JPS62133341A - Inspecting device for soldered part - Google Patents

Inspecting device for soldered part

Info

Publication number
JPS62133341A
JPS62133341A JP27321385A JP27321385A JPS62133341A JP S62133341 A JPS62133341 A JP S62133341A JP 27321385 A JP27321385 A JP 27321385A JP 27321385 A JP27321385 A JP 27321385A JP S62133341 A JPS62133341 A JP S62133341A
Authority
JP
Japan
Prior art keywords
lead
speckle
fluorescence
defect
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27321385A
Other languages
Japanese (ja)
Inventor
Takashi Hiroi
高志 広井
Takanori Ninomiya
隆典 二宮
Kazushi Yoshimura
和士 吉村
Yasuo Nakagawa
中川 泰夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27321385A priority Critical patent/JPS62133341A/en
Publication of JPS62133341A publication Critical patent/JPS62133341A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Abstract

PURPOSE:To inspect defects such as lead floating, a shift in lead position, and solder bridging at a soldered part automatically by detecting the self-vibration of a lead due to air jet injection by using laser speckle. CONSTITUTION:An XY table 13 is positioned at an inspection position firstly under the command of a table control circuit 20 and a galvanomirror 11 is set at a specific position under the command of a galvanomirror 15. Then, an air jet is injected to a parts lead 1 from an air nozzle 2 under the command of a jet control circuit 16. A fluorescence waveform and speckle waveforms before and after the jet injection are inputted to a speckle and fluorescence sensor control circuit 17 and a speckle defect decision part 19 decides a lead floating defect. Further, the mirror 11 is driven under the command of the circuit 15 during the decision period to rotate, and a fluorescent image from a linear sensor 8 for fluorescence detection is inputted to the circuit 17 in synchronism with the rotation, so that a fluorescence defect decision part 18 decides a lead position shift and a solder bridging defect on the basis of the detected fluorescent image.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、はんだ付部の検査装置に係シ、特に、高密度
なフラットパッケージ形部品のリード浮き、はんだブリ
ッジ、リード位置ずれ欠陥を信頼性高く検査するのに好
適なはんだ付部検査装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an inspection device for soldering parts, and in particular, to reliable inspection of lead floating, solder bridging, and lead misalignment defects in high-density flat package components. The present invention relates to a soldering part inspection device suitable for high inspection.

〔発明の背景〕[Background of the invention]

検査すべきフラットハラケージ形部品のはんだ付部を第
5図に示す。はんだ付部は基板12上に形成された配線
パターン23と、LSIなどの部品24に設けられた部
品リード1とが接合される構造を成している。このはん
だ付部の欠陥としては第3図に示すようなものがある。
Figure 5 shows the soldered portion of the flat cage-shaped component to be inspected. The soldering portion has a structure in which a wiring pattern 23 formed on a substrate 12 and a component lead 1 provided on a component 24 such as an LSI are joined. Defects in the soldered portion include those shown in FIG.

第6図(a)は配線パターン23と部品リード1が接合
されていないリード浮き欠陥、第6図(b)は配線バタ
ー/23に対し部品リード1がずれて接合されたリード
位置ずれ欠陥、第6図(c)は隣接するはんだ付部がは
んだブリッジ29によシシせ−トしたはんだブリッジ欠
陥である。これらはんだ付部の欠陥は、目視による検査
が困難であるため検査自動化の必要性が高い。しかし、
自動検査が困難であるという問題がある。
FIG. 6(a) shows a lead floating defect where the wiring pattern 23 and the component lead 1 are not bonded, FIG. 6(b) shows a lead misalignment defect where the component lead 1 is bonded to the wiring butter/23 with a misalignment. FIG. 6(c) shows a solder bridge defect in which the adjacent soldered portion is attached to the solder bridge 29. Since defects in these soldered parts are difficult to visually inspect, there is a strong need for automated inspection. but,
There is a problem that automatic inspection is difficult.

従来、はんだ付部の外観検査をおこなう方式として以下
に述べる4つの方式がある。
Conventionally, there are four methods for visually inspecting soldered parts, as described below.

第1の方式は、振動子をはんだ付部に接触させることに
よシ、60H2〜200KH2の周波数で加振をおこな
い、そのときの振動の状態を振動検出器で検出し、この
ときの振動の状態をもとに欠陥判定をおこなう(米国特
許4,218,922)。
The first method is to excite the vibrator at a frequency of 60H2 to 200KH2 by bringing it into contact with the soldered part, and detect the state of vibration at that time with a vibration detector. Defects are determined based on the condition (US Pat. No. 4,218,922).

第2の方式は、振動子をはんだ付部に接触させることに
より、20H2〜IME2″またけ150KH2〜65
0KH2tで変化させてはんだ付部の加振をおこない、
このときの振動の大きさを振動検出器で検出することに
よシはんだ付部の周波数応答を測定し、この周波数応答
をもとに欠陥判定をおこなう(米国特許4,287,7
66)。
The second method is to bring the vibrator into contact with the soldered part, which will span 20H2~IME2'' and 150KH2~65
Excite the soldering part by changing it at 0KH2t,
By detecting the magnitude of vibration at this time with a vibration detector, the frequency response of the soldered part is measured, and defects are determined based on this frequency response (U.S. Pat. No. 4,287,7
66).

第3の方式はスペックル振動検出法といわれるもので、
エア噴射で浮きリードに自動振動を発生させ、その振動
をリードに照射したレーザにより生ずるスペックルを用
いて検出、欠陥判定する(特開昭6O−85363)。
The third method is called speckle vibration detection method.
Automatic vibration is generated in a floating lead by air injection, and the vibration is detected and determined as a defect using speckles generated by a laser irradiated on the lead (Japanese Patent Laid-Open No. 60-85363).

第4の方式は、プリント板のパターン検査用に開発され
た螢光検出法である。この方式は検査対象に短波長光を
照射し、基材よυ生ずる螢光のみを検出パターンのシル
エツト像としてとらえパターン検査する方式である(特
開昭59−252344)。
The fourth method is a fluorescent detection method developed for pattern inspection of printed circuit boards. In this method, short wavelength light is irradiated onto the object to be inspected, and only the fluorescence emitted from the base material is captured as a silhouette image of the detection pattern for pattern inspection (Japanese Patent Laid-Open No. 59-252344).

これ等の方式のうち、第1と第2の方式は接触形で加振
、振動検出を行っているため、検査速度が遅く検査信頼
性に問題が生じる虞がある。また、第1.第2及び第3
の方式はリード浮き欠陥のみの検出しかできず、第4の
方式はリード位置ずれやはんだ位置ずれやはんだブリッ
ジ欠陥のみの検出しかできないという不都合がある。
Among these methods, the first and second methods perform vibration excitation and vibration detection in a contact type, and therefore the test speed is slow and there is a possibility that a problem may arise in test reliability. Also, 1st. 2nd and 3rd
The method described above has the disadvantage that it can only detect lead floating defects, and the fourth method can only detect lead position deviations, solder position deviations, and solder bridge defects.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、はんだ付部のリード浮き欠陥と、リー
ド位置ずれ欠陥と、はんだブリッジ欠陥とを自動的に検
査できるはんだ付部検査装置を提供することにある。
An object of the present invention is to provide a soldering part inspection device that can automatically inspect lead floating defects, lead misalignment defects, and solder bridging defects in soldering parts.

〔発明の概要〕[Summary of the invention]

上記目的を達成する為、本発明では、気体噴流噴射によ
るリードの自動振動をレーザスペックルを用いて検出す
る機構と、短波長光照射で被検査対象から生じる螢光を
検出する機構とを一体に複合してはんだ付部検査装置を
構成する。
In order to achieve the above object, the present invention integrates a mechanism that uses laser speckles to detect the automatic vibration of a reed caused by gas jet injection, and a mechanism that detects fluorescence generated from an object to be inspected by irradiating short wavelength light. Combined with this, a soldering part inspection device is constructed.

しかして、リード浮き欠陥と、リード位置ずれ欠陥と、
はんだブリッジ欠陥が同時に自動検出できる。
However, lead floating defects and lead misalignment defects,
Solder bridge defects can be automatically detected at the same time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図乃至第4図を参照して
説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 to 4.

第1図は検査装置の構成図であり、検査装置は検査ヘッ
ドと制御部からなる。検査装置の検査ヘッドは、LSI
などの部品リード1に対し間接的に振動を与えるため乱
流空気噴流を噴射するエアノズル2と、短波長レーザ光
を発生させるArレーザ3と、レーザ光をスリット状に
変換して一辺分のリードを照明するための照射光学系4
と、スペックルと螢光を検出センサ8,10に結像させ
るための結像レンズ5と、検出光中の螢光成分及びスペ
ックル成分を分離するダイクロイックミラー6と、螢光
成分とスペックル成分とを分離するダイクロイックミラ
ー7(ダイクロイックミラー6とは波長特性が異なる)
と、螢光成分を検出するりニアセンサ8と、スペックル
をデフォーカスさせて振動検出感度を上げるためのシリ
ンドリカルレンズ9と、スペックルを検出するためのり
ニアセンサ10と、リニアセンサ8で検出された一次元
の螢光像をスキャニングして二次元像とするためのガル
バノミラ−11よシなる。
FIG. 1 is a block diagram of the inspection apparatus, which consists of an inspection head and a control section. The inspection head of the inspection device is an LSI
An air nozzle 2 that injects a turbulent air jet to indirectly give vibration to a component lead 1 such as, an Ar laser 3 that generates a short wavelength laser beam, and a lead that covers one side by converting the laser beam into a slit shape. Illumination optical system 4 for illuminating
, an imaging lens 5 for forming an image of speckles and fluorescent light on detection sensors 8 and 10, a dichroic mirror 6 for separating a fluorescent component and a speckle component in the detection light, and a fluorescent component and speckle component. dichroic mirror 7 that separates the components (wavelength characteristics are different from dichroic mirror 6)
, a linear sensor 8 for detecting fluorescent components, a cylindrical lens 9 for defocusing speckles to increase vibration detection sensitivity, a linear sensor 10 for detecting speckles, and a linear sensor 8 for detecting speckles. It consists of a galvanometer mirror 11 for scanning a one-dimensional fluorescent image into a two-dimensional image.

検査装置の制御部22は、検査対象部品リード1の載っ
ているプリント基板12を検出ヘッドに対して位置決め
するためのXYテーブル13と、ガルバノミラ−11を
制御するガルバノミラ−駆動回路14と、ガルバノミラ
−駆動と同期して螢光検出用IJ ニアセンサ8を駆動
し螢光画像を取シ込む螢光センサ制御回路15と、エア
ノズル2からの空気噴流を制御する噴流制御回路16と
、噴流と同期させてスペックル検出用リニアセンサ10
及び螢光検出用リニアセンサ8を駆動してスペックルと
螢光波形を取り込むスペックル・螢光センサ制御回路1
7と、検出された螢光像を解析してリード位置すれとは
んだブリッジ欠陥を判定する螢光欠陥判定部18と、検
出されたスペックルと螢光波形からリード浮き欠陥を判
定するスペックル欠陥判定部19と、XYテーブル13
を駆動するテーブル制御回路20と、全体の制御をコン
トロールする全体制御部21よシなる。
The control unit 22 of the inspection device includes an XY table 13 for positioning the printed circuit board 12 on which the component lead 1 to be inspected is mounted relative to the detection head, a galvano mirror drive circuit 14 for controlling the galvano mirror 11, and a galvano mirror drive circuit 14 for controlling the galvano mirror 11. A fluorescence sensor control circuit 15 that drives the IJ near sensor 8 for fluorescence detection in synchronization with the drive and captures the fluorescence image, and a jet flow control circuit 16 that controls the air jet from the air nozzle 2 in synchronization with the jet. Speckle detection linear sensor 10
and a speckle/fluorescence sensor control circuit 1 that drives the linear sensor 8 for fluorescence detection to capture speckle and fluorescence waveforms.
7, a fluorescent defect determination unit 18 that analyzes the detected fluorescent image to determine lead position misalignment and solder bridge defects, and a speckle defect that determines lead floating defects from the detected speckles and fluorescent waveforms. Judgment unit 19 and XY table 13
It consists of a table control circuit 20 that drives the table, and an overall control section 21 that controls the entire control.

以上のように構成した本実施例において、全体の動作は
次のようにして行われる。
In this embodiment configured as described above, the overall operation is performed as follows.

検査は以下のように検査対象の位置決め、検出判定を繰
υ返すことによシ行う。まず、テーブル制御回路20か
らの指令でXYテーブル16を検査位置へ位置決めする
と共に、ガルバノミラ−制御回路15からの指令でガル
バノミラ−11を所定の位置に設定する。次に噴流制御
回路16よりの指令でエアノズル2がら空気噴流を部品
リード1に噴射する。この噴流に同期して、螢光波形と
、噴流噴射前及び噴射中の夫々のスペックル波形をスペ
ックル・螢光センサ制御回路17に取シ込み、検出した
波形をもとにスペックル欠陥判定部19でリード浮き欠
陥と後述するように判定する。また、この判定期間中に
、ガルバノミラ−制御回路15からの指令でガルバノミ
ラ−11を駆動してミラー11を回転させ、これと同期
して螢光検出用リニアセンサ8からの螢光像を螢光セン
サ制御回路15に取シ込み、検出した螢光像をもとに螢
光欠陥判定部18でリード位置ずれ及びはんだブリッジ
欠陥を後述するように判定する。
Inspection is performed by repeating positioning of the inspection target and detection judgment as described below. First, the XY table 16 is positioned at an inspection position by a command from the table control circuit 20, and the galvano mirror 11 is set at a predetermined position by a command from the galvano mirror control circuit 15. Next, a jet of air is injected onto the component lead 1 from the air nozzle 2 according to a command from the jet flow control circuit 16 . In synchronization with this jet, the fluorescence waveform and the speckle waveforms before and during jet injection are input to the speckle/fluorescence sensor control circuit 17, and speckle defects are determined based on the detected waveforms. In section 19, a floating lead defect is determined as will be described later. Also, during this judgment period, the galvano mirror 11 is driven by a command from the galvano mirror control circuit 15 to rotate the mirror 11, and in synchronization with this, the fluorescent image from the linear sensor 8 for detecting fluorescent light is illuminated. The sensor control circuit 15 receives the data, and based on the detected fluorescent image, the fluorescent defect determining section 18 determines lead position deviation and solder bridge defects as will be described later.

欠陥判定は、スペックル欠陥判定部19及び螢光欠陥判
定部18で行われる。まず、スペックル欠陥判定部19
で行われる欠陥判定について述べる。前述したように、
スペックル螢光センサ制御回路17に取り込まれる波形
は第2図に示す3種類がある。第2図(a)は螢光波形
を示し、部品リード1と配線パターン23の部分は暗く
、基板12の部分は有機材料で螢光を発するため明るく
検出される。第2図(b)は空気噴流噴射前のスペック
ル波形を示し、各部品リードからのスペックルが激しい
凹凸をもって検出される。第2図(c)は空気噴流噴射
中のスペックル波形を示し、良品リードからのスペック
ル25は噴射前の波形とほぼ同じ波形であり、リードが
大きな振幅で自動振動するタイプの浮きリードからのス
ペックル26は噴射前の波形と比べて凹凸の少いなめら
かな波形となシ、リードがほとんど自動振動しないタイ
プの浮きリードからのスペックル27は噴射前の波形と
比べて凹凸の激しさはほとんど変らないが凹凸の位置が
変った波形となる。
Defect determination is performed by a speckle defect determination section 19 and a fluorescence defect determination section 18. First, the speckle defect determination section 19
This section describes the defect determination performed in . As previously mentioned,
There are three types of waveforms taken into the speckle fluorescence sensor control circuit 17 as shown in FIG. FIG. 2(a) shows a fluorescence waveform, where the component lead 1 and the wiring pattern 23 are dark, and the substrate 12 is bright because it is an organic material that emits fluorescence. FIG. 2(b) shows a speckle waveform before air jet injection, and speckles from each component lead are detected as having severe irregularities. Figure 2 (c) shows the speckle waveform during air jet injection, and the speckle 25 from the good reed has almost the same waveform as the waveform before injection, and from the floating reed of the type where the reed automatically vibrates with a large amplitude. The speckle 26 is a smooth waveform with less unevenness compared to the waveform before injection, and the speckle 27 from a floating reed of a type where the reed hardly vibrates automatically has a more severe unevenness than the waveform before injection. Although there is almost no change in the waveform, the position of the unevenness has changed.

まず、螢光波形より最大値f、、8と最小値fsinを
求め、次式を用いて二値化閾値f’thを計算する。
First, the maximum value f, , 8 and the minimum value fsin are determined from the fluorescence waveform, and the binarization threshold f'th is calculated using the following equation.

f’th = a (f、。−fsin ) +fsi
n    、0.−、 、、、(1)ここで a、o(
g(1なる定数 計算した閾値f’tbで二値化して部品リード1と配線
パターン23の場所(以降リードパターン部と略す)を
検出し、検出した場所を順にPl : Cx 1+x1
〕、P2 : CX2* X2) ・” −Pn: C
X、、* Xn]とする。
f'th = a (f, .-fsin) +fsi
n, 0. −, ,,, (1) where a, o(
The locations of the component lead 1 and the wiring pattern 23 (hereinafter abbreviated as the lead pattern section) are detected by binarizing with the calculated threshold value f'tb, which is a constant of 1, and the detected locations are sequentially expressed as Pl: Cx 1+x1
], P2: CX2*X2) ・” -Pn: C
X, , *Xn].

このリードパターン部の番号p1.p2.p、lははん
だブリッジ欠陥がない場合には部品リード番号に対応し
ている。はんだブリッジ欠陥を有する場合は次項で説明
する螢光欠陥判定で検出されるので、ここでは部品リー
ド番号に対応していると考える。
Number p1 of this lead pattern part. p2. p and l correspond to component lead numbers when there is no solder bridge defect. If there is a solder bridge defect, it will be detected by the fluorescence defect determination described in the next section, so here it is considered that it corresponds to the component lead number.

このリード番号に対応したリードパターン部毎に空気噴
流噴射前と噴射中のスペックル波形に対し以下の操作を
してリード浮き欠陥を判定する。
For each lead pattern portion corresponding to this lead number, the following operations are performed on the speckle waveforms before and during air jet injection to determine lead floating defects.

噴射前のスペックル波形g+(x)と噴射中のスペック
ル波形g2(x)の二次微分値をとって凹凸を強調し、
gl(X)、 g2(X) (は二次微分を示しg”(
x)= −g (x −m )+2g(x)g(x+m
): mVi微分の腕長をあられし1または2を用いる
)の相互相関ψ、を計算し、ψ1があらかじめ決めた閾
値ψthよシ小さいものを欠陥とする。相互相関の計算
は次式によシ行う。
The unevenness is emphasized by taking the second derivative of the speckle waveform g+(x) before injection and the speckle waveform g2(x) during injection,
gl(X), g2(X) (denotes the second derivative g"(
x)=-g(x-m)+2g(x)g(x+m
): Calculate the cross-correlation ψ of (using the arm length of mVi differential 1 or 2), and consider a defect if ψ1 is smaller than a predetermined threshold ψth. The cross-correlation is calculated using the following formula.

ここでΣは(x、、xi)までの和をあられす。Here, Σ is the sum up to (x,, xi).

次に螢光欠陥判定部18で行われる欠陥判定について述
べる。検出する螢光像を第6図に示す。
Next, the defect determination performed by the fluorescent defect determination section 18 will be described. The detected fluorescent image is shown in FIG.

螢光像は部品リード1と配線パターン23の場所(リー
ド・パターン部)では暗く、基板12の場所では明るく
検出される。また、リード位置ずれ欠陥28は、部品リ
ード1の配線パターン23からのはみ出し量S!があら
かじめ定めた許容値Sよより大きいものをいい、はんだ
ブリッジ欠陥29は、隣接する配線パターンがはんだに
よシショートしたものである。この螢光像を二値化し、
検査範囲y、〜yoまでをy方向に投影する。投影した
波形をh(x)とし、第4図に示す。投影波形をあらか
じめ定めた閾値hthで二値化、リード・パターン部の
幅W工(1=1.2.・・・on)を計算し、これがあ
らかじめ定めたはみ出し量許容値SL、とパターン幅を
加えたWい、よシ大きく、パターンピッチWth2よシ
小さいものをリード位置ずれ欠陥とし、wth2よす大
きいものをはんだブリッジ欠陥と判定する。
The fluorescent image is dark at the component lead 1 and wiring pattern 23 (lead pattern portion) and bright at the board 12. Furthermore, the lead misalignment defect 28 is caused by the protrusion amount S! of the component lead 1 from the wiring pattern 23! is larger than a predetermined tolerance value S, and a solder bridge defect 29 is a short-circuit between adjacent wiring patterns due to solder. Binarize this fluorescent image,
The inspection range y, to yo is projected in the y direction. The projected waveform is designated as h(x) and is shown in FIG. The projected waveform is binarized using a predetermined threshold hth, the width W of the lead pattern part (1=1.2...on) is calculated, and this is the predetermined protrusion tolerance SL and pattern width. A defect that is larger than the sum of W and smaller than the pattern pitch Wth2 is determined to be a lead misalignment defect, and a defect that is larger than Wth2 is determined to be a solder bridge defect.

本実施例によれば、螢光の情報を用いてリードパターン
部のスペックルの特定を行なっているため、基板から発
生する微弱なスペックルがノイズにうずもれて相関値が
減少することによるリード浮き欠陥の誤判定を少なくで
きる。
According to this embodiment, speckles in the lead pattern portion are identified using fluorescence information, so weak speckles generated from the substrate are submerged in noise and the correlation value decreases. Misjudgment of lead floating defects can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スペックル検出と螢光検出を単一ヘッ
ドで実現でき、リード浮き、リード位置ずれ、はんだブ
リッジ欠陥を検出する装置を一体に構成したので、単一
装置で検出すべき欠陥すべてを自動で検査できる効果が
ある。
According to the present invention, speckle detection and fluorescence detection can be realized with a single head, and devices for detecting lead floating, lead misalignment, and solder bridge defects are integrated, so defects that should be detected with a single device. It has the effect of automatically inspecting everything.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るはんだ何部検査装置の
構成図、第2図(a)は螢光波形図、第2図(b)は空
気噴流噴射前スペックル波形図、第2図(0)は空気噴
流噴射中スペックル波形図、第3図は螢光画像図、第4
図は投影波形図、第5図はフラットパッケージ形部品の
はんだ何部の斜視図、第6図−日埠#≠酵は夫々リード
浮き欠陥、リード位置ずれ欠陥、はんだブリッジ欠陥の
説明図である。 1・・・・・・部品リード。 2・・・・・・エアノズル 3・・・・・・レーザ。 4・・・・・・照射光学系。 5・・・・・・結像レンズ。 6.7・・・・・・ダイクロイックミラー。 8・・・・・・螢光検出用リニアセンサ。 10・・・・・・スペックル検出用リニアセンサ。 11・・・・・・ガルバノミラ−2 12・・・・・・プリント基板 13・・・・・・XYテーブル。 22・・・・・・制御部。 23・・・・・・配線ハターン。 第 1 図 第 2図 一ト 第3図
FIG. 1 is a configuration diagram of a solder inspection device according to an embodiment of the present invention, FIG. 2(a) is a fluorescence waveform diagram, FIG. 2(b) is a speckle waveform diagram before air jet injection, and FIG. Figure 2 (0) is a speckle waveform diagram during air jet injection, Figure 3 is a fluorescence image diagram, and Figure 4 is a diagram of a fluorescence image.
The figure is a projected waveform diagram, Figure 5 is a perspective view of the solder parts of a flat package type component, and Figure 6 - Hibori #≠ Fermentation is an explanatory diagram of lead floating defects, lead misalignment defects, and solder bridging defects, respectively. . 1... Parts lead. 2... Air nozzle 3... Laser. 4...Irradiation optical system. 5... Imaging lens. 6.7...Dichroic mirror. 8...Linear sensor for fluorescence detection. 10...Linear sensor for speckle detection. 11... Galvano mirror 2 12... Printed circuit board 13... XY table. 22...Control unit. 23...Wiring pattern. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、気体噴流噴射によるリードの自動振動をレーザスペ
ックルを用いて検出する第1の機構と、短波長光照射で
被検査対象から生じる螢光を検出する第2の機構とを複
合し、前記両機構の照明用光源と検出光学系の結像レン
ズを夫々共通化して構成したことを特徴とするはんだ付
部検査装置。 2、特許請求の範囲第1項記載のはんだ付部検査装置に
おいて、 前記第1の機構は、リードに空気噴流を噴射するエアノ
ズルと、リードにレーザを照射するレーザ光源と、照射
光学系と、結像レンズと、デフォーカス用シリンドリカ
ルレンズと、スペックル検出用センサより成ることを特
徴とするはんだ付部検査装置。 3、特許請求の範囲第1項記載のはんだ付部検査装置に
おいて、 前記第2の機構は、短波長光を照射する光源と、照射光
学系と、結像レンズと、蛍光成分を波長分離するダイク
ロイックミラーと、像検出用リニアセンサと、ガルバノ
ミラーより成ることを特徴とするはんだ付部検査装置。 4、特許請求の範囲第1項記載のはんだ付部検査装置に
おいて、 前記光源はArレーザであることを特徴とするはんだ付
部検査装置。
[Claims] 1. A first mechanism that uses laser speckles to detect automatic vibration of a reed caused by gas jet injection, and a second mechanism that detects fluorescence generated from an object to be inspected by irradiating short wavelength light. What is claimed is: 1. A soldering part inspection apparatus characterized in that the illumination light source of both mechanisms and the imaging lens of the detection optical system are made common to each other. 2. The soldering part inspection device according to claim 1, wherein the first mechanism includes an air nozzle that injects an air jet onto the leads, a laser light source that irradiates the leads with a laser beam, and an irradiation optical system. A soldering part inspection device comprising an imaging lens, a defocusing cylindrical lens, and a speckle detection sensor. 3. In the soldering part inspection apparatus according to claim 1, the second mechanism includes a light source that irradiates short wavelength light, an irradiation optical system, an imaging lens, and wavelength-separates fluorescent components. A soldering part inspection device comprising a dichroic mirror, a linear sensor for image detection, and a galvanometer mirror. 4. The soldered part inspection apparatus according to claim 1, wherein the light source is an Ar laser.
JP27321385A 1985-12-06 1985-12-06 Inspecting device for soldered part Pending JPS62133341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27321385A JPS62133341A (en) 1985-12-06 1985-12-06 Inspecting device for soldered part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27321385A JPS62133341A (en) 1985-12-06 1985-12-06 Inspecting device for soldered part

Publications (1)

Publication Number Publication Date
JPS62133341A true JPS62133341A (en) 1987-06-16

Family

ID=17524673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27321385A Pending JPS62133341A (en) 1985-12-06 1985-12-06 Inspecting device for soldered part

Country Status (1)

Country Link
JP (1) JPS62133341A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295143A (en) * 1988-05-23 1989-11-28 Nec Corp Lead curvature detecting device
JPH0325997A (en) * 1989-06-23 1991-02-04 Fujitsu General Ltd Soldering method for printed circuit board
JPH085572A (en) * 1995-05-26 1996-01-12 Matsushita Electric Ind Co Ltd Visual inspection method for electronic device
JP2014122797A (en) * 2012-12-20 2014-07-03 Toyota Motor Corp Substrate inspection device, substrate inspection method and substrate inspection program
CN110678003A (en) * 2019-10-18 2020-01-10 深圳劲鑫科技有限公司 PCB solder mask detection and repair integrated machine and process method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232344A (en) * 1983-06-16 1984-12-27 Hitachi Ltd Detector for wiring pattern
JPS6061648A (en) * 1983-09-16 1985-04-09 Hitachi Ltd Pattern detector
JPS6085363A (en) * 1983-10-17 1985-05-14 Hitachi Ltd Method and apparatus for detecting joint state

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232344A (en) * 1983-06-16 1984-12-27 Hitachi Ltd Detector for wiring pattern
JPS6061648A (en) * 1983-09-16 1985-04-09 Hitachi Ltd Pattern detector
JPS6085363A (en) * 1983-10-17 1985-05-14 Hitachi Ltd Method and apparatus for detecting joint state

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295143A (en) * 1988-05-23 1989-11-28 Nec Corp Lead curvature detecting device
JPH0325997A (en) * 1989-06-23 1991-02-04 Fujitsu General Ltd Soldering method for printed circuit board
JPH085572A (en) * 1995-05-26 1996-01-12 Matsushita Electric Ind Co Ltd Visual inspection method for electronic device
JP2014122797A (en) * 2012-12-20 2014-07-03 Toyota Motor Corp Substrate inspection device, substrate inspection method and substrate inspection program
CN110678003A (en) * 2019-10-18 2020-01-10 深圳劲鑫科技有限公司 PCB solder mask detection and repair integrated machine and process method
CN110678003B (en) * 2019-10-18 2020-07-21 深圳劲鑫科技有限公司 PCB solder mask detection and repair integrated machine and process method

Similar Documents

Publication Publication Date Title
US4641527A (en) Inspection method and apparatus for joint junction states
KR950001279A (en) Appearance inspection device and appearance inspection method of electronic parts
KR100428727B1 (en) Laser inspection apparatus
JPS62133341A (en) Inspecting device for soldered part
JPS6085363A (en) Method and apparatus for detecting joint state
JPH01113638A (en) Recognizing apparatus
JPH03199947A (en) Inspection of soldered part and apparatus therefor, and inspection of electronic component mounting state
JPH09196625A (en) Coplanarity inspection apparatus
JP2000081319A (en) Visual inspection method and equipment
JPS63177045A (en) Detection system for non-soldered part in mounted printed circuit board automatic inspection apparatus
JPS61240105A (en) Method and apparatus for detecting connection state
JP4298809B2 (en) Electronic component floating detection method
JPS627200A (en) Junction state detector
JPS6165175A (en) Method and apparatus for inspecting joined status of terminals of circuit parts
JP2939876B2 (en) Free judgment criteria setting method for mounted PCB inspection equipment
JP3754144B2 (en) Lead float inspection method
JPH0455099B2 (en)
JP2629798B2 (en) Board inspection equipment
JPH0729483Y2 (en) Mounted printed circuit board automatic inspection device
JPH08184407A (en) Automatic inspection equipment for mounting printed board
JPH0641164Y2 (en) Mounted printed circuit board automatic inspection device
JPH03195906A (en) Inspecting apparatus for soldered state
JPH02118439A (en) Inspection instrument for soldering state
JPH03249549A (en) Inspecting method for solder joining state
JPH0238479Y2 (en)