JPH11284400A - Method for detecting floating of electronic component - Google Patents

Method for detecting floating of electronic component

Info

Publication number
JPH11284400A
JPH11284400A JP10083335A JP8333598A JPH11284400A JP H11284400 A JPH11284400 A JP H11284400A JP 10083335 A JP10083335 A JP 10083335A JP 8333598 A JP8333598 A JP 8333598A JP H11284400 A JPH11284400 A JP H11284400A
Authority
JP
Japan
Prior art keywords
soldered
light
electronic component
light receiving
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10083335A
Other languages
Japanese (ja)
Other versions
JP4298809B2 (en
Inventor
Hideyo Watanabe
秀世 渡辺
Ikuo Kataoka
幾雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Electric Works Co Ltd
Original Assignee
Nagoya Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Electric Works Co Ltd filed Critical Nagoya Electric Works Co Ltd
Priority to JP08333598A priority Critical patent/JP4298809B2/en
Publication of JPH11284400A publication Critical patent/JPH11284400A/en
Application granted granted Critical
Publication of JP4298809B2 publication Critical patent/JP4298809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Installment Of Electrical Components (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To determine whether a portion to be soldered is soldered in a recessed or projected form or not soldered, by successively detecting how the portion to be soldered is soldered and how an electronic component is mounted and determining whether the soldering state and the mounting state are acceptable or not based on the irregularly reflected light of a beam reflected from the portion to be soldered. SOLUTION: A beam B is injected from a movable galvanometer 3 onto a portion to be soldered of a chip component to be mounted. Light-receiving elements are provided on the four inner side surfaces of light-receiving means 9. When the portion to be soldered is soldered normally, the reflected light is dispersed in four directions uniformly. When the portion to be soldered is soldered with one end thereof floating, the amount of light received varies from one side surface to another. A processing unit 10 has a comparative reference value regarding the dispersion of the amounts of light received by the four side surfaces when the chip component is mounted normally, and compares one dispersion value with another. When the dispersion value of light irregularly reflected by the elements on the four side surfaces is out of the reference value range, it is determined that the chip component is mounted defectively due to some soldered portion(s) floating. Since the shape of a soldered portion is recessed or projected, it is determined that the portion to be soldered is soldered normally when reflected light is received, and it is determined that the portion to be soldered is not soldered when no light is received.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は印刷配線板に実装さ
れた抵抗チップ、コンデンサチップ、集積回路等の電子
部品がパッドに対して浮いた状態で取付けられ、実装不
良状態であるか否かを検出するための電子部品の浮き検
出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining whether or not an electronic component such as a resistor chip, a capacitor chip, or an integrated circuit mounted on a printed wiring board is mounted in a floating state with respect to a pad and is in a mounting failure state. The present invention relates to a method for detecting a floating electronic component.

【0002】[0002]

【従来の技術】従来における印刷配線板に実装されたチ
ップ部品の半田付け状態を検出する手段としては、本出
願人が出願した実公平7−29483号公報や特開平1
0−051194号公報で提案した装置がある。以下、
この装置について図3、図4と共に説明する。
2. Description of the Related Art Conventional means for detecting the soldering state of chip components mounted on a printed wiring board are disclosed in Japanese Utility Model Publication No. 7-29483 filed by the present applicant and Japanese Patent Laid-Open No.
There is an apparatus proposed in Japanese Patent Application Publication No. 0-051194. Less than,
This device will be described with reference to FIGS.

【0003】図3は光学系を示す斜視図にして、1はレ
ーザ光を放射するHe-Ne レーザ銃等のレーザ光源、2は
レーザ光によるビームを十分に絞るため、前記レーザ光
源1が放射するビームを一旦5mm径程度の平行ビームに
拡張するためのエキスパンダである。
FIG. 3 is a perspective view showing an optical system, 1 is a laser light source such as a He-Ne laser gun for emitting laser light, and 2 is a laser light source 1 for squeezing a laser beam sufficiently. This is an expander for temporarily expanding a beam to be formed into a parallel beam having a diameter of about 5 mm.

【0004】3はX−YステージT上に着脱自在に載置
された被検査用のプリント基板Pに実装された電子部
品、例えば、チップ部品Cの長手方向を横切る方向にビ
ームスポットが掃引されるようにビームを走査するY軸
回転ミラー3aと、チップ部品Cの長さ方向にビームス
ポットが掃引されるようにビームを走査するX軸回転ミ
ラー3bとを備えたガルバノメータにして、各回転ミラ
ー3a,3bの可動範囲に基づく立体角内でビームが走
査される。
A beam spot 3 is swept in a direction crossing the longitudinal direction of an electronic component, for example, a chip component C mounted on a printed circuit board P for inspection, which is removably mounted on an XY stage T. A galvanometer having a Y-axis rotating mirror 3a for scanning a beam so as to scan the beam and a X-axis rotating mirror 3b for scanning the beam so that a beam spot is swept in the longitudinal direction of the chip component C. The beam is scanned within a solid angle based on the movable range of 3a and 3b.

【0005】また、各ミラー3a,3bは、組み込まれ
たエンコーダの信号によりサーボ制御されるが、この
時、プリント基板Pに照射されるビームBの位置はエン
コーダ信号により決定される。
[0005] Each of the mirrors 3a and 3b is servo-controlled by a signal of a built-in encoder. At this time, the position of the beam B irradiated on the printed board P is determined by the encoder signal.

【0006】4は前記ガルバノメータ3によって走査さ
れたビームをミラー5、ハーフミラー6を介して印刷配
線板P上に集光する集光レンズ、7は後述する受光手段
9のビーム照射孔9aから真上に抜けてくる半田面から
の反射光を受光する受光素子、8は前記ビーム照射孔9
aから抜けてくる前記反射光を前記受光素子7に集光す
るためのレンズである。
Reference numeral 4 denotes a condensing lens for condensing a beam scanned by the galvanometer 3 on a printed wiring board P via a mirror 5 and a half mirror 6. Reference numeral 7 denotes a beam from a beam irradiation hole 9a of a light receiving means 9 to be described later. A light receiving element for receiving the reflected light from the solder surface coming out from above;
a lens for condensing the reflected light coming out from the light receiving element 7 on the light receiving element 7.

【0007】受光手段9は下面が開放された箱状に形成
され、上面の中央部にハーフミラー6から反射されたビ
ームを通過させるためのビーム照射孔9aが形成される
と共にその内側上面と内側側面に縦方向に複数段に分割
された受光素子が取付けられている。
The light receiving means 9 is formed in a box shape having an open lower surface, and a beam irradiation hole 9a for passing a beam reflected from the half mirror 6 is formed in the center of the upper surface. A light receiving element divided into a plurality of stages in the vertical direction is attached to the side surface.

【0008】次に、制御系を図4のブロック図と共に説
明する。なお、前記した符号と同一符号は同一部材を示
し、説明は省略する。10は処理装置を示し、操作部1
2から入力されるデータに基づいて後述するX−Yステ
ージ制御部15およびガルバノ駆動回路14bに出力を
送出し、ビームを所定の範囲に照射掃引させ、また、受
光手段9、受光素子7の入力に基づいて電子部品の半田
付け状態等を判定する。なお、11は前記ビームによる
検査結果を表示するCRT等のモニター、12はキーボ
ード、フロッピーディスクドライバ、CD−ROMドラ
イバ等の操作部、13は前記ビームによる検査結果等を
印刷するプリンタである。
Next, the control system will be described with reference to the block diagram of FIG. The same reference numerals as those described above denote the same members, and a description thereof will be omitted. Reference numeral 10 denotes a processing device, and an operation unit 1
An output is sent to an XY stage control unit 15 and a galvano drive circuit 14b, which will be described later, based on the data input from 2 to irradiate and sweep the beam over a predetermined range. Then, the soldering state and the like of the electronic component are determined. Reference numeral 11 denotes a monitor such as a CRT for displaying the inspection result by the beam, 12 denotes an operation unit such as a keyboard, a floppy disk driver, a CD-ROM driver, and 13 denotes a printer for printing the inspection result by the beam.

【0009】14はサーボ制御部を示し、ガルバノメー
タ3を駆動制御するサーボ制御回路14aとガルバノ駆
動回路14bとで構成されている。15はX−Yステー
ジTを制御するX−Yステージ制御部を示し、処理装置
10から出力される位置座標に基づいてX−Yステージ
Tを駆動し、プリント基板Pを所定の位置に移動させる
ものである。
Reference numeral 14 denotes a servo control unit, which comprises a servo control circuit 14a for driving and controlling the galvanometer 3 and a galvanometer driving circuit 14b. Reference numeral 15 denotes an XY stage control unit that controls the XY stage T, drives the XY stage T based on the position coordinates output from the processing device 10, and moves the printed circuit board P to a predetermined position. Things.

【0010】すなわち、X−YステージTの図示を省略
したプリント基板設置部には、X方向とY方向の2次元
座標系が設定されており、処理装置10の出力する2次
元座標系上の点が、ビームスポットの初期設定位置など
の固定点に一致するようにX−YステージTを駆動す
る。
That is, a two-dimensional coordinate system in the X direction and the Y direction is set in the printed circuit board installation portion of the XY stage T, which is not shown, and the two-dimensional coordinate system output from the processing device 10 The XY stage T is driven so that the point coincides with a fixed point such as the initial setting position of the beam spot.

【0011】次に、前記した構成に基づいて図5と共に
動作を説明する。先ず、検査を開始する前に印刷配線板
Pの種類などを識別する基板名などの検査用データが予
め図示しない記憶装置などに登録され、検査を行なう時
には、印刷配線板PをX−YステージTに載置して基板
名などを操作部12から入力すると予め記録された検査
箇所の位置情報などの検査用データに基づいて自動的に
検査が行なわれるようになっている。
Next, the operation will be described with reference to FIG. First, before starting the inspection, inspection data such as a board name for identifying the type of the printed wiring board P is registered in a storage device (not shown) or the like beforehand. When the inspection is performed, the printed wiring board P is moved to the XY stage. When the device is placed on the T and a board name or the like is input from the operation unit 12, an inspection is automatically performed based on inspection data such as position information of an inspection location recorded in advance.

【0012】そして、1枚の印刷配線板PはX−Yステ
ージT上にコンベア等で送られストッパにより所定の位
置で停止しロックされる。この状態でX−YステージT
は印刷配線板Pに実装されているチップ部品Cが受光手
段9におけるビーム照射孔9aの真下に来るように制御
する。
Then, one printed wiring board P is sent onto the XY stage T by a conveyor or the like, and is stopped and locked at a predetermined position by a stopper. In this state, the XY stage T
Is controlled so that the chip component C mounted on the printed wiring board P is located directly below the beam irradiation hole 9a in the light receiving means 9.

【0013】次いで、ビームを照射する位置情報が処理
装置10からサーボ制御回路14aに出力されると、該
サーボ制御回路14aはガルバノ駆動回路14bに出力
しているX方向制御信号とY方向制御信号をガルバノメ
ータ3のエンコーダ出力で補正して出力するので、ガル
バノ駆動回路14bによってガルバノメータ3が補正駆
動され、ビームBの走査方向が決定される。
Next, when the position information for irradiating the beam is output from the processing device 10 to the servo control circuit 14a, the servo control circuit 14a outputs the X direction control signal and the Y direction control signal output to the galvano drive circuit 14b. Is corrected and output by the encoder output of the galvanometer 3, and the galvanometer 3 is driven to correct by the galvanometer driving circuit 14b, and the scanning direction of the beam B is determined.

【0014】そして、処理装置10が各部を制御し、入
力信号に基づいて演算することにより、ビームBを図5
(a),(b)に示す印刷配線板Pに実装されたチップ
部品Cの半田付け部分のみに対して左から右方向に掃引
する。この掃引により図5(a)の場合には反射光が受
光手段9の左側の受光素子に対して反時計方向に照射さ
れ、また、図5(b)の場合には受光手段9の右側の受
光素子に対して時計方向に照射される。なお、図中のP
1 はパッドであり、C1 は電極である。
Then, the processing unit 10 controls each unit and calculates based on the input signal, thereby forming the beam B in FIG.
The sweep is performed from left to right only for the soldered portion of the chip component C mounted on the printed wiring board P shown in (a) and (b). By this sweep, in the case of FIG. 5A, the reflected light is applied to the light receiving element on the left side of the light receiving means 9 in the counterclockwise direction, and in the case of FIG. Light is emitted clockwise to the light receiving element. Note that P in FIG.
1 is a pad, C 1 is an electrode.

【0015】この反射光を受光した受光手段9よりのア
ナログ信号は処理装置10に送出され、内部においてデ
ジタル信号に変換されて、前記反時計方向に移動する反
射光の場合には、半田面が凹型であり、また、時計方向
に移動する場合には凸型であると判断するものである。
The analog signal from the light receiving means 9 which has received the reflected light is sent to the processing device 10 and is converted into a digital signal internally. In the case of the reflected light moving in the counterclockwise direction, the solder surface is If it is concave, and if it moves clockwise, it is determined to be convex.

【0016】なお、前記した説明にあっては、チップ部
品Cの左側の半田面の形状方法について説明している
が、チップ部品Cの右側についても同様な検査を行う。
この場合には受光手段9の右側の受光素子が反射光を受
光し、時計方向の反射光を受光した場合には凹型の半田
形状と、また、反時計方向の反射光を受光した場合には
凸型の半田形状と判定する。
In the above description, the method of forming the solder surface on the left side of the chip component C is described, but the same inspection is performed on the right side of the chip component C.
In this case, the light receiving element on the right side of the light receiving means 9 receives the reflected light, the concave solder shape when the clockwise reflected light is received, and the concave solder shape when the counterclockwise reflected light is received. Judge as a convex solder shape.

【0017】ところで、従来における前記したような反
射光の結果により得られる凹型の半田形状は良であり、
凸型の半田形状は不良であると判定していた。しかし、
チップ部品Cを印刷配線板Pに実装するフロー半田およ
びリフロー半田の何れの実装方法にあっても、以下の理
由によって半田の形状が一様になり難いといった問題が
あった。
By the way, the conventional concave solder shape obtained as a result of the reflected light as described above is good,
The convex solder shape was determined to be defective. But,
Regardless of the mounting method of the flow solder and the reflow solder for mounting the chip component C on the printed wiring board P, there is a problem that the shape of the solder is difficult to be uniform for the following reasons.

【0018】すなわち、フロー半田の場合には、方式的
に一定の半田形状を形成することが難しく、また、リフ
ロー半田の場合には、代表的な部品の半田量を基準とし
て半田印刷が行われるため、凹型形状の半田と凸型形状
の半田が発生する。
That is, in the case of flow soldering, it is difficult to form a systematically uniform solder shape, and in the case of reflow soldering, solder printing is performed based on the solder amount of a typical component. Therefore, a concave-shaped solder and a convex-shaped solder are generated.

【0019】ところが、凸型の半田形状であっても、半
田量が多い場合には部品の実装強度を見た場合には半田
強度的には支障がないため、凸型の半田形状であっても
良品と判定しようとする要望が増えてきている。
However, even in the case of a convex solder shape, when there is a large amount of solder, there is no problem in terms of solder strength in terms of component mounting strength. There has been an increasing demand for judging that the product is good.

【0020】[0020]

【発明が解決しようとする課題】そこで、半田の形状に
よらず、すなわち、凹型および凸型の半田形状であって
も、良品と判断するように判定基準を緩和した場合に
は、図6に示すようにチップ部品Cが浮いている不良の
実装状態であっても、半田形状から浮きを判定すること
は難しく、この浮き状態を見逃して良品であるという判
定を下してしまうといった問題が発生した。
Therefore, regardless of the shape of the solder, that is, even if the shape of the solder is concave or convex, if the criterion is relaxed so as to be judged as a good product, FIG. As shown in the drawing, even in the defective mounting state where the chip component C is floating, it is difficult to determine the floating from the solder shape, and this floating state is overlooked, and a problem that a good product is determined is generated. did.

【0021】本発明は前記した問題点を解決せんとする
もので、その目的とするところは、電子部品の両端の半
田付け面にビームを照射し、該半田付け面からの反射光
(正反射)の位置を受光手段の受光位置により検出する
と共に、電子部品自体にもビームを照射して、該電子部
品からの反射光(乱反射)を受光手段の受光バランスに
より検出し、半田形状および電子部品の浮きを判断する
ようにした電子部品の浮き検出方法を提供せんとするに
ある。
An object of the present invention is to solve the above-described problems. The object of the present invention is to irradiate a beam to soldering surfaces at both ends of an electronic component and to reflect light (specular reflection) from the soldering surface. ) Is detected by the light receiving position of the light receiving means, the electronic component itself is irradiated with a beam, and the reflected light (irregular reflection) from the electronic component is detected by the light receiving balance of the light receiving means to obtain the solder shape and the electronic component. It is an object of the present invention to provide a method for detecting the floating of an electronic component in which the floating of the electronic component is determined.

【0022】[0022]

【課題を解決するための手段】本発明の電子部品の浮き
検出は前記した目的を達成せんとするもので、その手段
は、印刷配線板に実装された電子部品の半田付け面にビ
ームを照射し、その反射光を受光手段により受光して電
子部品の実装状態を検出する検出方法において、前記ビ
ームの半田付け部分からの反射光の位置を前記受光手段
の受光位置によって検出し半田付け状態を判定し、ま
た、前記ビームの電子部品自体からの乱反射光を前記受
光手段の受光バランスによって検出して実装状態の良否
を判定し、かつ、前記2つの判定を連続して行うように
したことを特徴とする。
SUMMARY OF THE INVENTION The object of the present invention is to detect the floating of an electronic component by irradiating a beam to a soldering surface of the electronic component mounted on a printed wiring board. In the detection method, the reflected light is received by the light receiving means to detect the mounting state of the electronic component, and the position of the reflected light from the soldered portion of the beam is detected by the light receiving position of the light receiving means to determine the soldering state. Determination, and irregularly reflected light of the beam from the electronic component itself is detected by the light receiving balance of the light receiving means to determine the quality of the mounting state, and that the two determinations are continuously performed. Features.

【0023】[0023]

【発明の実施の形態】以下、本発明に係る電子部品の浮
き検出方法の実施の形態を図1のフローチャートと図2
のチップ部品にビームを照射した場合について説明す
る。なお、光学系とブロック図は従来例と同様の構成な
ので、説明は省略するが、処理装置10の動作は図1の
フローチャートの動作を行うものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for detecting floating of an electronic component according to the present invention will be described with reference to the flowchart of FIG.
A case in which a beam is applied to the chip component will be described. Since the optical system and the block diagram are the same as those in the conventional example, the description is omitted, but the operation of the processing device 10 is the same as the operation in the flowchart of FIG.

【0024】先ず、X−YステージTによって印刷配線
板Pに実装されているチップ部品Cを受光手段9におけ
るビーム照射孔9aの真下に来るように制御する。この
状態において、ガルバノメータ3によりチップ部品Cの
一方の電極の半田部分に対してビームBを照射しながら
チップ部品C側に向けてビームBを照射させる。
First, the chip component C mounted on the printed wiring board P by the XY stage T is controlled so as to be directly below the beam irradiation hole 9a in the light receiving means 9. In this state, the beam B is irradiated toward the chip component C while irradiating the beam B to the solder part of one electrode of the chip component C by the galvanometer 3.

【0025】そして、半田付け部分よりの反射光を受光
手段9によって受光し、該反射光が時計方向または反時
計方向で受光するか否かを監視し(ステップS1)、そ
の何れかの方向の反射光を受光した場合には、半田形状
が凹型または凸型であるので、次のステップS2に進む
が、前記何れの方向の反射光をも受光しなかった場合に
は、未半田状態であるとして半田付け不良と判定する
(ステップS2)。
Then, the reflected light from the soldered portion is received by the light receiving means 9, and it is monitored whether the reflected light is received in the clockwise or counterclockwise direction (step S1). If the reflected light is received, the process proceeds to the next step S2 since the solder shape is concave or convex, but if no reflected light in any of the above directions is received, it is in the unsoldered state. (Step S2).

【0026】次いで、ガルバノメータ3によりビームB
をさらに移動させ、ビームBがチップ部品Cの真上にな
るように制御する。そして、この時の受光手段9の内側
4側面の受光素子で受光する受光量を各側面毎に加算す
る(ステップS3)。
Next, the beam B is output by the galvanometer 3.
Is further moved so that the beam B is controlled to be directly above the chip component C. Then, the amounts of light received by the light receiving elements on the four inner side surfaces of the light receiving means 9 at this time are added for each side surface (step S3).

【0027】チップ部品Cの上面は粗面となっているの
で、該上面に照射されたビームBは乱反射されるが、図
2(a)のように正常な半田付け状態である場合には、
反射光が4方向に平均して分散され、また、図2(b)
のように一方が浮いている場合には、4側面の受光素子
が平均した光量を受光せずにチップ部品Cが傾いた方向
の受光素子が特に受光量が大きくなって各側面の受光素
子が受光する受光量にバラツキが生じるようになる。
Since the upper surface of the chip component C is rough, the beam B applied to the upper surface is irregularly reflected. However, when the soldering state is normal as shown in FIG.
The reflected light is dispersed in four directions on average, and FIG.
When one of them is floating, the light receiving elements on the four sides do not receive the average amount of light, and the light receiving elements in the direction in which the chip component C is tilted receive a particularly large amount of light. The amount of received light varies.

【0028】そこで、処理装置10には正常な部品実装
状態における4側面の受光素子の受光量の分散に関する
比較基準値を予め設定し、以下の式で求めた分散値の比
較を行う。
Therefore, a comparison reference value relating to the variance of the amount of light received by the light receiving elements on the four sides in the normal component mounting state is set in the processing apparatus 10 in advance, and the variance value obtained by the following equation is compared.

【数1】 ここで、x1 〜x4 は、受光手段9における4側面の受
光素子の受光量
(Equation 1) Here, x 1 to x 4 are the amounts of light received by the light receiving elements on the four side surfaces in the light receiving means 9.

【0029】そして、前記した乱反射光を4側面の受光
素子による分散値が前記比較基準値の範囲内か否かを監
視し(ステップS4)、その結果が範囲外であると判定
すると、チップ部品Cの一方がパッドP1 から浮いてい
ると判断し、チップ部品浮きによる実装不良であると判
定する(ステップS5)。
Then, it is monitored whether or not the scattered value of the irregularly reflected light by the light receiving elements on the four sides is within the range of the comparison reference value (step S4). It is determined that one of C is floating from the pad P1, and it is determined that the mounting failure is caused by the floating of the chip component (step S5).

【0030】次いで、前記ステップS4において浮きが
ないと判定すると、前記ステップS1による判定と同様
に、ガルバノメータ3によりチップ部品Cの他の電極の
半田部分に対してビームBを照射しながらチップ部品C
から外れる方向に向けてビームBをを移動させる。
Next, when it is determined in step S4 that there is no floating, similarly to the determination in step S1, the chip component C is irradiated with the beam B to the solder part of the other electrode of the chip component C by the galvanometer 3.
The beam B is moved in a direction away from the beam B.

【0031】そして、半田付け部分よりの反射光を受光
手段9によって受光し、該反射光が時計方向または反時
計方向で受光するか否かを監視し(ステップS6)、そ
の何れかの方向の反射光を受光した場合には、半田形状
が凹型または凸型であるので、半田付け状態は正常であ
り、かつ、チップ部品Cの浮きもないとして部品の実装
状態良と判定する(ステップS7)。また、前記何れの
方向の反射光をも受光しなかった場合には、未半田状態
であるとして半田付け不良であると判定する(ステップ
S8)。
Then, the reflected light from the soldered portion is received by the light receiving means 9, and it is monitored whether the reflected light is received in a clockwise direction or a counterclockwise direction (step S6). When the reflected light is received, since the solder shape is concave or convex, it is determined that the soldering state is normal and there is no lifting of the chip component C, and the mounting state of the component is good (step S7). . If the reflected light in any of the above directions is not received, it is determined that the soldering is not completed, that is, it is in an unsoldered state (step S8).

【0032】なお、前記した実施の形態にあっては、電
子部品としてチップ部品の場合について説明したが、リ
ードを介して実装されるような電子部品一般に応用でき
るものである。
In the above-described embodiment, the case where a chip component is used as an electronic component has been described. However, the present invention can be applied to general electronic components mounted via leads.

【0033】[0033]

【発明の効果】本発明は前記したように、電子部品の半
田付け部分に照射したビームの反射光が、受光手段のど
の位置で受光するかで半田付け状態が凹型半田であるか
凸型半田であるか、あるいは、未半田であるかの判定を
行い、かつ、電子部品自体に対してもビームを照射し、
該電子部品自体からの反射光の受光量が、予め設定した
分散における比較基準値の範囲内か否かで電子部品の浮
きを判定するようにしたので、半田付け状態の良品を、
判定の微妙な凸型半田の状態で良品であると判定して
も、電子部品の浮き判定によって誤判定をすることがな
くなる効果を有するものである。
As described above, according to the present invention, whether the soldering state is concave soldering or convex soldering depends on where the reflected light of the beam applied to the soldering portion of the electronic component is received by the light receiving means. Or whether it is not soldered, and irradiates the beam to the electronic component itself,
Since the amount of reflected light received from the electronic component itself is determined to be within the range of the comparison reference value in the preset dispersion, the floating of the electronic component is determined.
Even if it is determined that the solder is good in the state of the delicate convex solder, it is possible to prevent the erroneous determination by the floating determination of the electronic component.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る電子部品の浮き検出方法およびそ
の装置の動作を説明するためのフローチャートである。
FIG. 1 is a flowchart illustrating an operation of an electronic component floating detection method and apparatus according to the present invention.

【図2】電子部品の半田付け正常と浮き状態とを示す側
面図である。
FIG. 2 is a side view showing a normal soldering state and a floating state of the electronic component.

【図3】従来の半田付け検査を行うための光学系の斜視
図である。
FIG. 3 is a perspective view of a conventional optical system for performing a soldering inspection.

【図4】装置全体の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration of the entire apparatus.

【図5】(a)は凹型半田状態の反射光を示す側面図、
(b)は凸型半田状態の反射光を示す側面図である。
FIG. 5A is a side view showing reflected light in a concave solder state;
(B) is a side view showing reflected light in a convex solder state.

【図6】電子部品の一方が浮いた状態の側面図である。FIG. 6 is a side view of one of the electronic components in a floating state.

【符号の説明】[Explanation of symbols]

P 印刷配線板 C チップ部品 B ビーム 9 受光手段 P Printed wiring board C Chip component B Beam 9 Light receiving means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 印刷配線板に実装された電子部品の半田
付け面にビームを照射し、その反射光を受光手段により
受光して電子部品の実装状態を検出する検出方法におい
て、 前記ビームの半田付け部分からの反射光の位置を前記受
光手段の受光位置によって検出し半田付け状態を判定
し、また、前記ビームの電子部品自体からの乱反射光を
前記受光手段の受光バランスによって検出して実装状態
の良否を判定し、かつ、前記2つの判定を連続して行う
ようにしたことを特徴とする電子部品の浮き検出方法。
1. A detection method for irradiating a beam onto a soldering surface of an electronic component mounted on a printed wiring board and receiving reflected light thereof by a light receiving means to detect a mounting state of the electronic component. The position of the reflected light from the attachment part is detected by the light receiving position of the light receiving means to determine the soldering state, and the irregularly reflected light of the beam from the electronic component itself is detected by the light receiving balance of the light receiving means to determine the mounting state. A method for detecting the floating of an electronic component, the method further comprising: determining whether or not the electronic component is good or not, and performing the two determinations continuously.
JP08333598A 1998-03-30 1998-03-30 Electronic component floating detection method Expired - Fee Related JP4298809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08333598A JP4298809B2 (en) 1998-03-30 1998-03-30 Electronic component floating detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08333598A JP4298809B2 (en) 1998-03-30 1998-03-30 Electronic component floating detection method

Publications (2)

Publication Number Publication Date
JPH11284400A true JPH11284400A (en) 1999-10-15
JP4298809B2 JP4298809B2 (en) 2009-07-22

Family

ID=13799576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08333598A Expired - Fee Related JP4298809B2 (en) 1998-03-30 1998-03-30 Electronic component floating detection method

Country Status (1)

Country Link
JP (1) JP4298809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515230A (en) * 2017-10-17 2017-12-26 广东正业科技股份有限公司 A kind of welding system and product inspection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515230A (en) * 2017-10-17 2017-12-26 广东正业科技股份有限公司 A kind of welding system and product inspection method

Also Published As

Publication number Publication date
JP4298809B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP3143038B2 (en) Automatic focusing method and apparatus, and three-dimensional shape detection method and apparatus
US7641099B2 (en) Solder joint determination method, solder inspection method, and solder inspection device
US5166753A (en) Method for inspecting electronic devices mounted on a circuit board
JPH11284400A (en) Method for detecting floating of electronic component
JP2000088542A (en) Apparatus and method for inspecting soldering
JPH0786722A (en) Automatic pattern corrector
JP2002257516A (en) Method and device for measuring height of solder
JP3030176B2 (en) Shape inspection method using contour recognition method
JPS62133341A (en) Inspecting device for soldered part
JP3754144B2 (en) Lead float inspection method
JP2847351B2 (en) Automatic printed wiring board inspection system
JP3156402B2 (en) Solder appearance inspection method
JPH10256800A (en) Method for setting decision criterion freely in equipment for inspecting mounted printed wiring board
JP3054513B2 (en) Method for detecting lead lift of electronic components
JP4795561B2 (en) Bump height inspection method and inspection apparatus
JPH0658729A (en) Inspecting apparatus for soldered state
JPH1051194A (en) Method for inspecting deviation of chip component
JP2002333308A (en) Bump height inspection method and inspection apparatus
JP4795560B2 (en) Bump height inspection method and inspection apparatus
JPH10275885A (en) Method and device for automatically checking positional data of j-lead
JPS627200A (en) Junction state detector
JPH11167635A (en) Plotting deciding device
JPH0771920A (en) Method for inspecting mounted state of electronic part
JPH04140650A (en) Apparatus for inspecting printed circuit board
JP2002334898A (en) Method and equipment for inspecting bump height

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070801

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150424

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees