolyte from a portion of the substrate not subjected to nickel plating, that is, an exposed portion of iron. It adversely affects the initial charge and discharge of the battery and the battery characteristics after long-term storage.

【0008】また、その電池の電極内に保護膜としての
鉄の酸化物を形成するためには、充電時に酸素過電圧を
低減し充電効率を下げることが必要となるが、このこと
が活物質の利用率を低減することにもなるため、電池と
して十分な出力が出せないという問題があった。
Further, in order to form an oxide of iron as a protective film in the electrode of the battery, it is necessary to reduce the oxygen overvoltage during charging to lower the charging efficiency. There is a problem that the output cannot be sufficiently output as a battery because the utilization factor is also reduced.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、三次元的に連続した空間を有する鉄粉末焼
結基体の空間部分に活物質粉末を充填したアルカリ蓄電
池用電極であって、この基体の表面部分の全てにはニッ
ケルと鉄の合金層が設けられいて、この合金層は、ニッ
ケルメッキにより形成されたニッケルと鉄が互いに固溶
拡散することによって得られたものとした。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides an electrode for an alkaline storage battery in which a space portion of an iron powder sintered base having a three-dimensionally continuous space is filled with an active material powder. An alloy layer of nickel and iron was provided on all of the surface portions of the substrate, and the alloy layer was obtained by solid solution diffusion of nickel and iron formed by nickel plating. .

【0010】[0010]

【発明の実施の形態】本発明の請求項1記載の発明は、
前記内容の電極を指向したものであり、とくに鉄焼結基
体の表面部分の全てにはニッケルと鉄の合金層が設けら
れいて、この合金層は、ニッケルメッキにより形成され
たニッケルと鉄が互いに固溶拡散することによって得ら
れたものである。この鉄粉末焼結基体の表面部分の全て
には、ニッケルメッキの有無に関係なく鉄とニッケルの
合金層が設けられており、耐食性を向上できる。そし
て、この電極を用いてアルカリ蓄電池を構成すると、こ
の電極を構成している鉄焼結基体の表面が、耐食性に富
んだニッケルと鉄の合金層によってかならず保護される
ため、電池を充放電したり長期に保存しても、鉄焼結基
体からアルカリ電解液に鉄が溶出することがない。
BEST MODE FOR CARRYING OUT THE INVENTION
It is directed to the electrode of the above-mentioned contents, and in particular, an alloy layer of nickel and iron is provided on the entire surface portion of the iron sintered substrate, and this alloy layer is formed by nickel and iron formed by nickel plating. It is obtained by solid solution diffusion. An iron-nickel alloy layer is provided on all of the surface portions of the iron powder sintered substrate regardless of the presence or absence of nickel plating, so that corrosion resistance can be improved. When an alkaline storage battery is formed using this electrode, the surface of the iron sintered substrate forming the electrode is always protected by a nickel-iron alloy layer having high corrosion resistance. Even if stored for a long period of time, iron does not elute from the iron sintered substrate into the alkaline electrolyte.

【0011】このため、この鉄焼結基体は、ニッケル焼
結基体に代わって、アルカリ蓄電池の電極に用いること
ができ、従来のニッケル粉末焼結基体を用いた電池と同
等の特性を得ることができ、しかも鉄を使用しているの
で安価な基体及びアルカリ蓄電池を提供することができ
る。
For this reason, the iron sintered substrate can be used for an electrode of an alkaline storage battery instead of the nickel sintered substrate, and the same characteristics as those of a battery using a conventional nickel powder sintered substrate can be obtained. In addition, since iron is used, an inexpensive substrate and an alkaline storage battery can be provided.

【0012】請求項2に記載の発明は、鉄粉末焼結基体
の表面部分に設けられたニッケルと鉄の合金層の厚みを
規定したものであり、この厚みは、1〜7μmの範囲が
好ましい。
According to a second aspect of the present invention, the thickness of the alloy layer of nickel and iron provided on the surface portion of the sintered iron powder substrate is defined, and this thickness is preferably in the range of 1 to 7 μm. .

【0013】請求項5に記載の発明は、三次元的に連続
した空間を有し、表面にニッケルと鉄の合金層を備えた
鉄粉末焼結基体の空間部分に活物質粉末を充填するアル
カリ蓄電池用電極の製造方法であって、この基体は、三
次元的に連続した空間を有する鉄粉末焼結基体の表面に
1〜5μmの厚みのニッケルメッキを施し、ついでこの
基体を750〜900℃の還元雰囲気下で5〜20分間
加熱処理してニッケルメッキの有無に関係なく前記基体
の表面全てにニッケルと鉄の合金層を形成するものであ
る。
According to a fifth aspect of the present invention, there is provided an alkali filling a space portion of an iron powder sintered substrate having a three-dimensionally continuous space and having a nickel-iron alloy layer on a surface thereof, with an active material powder. A method for producing an electrode for a storage battery, wherein the substrate is formed by plating a surface of an iron powder sintered substrate having a three-dimensionally continuous space with nickel plating having a thickness of 1 to 5 μm, and then heating the substrate at 750 to 900 ° C. Under a reducing atmosphere for 5 to 20 minutes to form an alloy layer of nickel and iron on the entire surface of the substrate regardless of the presence or absence of nickel plating.

【0014】この製造方法では、鉄粉末焼結基体にニッ
ケルメッキを施した後に750〜900℃の還元雰囲気
下で加熱処理することによって、ニッケルメッキのニッ
ケルと鉄素地表面とが固溶拡散し、鉄焼結粉末の表面全
てにニッケルと鉄の合金層を形成するものである。
In this manufacturing method, nickel-plated nickel powder is applied to the sintered body of the iron powder, and then heat-treated in a reducing atmosphere at 750 to 900 ° C., so that nickel of nickel-plated metal and the surface of the iron base material are dissolved and diffused. The alloy layer of nickel and iron is formed on the entire surface of the iron sintered powder.

【0015】[0015]

【実施例】次に、本発明の具体例を説明する。Next, specific examples of the present invention will be described.

【0016】まず、本発明の実施例における鉄粉末焼結
体の作製方法を、以下の第1〜第3の工程に分けた。
First, the method for producing the iron powder sintered body in the embodiment of the present invention was divided into the following first to third steps.

【0017】第1の工程として、三次元的に連続した約
600μmの気孔を有する発砲ポリウレタン樹脂芯体を
用意した。別途にFe23の微粉末と金属鉄を7:3の
比率(重量比)でフェノール樹脂と混合し、このスラリ
ーを20μmの厚さで発泡ポリウレタン樹脂表面に塗布
して、90℃で乾燥した。
In the first step, a foamed polyurethane resin core having three-dimensionally continuous pores of about 600 μm was prepared. Separately Fe 2 0 3 powder and metallic iron 7: mixed with phenolic resin in 3 ratio (weight ratio), and coating the slurry foamed polyurethane resin surface in a thickness of 20 [mu] m, dried at 90 ° C. did.

【0018】第2の工程として、この鉄スラリーを表面
に塗布した発泡ポリウレタン樹脂を水素雰囲気で110
0℃,30分間熱処理して、ポリウレタン樹脂芯体を除
去するとともに鉄粉末どうしを焼結して鉄粉末焼結体1
を形成した。
In a second step, the foamed polyurethane resin coated with the iron slurry on its surface is heated to 110
Heat treatment at 0 ° C. for 30 minutes to remove the polyurethane resin core and sinter the iron powders to form a sintered iron powder 1
Was formed.

【0019】第3の工程として、この焼結体1を塩酸水
溶液に浸漬して不純物除去の前処理を行い、ついで硫酸
ニッケル浴で10A/dm2の電流密度で3μmのニッ
ケルメッキを施した。そして水洗を行い、この基体を水
素の還元雰囲気下において800℃で加熱処理を行い、
ニッケルと鉄を互いに固溶拡散させることによって、鉄
素地の表面部分全てにニッケルと鉄の合金層を形成した
実施例の基体aを作製した。この基体表面の模式断面図
を図1に示す。図1中、1は焼結した鉄粉末,2はニッ
ケルと鉄の合金層を示す。
As a third step, the sintered body 1 was immersed in a hydrochloric acid aqueous solution to perform a pretreatment for removing impurities, and then subjected to nickel plating of 3 μm in a nickel sulfate bath at a current density of 10 A / dm 2 . Then, the substrate is washed with water, and the substrate is heated at 800 ° C. under a reducing atmosphere of hydrogen.
The base a of the example in which nickel and iron alloy layers were formed on the entire surface portion of the iron base material by solid-solution diffusion of nickel and iron to each other was produced. FIG. 1 shows a schematic sectional view of the substrate surface. In FIG. 1, 1 indicates a sintered iron powder, and 2 indicates an alloy layer of nickel and iron.

【0020】この合金層は、オージェ電子分光装置を用
いて分析することにより、ニッケルと鉄の合金層である
ことを確認した。またその厚みは、透過電子顕微鏡を用
いて観察することにより約2〜5μmであることを確認
した。
This alloy layer was analyzed using an Auger electron spectrometer to confirm that it was an alloy layer of nickel and iron. The thickness was confirmed to be about 2 to 5 μm by observation using a transmission electron microscope.

【0021】このニッケルと鉄の合金層は、アルカリ水
溶液中で安定であり、電池の充放電による電位の変化に
よってもアルカリ電解液に溶出することはない。
The nickel-iron alloy layer is stable in an alkaline aqueous solution, and does not elute into an alkaline electrolyte even when a potential changes due to charging and discharging of a battery.

【0022】このとき、上記加熱処理温度を900℃よ
り高温で行ったり、空気雰囲気下で行う場合、分解と酸
化が生じて基体強度は前記の約1/2まで低下し、電極
として使用不可能なレベルとなる。
At this time, when the above-mentioned heat treatment is performed at a temperature higher than 900 ° C. or in an air atmosphere, decomposition and oxidation occur, and the substrate strength is reduced to about の of the above-mentioned value. Level.

【0023】上記の基体aを用いて、実施例のアルカリ
蓄電池用正極aを以下の方法で作製した。まず、水酸化
ニッケルを主体とする活物質と水とを混合してペースト
状活物質を作製し、これを基体に充填し、乾燥した後、
プレス成型し、所定の寸法に切断した。ついでリード片
の一端を溶接して、実施例のアルカリ蓄電池用正極aを
作製した。
Using the above substrate a, a positive electrode a for an alkaline storage battery of an example was produced by the following method. First, a paste-like active material is prepared by mixing an active material mainly composed of nickel hydroxide and water, and the paste-like active material is filled and dried.
It was press-molded and cut into predetermined dimensions. Then, one end of the lead piece was welded to produce a positive electrode a for an alkaline storage battery of the example.

【0024】一方、三次元的に連続した約600μmの
気孔を有する発泡ポリウレタン樹脂芯体を用意するとと
もに、これにFe23の微粉末と金属鉄を7:3の比率
(重量比)でフェノール樹脂と混合したスラリーを塗布
して、水素雰囲気中で1100℃,30分間熱処理し
て、ポリウレタン樹脂芯体を除去するとともに鉄粉末が
焼結した鉄焼結基体を作製した。この鉄焼結基体にも上
記と同じ方法で3μmの厚みのニッケルメッキを施し、
500℃で加熱して焼き鈍し処理を加え、比較例の鉄焼
結基体bを作製した。
On the other hand, as to prepare a foamed polyurethane resin core body having pores of a three-dimensionally continuous about 600 .mu.m, this fine powder and metallic iron Fe 2 0 3 7: 3 ratio (by weight) A slurry mixed with a phenolic resin was applied and heat-treated at 1100 ° C. for 30 minutes in a hydrogen atmosphere to remove the polyurethane resin core and produce an iron-sintered substrate in which iron powder was sintered. This iron sintered substrate is also subjected to nickel plating with a thickness of 3 μm in the same manner as described above,
An annealing process was performed by heating at 500 ° C. to prepare an iron sintered substrate b of a comparative example.

【0025】このとき、基体bのニッケルメッキの施さ
れていない部分は、オージェ電子分光装置を用いて分析
したところ、ニッケルと鉄の合金層は形成されておら
ず、金属鉄、つまり鉄素地が露出していることを確認し
た。
At this time, the portion of the base b not subjected to nickel plating was analyzed using an Auger electron spectrometer. As a result, no alloy layer of nickel and iron was formed, and metallic iron, that is, It was confirmed that it was exposed.

【0026】この基体bに水酸化ニッケルを主体とする
活物質を充填し、乾燥した後、プレス成型し、所定の寸
法に切断した。この後、リード片の一端を溶接したもの
を比較例のアルカリ蓄電池用正極bを作製した。
The substrate b was filled with an active material mainly composed of nickel hydroxide, dried, pressed, and cut into a predetermined size. Thereafter, one end of the lead piece was welded to produce a positive electrode b for an alkaline storage battery of a comparative example.

【0027】負極3は、酸化カドミウムを主体とするペ
ーストを、鉄にニッケルメッキしたパンチングメタル芯
材に塗着し、乾燥後、水洗、乾燥させ、所定の寸法に切
断して作製した。
The negative electrode 3 was prepared by applying a paste mainly composed of cadmium oxide to a core of a punched metal plated with nickel on iron, drying, washing with water, drying, and cutting to a predetermined size.

【0028】上記で作製した正極aと負極3と、この両
者間にポリプロピレン製セパレータ4を介在させて渦巻
状に捲回して極板群を構成し、これをニッケルメッキし
た鉄製の電池ケース5に挿入し、このケース5内にアル
カリ電解液を所定量注入後、このケース5の上部を正極
端子を兼ねる封口板6で密閉し、公称容量1400mA
hをもったAサイズの円筒型ニッケル−カドミウム蓄電
池Aを構成した。この電池Aの半裁断面図を図2に示
す。
The positive electrode a and the negative electrode 3 produced as described above, and a polypropylene separator 4 interposed therebetween, are spirally wound to form an electrode plate group, which is formed in a nickel-plated iron battery case 5. After inserting a predetermined amount of the alkaline electrolyte into the case 5, the upper portion of the case 5 is sealed with a sealing plate 6 also serving as a positive electrode terminal to have a nominal capacity of 1400 mA.
Thus, an A-size cylindrical nickel-cadmium storage battery A having a length h was constructed. FIG. 2 shows a half sectional view of the battery A.

【0029】この正極Aの代わりに、正極bを用いた以
外は、電池Aと同様な構成とした比較例の電池Bを構成
した。
A battery B of a comparative example was constructed in the same manner as the battery A except that the positive electrode b was used instead of the positive electrode A.

【0030】次に実施例の電池Aと比較例の電池Bの正
極活物質の利用率を求めた。この試験方法は、電池A,
Bをそれぞれ、20℃の雰囲気下で、0.1C(140
mA)の電流の大きさで12時間充電を行い、0.2C
(280mA)の電流の大きさで端子電圧が1Vに低下
するまで放電を行ったときの放電容量を求めた。各電池
における正極活物質の充填容量(水酸化ニッケルは29
8mAh/g)に対する上記放電容量の割合を正極活物
質の利用率として求めた。この結果を(表1)に示す。
Next, the utilization rates of the positive electrode active materials of the battery A of the example and the battery B of the comparative example were determined. This test method was performed for Battery A,
B at 20 ° C. in an atmosphere of 0.1 C (140
The battery is charged for 12 hours at a current of
The discharge capacity when discharging was performed at a current magnitude of (280 mA) until the terminal voltage dropped to 1 V was determined. The filling capacity of the positive electrode active material in each battery (nickel hydroxide is 29
The ratio of the discharge capacity to 8 mAh / g) was determined as the utilization rate of the positive electrode active material. The results are shown in (Table 1).

【0031】[0031]

【表1】 [Table 1]

【0032】(表1)に示すように、実施例の電池Aは
正極活物質の利用率が96%を示しており、89%の電
池Bよりも7%向上している。
As shown in (Table 1), the battery A of the example shows that the utilization rate of the positive electrode active material is 96%, which is 7% higher than the battery B of 89%.

【0033】次に、20℃雰囲気下で、電池A,Bそれ
ぞれを0.2C(280mA)の電流の大きさで放電し
た状態で保存放置し、ついで充電する方式で2ヵ月毎の
初期容量に対しての充電回復特性を測定した。回復特性
の試験条件は、20℃で、0.1C(140mA)の電
流の大きさで充電を12時間行い、0.2C(280m
A)の大きさの電流で端子電圧が1Vに低下するまで放
電を行ったときの放電容量を求め、当初の公称容量を1
00%としたときの放電容量比を回復特性とした。この
結果を図3に示す。
Next, in a 20 ° C. atmosphere, each of the batteries A and B was stored and discharged in a state of discharging at a current of 0.2 C (280 mA), and then charged to a two-month initial capacity. The charge recovery characteristics were measured. The test conditions for the recovery characteristics were as follows: charging was performed at 20 ° C. with a current of 0.1 C (140 mA) for 12 hours;
The discharge capacity at the time of discharging until the terminal voltage is reduced to 1 V with the current of the magnitude of A) is obtained, and the initial nominal capacity is set to 1
The discharge capacity ratio at the time of being set to 00% was taken as the recovery characteristic. The result is shown in FIG.

【0034】図3に示すように、約1年保存しても実施
例の電池Aは当初容量の約90%まで容量が回復してお
り、比較例の電池Bよりも30%以上も回復特性が向上
している。
As shown in FIG. 3, even after being stored for about one year, the capacity of the battery A of the embodiment has recovered to about 90% of the initial capacity, and the recovery characteristics of the battery B of the comparative example are more than 30%. Is improving.

【0035】つづいて、電池A,Bのそれぞれを、40
℃で、1C(1400mA)の電流の大きさで充電を
1.2時間行い、1C(1400mA)の電流の大きさ
で端子電圧が1Vに低下するまで放電を行うことを1サ
イクルとして、それぞれの電池の充放電を繰り返したと
きの初期容量に対する容量維持率を求め、これを電池の
寿命特性とした。その結果を図4に示す。
Subsequently, each of the batteries A and B is
The charging was performed at a current of 1 C (1400 mA) at 1.2 ° C. for 1.2 hours, and the discharging was performed until the terminal voltage decreased to 1 V at a current of 1 C (1400 mA). The capacity retention ratio with respect to the initial capacity when the battery was repeatedly charged and discharged was determined, and this was taken as the battery life characteristic. FIG. 4 shows the results.

【0036】図4に示すように、充放電を800サイク
ル行った時点でも、実施例の電池Aは初期容量の90%
の容量を確保している。しかし、電池Bは充放電を10
0サイクル行った時点で、すでに初期容量の80%にま
で容量が低下しており、さらに充放電を800サイクル
まで行った時点では初期容量の約30%まで大幅に低下
している。
As shown in FIG. 4, even after 800 cycles of charge / discharge, the battery A of the embodiment had 90% of the initial capacity.
Capacity is secured. However, battery B has 10 charge / discharge cycles.
The capacity has already been reduced to 80% of the initial capacity when 0 cycles have been performed, and has significantly decreased to about 30% of the initial capacity when charging and discharging have been performed up to 800 cycles.

【0037】この理由としては、比較例の電池Bは、そ
の基体bにはニッケルメッキの施されていない部分、つ
まり鉄素地の露出部分があり、この部分が電池内部で直
接アルカリ電解液に触れ、充放電時に容易に鉄がアルカ
リ電解液中に溶出し、さらに正極の活物質中に取り込ま
れ、絶縁物質であるFeOOHが形成される。そのた
め、電池Bは、正極活物質の利用率の低下および酸素過
電圧低下による充電効率の低下を招き、その結果、放電
特性、寿命特性、及び放電放置した後の容量回復特性が
電池Aよりも大きく低下したものである。
The reason for this is that, in the battery B of the comparative example, the base b has a portion not subjected to nickel plating, that is, an exposed portion of the iron base, and this portion directly contacts the alkaline electrolyte inside the battery. At the time of charge and discharge, iron is easily eluted into the alkaline electrolyte and further taken into the active material of the positive electrode to form FeOOH, which is an insulating material. Therefore, the battery B causes a decrease in the utilization efficiency of the positive electrode active material and a decrease in the charging efficiency due to a decrease in the oxygen overvoltage. As a result, the discharge characteristics, the life characteristics, and the capacity recovery characteristics after the discharge standing are larger than those of the battery A. It has fallen.

【0038】これに対して、電池Aは、その基体の鉄焼
結体の表面部分全てに耐食性に富んだニッケルと鉄の合
金層が設けられているため、電池の電位変化に左右され
ることなく、電池Aは、基体の鉄素地がアルカリ電解液
中に溶出しないために、正極活物質の利用率の低下およ
び酸素過電圧低下による充電効率の低下はほとんどな
く、電池としての放電特性、寿命特性及び放電放置した
後の容量回復特性がよくなったものである。
On the other hand, in the battery A, since the nickel-iron alloy layer having high corrosion resistance is provided on the entire surface portion of the iron sintered body of the base, the battery A is affected by the potential change of the battery. In Battery A, since the iron base of the base did not elute into the alkaline electrolyte, there was almost no decrease in the charge efficiency due to a decrease in the utilization rate of the positive electrode active material and a decrease in the oxygen overvoltage. In addition, the capacity recovery characteristics after leaving for discharge have been improved.

【0039】上記の実施例では、その基体の鉄焼結体の
表面部分全てに約2〜5μm程度の厚みの鉄とニッケル
の合金層を形成したが、このニッケルと鉄の合金層の厚
みとしては1〜7μmの範囲であれば実施例と同様な効
果が得られる。
In the above embodiment, an iron-nickel alloy layer having a thickness of about 2 to 5 μm was formed on the entire surface of the iron sintered body of the substrate. If the range is 1 to 7 μm, the same effect as in the embodiment can be obtained.

【0040】また、実施例では、基体aを用いて正極A
を作製したが、負極に基体aを用いてもよく、さらに正
極と負極の両方の基体として基体aを用いてもよい。
Further, in the embodiment, the positive electrode A
Was prepared, but the substrate a may be used as the negative electrode, and the substrate a may be used as both the positive electrode and the negative electrode.

【0041】[0041]

【発明の効果】以上のように本発明は、三次元的に連続
した空間を有する鉄粉末焼結基体の空間部分に活物質粉
末を充填したアルカリ蓄電池用電極であって、この基体
の表面部分の全てにはニッケルと鉄の合金層が設けられ
いて、この合金層は、ニッケルメッキにより形成された
ニッケルと鉄が互いに固溶拡散することによって得られ
たものである。また、この電極を用いて、アルカリ蓄電
池を構成することによって、その中の基体はアルカリ電
解液に接触しても鉄が溶出しないため、良好な正極活物
質の利用率、および長期間にわたる信頼性の向上を図っ
た安価なアルカリ蓄電池を提供することができる。
As described above, the present invention relates to an electrode for an alkaline storage battery in which a space portion of an iron powder sintered base having a three-dimensionally continuous space is filled with an active material powder, and a surface portion of the base. Are provided with an alloy layer of nickel and iron, and this alloy layer is obtained by the solid solution diffusion of nickel and iron formed by nickel plating. In addition, by constructing an alkaline storage battery using this electrode, the base in the battery does not elute iron even when it comes into contact with the alkaline electrolyte, so that a good utilization rate of the positive electrode active material and a long-term reliability can be obtained. It is possible to provide an inexpensive alkaline storage battery which is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における鉄焼結基体の表面を示
す模式断面図
FIG. 1 is a schematic cross-sectional view showing a surface of a sintered iron substrate according to an embodiment of the present invention.

【図2】同ニッケル−カドミウム蓄電池の半裁断面図FIG. 2 is a half sectional view of the nickel-cadmium storage battery.

【図3】同電池の保存期間と容量回復率との関係を示す
FIG. 3 is a diagram showing a relationship between a storage period and a capacity recovery rate of the battery.

【図4】同電池の充放電サイクルと容量維持率との関係
を示す図
FIG. 4 is a diagram showing a relationship between a charge / discharge cycle and a capacity retention ratio of the battery.

【符号の説明】[Explanation of symbols]

1 鉄粉末焼結体 2 ニッケルと鉄の合金層 3 負極 4 セパレータ 5 電池ケース 6 封口板 DESCRIPTION OF SYMBOLS 1 Iron powder sintered body 2 Nickel and iron alloy layer 3 Negative electrode 4 Separator 5 Battery case 6 Sealing plate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】三次元的に連続した空間を有する鉄粉末焼
結基体の空間部分に活物質粉末を充填したアルカリ蓄電
池用電極であって、前記基体の表面部分の全てにはニッ
ケルと鉄の合金層が設けられていて、この合金層は、ニ
ッケルメッキにより形成されたニッケルと鉄が互いに固
溶拡散することによって得られたものであるアルカリ蓄
電池用電極。
1. An electrode for an alkaline storage battery in which a space portion of an iron powder sintered base having a three-dimensionally continuous space is filled with an active material powder, and the entire surface of the base is formed of nickel and iron. An electrode for an alkaline storage battery, comprising an alloy layer, wherein the alloy layer is obtained by solid solution diffusion of nickel and iron formed by nickel plating.
【請求項2】前記ニッケルと鉄の合金層の厚みは、1〜
7μmである請求項1記載のアルカリ蓄電池用電極。
2. The thickness of said alloy layer of nickel and iron is from 1 to 1.
The electrode for an alkaline storage battery according to claim 1, which has a thickness of 7 µm.
【請求項3】ニッケル正極と、負極と、セパレータと、
アルカリ電解液とから構成したアルカリ蓄電池であっ
て、前記正極および/または負極は、三次元的に連続し
た空間を有する鉄粉末焼結基体の空間部分に活物質粉末
を充填した電極であって、前記基体の表面部分の全てに
はニッケルと鉄の合金層が設けられていて、この合金層
は、ニッケルメッキにより形成されたニッケルと鉄が互
いに固溶拡散することによって得られたものであるアル
カリ蓄電池。
3. A nickel positive electrode, a negative electrode, a separator,
An alkaline storage battery comprising an alkaline electrolyte, wherein the positive electrode and / or the negative electrode are electrodes in which a space portion of an iron powder sintered substrate having a three-dimensionally continuous space is filled with an active material powder, An alloy layer of nickel and iron is provided on all of the surface portion of the base, and this alloy layer is an alkali layer obtained by solid solution diffusion of nickel and iron formed by nickel plating. Storage battery.
【請求項4】前記ニッケルと鉄の合金層の厚みは、1〜
7μmである請求項3記載のアルカリ蓄電池用電極。
4. The nickel-iron alloy layer has a thickness of 1 to 4.
The electrode for an alkaline storage battery according to claim 3, which has a thickness of 7 µm.
【請求項5】三次元的に連続した空間を有し、表面にニ
ッケルと鉄の合金層を備えた鉄粉末焼結基体の空間部分
に活物質粉末を充填するアルカリ蓄電池用電極の製造方
法であって、前記基体は、三次元的に連続した空間を有
する鉄粉末焼結基体の表面に1〜5μmの厚みのニッケ
ルメッキを施し、ついでこの基体を750〜900℃の
還元雰囲気下で5〜20分間加熱処理してニッケルメッ
キの有無に関係なく前記基体の表面全てにニッケルと鉄
の合金層を形成するアルカリ蓄電池用電極の製造方法。
5. A method for manufacturing an electrode for an alkaline storage battery, comprising a three-dimensionally continuous space, and a space portion of an iron powder sintered substrate having a nickel-iron alloy layer on the surface and filling a space portion with an active material powder. The substrate is formed by plating a surface of an iron powder sintered substrate having a three-dimensionally continuous space with nickel plating having a thickness of 1 to 5 μm, and then subjecting the substrate to a reducing atmosphere of 750 to 900 ° C. for 5 to 5 μm. A method for manufacturing an electrode for an alkaline storage battery, wherein a heat treatment is performed for 20 minutes to form an alloy layer of nickel and iron on the entire surface of the substrate regardless of the presence or absence of nickel plating.
JP10088474A 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery Pending JPH11288725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10088474A JPH11288725A (en) 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10088474A JPH11288725A (en) 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH11288725A true JPH11288725A (en) 1999-10-19

Family

ID=13943785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10088474A Pending JPH11288725A (en) 1998-04-01 1998-04-01 Electrode for alkaline storage battery, its manufacture, and alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH11288725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9525166B2 (en) 2011-07-28 2016-12-20 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery
US9748560B2 (en) 2011-07-28 2017-08-29 Gs Yuasa International Ltd. Negative electrode for alkaline secondary battery, outer case for alkaline secondary battery and alkaline secondary battery

Similar Documents

Publication Publication Date Title
JP2007012572A (en) Nickel hydrogen battery
JP2993886B2 (en) Anode and cathode for alkaline storage battery and method for producing the same
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JP3972417B2 (en) Sealed metal oxide-zinc storage battery and manufacturing method thereof
JP2959560B1 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4824251B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
JP2002343366A (en) Electrode plate for alkaline storage battery and alkaline battery using same
JPH11288725A (en) Electrode for alkaline storage battery, its manufacture, and alkaline storage battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JPH11288726A (en) Electrode for alkaline storage battery, its manufacture, and alkaline storage battery
US6803148B2 (en) Nickel positive electrode plate and akaline storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2001093520A (en) Hydrogen storage alloy electrode and preparation thereof
JP3371734B2 (en) Method for producing electrode for alkaline storage battery
JPH05283071A (en) Activation of metal hydride storage battery
WO2012014895A1 (en) Sintered nickel cathode, method of manufacturing same, and alkaline storage battery employing the sintered nickel cathode
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP2024082970A (en) Zinc battery negative electrode and method for producing same
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3267156B2 (en) Nickel hydride rechargeable battery
JPH0251874A (en) Alkaline zinc lead-acid battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JP2005116381A (en) Alkaline storage battery
JP2002260643A (en) Hydrogen storage alloy electrode and manufacturing method therefor, and alkaline storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207