JPH11276897A - Catalyst for hydrolyzing carbonyl sulfide and hydrolysis - Google Patents

Catalyst for hydrolyzing carbonyl sulfide and hydrolysis

Info

Publication number
JPH11276897A
JPH11276897A JP10083330A JP8333098A JPH11276897A JP H11276897 A JPH11276897 A JP H11276897A JP 10083330 A JP10083330 A JP 10083330A JP 8333098 A JP8333098 A JP 8333098A JP H11276897 A JPH11276897 A JP H11276897A
Authority
JP
Japan
Prior art keywords
carbonate
catalyst
metal
carbonyl sulfide
honeycomb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10083330A
Other languages
Japanese (ja)
Other versions
JP3746609B2 (en
Inventor
Shigeru Nojima
野島  繁
Toshikuni Sera
俊邦 世良
Iwao Tsukuda
岩夫 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP08333098A priority Critical patent/JP3746609B2/en
Publication of JPH11276897A publication Critical patent/JPH11276897A/en
Application granted granted Critical
Publication of JP3746609B2 publication Critical patent/JP3746609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Industrial Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To convert carbonyl sulfide having numbers of base points into hydrogen sulfide by hydrolysis by adding a metal sulfate or a metal carbonate as a cocatalyst to anatase type titanium. SOLUTION: As a method for highly activating a TiO2 carrier, the addition of a cocatalyst is considered. The addition of a metal sulfate and a metal carbonate as a substance of a stable structure is considered. Besides, conversion into a complex oxide is cited to improve the performance of the TiO2 carrier. In general, by the conversion of a metal oxide into a complex metal oxide, the specific surface area increases, and also the heat resistance is improved. Also, solid base points increase. Although the form of a catalyst used in this reaction is not specified, a honeycomb-shaped catalyst is preferable. This catalyst added with a cocatalyst is prepared by a method in which metatitanic acid or titania, a metal sulfate, and a metal carbonate are added, and the mixture is added with a binder, kneaded, molded into a honeycomb, dried, and baked.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は石炭ガス化ガス等に
含まれる硫化カルボニル(COSと記す)を加水分解に
より硫化水素に変換する触媒及び方法に関する。
The present invention relates to a catalyst and a method for converting carbonyl sulfide (COS) contained in coal gasification gas or the like into hydrogen sulfide by hydrolysis.

【0002】[0002]

【従来の技術】多種の合成ガス中に混在する硫黄化合物
は、その合成ガスを原料とする様々なプロセスにおい
て、触媒被毒や装置腐食や大気汚染物質になるため、こ
れまでも硫黄化合物の除去に多大な労力がはらわれてき
た。とりわけ、石炭ガス化ガス中には多量の硫黄化合物
が含まれており、ガスタービンの燃料として使用する場
合は硫化水素やCOSを除去しなければならない。硫黄
化合物の中で、硫化水素や二酸化硫黄はアルカリ溶液洗
浄法やアミン吸収法等により比較的容易に除去されてき
た。ところが、COSは湿式法で効率よく除去すること
が困難であるため、下記の加水分解反応によって硫化水
素に変換されてきた。
2. Description of the Related Art Sulfur compounds mixed in various kinds of synthesis gas become catalyst poisoning, equipment corrosion and air pollutants in various processes using the synthesis gas as a raw material. A lot of work has been done. In particular, coal gasification gas contains a large amount of sulfur compounds, and when used as gas turbine fuel, hydrogen sulfide and COS must be removed. Among the sulfur compounds, hydrogen sulfide and sulfur dioxide have been relatively easily removed by an alkaline solution washing method, an amine absorption method, or the like. However, since it is difficult to efficiently remove COS by a wet method, it has been converted to hydrogen sulfide by the following hydrolysis reaction.

【化1】COS+H2 O→H2 S+CO2 これまでは、ガス中のCOSの加水分解触媒としてはア
ルミナ担体触媒が主に使われてきた。しかし、アルミナ
担体触媒は塩酸等の共存ガスが存在する場合、触媒の耐
久性に難があるため、前もってスクラバ等で塩酸を除去
する必要があるため、プロセスが複雑になる問題点を抱
えていた。
## STR1 ## to COS + H 2 O → H 2 S + CO 2 This is as a hydrolysis catalyst of COS in the gas alumina support catalyst has been mainly used. However, the alumina-supported catalyst has a problem that the process becomes complicated because the durability of the catalyst is difficult when a coexisting gas such as hydrochloric acid is present, and it is necessary to remove hydrochloric acid with a scrubber or the like in advance. .

【0003】[0003]

【発明が解決しようとする課題】通常の石炭ガス化ガス
中には塩酸が数10〜数100ppm程度存在している
ため、本雰囲気下で使用する場合は耐塩酸性に優れた触
媒の開発が待ち望まれていた。耐塩酸性に優れた担体と
してはTiO2 があげられるが必ずしも満足のいく性能
は有していない。さらに、本発明者らはCOSの加水反
応メカニズムについて鋭意検討を行ったところ下記の反
応モデルにより反応が進行することを明らかにした。こ
のモデルから、触媒の活性点は触媒表面の塩基点であ
り、塩基点を多くもつ触媒ほど高性能であると考えた。
Since ordinary coal gasification gas contains hydrochloric acid of several tens to several hundreds of ppm, development of a catalyst excellent in hydrochloric acid resistance when used in this atmosphere is awaited. Had been. As a carrier having excellent hydrochloric acid resistance, TiO 2 can be cited, but it does not always have satisfactory performance. Furthermore, the present inventors have made intensive studies on the mechanism of the COS hydrolysis reaction and found that the reaction proceeds according to the following reaction model. From this model, it was considered that the active point of the catalyst was a base point on the catalyst surface, and that a catalyst having more base points had higher performance.

【化2】 本発明は上記技術水準に鑑み、多数の塩基点を有するC
OSの加水分解触媒及び同加水分解方法を提供しようと
するものである。
Embedded image In view of the above technical level, the present invention provides a C-containing compound having a large number of base points.
An object of the present invention is to provide a catalyst for hydrolysis of OS and a method for the hydrolysis.

【0004】[0004]

【課題を解決するための手段】(1)アナターゼ型チタ
ンに対し、助触媒として金属硫酸塩又は金属炭酸塩を添
加担持させてなることを特徴とする硫化カルボニルの加
水分解触媒。 (2)助触媒である金属硫酸塩が硫酸バリウム、硫酸カ
ルシウム及び硫酸マグネシウムよりなる群から選ばれた
ものであり、金属炭酸塩が炭酸カルシウム、炭酸マグネ
シウム、炭酸ストロンチウム、炭酸バリウム、炭酸コバ
ルト、炭酸亜鉛、炭酸鉄、炭酸銅、炭酸ニッケル及び炭
酸マンガンよりなる群から選ばれたものであることを特
徴とする(1)又は(2)記載の硫化カルボニルの加水
分解触媒。 (3)TiO2 ・SiO2 ,TiO2 ・Al2 3 ,T
iO2 ・ZrO2 ,ZrO2 ・Al2 3 ,及びSiO
2 ・Al2 3 よりなる群の複合酸化物よりなることを
特徴とする硫化カルボニルの加水分解触媒。 (4)水の存在下、還元ガスの雰囲気中で、(1)〜
(4)のいずれかの触媒の存在下で硫化カルボニルを加
水分解することを特徴とする硫化カルボニルの加水分解
方法。
(1) A catalyst for hydrolyzing carbonyl sulfide, wherein an anatase type titanium is added and supported as a co-catalyst with a metal sulfate or a metal carbonate. (2) The metal sulfate as a co-catalyst is selected from the group consisting of barium sulfate, calcium sulfate and magnesium sulfate, and the metal carbonate is calcium carbonate, magnesium carbonate, strontium carbonate, barium carbonate, cobalt carbonate, carbonate The carbonyl sulfide hydrolysis catalyst according to (1) or (2), which is selected from the group consisting of zinc, iron carbonate, copper carbonate, nickel carbonate and manganese carbonate. (3) TiO 2 · SiO 2 , TiO 2 · Al 2 O 3 , T
iO 2 · ZrO 2 , ZrO 2 · Al 2 O 3 , and SiO
2. A catalyst for hydrolyzing carbonyl sulfide, comprising a composite oxide of the group consisting of 2.Al 2 O 3 . (4) In the presence of water, in an atmosphere of a reducing gas, (1) to
(4) A method for hydrolyzing carbonyl sulfide, which comprises hydrolyzing carbonyl sulfide in the presence of any of the catalysts.

【0005】[0005]

【発明の実施の形態】TiO2 担体の高活性化方法とし
て助触媒の添加が考えれる。上記反応モデルに示すよう
に塩基点を有し、さらに安定な構造を有する物質として
金属硫酸塩と金属炭酸塩の添加があげられる。金属硫酸
塩としては、硫酸バリウム、硫酸カルシウム、硫酸マグ
ネシウム等があげられ、金属炭酸塩としては、炭酸カル
シウム、炭酸マグネシウム、炭酸ストロンチウム、炭酸
バリウム、炭酸コバルト、炭酸亜鉛、炭酸鉄、炭酸銅、
炭酸ニッケル及び炭酸マンガン等があげられる。上記触
媒を調製する場合、特にこだわらないがTiO2 担体に
金属硫酸塩や金属炭酸塩を混練法として用いるのが一般
的である。また、添加する助触媒量は0.5〜30重量
%、好ましくは0.1〜20重量%である。
BEST MODE FOR CARRYING OUT THE INVENTION Addition of a cocatalyst can be considered as a method for highly activating a TiO 2 carrier. As shown in the above reaction model, addition of a metal sulfate and a metal carbonate can be given as a substance having a basic site and a more stable structure. Examples of the metal sulfate include barium sulfate, calcium sulfate, and magnesium sulfate. Examples of the metal carbonate include calcium carbonate, magnesium carbonate, strontium carbonate, barium carbonate, cobalt carbonate, zinc carbonate, iron carbonate, and copper carbonate.
Nickel carbonate, manganese carbonate and the like. When the above catalyst is prepared, a metal sulfate or a metal carbonate is generally used as a kneading method on a TiO 2 carrier, although not particularly limited. The amount of the cocatalyst to be added is 0.5 to 30% by weight, preferably 0.1 to 20% by weight.

【0006】一方TiO2 担体の高性能化として複合酸
化物化があげられる。一般に金属酸化物を複合金属酸化
物化とすると、比表面積は増大し耐熱性も向上する。さ
らに、固体塩基点も増大する特徴を有する。例えば、T
iO2 系複合酸化物としては、TiO2 ・SiO2 ,T
iO2 ・Al2 3 ,TiO2 ・ZrO2 があげられ
る。さらにAl2 3 ・ZrO2 やSiO2 ・Al2
3 等の複合酸化物も耐塩酸性は向上し、比表面積、耐熱
性、塩基点も増大するため、硫化カルボニルも加水分解
触媒として高性能化を図ることができる。TiO2 ・S
iO2 ,TiO2・Al2 3 ,TiO2 ・ZrO2
Al2 3 ・ZrO2 及びSiO2 ・Al 2 3 の複合
酸化物の複合割合は各々99:1〜1:99の範囲であ
る。
On the other hand, TiOTwoComplex acid as high performance carrier
Materialization is mentioned. Generally, metal oxides are mixed metal oxides
When it is made into a material, the specific surface area increases and the heat resistance also improves. Sa
In addition, it has the feature that the solid base point also increases. For example, T
iOTwoTiO 2 based composite oxidesTwo・ SiOTwo, T
iOTwo・ AlTwoOThree, TiOTwo・ ZrOTwoIs raised
You. Further AlTwoOThree・ ZrOTwoAnd SiOTwo・ AlTwoO
ThreeAnd other composite oxides have improved hydrochloric acid resistance, specific surface area, and heat resistance.
Carbonyl sulfide is also hydrolyzed due to increased acidity and base point
High performance can be achieved as a catalyst. TiOTwo・ S
iOTwo, TiOTwo・ AlTwoOThree, TiOTwo・ ZrOTwo,
AlTwoOThree・ ZrOTwoAnd SiOTwo・ Al TwoOThreeCompound of
The composite ratio of the oxides is in the range of 99: 1 to 1:99, respectively.
You.

【0007】COSの加水分解反応に適用する触媒の形
状は特にこだわらないが、ハニカム形状触媒が好まし
い。その理由はダスト等の夾雑物が存在する場合、触媒
の目詰まりや圧力損失が防げるからである。
The shape of the catalyst applied to the COS hydrolysis reaction is not particularly limited, but a honeycomb-shaped catalyst is preferred. The reason is that when foreign substances such as dust are present, clogging of the catalyst and pressure loss can be prevented.

【0008】触媒の調製法について言えば、助触媒添加
型の本発明の触媒は下記のとおりとなる。 メタンチタン酸又はチタニアと前記した金属硫酸塩、
金属炭酸塩を添加して、バインダを加えて混練したうえ
で、ハニカム成形化し、乾燥・焼成を行う方法。 予めハニカム形状に成形されたチタニアに金属硫酸
塩、金属炭酸塩のスラリ溶液を含浸して乾燥・焼成する
方法。 また、複合酸化物型の本発明の触媒は予め調製した複合
酸化物にバインダを加えて混練したうえで、ハニカム成
形化し、乾燥・焼成する方法があげられる。この場合、
複合酸化物の調製は一般にTi,Si,Al,Zrの金
属硝酸塩、塩化物、硫酸塩等の金属塩水溶液にアンモニ
ア等のアルカリ溶液を滴下して、共沈させて複合水酸化
物を形成させたうえで、洗浄、乾燥、焼成によって行う
ことができる。この場合、Ti,Si,Al,Zrの各
種複合酸化物の2種の酸化物の混合割合は99:1〜
1:99の範囲にすることができる。
[0008] With regard to the method of preparing the catalyst, the catalyst of the present invention of the cocatalyst added type is as follows. Methanetitanic acid or titania and the aforementioned metal sulfates,
A method of adding a metal carbonate, adding a binder, kneading, forming a honeycomb, drying and firing. A method of impregnating a slurry solution of a metal sulfate and a metal carbonate into titania formed in a honeycomb shape in advance, followed by drying and firing. The catalyst of the present invention of the composite oxide type may be prepared by adding a binder to a previously prepared composite oxide, kneading the mixture, forming a honeycomb, drying and firing. in this case,
In general, a composite oxide is prepared by adding an alkaline solution such as ammonia to an aqueous solution of a metal salt such as a metal nitrate, chloride, or sulfate of Ti, Si, Al, or Zr and coprecipitating to form a composite hydroxide. In addition, washing, drying and baking can be performed. In this case, the mixing ratio of two kinds of oxides of various composite oxides of Ti, Si, Al and Zr is 99: 1 to 1
It can be in the range of 1:99.

【0009】[0009]

【実施例】以下、本発明の各種硫化カルボニルの加水分
解触媒の調製例につき説明し、得られたものの触媒効果
を明らかにする。
EXAMPLES Hereinafter, preparation examples of various carbonyl sulfide hydrolysis catalysts of the present invention will be described, and the catalytic effects of the obtained catalysts will be clarified.

【0010】(例1)チタニア粉末(触媒化成製CSP
−003):100重量部に対して硫酸バリウム:4重
量部を添加しアンモニア水を加えて加熱・混練を行っ
た。次に、この混練物にバインダとしてグラスファイバ
を3重量部、カオリンを5重量部、さらに有機可塑剤と
して酢酸セルロースを5重量部とアンモニア水を添加し
て混練を行った。この混練物を押し出し成形し、5.0
mmピッチ(壁厚1.0mm)の一体型ハニカム成形物
を得た。この成形物を乾燥させ、500℃、5時間焼成
して有機可塑剤を除去することにより、ハニカム触媒1
を得た。
(Example 1) Titania powder (CSP manufactured by Catalyst Chemicals Co., Ltd.)
-003): 4 parts by weight of barium sulfate was added to 100 parts by weight, and ammonia water was added, followed by heating and kneading. Next, 3 parts by weight of glass fiber, 5 parts by weight of kaolin, 5 parts by weight of cellulose acetate as an organic plasticizer, and ammonia water were added to the kneaded material and kneaded. The kneaded material was extruded and formed into a mixture of 5.0
An integral honeycomb molded product having a mm pitch (wall thickness: 1.0 mm) was obtained. The formed article was dried and calcined at 500 ° C. for 5 hours to remove the organic plasticizer, whereby the honeycomb catalyst 1 was dried.
I got

【0011】また、上記ハニカム触媒1の調製方法にお
いて、硫酸バリウムの代わりに硫酸カルシム、硫酸マグ
ネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸ス
トロンチウム、炭酸バリウム、炭酸コバルト、炭酸亜
鉛、炭酸鉄、炭酸銅、炭酸ニッケル及び炭酸マンガンを
各々4重量部添加し、ハニカム触媒1と同様な調製方法
によりハニカム触媒2〜13を得た。
In the method for preparing the above-mentioned honeycomb catalyst 1, in place of barium sulfate, calcium sulfate, magnesium sulfate, calcium carbonate, magnesium carbonate, strontium carbonate, barium carbonate, cobalt carbonate, zinc carbonate, iron carbonate, copper carbonate, carbonate carbonate 4 parts by weight of nickel and 4 parts by weight of manganese carbonate were added, and honeycomb catalysts 2 to 13 were obtained by the same preparation method as for honeycomb catalyst 1.

【0012】(例2)硫酸チタニル(TiOSO4 )水
溶液にコロイダルシリカ水溶液をTiO2 とSiO2
重量比が90:10となる割合で添加した。つぎに、本
溶液を70℃に加熱した後にアンモニア水溶液をpH=
7となるまで攪拌しながら滴下して共沈物スラリを得
た。本スラリを70℃で2時間攪拌・熟成した後、ろ過
・洗浄を行い、ケーキ物を得た。本ケーキ物を乾燥し、
500℃で5時間焼成を行い、TiO2 ・SiO2 複合
酸化物を得た。本複合酸化物を複合酸化物1とする。こ
の複合酸化物1の100重量部に対してバインダとして
グラスファイバを3重量部、カオリンを5重量部、さら
に酢酸セルロースを5重量部とアンモニア水を添加して
混練した。この混練物を実施例1と同様にハニカム成形
化し、乾燥・焼成によりハニカム触媒14を得た。
(Example 2) An aqueous solution of colloidal silica was added to an aqueous solution of titanyl sulfate (TiOSO 4 ) at a weight ratio of TiO 2 to SiO 2 of 90:10. Next, after heating this solution to 70 ° C., the aqueous ammonia solution was brought to pH =
The mixture was added dropwise with stirring until the mixture became 7, thereby obtaining a coprecipitate slurry. The slurry was stirred and aged at 70 ° C. for 2 hours, and then filtered and washed to obtain a cake. Dry this cake,
Calcination was performed at 500 ° C. for 5 hours to obtain a TiO 2 .SiO 2 composite oxide. This composite oxide is referred to as composite oxide 1. 3 parts by weight of glass fiber, 5 parts by weight of kaolin, 5 parts by weight of cellulose acetate, and ammonia water were added to 100 parts by weight of this composite oxide 1 as a binder and kneaded. This kneaded material was formed into a honeycomb in the same manner as in Example 1, and dried and fired to obtain a honeycomb catalyst 14.

【0013】また、複合酸化物1の調製方法において、
コロダイルシリカの代わりに硫酸アルミニウム又はオキ
シ塩化ジルコニウムを重量比にて、各々TiO2 :Al
2 3 =90:10、TiO2 :ZrO2 =90:10
の割合で添加し、複合酸化物1と同一の方法により、T
iO2 ・Al2 3 複合酸化物とTiO2 ・ZrO2
合酸化物を得た。本複合酸化物を複合酸化物2、3とす
る。
In the method for preparing the composite oxide 1,
Aluminum sulphate or ox instead of colloidal silica
Zirconium chloride is weight ratio of TiO2Two: Al
TwoO Three= 90: 10, TiOTwo: ZrOTwo= 90: 10
In the same manner as in the case of the composite oxide 1,
iOTwo・ AlTwoOThreeComposite oxide and TiOTwo・ ZrOTwoDuplicate
A composite oxide was obtained. This composite oxide is referred to as composite oxides 2 and 3.
You.

【0014】さらに、複合酸化物1の調製方法におい
て、硫酸チタニルの代わりに硫酸アルミニウムを用い、
コロイダルシリカ水溶液又はコロイダルシリカの代わり
にオキシ塩化ジルコニウムを重量比にて、各々Al2
3 :SiO2 =10:90、Al2 3 :ZrO2 =9
0:10の割合で添加し、複合酸化物1と同一の方法に
より、Al2 3 ・SiO2 複合酸化物、Al2 3
ZrO2 複合酸化物を得た。本複合酸化物を複合酸化物
4、5とする。上記複合酸化物2〜5を用いて、ハニカ
ム触媒14と同様の調製方法によりハニカム化し、ハニ
カム触媒15〜18を得た。
Further, in the method for preparing the composite oxide 1, aluminum sulfate is used in place of titanyl sulfate,
Zirconium oxychloride is used instead of colloidal silica aqueous solution or colloidal silica in a weight ratio of Al 2 O
3 : SiO 2 = 10: 90, Al 2 O 3 : ZrO 2 = 9
Al 2 O 3 .SiO 2 composite oxide, Al 2 O 3.
A ZrO 2 composite oxide was obtained. This composite oxide is referred to as composite oxides 4 and 5. Using the composite oxides 2 to 5, the honeycomb was formed by the same preparation method as the honeycomb catalyst 14 to obtain honeycomb catalysts 15 to 18.

【0015】(比較例1)例1のハニカム触媒1の調製
法において、硫酸バリウムを添加せずに、例1と同様の
方法により、ハニカム触媒を調製した。本触媒をハニカ
ム比較触媒1とする。
Comparative Example 1 A honeycomb catalyst was prepared in the same manner as in Example 1 except that barium sulfate was not added in the method for preparing the honeycomb catalyst 1 of Example 1. This catalyst is referred to as “honeycomb comparative catalyst 1”.

【0016】(例3)ハニカム触媒1〜18及び比較触
媒1を用いて、硫化カルボニルの加水分解反応を行っ
た。試験条件を以下に記す。
(Example 3) A hydrolysis reaction of carbonyl sulfide was carried out using honeycomb catalysts 1 to 18 and comparative catalyst 1. The test conditions are described below.

【表1】 COS変換率は下記の式により求めた。 COS変換率(%)=(1−出口COS濃度/入口CO
S濃度)×100
[Table 1] The COS conversion was determined by the following equation. COS conversion rate (%) = (1-outlet COS concentration / inlet CO
S concentration) x 100

【0017】活性評価結果(COS変換率で評価)を表
2に示す。本結果より開発したハニカム触媒1〜18は
いずれも各温度域において、ハニカム比較触媒1より高
性能であることを確認した。
Table 2 shows the results of activity evaluation (evaluated by COS conversion rate). From these results, it was confirmed that all of the developed honeycomb catalysts 1 to 18 had higher performance than the honeycomb comparative catalyst 1 in each temperature range.

【表2】 [Table 2]

【0018】(例4)石炭ガス化ガス中には多量の塩酸
が共存するため、開発したハニカム触媒の耐塩酸性を評
価した。開発したハニカム触媒(1,2,4,5,1
4,15)に塩酸ガス(塩酸3000ppm/窒素ベー
ス・300℃)を供給し、供給後は例3に示すCOSの
加水分解試験条件において活性評価を行い、活性の変化
を検討した。活性評価結果を表3に示す。
(Example 4) Since a large amount of hydrochloric acid coexists in the coal gasification gas, the hydrochloric acid resistance of the developed honeycomb catalyst was evaluated. The newly developed honeycomb catalyst (1, 2, 4, 5, 1
Hydrochloric acid gas (hydrochloric acid 3000 ppm / nitrogen base, 300 ° C.) was supplied to (4, 15), and after the supply, the activity was evaluated under the COS hydrolysis test conditions shown in Example 3 to examine changes in activity. The activity evaluation results are shown in Table 3.

【表3】 本発明より開発した触媒は耐塩酸性に優れ、安定な活性
を有することを確認した。
[Table 3] It was confirmed that the catalyst developed according to the present invention was excellent in hydrochloric acid resistance and had stable activity.

【0019】[0019]

【発明の効果】以上述べたように、本開発触媒を用いる
ことにより、除去が困難な硫化カルボニルを容易に硫化
水素に変換することができ、ガス中に硫黄化合物除去プ
ロセスを大幅に簡素化するこことが可能となった。
As described above, by using the developed catalyst, carbonyl sulfide, which is difficult to remove, can be easily converted to hydrogen sulfide, and the process for removing sulfur compounds in gas is greatly simplified. This is now possible.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アナターゼ型チタンに対し、助触媒とし
て金属硫酸塩又は金属炭酸塩を添加担持させてなること
を特徴とする硫化カルボニルの加水分解触媒。
1. A catalyst for hydrolyzing carbonyl sulfide, wherein an anatase type titanium is added and supported as a cocatalyst with a metal sulfate or a metal carbonate.
【請求項2】 助触媒である金属硫酸塩が硫酸バリウ
ム、硫酸カルシウム及び硫酸マグネシウムよりなる群か
ら選ばれたものであり、金属炭酸塩が炭酸カルシウム、
炭酸マグネシウム、炭酸ストロンチウム、炭酸バリウ
ム、炭酸コバルト、炭酸亜鉛、炭酸鉄、炭酸銅、炭酸ニ
ッケル及び炭酸マンガンよりなる群から選ばれたもので
あることを特徴とする請求項1又は2記載の硫化カルボ
ニルの加水分解触媒。
2. The metal sulphate as a co-catalyst is selected from the group consisting of barium sulphate, calcium sulphate and magnesium sulphate, and the metal carbonate is calcium carbonate,
3. The carbonyl sulfide according to claim 1, wherein the carbonyl sulfide is selected from the group consisting of magnesium carbonate, strontium carbonate, barium carbonate, cobalt carbonate, zinc carbonate, iron carbonate, copper carbonate, nickel carbonate and manganese carbonate. Hydrolysis catalyst.
【請求項3】 TiO2 ・SiO2 ,TiO2 ・Al2
3 ,TiO2 ・ZrO2 ,ZrO2 ・Al2 3 ,及
びSiO2 ・Al2 3 よりなる群の複合酸化物よりな
ることを特徴とする硫化カルボニルの加水分解触媒。
3. TiO 2 .SiO 2 , TiO 2 .Al 2
A catalyst for hydrolyzing carbonyl sulfide, comprising a composite oxide of the group consisting of O 3 , TiO 2 .ZrO 2 , ZrO 2 .Al 2 O 3 , and SiO 2 .Al 2 O 3 .
【請求項4】 水の存在下、還元ガスの雰囲気中で、請
求項1〜4のいずれかの触媒の存在下で硫化カルボニル
を加水分解することを特徴とする硫化カルボニルの加水
分解方法。
4. A method for hydrolyzing carbonyl sulfide, which comprises hydrolyzing carbonyl sulfide in the presence of water in the presence of a reducing gas in the presence of a catalyst according to any one of claims 1 to 4.
JP08333098A 1998-03-30 1998-03-30 Hydrolysis catalyst and hydrolysis method of carbonyl sulfide Expired - Lifetime JP3746609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08333098A JP3746609B2 (en) 1998-03-30 1998-03-30 Hydrolysis catalyst and hydrolysis method of carbonyl sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08333098A JP3746609B2 (en) 1998-03-30 1998-03-30 Hydrolysis catalyst and hydrolysis method of carbonyl sulfide

Publications (2)

Publication Number Publication Date
JPH11276897A true JPH11276897A (en) 1999-10-12
JP3746609B2 JP3746609B2 (en) 2006-02-15

Family

ID=13799431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08333098A Expired - Lifetime JP3746609B2 (en) 1998-03-30 1998-03-30 Hydrolysis catalyst and hydrolysis method of carbonyl sulfide

Country Status (1)

Country Link
JP (1) JP3746609B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125437A1 (en) * 2012-02-24 2013-08-29 三菱重工業株式会社 Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium oxide-based composition
WO2019130899A1 (en) 2017-12-27 2019-07-04 三菱重工エンジニアリング株式会社 Catalyst for use in hydrolysis of carbonyl sulfide, and method for producing same
WO2019138728A1 (en) 2018-01-12 2019-07-18 三菱重工エンジニアリング株式会社 Catalyst for hydrolysis of carbonyl sulfide and method for producing same
CN113181953A (en) * 2021-04-23 2021-07-30 陕西驭腾能源环保科技有限公司 Organic sulfur hydrolysis catalyst for coke oven gas and preparation method thereof
CN115888752A (en) * 2022-12-27 2023-04-04 昆明理工大学 Poisoning-resistant organic sulfur hydrogenation catalyst, and preparation and application thereof
CN115106108B (en) * 2021-03-18 2023-11-14 宝山钢铁股份有限公司 COS hydrolysis catalyst for blast furnace gas and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878310B2 (en) 2012-02-24 2018-01-30 Mitsubishi Heavy Industries, Ltd. Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium dioxide-based composition
WO2013125437A1 (en) * 2012-02-24 2013-08-29 三菱重工業株式会社 Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium oxide-based composition
CN104039440A (en) * 2012-02-24 2014-09-10 三菱重工业株式会社 Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium oxide-based composition
US20140369915A1 (en) * 2012-02-24 2014-12-18 Mitsubishi Heavy Industries, Ltd. Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium dioxide-based composition
EP2818240A4 (en) * 2012-02-24 2015-10-14 Mitsubishi Heavy Ind Ltd Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium oxide-based composition
AU2013223391B2 (en) * 2012-02-24 2016-06-02 Mitsubishi Heavy Industries Engineering, Ltd. Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium dioxide-based composition
JP2013173099A (en) * 2012-02-24 2013-09-05 Mitsubishi Heavy Ind Ltd Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and usage of titanium oxide-based composition
WO2019130899A1 (en) 2017-12-27 2019-07-04 三菱重工エンジニアリング株式会社 Catalyst for use in hydrolysis of carbonyl sulfide, and method for producing same
CN111491729A (en) * 2018-01-12 2020-08-04 三菱重工工程株式会社 Catalyst for hydrolysis of carbonyl sulfide and method for producing same
WO2019138728A1 (en) 2018-01-12 2019-07-18 三菱重工エンジニアリング株式会社 Catalyst for hydrolysis of carbonyl sulfide and method for producing same
US11439981B2 (en) 2018-01-12 2022-09-13 Mitsubishi Heavy Industries Engineering, Ltd. Catalyst for hydrolysis of carbonyl sulfide and method of producing same
CN115106108B (en) * 2021-03-18 2023-11-14 宝山钢铁股份有限公司 COS hydrolysis catalyst for blast furnace gas and preparation method thereof
CN113181953A (en) * 2021-04-23 2021-07-30 陕西驭腾能源环保科技有限公司 Organic sulfur hydrolysis catalyst for coke oven gas and preparation method thereof
CN115888752A (en) * 2022-12-27 2023-04-04 昆明理工大学 Poisoning-resistant organic sulfur hydrogenation catalyst, and preparation and application thereof

Also Published As

Publication number Publication date
JP3746609B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
KR101149113B1 (en) Highly acidic composition containing zirconium and silicon oxides and an oxide of at least one element selected from titanium, aluminium, tungsten, molybdenum, cerium, iron, tin, zinc, and manganese
JP5936680B2 (en) Raw material for DeNOx catalyst containing no vanadium or reduced in vanadium and method for producing the same
US7968492B2 (en) Layered catalyst to improve selectivity or activity of manganese containing vanadium-free mobile catalyst
EP0591232A1 (en) Oxidation catalyst resistant to sulfation.
GB2149680A (en) Catalysts for the purification of waste gases
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
KR20160087808A (en) Denitration catalyst and method for producing same
WO2019138728A1 (en) Catalyst for hydrolysis of carbonyl sulfide and method for producing same
JPH1033985A (en) Catalyst for purifying exhaust gas from diesel engine
JP3746609B2 (en) Hydrolysis catalyst and hydrolysis method of carbonyl sulfide
JP4204692B2 (en) Nitrogen oxide removal catalyst, method for producing the same, and method for removing nitrogen oxides using the catalyst
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPH11519A (en) Desulfurizing agent and its production
JPH0114809B2 (en)
JPS63182032A (en) Deodorizing catalyst
JPH07289897A (en) Catalyst for decomposition of ammonia and decomposing method of ammonia using the same
JP2003093881A (en) Catalyst for removing nitrogen oxide and manufacturing method therefor
JPS6215247B2 (en)
JPH0114807B2 (en)
JPH0568401B2 (en)
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPH0691960B2 (en) Enhanced exhaust gas treatment catalyst
JP2001113167A (en) Exhaust gas treating catalyst, its manufacturing method and method for treating exhaust gas

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

EXPY Cancellation because of completion of term