JPH11519A - Desulfurizing agent and its production - Google Patents

Desulfurizing agent and its production

Info

Publication number
JPH11519A
JPH11519A JP9169546A JP16954697A JPH11519A JP H11519 A JPH11519 A JP H11519A JP 9169546 A JP9169546 A JP 9169546A JP 16954697 A JP16954697 A JP 16954697A JP H11519 A JPH11519 A JP H11519A
Authority
JP
Japan
Prior art keywords
oxide
desulfurizing agent
silica
weight
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9169546A
Other languages
Japanese (ja)
Other versions
JP3563923B2 (en
Inventor
Toshikuni Sera
俊邦 世良
Shigeru Nojima
野島  繁
Makoto Suzaki
洲崎  誠
Masaaki Uchida
雅昭 内田
Tsutomu Ogushi
勉 大串
Masahiro Furuno
雅弘 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP16954697A priority Critical patent/JP3563923B2/en
Publication of JPH11519A publication Critical patent/JPH11519A/en
Application granted granted Critical
Publication of JP3563923B2 publication Critical patent/JP3563923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize high desulfurizing performance of zinc oxide instead of iron oxide by incorporating specified pts.wt. of the sum of iron oxide and zinc oxide, specified pts.wt. of silica and specified pts.wt. of titanium oxide and/or zirconium oxide. SOLUTION: The sum amt. of zinc oxide and iron oxide is 5 to 40 wt.%, preferably 15 to 35 wt.% of the whole desulfurizing agent obtd. by calcination, considering the strength of the molded goods, the desulfurizing performance, etc. Especially, from the viewpoint of formation of zinc ferrite in the production process, zinc oxide and iron oxide are preferably equal in weight each other. If the sum amt. is <=5 wt.%, the packing amt. of the desulfurizing agent significantly increases, and if the amt. is >=40 wt.%, the strength of the desulfurizing agent drastically decreases. When the silica amt. is higher than the sum of zinc oxide and iron oxide, this is not preferable because the desulfurizing performance decreases to inhibit the effect of titanium oxide and zirconium oxide. The amt. of silica is preferably 5 to 20 wt.% of the whole desulfuruzing agent obtd. by calcination. Thereby, the obtd. agent can be stably used for a long time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、重質油、その蒸留
残渣、石炭等をガス化して得られる高温還元性ガスに含
まれる硫黄化合物を乾式で吸収除去するために使用され
る脱硫剤及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a desulfurizing agent used for dry-absorbing and removing sulfur compounds contained in a high-temperature reducing gas obtained by gasifying heavy oil, its distillation residue, coal and the like. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】近年、クリーン燃料の価格高騰を抑制す
る観点から、石炭や重質油の利用技術開発が進められて
おり、これらを原料とするガス化ガスを複合発電あるい
は燃料電池の燃料としたり、化学合成原料にすることが
行われている。
2. Description of the Related Art In recent years, from the viewpoint of suppressing soaring prices of clean fuels, technologies for utilizing coal and heavy oil have been developed, and gasification gas using these as raw materials is used as fuel for combined power generation or fuel cells. Or used as a raw material for chemical synthesis.

【0003】このガス化には、石炭や重質油等の原料に
よって、数100〜数1000ppmの硫黄化合物が含
まれており、公害防止上あるいは後流機器の腐食防止上
から硫黄化合物を除去する必要がある。
[0003] This gasification contains several hundreds to several thousand ppm of sulfur compounds depending on raw materials such as coal and heavy oil, and removes sulfur compounds from the viewpoint of preventing pollution or preventing corrosion of downstream equipment. There is a need.

【0004】硫化水素(H2S)、硫化カルボニル(C
OS)などの硫黄化合物を除去するには、乾式法が熱効
率面から有利なために主流となっており、この乾式法で
は、400〜600℃での吸収性能が優れる酸化鉄(F
23)を主成分とする脱硫剤が一般的に使用されてい
る。酸化鉄は、石炭ガス化ガスのような加圧下でも、4
00〜600℃の高温で硫黄化合物を吸収して硫化鉄
(FeS)となり、しかも450〜650℃の高温で再
生させることにより、Fe23に戻る特性を有してい
る。これにより、廃熱の有効利用による熱効率向上を図
りながら高脱硫性能を維持することが可能となる。
[0004] Hydrogen sulfide (H 2 S), carbonyl sulfide (C
In order to remove sulfur compounds such as OS), a dry method is mainly used because it is advantageous in terms of thermal efficiency. In this dry method, iron oxide (F) having excellent absorption performance at 400 to 600 ° C.
A desulfurizing agent containing e 2 O 3 ) as a main component is generally used. Iron oxide can be used under pressure, such as coal gasification gas.
It has the property of absorbing sulfur compounds to form iron sulfide (FeS) at a high temperature of 00 to 600 ° C., and returning to Fe 2 O 3 by regenerating at a high temperature of 450 to 650 ° C. This makes it possible to maintain high desulfurization performance while improving thermal efficiency by effectively utilizing waste heat.

【0005】しかし、Fe23だけからなる脱硫剤によ
って脱硫及び再生反応を繰り返すと、分子量変化により
崩壊する。このため、長期間の使用に耐える強度を有す
るように、アルミナ、シリカ、チタニア、シリカアルミ
ナ等の多孔質無機耐火物にFe23を担持して、実用的
な形状に成形された状態で使用されている。又、ガス化
ガスはダストを含有しているため、脱硫剤を流動化させ
る流動床方式あるいは脱硫剤を移動させる移動床方式に
よってダストによる種々の問題に対応している。
[0005] However, if the desulfurization and regeneration reactions are repeated with a desulfurizing agent consisting solely of Fe 2 O 3, the desulfurization agent collapses due to a change in molecular weight. Therefore, Fe 2 O 3 is supported on a porous inorganic refractory such as alumina, silica, titania, and silica-alumina so as to have a strength that can withstand long-term use. in use. Further, since the gasification gas contains dust, various problems caused by dust are addressed by a fluidized bed system for fluidizing the desulfurizing agent or a moving bed system for moving the desulfurizing agent.

【0006】ところが、このような加圧下での固体(脱
硫剤)の搬送移動には、塔槽類、配管類の磨耗による長
期信頼性に難点があり、この難点を回避するため、本発
明者らは固定床方式を開発してきた。この場合、固定床
方式に適用する脱硫剤は、他方式に比べて使用中の適宜
な交換ができないところから、長期耐久性が要求される
ため、高脱硫性能の他に長期の耐SOx性、耐熱性も必
要になる。
However, the transfer of the solid (desulfurizing agent) under such pressurization has a problem in long-term reliability due to abrasion of towers and pipes, and in order to avoid this difficulty, the present inventor has found that. Have developed a fixed bed system. In this case, since the desulfurizing agent applied to the fixed bed method cannot be appropriately replaced during use as compared with other methods, long-term durability is required. In addition to high desulfurization performance, long-term SOx resistance, Heat resistance is also required.

【0007】このような観点から、本発明者らは、酸化
鉄とシリカ(これらの前駆体を含む)を調合し、この調
合体を酸化チタンと混合して成形し、この成形体を脱硫
剤を再生する際の再生温度以上、例えば600〜800
℃の温度で焼成して製造される脱硫剤を提案した(特開
平1−135535号公報)。
[0007] From such a viewpoint, the present inventors have prepared iron oxide and silica (including their precursors), mixed the prepared product with titanium oxide, and formed a molded product. Above the regeneration temperature at the time of regeneration, for example, 600 to 800
A desulfurizing agent produced by baking at a temperature of ° C. has been proposed (JP-A-1-135535).

【0008】しかし酸化鉄(Fe23)は(1)式で表
される脱硫反応におけるH2S平衡濃度から吸収反応に
限界がある。例えば石炭ガス化ガス(H2を8%、H2
を5%含む。)におけるH2S平衡濃度は下記表1に示
すように、酸化鉄(Fe23)が高脱硫性能を発現する
400〜600℃では20ppm以上であり、上記温度
範囲でガスを脱硫する場合には20ppm以下にするこ
とはできない。なお、H2Sと共存しているCOSの平
衡濃度は無視できる程小さく、H2Sとの反応で考えて
差し支えない。 Fe23+2H2S+H2→2FeS+3H2O (1)
However, iron oxide (Fe 2 O 3 ) has a limit in the absorption reaction due to the H 2 S equilibrium concentration in the desulfurization reaction represented by the formula (1). Such as coal gasification gas (H 2 to 8%, H 2 O
5%. As H 2 S equilibrium concentration shown in Table 1 in), iron oxide (Fe 2 O 3) is not less 400 to 600 ° C. At 20ppm or expressing high desulfurization performance, when desulfurizing gases at the above temperature range Cannot be less than 20 ppm. The equilibrium concentration of COS coexisting with H 2 S is so small as to be negligible and may be considered in the reaction with H 2 S. Fe 2 O 3 + 2H 2 S + H 2 → 2FeS + 3H 2 O (1)

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【発明が解決しようとする課題】表1に併記した酸化銅
(CuO)及び酸化亜鉛(ZnO)は、酸化鉄(Fe2
3)と同様に脱硫剤としての機能を有する化合物であ
る。ところがこれらの化合物のH2S平衡濃度は、表1
から判るように、酸化鉄(Fe23)よりはるかに低
く、高温域での高脱硫性能発現には有利となるが、再生
反応における脱着性能は概して悪い。特に酸化銅(Cu
O)は硫酸塩化するため、繰り返し使用による経時的な
性能低下は避けられない。
SUMMARY OF THE INVENTION Copper oxide (CuO) and zinc oxide (ZnO) also listed in Table 1 correspond to iron oxide (Fe 2
It is a compound having a function as a desulfurizing agent like O 3 ). However, the equilibrium concentrations of H 2 S of these compounds are shown in Table 1.
As can be seen from the graph, it is much lower than iron oxide (Fe 2 O 3 ), which is advantageous for exhibiting high desulfurization performance in a high temperature range, but generally has poor desorption performance in the regeneration reaction. In particular, copper oxide (Cu
Since O) is sulfated, performance degradation over time due to repeated use is inevitable.

【0011】これに対し、酸化亜鉛(ZnO)は再生温
度を酸化鉄(Fe23)より高い600〜800℃とす
ることにより、脱着性能が向上するため、高温高性能の
脱硫剤として有望であるが、再生反応熱による温度上昇
(通常200℃程度)を考慮した場合、酸化亜鉛(Zn
O)を用いた脱硫剤としては酸化鉄(Fe23)以上の
耐熱性が要求される。
On the other hand, zinc oxide (ZnO) is promising as a high-temperature and high-performance desulfurizing agent because the desorption performance is improved by setting the regeneration temperature to 600 to 800 ° C. higher than that of iron oxide (Fe 2 O 3 ). However, in consideration of a temperature rise (usually about 200 ° C.) due to heat of regeneration reaction, zinc oxide (Zn
A desulfurizing agent using O) is required to have heat resistance higher than that of iron oxide (Fe 2 O 3 ).

【0012】この酸化亜鉛(ZnO)の特質を補完する
ため、酸化鉄(Fe23)と組み合わせることによっ
て、脱硫適用温度を広域化することが考えられる。この
ためには、酸化亜鉛(ZnO)と酸化鉄(Fe23)と
の混合あるいはジンクフェライト(ZnFe24=Zn
O・Fe23)を適用する手段がある。しかし、脱硫及
び再生の繰り返しに対して長期の耐久性を維持するため
に、脱硫剤には高性能の他に耐熱性が要求され、酸化鉄
(Fe23)との組み合わせだけでなく、さらに実用的
な成形技術を確立する必要がある。
In order to supplement the characteristics of zinc oxide (ZnO), it is conceivable to widen the application temperature of desulfurization by combining it with iron oxide (Fe 2 O 3 ). For this purpose, a mixture of zinc oxide (ZnO) and iron oxide (Fe 2 O 3 ) or zinc ferrite (ZnFe 2 O 4 = Zn) is used.
O.Fe 2 O 3 ) is available. However, in order to maintain long-term durability against repeated desulfurization and regeneration, the desulfurizing agent is required to have heat resistance in addition to high performance, and not only in combination with iron oxide (Fe 2 O 3 ), Further, it is necessary to establish a practical molding technique.

【0013】本発明は、このような従来の酸化鉄(Fe
23)系脱硫剤が有している脱硫性能の限界を克服し、
酸化鉄(Fe23)に代わる酸化亜鉛(ZnO)の高脱
硫性能を発現することができる脱硫剤及びその製造方法
を提供することを目的とする。
The present invention relates to such a conventional iron oxide (Fe
Overcoming the limits of desulfurization performance of 2 O 3 ) desulfurizing agents,
An object of the present invention is to provide a desulfurizing agent capable of exhibiting high desulfurization performance of zinc oxide (ZnO) in place of iron oxide (Fe 2 O 3 ) and a method for producing the same.

【0014】[0014]

【課題を解決するための手段】本発明者らは、400〜
600℃の幅広い温度領域での高脱硫性能を発現させる
ための研究を重ねたところ、酸化亜鉛(ZnO)と酸化
鉄(Fe23)との二元系が有効であり、しかも双方の
酸化鉄を単に混合するよりも、ジンクフェライト(Zn
Fe24)の形態にして用いる方が熱安定性に優れるこ
とを見出し、更に、この熱安定性を増すためにシリカと
の共存が有効であることを見出した。又、脱硫剤の成形
担体として、酸化チタン(TiO2)を用いることが有
効であり、しかも酸化チタンはアナターゼ型でも適用可
能であるが、更に脱硫の高性能化と耐久性向上を図るた
めには、酸化珪素(SiO2)と酸化チタン(TiO2
との結合物を使用することが有効であることを見出し、
本発明を完成したものである。
Means for Solving the Problems The present inventors have proposed that
Investigations to develop high desulfurization performance in a wide temperature range of 600 ° C. revealed that a binary system of zinc oxide (ZnO) and iron oxide (Fe 2 O 3 ) was effective, and that both oxidations were effective. Rather than simply mixing iron, zinc ferrite (Zn
It has been found that using Fe 2 O 4 ) in the form thereof has better thermal stability, and that coexistence with silica is more effective to increase the thermal stability. It is effective to use titanium oxide (TiO 2 ) as a molding carrier for the desulfurizing agent, and titanium oxide is also applicable to the anatase type, but in order to further improve the desulfurization performance and durability. Are silicon oxide (SiO 2 ) and titanium oxide (TiO 2 )
Found that it is effective to use a combination with
The present invention has been completed.

【0015】すなわち、第1の発明の脱硫剤は、酸化鉄
と酸化亜鉛とが合計で5〜40重量%、シリカが5〜2
0重量%、酸化チタン及び/又は酸化ジルコニウムが3
5〜85重量%を含有していることを特徴とする。
That is, in the desulfurizing agent of the first invention, iron oxide and zinc oxide are 5 to 40% by weight in total and silica is 5 to 2% by weight.
0% by weight, 3% titanium oxide and / or zirconium oxide
It is characterized by containing 5 to 85% by weight.

【0016】第2の発明の脱硫剤は、第1の発明におい
て酸化鉄と酸化亜鉛がジンクフェライトを形成している
ことを特徴とする。
The desulfurizing agent of the second invention is characterized in that, in the first invention, iron oxide and zinc oxide form zinc ferrite.

【0017】第3の発明の脱硫剤の製造方法は、鉄塩及
び亜鉛塩の混合物を中和して沈殿物を生成し、シリカ及
び/又はシリカの前駆体を混合し、比表面積が120m
2/g以下のチタンシリケート、比表面積が80m2/g
以下の酸化ジルコニウム及びこれらの混合物からなる群
から選ばれた担体を混合して成形し、乾燥し、焼成する
ことを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing a desulfurizing agent, wherein a mixture of an iron salt and a zinc salt is neutralized to form a precipitate, silica and / or a precursor of silica are mixed, and the specific surface area is 120 m.
Titanium silicate of 2 / g or less, specific surface area of 80 m 2 / g
A carrier selected from the group consisting of the following zirconium oxides and mixtures thereof is mixed, molded, dried and fired.

【0018】第4の発明の脱硫剤の製造方法は、第3の
発明において沈殿物を乾燥し焼成した後シリカ及び/又
はシリカの前駆体を混合する、又は、沈殿物を乾燥しシ
リカ及び/又はシリカの前駆体を混合した後焼成するこ
とを特徴とする。
The method for producing a desulfurizing agent according to a fourth aspect of the present invention is the method according to the third aspect, wherein the precipitate is dried and calcined and then mixed with silica and / or a precursor of silica. Alternatively, it is characterized by baking after mixing a silica precursor.

【0019】第5の発明の脱硫剤の製造方法は、第3又
は第4の発明において焼成を800〜1000℃で行う
ことを特徴とする。
The method for producing a desulfurizing agent according to the fifth invention is characterized in that the calcination is carried out at 800 to 1000 ° C. in the third or fourth invention.

【0020】[0020]

【発明の実施の形態】本発明の脱硫剤は、約400〜6
00℃の幅広い温度領域、特に600℃近辺での高脱硫
性能を発現すると同時に、長期使用における熱安定性を
賦与するために、酸化亜鉛と酸化鉄とをシリカ及び/又
はその前駆体と調合しておき、チタンシリケート等の酸
化チタン及び/又は酸化ジルコニウムと調合して製造す
るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The desulfurizing agent of the present invention comprises about 400 to 6
Zinc oxide and iron oxide are combined with silica and / or its precursor to provide high desulfurization performance in a wide temperature range of 00 ° C., particularly around 600 ° C., and to provide thermal stability in long-term use. In addition, it is manufactured by mixing with titanium oxide such as titanium silicate and / or zirconium oxide.

【0021】酸化亜鉛及びその前駆体としては、焼成す
ることによって酸化亜鉛となる硝酸亜鉛、硫酸亜鉛、塩
化亜鉛、炭酸亜鉛、水酸化亜鉛などが挙げられる。
Examples of the zinc oxide and its precursor include zinc nitrate, zinc sulfate, zinc chloride, zinc carbonate, zinc hydroxide, and the like, which become zinc oxide when calcined.

【0022】酸化鉄及びその前駆体としては、焼成する
ことによって酸化鉄となる硝酸鉄、硫酸鉄、塩化鉄、炭
酸鉄、水酸化鉄などの他に、鉄鉱石、黄土、鉄製品の洗
浄廃液からの回収で副生する酸化鉄などが挙げられる。
The iron oxide and its precursor include iron nitrate, iron sulfate, iron chloride, iron carbonate, iron hydroxide, etc., which become iron oxide when calcined, as well as iron ore, loess, washing waste liquid of iron products. And iron oxide by-produced in the recovery from water.

【0023】本発明の脱硫剤は、具体的には、酸化亜鉛
及び酸化鉄の前駆体であるこれらの塩化合物を溶液状態
で均一に混合し、アンモニア水で中和して水酸化物を沈
殿させ、この水酸化物を脱水し、乾燥後、800〜10
00℃の温度で焼成することによってジンクフェライト
(ZnFe24)とする。このジンクフェライトをシリ
カ及び/又はその前駆体と均一に混合することにより安
定化させる処理を行う。その後、熱的に安定なチタンシ
リケート等の酸化チタン及び/又は酸化ジルコニウムと
混合し、成形して、乾燥し、焼成することにより、硫黄
化合物の吸収成分としての酸化鉄と酸化亜鉛が600℃
近辺の高温領域で熱的に安定であり、且つ耐SOx性を
含有する脱硫剤を製造することができる。
Specifically, the desulfurizing agent of the present invention is prepared by uniformly mixing a salt compound of a precursor of zinc oxide and iron oxide in a solution state and neutralizing the solution with aqueous ammonia to precipitate a hydroxide. The hydroxide is dehydrated, dried, and dried
By firing at a temperature of 00 ° C., zinc ferrite (ZnFe 2 O 4 ) is obtained. The zinc ferrite is stabilized by mixing it uniformly with silica and / or its precursor. Thereafter, the mixture is mixed with thermally stable titanium oxide such as titanium silicate and / or zirconium oxide, molded, dried and calcined, whereby iron oxide and zinc oxide as the absorbing components of the sulfur compound are heated to 600 ° C.
It is possible to produce a desulfurizing agent that is thermally stable in the vicinity of a high temperature region and has SOx resistance.

【0024】ここで酸化亜鉛と酸化鉄の前駆体から得ら
れる水酸化物を焼成することなく、シリカ及び/又はそ
の前駆体と均一に混合した後に、800〜1000℃の
温度で焼成しても同等の脱硫剤を製造することができ
る。
Here, the hydroxide obtained from the precursor of zinc oxide and iron oxide is uniformly mixed with silica and / or its precursor without firing, and then fired at a temperature of 800 to 1000 ° C. An equivalent desulfurizing agent can be produced.

【0025】本発明において、熱安定性に優れた酸化亜
鉛と酸化鉄の調製に使用されるシリカの前駆体として
は、少量にもかかわらず安定化の作用を発揮する点でシ
リカゾル、ケイ酸水溶液などの溶液が好ましいが、ホワ
イトカーボンのような微細なシリカ粒子粉末でも、その
効果は認められる。
In the present invention, the silica precursor used in the preparation of zinc oxide and iron oxide having excellent thermal stability is a silica sol or an aqueous solution of silicic acid in terms of exhibiting a stabilizing effect despite a small amount. Such a solution is preferred, but the effect is also observed with fine silica particle powder such as white carbon.

【0026】酸化チタンは、酸化チタン単独よりもチタ
ンシリケートのような酸化チタン複合体が好ましい。脱
硫剤の適用温度を考慮すると、800〜1000℃で焼
成することによってチタン酸化物が得られるものであれ
ば、どのようなチタン含有物でもよいが、シリカとの結
合により熱的に安定化しているチタンシリケート(Ti
SiO4(=Ti02・SiO2))であって、チタンシ
リケートの比表面積が120m2/g以下のものが好適
である。単独の酸化チタンとしては、アナターゼ型、ル
チル型あるいは結晶性の低い酸化チタンのいずれも適用
できるが、酸化チタンは高温状態で結晶性が徐々に低下
して比表面積が小さくなっていくので、前記の熱的に安
定化している酸化チタン複合体に比較して熱的安定性に
劣る。例えばアナターゼ型の酸化チタンの比表面積は通
常80m2/g以下、ルチル型のそれは15m2/g以下
であり、結晶性が低くなるにつれてそれらの熱的に安定
な期間が短くなる。
The titanium oxide is preferably a titanium oxide composite such as titanium silicate rather than titanium oxide alone. Considering the application temperature of the desulfurizing agent, any titanium-containing material may be used as long as the titanium oxide can be obtained by firing at 800 to 1000 ° C., but thermally stabilized by bonding with silica. Titanium silicate (Ti
It is preferable that the specific surface area of titanium silicate is 120 m 2 / g or less, which is SiO 4 (= TiO 2 · SiO 2 ). As the single titanium oxide, any of anatase type, rutile type or titanium oxide having low crystallinity can be applied.However, since titanium oxide gradually decreases in crystallinity at a high temperature and the specific surface area decreases, Is inferior in thermal stability to the thermally stabilized titanium oxide composite. For example, the specific surface area of anatase type titanium oxide is usually 80 m 2 / g or less, and that of rutile type is 15 m 2 / g or less. As the crystallinity becomes lower, their thermally stable period becomes shorter.

【0027】酸化ジルコニウムの原料としては、焼成す
ることにより酸化物となるジルコニウム含有物なら何で
も良いが、硝酸ジルコニウム、硝酸ジルコニル、水酸化
ジルコニウム、塩化ジルコニウムなどが挙げられる。酸
化ジルコニウムとしてはこれら酸化ジルコニウムの原料
を焼成して得られたもの又はジルコニア粉末が好まし
い。この場合、酸化チタンと同様に800℃以上の熱安
定性を有する酸化ジルコニウムが好ましく、酸化ジルコ
ニウムの比表面積も80m2/g以下のものを使用す
る。
As a raw material of zirconium oxide, any zirconium-containing substance which becomes an oxide upon firing may be used, and examples thereof include zirconium nitrate, zirconyl nitrate, zirconium hydroxide, and zirconium chloride. As the zirconium oxide, one obtained by firing these zirconium oxide raw materials or zirconia powder is preferable. In this case, zirconium oxide having a thermal stability of 800 ° C. or more is preferable, similarly to titanium oxide, and zirconium oxide having a specific surface area of 80 m 2 / g or less is used.

【0028】以上の原料は、成形助剤としての粘土、ガ
ラス繊維及び可塑剤とともに混合し、ハニカム状、円柱
状、球状などの任意の形状にするために押出成形され、
乾燥、焼成することにより脱硫剤が製造される。
The above-mentioned raw materials are mixed with clay, glass fiber and plasticizer as molding aids, and extruded to obtain an arbitrary shape such as honeycomb, column, and sphere.
By drying and firing, a desulfurizing agent is produced.

【0029】本発明の脱硫剤に含有される酸化亜鉛と酸
化鉄は、成形品の強度、脱硫性能などを考慮すると、焼
成して得られる脱硫剤全量に対し5〜40重量%、好ま
しくは15〜35重量%である。特に、ジンクフェライ
トを製造過程で形成する観点からは、酸化亜鉛と酸化鉄
とは等重量であることが望ましい。これらの含有量が5
重量%以下では脱硫剤充填量が著しく増加し、また40
重量%以上では脱硫剤強度が極端に低下する。
The zinc oxide and iron oxide contained in the desulfurizing agent of the present invention are 5 to 40% by weight, preferably 15% by weight, based on the total amount of the desulfurizing agent obtained by calcination in consideration of the strength of the molded article, desulfurization performance and the like. ~ 35% by weight. In particular, from the viewpoint of forming zinc ferrite during the manufacturing process, it is desirable that zinc oxide and iron oxide are equal in weight. These contents are 5
If the amount is less than 40% by weight, the amount of the desulfurizing agent is significantly increased,
If the amount is more than 10% by weight, the strength of the desulfurizing agent is extremely reduced.

【0030】シリカの調合量を酸化亜鉛及び酸化鉄の合
計よりも多くすることは、脱硫性能の低下、酸化チタン
や酸化ジルコニウムの作用(COSの加水分解反応)の
妨害となるために好ましくなく、シリカは焼成して得ら
れる脱硫剤全量に対し5〜20重量%が良好である。
It is not preferable to increase the amount of silica to be greater than the sum of zinc oxide and iron oxide, because this would lower the desulfurization performance and hinder the action of titanium oxide and zirconium oxide (hydrolysis reaction of COS). The content of silica is preferably 5 to 20% by weight based on the total amount of the desulfurizing agent obtained by firing.

【0031】[0031]

【実施例】【Example】

(実施例1)硝酸鉄(Fe(NO33・9H2O)2
3.1kgと硝酸亜鉛(Zn(NO32・6H2O)1
6.7kgとにイオン交換水40kgを加え、1時間撹
拌後、15重量%のアンモニア水35.5kgを加えて
pH7.5として、水酸化鉄と水酸化亜鉛の共沈物を調
製した。この共沈物をろ過脱水後、イオン交換水で洗浄
し、乾燥後、シリカを20重量%含有するシリカゾル溶
液14.7kgを添加して混合し、噴霧乾燥後、800
℃で5時間焼成した。
(Example 1) of ferric nitrate (Fe (NO 3) 3 · 9H 2 O) 2
3.1 kg and zinc nitrate (Zn (NO 3 ) 2 .6H 2 O) 1
To 6.7 kg, 40 kg of ion-exchanged water was added, and after stirring for 1 hour, 35.5 kg of 15% by weight ammonia water was added to adjust the pH to 7.5 to prepare a coprecipitate of iron hydroxide and zinc hydroxide. The coprecipitate is filtered, dehydrated, washed with ion-exchanged water, dried, and mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica.
Calcination was performed at 5 ° C. for 5 hours.

【0032】この焼成物5.3kgに対し、予め800
℃で5時間焼成した比表面積105m2/gのチタンシ
リケート粉末(TiO2/SiO2=80/20重量%)
14.1kg及びガラス繊維1.1kgを混合した。
For 5.3 kg of this fired product, 800
Titanium silicate powder having a specific surface area of 105 m 2 / g (TiO 2 / SiO 2 = 80/20% by weight) fired at 5 ° C. for 5 hours
14.1 kg and 1.1 kg of glass fiber were mixed.

【0033】次いで、この混合粉体にイオン交換水9リ
ットル、ポリエチレンオキサイド150g及びカルボキ
シメチルセルロース131gを加え、15重量%のアン
モニア水によってpH8.0に調整した。
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and the pH was adjusted to 8.0 with 15% by weight aqueous ammonia.

【0034】この混合物を1時間混練し、水分含有率が
37重量%になるように調節後、オーガマシンタイプの
押出機で押出成形し、一辺75mm、長さ600mmの
直方体状のハニカム構造の成形物(ピッチ5.1mm、
壁厚1.3mm)を成形した。この時の押し出し速度
は、分速1020mmと良好であった。そして、常温で
1日乾燥後、50℃で5日間乾燥し、その後、900℃
で5時間焼成して脱硫剤とした。この脱硫剤は、亀裂の
発生がなく、しかも成形性は良好であった。
The mixture was kneaded for 1 hour, adjusted to a water content of 37% by weight, and extruded with an auger machine type extruder to form a rectangular honeycomb structure having a side of 75 mm and a length of 600 mm. Object (pitch 5.1mm,
(Wall thickness 1.3 mm). The extrusion speed at this time was as good as 1020 mm / min. Then, after drying at room temperature for 1 day, drying at 50 ° C. for 5 days, and then 900 ° C.
For 5 hours to obtain a desulfurizing agent. This desulfurizing agent was free of cracks and had good moldability.

【0035】得られた脱硫剤の組成は、酸化亜鉛(Zn
O)10.0重量%、酸化鉄(Fe23)10.0重量
%、シリカ(SiO2)20.0重量%、酸化チタン
(TiO2)55.0重量%、ガラス繊維5.0重量%
であった。このハニカム構造の脱硫剤を表2に示す試験
条件によって脱硫及び再生の繰り返し試験を20回行っ
た後、脱硫性能、ガス流れ方向の圧壊強度を測定した。
図1は、繰り返し試験前(フレッシュ)と20回繰り返
し試験後での脱硫剤中の吸収成分(ZnO、Fe23
含有当たりの硫黄化合物吸着量を示し、試験の前後での
変化はほとんどなく、繰り返し使用が可能であることが
わかる。
The composition of the obtained desulfurizing agent was zinc oxide (Zn).
O) 10.0% by weight, iron oxide (Fe 2 O 3 ) 10.0% by weight, silica (SiO 2 ) 20.0% by weight, titanium oxide (TiO 2 ) 55.0% by weight, glass fiber 5.0 weight%
Met. The desulfurizing agent having the honeycomb structure was subjected to 20 repetitive tests of desulfurization and regeneration under the test conditions shown in Table 2, and then the desulfurization performance and the crushing strength in the gas flow direction were measured.
FIG. 1 shows the absorption components (ZnO, Fe 2 O 3 ) in the desulfurizing agent before the repetition test (fresh) and after the repetition test 20 times.
It indicates the amount of sulfur compounds adsorbed per content, showing little change before and after the test, indicating that repeated use is possible.

【0036】[0036]

【表2】 [Table 2]

【0037】(実施例2)硝酸鉄(Fe(NO33・9
2O)23.1kgと硝酸亜鉛(Zn(NO32・6
2O)16.7kgとにイオン交換水40kgを加
え、1時間撹拌後、15重量%のアンモニア水35.5
kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛
の共沈物を調製した。この共沈物をろ過脱水後、イオン
交換水で洗浄し、乾燥後、シリカを20重量%を含有す
るシリカゾル溶液14.7kgを添加して混合し、噴霧
乾燥後、800℃で5時間焼成した。
[0037] (Example 2) iron nitrate (Fe (NO 3) 3 · 9
23.1 kg of H 2 O) and zinc nitrate (Zn (NO 3 ) 2 .6)
H 2 O) 16.7 kg and deionized water 40kg added to 1 hour after stirring, 15 wt% aqueous ammonia 35.5
The pH was adjusted to 7.5 by adding kg to prepare a coprecipitate of iron hydroxide and zinc hydroxide. The coprecipitate is filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica, spray-dried, and calcined at 800 ° C. for 5 hours. .

【0038】この焼成物5.3kgに対し、予め800
℃で5時間焼成した比表面積105m2/gのチタンシ
リケート粉末13.9kgと比表面積78m2/gの酸
化ジルコニウム200g及びガラス繊維1.1kgを混
合した。
For 5.3 kg of this calcined product, 800
13.9 kg of a titanium silicate powder having a specific surface area of 105 m 2 / g, baked at 5 ° C. for 5 hours, 200 g of zirconium oxide having a specific surface area of 78 m 2 / g and 1.1 kg of glass fiber were mixed.

【0039】次いで、この混合粉体にイオン交換水9リ
ットル、ポリエチレンオキサイド150g及びカルボキ
シメチルセルロース131gを加え、以後、実施例1と
同様にしてハニカム構造の脱硫剤を製造した。
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.

【0040】得られた脱硫剤の組成は、酸化亜鉛(Zn
O)10.0重量%、酸化鉄(Fe23)10.0重量
%、シリカ(SiO2)20.0重量%、酸化チタン
(TiO2)54.0重量%、酸化ジルコニウム(Zr
2)1.0重量%、ガラス繊維5.0重量%であっ
た。
The composition of the obtained desulfurizing agent was zinc oxide (Zn).
O) 10.0% by weight, iron oxide (Fe 2 O 3 ) 10.0% by weight, silica (SiO 2 ) 20.0% by weight, titanium oxide (TiO 2 ) 54.0% by weight, zirconium oxide (Zr)
O 2 ) was 1.0% by weight and glass fiber was 5.0% by weight.

【0041】(実施例3)硝酸鉄(Fe(NO33・9
2O)23.1kgと硝酸亜鉛(Zn(NO32・6
2O)16.7kgとにイオン交換水40kgを加
え、1時間撹拌後、15重量%のアンモニア水35.5
kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛
の共沈物を調製した。この共沈物をろ過脱水後、イオン
交換水で洗浄し、乾燥後、シリカを20重量%含有する
シリカゾル溶液14.7kgを添加して混合し、噴霧乾
燥後、800℃で5時間焼成した。
[0041] (Example 3) iron nitrate (Fe (NO 3) 3 · 9
23.1 kg of H 2 O) and zinc nitrate (Zn (NO 3 ) 2 .6)
H 2 O) 16.7 kg and deionized water 40kg added to 1 hour after stirring, 15 wt% aqueous ammonia 35.5
The pH was adjusted to 7.5 by adding kg to prepare a coprecipitate of iron hydroxide and zinc hydroxide. The coprecipitate was filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica, spray-dried, and then calcined at 800 ° C. for 5 hours.

【0042】この焼成物5.3kgに対し、予め800
℃で5時間焼成した比表面積105m2/gのチタンシ
リケート粉末7.1kgと比表面積78m2/gの酸化
ジルコニウム7.0g及びガラス繊維1.1kgを混合
した。次いで、この混合粉体にイオン交換水9リット
ル、ポリエチレンオキサイド150g及びカルボキシメ
チルセルロース131gを加え、以後、実施例1と同様
にしてハニカム構造の脱硫剤を製造した。
For 5.3 kg of the fired product, 800
7.1 kg of titanium silicate powder having a specific surface area of 105 m 2 / g, baked at 5 ° C. for 5 hours, 7.0 g of zirconium oxide having a specific surface area of 78 m 2 / g and 1.1 kg of glass fiber were mixed. Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder. Thereafter, a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.

【0043】得られた脱硫剤の組成は、酸化亜鉛(Zn
O)10.0重量%、酸化鉄(Fe 23)10.0重量
%、シリカ(SiO2)13.4重量%、酸化チタン
(TiO2)27.4重量%、酸化ジルコニウム(Zr
O2)34.2重量%、ガラス繊維5.0重量%であっ
た。
The composition of the obtained desulfurizing agent was zinc oxide (Zn).
O) 10.0% by weight, iron oxide (Fe TwoOThree) 10.0 weight
%, Silica (SiOTwo) 13.4% by weight, titanium oxide
(TiOTwo) 27.4% by weight, zirconium oxide (Zr
O2) 34.2% by weight and glass fiber 5.0% by weight.
Was.

【0044】(実施例4)硝酸鉄(Fe(NO33・9
2O)23.1kgと硝酸亜鉛(Zn(NO32・6
2O)16.7kgとにイオン交換水40kgを加
え、1時間撹拌後、15重量%のアンモニア水35.5
kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛
の共沈物を調製した。この共沈物をろ過脱水後、イオン
交換水で洗浄し、乾燥後、シリカを20重量%含有する
シリカゾル溶液14.7kgを添加して混合し、110
℃で5時間乾燥した。
[0044] (Example 4) of iron nitrate (Fe (NO 3) 3 · 9
23.1 kg of H 2 O) and zinc nitrate (Zn (NO 3 ) 2 .6)
H 2 O) 16.7 kg and deionized water 40kg added to 1 hour after stirring, 15 wt% aqueous ammonia 35.5
The pH was adjusted to 7.5 by adding kg to prepare a coprecipitate of iron hydroxide and zinc hydroxide. The coprecipitate is filtered and dehydrated, washed with ion exchanged water, dried, and mixed with 14.7 kg of a silica sol solution containing 20% by weight of silica.
Dry at 5 ° C. for 5 hours.

【0045】この乾燥物7.4kgに対し、予め800
℃で5時間焼成した比表面積105m2/gのチタンシ
リケート粉末13.9kgと比表面積78m2/gの酸
化ジルコニウム200g及びガラス繊維1.1kgを混
合した。
For 7.4 kg of the dried product, 800
13.9 kg of a titanium silicate powder having a specific surface area of 105 m 2 / g, baked at 5 ° C. for 5 hours, 200 g of zirconium oxide having a specific surface area of 78 m 2 / g and 1.1 kg of glass fiber were mixed.

【0046】次いで、この混合粉体にイオン交換水9リ
ットル、ポリエチレンオキサイド150g及びカルボキ
シメチルセルロース131gを加え、以後、実施例1と
同様にしてハニカム構造の脱硫剤を製造した。
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.

【0047】得られた脱硫剤の組成は、酸化亜鉛(Zn
O)10.0重量%、酸化鉄(Fe23)10.0重量
%、シリカ(SiO2)20.0重量%、酸化チタン
(TiO2)54.0重量%、酸化ジルコニウム(Zr
2)1.0重量%、ガラス繊維5.0重量%であっ
た。
The composition of the obtained desulfurizing agent was zinc oxide (Zn).
O) 10.0% by weight, iron oxide (Fe 2 O 3 ) 10.0% by weight, silica (SiO 2 ) 20.0% by weight, titanium oxide (TiO 2 ) 54.0% by weight, zirconium oxide (Zr)
O 2 ) was 1.0% by weight and glass fiber was 5.0% by weight.

【0048】(比較例1)硝酸鉄(Fe(NO33・9
2O)46.2kgにイオン交換水40kgを加え、
1時間撹拌後、15重量%のアンモニア水35.5kg
を加えてpH7.5として、水酸化鉄の沈殿を得た。こ
の沈殿をろ過脱水後、イオン交換水で洗浄し、乾燥後、
シリカを20重量%含有するシリカゾル溶液14.7k
gを添加して混合し、噴霧乾燥後、800℃で5時間焼
成した。
[0048] (Comparative Example 1) of ferric nitrate (Fe (NO 3) 3 · 9
H 2 O) of deionized water 40kg was added to 46.2Kg,
After stirring for 1 hour, 35.5 kg of 15% by weight ammonia water
Was added to adjust the pH to 7.5 to obtain a precipitate of iron hydroxide. This precipitate is filtered, dehydrated, washed with ion exchanged water, dried,
Silica sol solution containing 20% by weight of silica 14.7k
g was added, mixed, spray-dried, and baked at 800 ° C. for 5 hours.

【0049】この焼成物5.3kgに対し、予め800
℃で5時間焼成した比表面積105m2/gのチタンシ
リケート粉末14.1kg及びガラス繊維1.1kgを
混合した。
For 5.3 kg of this fired product, 800
14.1 kg of a titanium silicate powder having a specific surface area of 105 m 2 / g baked at 5 ° C. for 5 hours and 1.1 kg of glass fiber were mixed.

【0050】次いで、この混合粉体にイオン交換水9リ
ットル、ポリエチレンオキサイド150g及びカルボキ
シメチルセルロース131gを加え、以後、実施例1と
同様にしてハニカム構造の脱硫剤を製造した。
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder, and a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.

【0051】得られた脱硫剤の組成は、酸化鉄(Fe2
3)20.0重量%、シリカ(SiO2)20.0重量
%、酸化チタン(TiO2)55.0重量%、ガラス繊
維5.0重量%であった。
The composition of the obtained desulfurizing agent was iron oxide (Fe 2
O 3) 20.0 wt%, silica (SiO 2) 20.0 wt%, titanium oxide (TiO 2) 55.0 wt%, and a glass fiber 5.0 wt%.

【0052】(比較例2)硝酸鉄(Fe(NO33・9
2O)23.1kgと硝酸亜鉛(Zn(NO32・6
2O)16.7kgとにイオン交換水40kgを加
え、1時間撹拌後、15重量%のアンモニア水35.5
kgを加えてpH7.5として、水酸化鉄と水酸化亜鉛
の共沈物を調製した。この共沈物をろ過脱水後、イオン
交換水で洗浄し、乾燥後、シリカを20重量%含有する
シリカゾル溶液45.2kgを添加して混合し、噴霧乾
燥後、800℃で5時間焼成した。
[0052] (Comparative Example 2) iron nitrate (Fe (NO 3) 3 · 9
23.1 kg of H 2 O) and zinc nitrate (Zn (NO 3 ) 2 .6)
H 2 O) 16.7 kg and deionized water 40kg added to 1 hour after stirring, 15 wt% aqueous ammonia 35.5
The pH was adjusted to 7.5 by adding kg to prepare a coprecipitate of iron hydroxide and zinc hydroxide. The coprecipitate was filtered, dehydrated, washed with ion-exchanged water, dried, mixed with 45.2 kg of a silica sol solution containing 20% by weight of silica, mixed, spray-dried and calcined at 800 ° C. for 5 hours.

【0053】この焼成物8.0kgに対し、予め800
℃で5時間焼成した比表面積58m2/gのアナターゼ
型チタニア粉末11.1kgと比表面積78m2/gの
酸化ジルコニウム200g及びガラス繊維1.1kgを
混合した。
For 8.0 kg of the fired product, 800
11.1 kg of anatase type titania powder having a specific surface area of 58 m 2 / g, baked at 5 ° C. for 5 hours, 200 g of zirconium oxide having a specific surface area of 78 m 2 / g and 1.1 kg of glass fiber were mixed.

【0054】次いで、この混合粉体にイオン交換水9リ
ットル、ポリエチレンオキサイド150g及びカルボキ
シメチルセルロース131gを加え、以後、実施例1と
同様にしてハニカム構造の脱硫剤を製造した。
Next, 9 liters of ion-exchanged water, 150 g of polyethylene oxide and 131 g of carboxymethylcellulose were added to the mixed powder. Thereafter, a desulfurizing agent having a honeycomb structure was manufactured in the same manner as in Example 1.

【0055】得られた脱硫剤の組成は、酸化亜鉛(Zn
O)10.0重量%、酸化鉄(Fe23)10.0重量
%、シリカ(SiO2)20.0重量%、酸化チタン
(TiO2)54.0重量%、酸化ジルコニウム(Zr
2)1.0重量%、ガラス繊維5.0重量%であっ
た。
The composition of the obtained desulfurizing agent was zinc oxide (Zn).
O) 10.0% by weight, iron oxide (Fe 2 O 3 ) 10.0% by weight, silica (SiO 2 ) 20.0% by weight, titanium oxide (TiO 2 ) 54.0% by weight, zirconium oxide (Zr)
O 2 ) was 1.0% by weight and glass fiber was 5.0% by weight.

【0056】以上の実施例2,3,4及び比較例1,2
で調製した脱硫剤についても、実施例1と同様の評価を
行った。図2は、脱硫及び再生の試験前と繰り返しを2
0回行う試験後の脱硫剤中の吸収成分(ZnO、Fe2
3)含有当たりの硫黄化合物吸着量を示す。同様に、
図3は実施例3の、図4は実施例4の、図5は比較例1
の、図6は比較例2のそれぞれの結果を示す。表3は、
実施例及び比較例における脱硫剤のガス流れ方向の圧壊
強度測定結果を示す。
Examples 2, 3, and 4 and Comparative Examples 1 and 2
The same evaluation as in Example 1 was performed for the desulfurizing agent prepared in the above. FIG. 2 shows the results before and after the desulfurization and regeneration test.
Absorbed components (ZnO, Fe 2
Shows the amount of sulfur compound adsorbed per O 3 ) content. Similarly,
3 is Example 3, FIG. 4 is Example 4, and FIG. 5 is Comparative Example 1.
FIG. 6 shows the results of Comparative Example 2. Table 3 shows
The crushing strength measurement result in the gas flow direction of the desulfurizing agent in the example and the comparative example is shown.

【0057】[0057]

【表3】 [Table 3]

【0058】表3及び図1〜6の結果から、脱硫・再生
繰り返し試験による脱硫剤自体の圧壊強度は、実施例1
〜4の脱硫剤がZnOを含有しているため、軸方向の圧
壊強度は比較例よりは低いものの、25kg/cm2
上あり、実用上での支障とはならない。
From the results shown in Table 3 and FIGS. 1 to 6, the crushing strength of the desulfurizing agent itself in the repeated desulfurization / regeneration test is shown in Example 1.
Since the desulfurizing agents Nos. To 4 contain ZnO, although the crushing strength in the axial direction is lower than that of the comparative example, the crushing strength is 25 kg / cm 2 or more, which does not hinder practical use.

【0059】一方、脱硫剤中の吸収成分含有量当たりの
硫黄化合物吸着量は、実施例の脱硫剤がいずれもほとん
ど変化がないのに対し、比較例1ではZnOを含有して
いないため、600℃の高温での硫黄化合物吸着量が少
なく、更に、繰り返し試験により硫黄化合物吸着量がか
なり減少していることが判る。また、比較例2はアナタ
ーゼ型TiO2を使用しているが、再生時の一時的な発
熱反応で脱硫剤が650〜850℃となり、その結果、
TiO2の構造が変化して一部がルチル化するため、硫
黄化合物吸着量が減少している。
On the other hand, the sulfur compound adsorption amount per absorbed component content in the desulfurizing agent was almost the same as that of the desulfurizing agent of the example, whereas the comparative example 1 did not contain ZnO. It can be seen that the amount of sulfur compound adsorbed at a high temperature of ° C. is small, and that the amount of adsorbed sulfur compound is considerably reduced by repeated tests. Comparative Example 2 used anatase-type TiO 2 , but the desulfurizing agent reached 650 to 850 ° C. due to a temporary exothermic reaction during regeneration, and as a result,
Since the structure of TiO 2 changes and a part of the TiO 2 becomes rutile, the amount of sulfur compound adsorbed decreases.

【0060】[0060]

【発明の効果】本発明の脱硫剤によれば、硫黄化合物の
吸着反応平衡に優れ、600℃程度の高温雰囲気でも、
高い硫黄化合物吸着量を示し、しかも脱硫・再生を繰り
返しても硫黄化合物の吸着量が減少することがなく、実
用的な強度を有し、長期間安定した使用が可能となる
According to the desulfurizing agent of the present invention, the equilibrium of the adsorption reaction of sulfur compounds is excellent, and even in a high temperature atmosphere of about 600 ° C.
Shows a high sulfur compound adsorption amount, and does not decrease the sulfur compound adsorption amount even after repeated desulfurization and regeneration, has practical strength, and enables long-term stable use

【0061】本発明の製造方法によれば、ZnOとFe
23との化合物であるジンクフェライト(ZnFe
24)を予めSiO2で安定化させると共に、COSの
加水分解能力を有するTiO2担体としてチタンシリケ
ート(TiSiO4)を用いるため、上述した特性を有
した脱硫剤を良好に製造することができる。
According to the manufacturing method of the present invention, ZnO and Fe
Zinc ferrite (ZnFe) which is a compound with 2 O 3
2 O 4 ) is preliminarily stabilized with SiO 2 , and titanium silicate (TiSiO 4 ) is used as a TiO 2 carrier having the ability to hydrolyze COS, so that a desulfurizing agent having the above-mentioned properties can be produced favorably. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1の脱硫剤の脱硫・再生繰り返し試験の
前後の硫黄化合物の吸着量を示す特性図である。
FIG. 1 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after a repetition test of desulfurization and regeneration of the desulfurizing agent of Example 1.

【図2】実施例2の脱硫剤の脱硫・再生繰り返し試験の
前後の硫黄化合物の吸着量を示す特性図である。
FIG. 2 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after a repeated desulfurization / regeneration test of the desulfurizing agent of Example 2.

【図3】実施例3の脱硫剤の脱硫・再生繰り返し試験の
前後の硫黄化合物の吸着量を示す特性図である。
FIG. 3 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Example 3.

【図4】実施例4の脱硫剤の脱硫・再生繰り返し試験の
前後の硫黄化合物の吸着量を示す特性図である。
FIG. 4 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Example 4.

【図5】比較例1の脱硫剤の脱硫・再生繰り返し試験の
前後の硫黄化合物の吸着量を示す特性図である。
FIG. 5 is a characteristic diagram showing the amounts of sulfur compounds adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Comparative Example 1.

【図6】比較例2の脱硫剤の脱硫・再生繰り返し試験の
前後の硫黄化合物の吸着量を示す特性図である。
FIG. 6 is a characteristic diagram showing the amount of sulfur compound adsorbed before and after the desulfurization / regeneration repetition test of the desulfurizing agent of Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 洲崎 誠 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 内田 雅昭 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 大串 勉 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 古野 雅弘 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Suzaki 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sansei Heavy Industries, Ltd. (72) Masaaki Uchida 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Catalyst Inside the Wakamatsu Plant of Kasei Kogyo Co., Ltd. (72) Tsutomu Ogushi, 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Catalyst Inside of the Wakamatsu Plant Kasei Kogyo Co., Ltd. 2 Catalyst Kasei Kogyo Co., Ltd. Wakamatsu Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸化鉄と酸化亜鉛とを合計で5〜40重
量%、シリカを5〜20重量%、酸化チタン及び/又は
酸化ジルコニウムを35〜85重量%含有する脱硫剤。
1. A desulfurizing agent containing 5 to 40% by weight of iron oxide and zinc oxide in total, 5 to 20% by weight of silica, and 35 to 85% by weight of titanium oxide and / or zirconium oxide.
【請求項2】 酸化鉄と酸化亜鉛がジンクフェライトを
形成している請求項1に記載の脱硫剤。
2. The desulfurizing agent according to claim 1, wherein the iron oxide and the zinc oxide form zinc ferrite.
【請求項3】 鉄塩及び亜鉛塩の混合物を中和して沈殿
物を生成し、シリカ及び/又はシリカの前駆体を混合
し、比表面積が120m2/g以下のチタンシリケー
ト、比表面積が80m2/g以下の酸化ジルコニウム及
びこれらの混合物からなる群から選ばれた担体を混合し
て成形し、乾燥し、焼成することを特徴とする脱硫剤の
製造方法。
3. A mixture of an iron salt and a zinc salt is neutralized to form a precipitate, and silica and / or a precursor of the silica are mixed, and a titanium silicate having a specific surface area of 120 m 2 / g or less is prepared. A method for producing a desulfurizing agent, comprising mixing a support selected from the group consisting of zirconium oxide of 80 m 2 / g or less and a mixture thereof, molding, drying and firing.
【請求項4】 沈殿物を乾燥し焼成した後シリカ及び/
又はシリカの前駆体を混合する、又は、沈殿物を乾燥し
シリカ及び/又はシリカの前駆体を混合した後焼成する
請求項3に記載の脱硫剤の製造方法。
4. A method for drying and calcining a precipitate, wherein the silica and / or
4. The method for producing a desulfurizing agent according to claim 3, wherein a precursor of silica is mixed, or the precipitate is dried, mixed with silica and / or a precursor of silica, and then calcined.
【請求項5】 焼成を800〜1000℃で行う請求項
3又は4記載の脱硫剤の製造方法。
5. The method for producing a desulfurizing agent according to claim 3, wherein the calcination is performed at 800 to 1000 ° C.
JP16954697A 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same Expired - Lifetime JP3563923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16954697A JP3563923B2 (en) 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16954697A JP3563923B2 (en) 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11519A true JPH11519A (en) 1999-01-06
JP3563923B2 JP3563923B2 (en) 2004-09-08

Family

ID=15888491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16954697A Expired - Lifetime JP3563923B2 (en) 1997-06-11 1997-06-11 Desulfurizing agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP3563923B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785520A (en) * 1985-10-29 1988-11-22 Framatome Process for locating the ideal screwing position of bolts of large dimensions
WO2002074883A1 (en) * 2001-03-21 2002-09-26 Waseda University Desulfurizing agent, method for production thereof, and method of use thereof
JP2004290955A (en) * 2003-03-11 2004-10-21 Univ Waseda Desulfurizing agent and its manufacturing method, and desulfurizing method and method for manufacturing hydrogen used for fuel cell
JP2005281358A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Desulfurization agent for hydrocarbonaceous fuel and method for producing the same
JP2005342611A (en) * 2004-06-02 2005-12-15 Univ Waseda Desulfurizing agent and its manufacturing method, desulfurizing method and method for producing high-purity hydrogen
KR100685658B1 (en) * 2005-08-19 2007-02-26 한국과학기술연구원 Copper ferrite catalyst and decomposition of sulfur trioxide using the same
JP2008519134A (en) * 2004-11-08 2008-06-05 トラスティーズ オブ タフツ カレッジ Apparatus and method for non-regenerative and regenerative hot gas desulfurization
JP2011174090A (en) * 2000-03-21 2011-09-08 China Petroleum & Chemical Corp Desulfurization and new adsorbent for desulfurization
KR101223846B1 (en) 2010-12-28 2013-01-17 재단법인 포항산업과학연구원 Method for removal of hydrogen sulfide by hydrogen sulfide removing agent
CN118105936A (en) * 2024-04-30 2024-05-31 山东海嘉石油化工有限公司 Solid desulfurizing agent and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180077859A (en) * 2016-12-29 2018-07-09 주식회사 이앤켐솔루션 Adsorbent with excellent formability and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785520A (en) * 1985-10-29 1988-11-22 Framatome Process for locating the ideal screwing position of bolts of large dimensions
JP2011174090A (en) * 2000-03-21 2011-09-08 China Petroleum & Chemical Corp Desulfurization and new adsorbent for desulfurization
WO2002074883A1 (en) * 2001-03-21 2002-09-26 Waseda University Desulfurizing agent, method for production thereof, and method of use thereof
JP2004290955A (en) * 2003-03-11 2004-10-21 Univ Waseda Desulfurizing agent and its manufacturing method, and desulfurizing method and method for manufacturing hydrogen used for fuel cell
JP4625970B2 (en) * 2003-03-11 2011-02-02 学校法人早稲田大学 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing hydrogen for fuel cell
JP4616569B2 (en) * 2004-03-29 2011-01-19 三菱重工業株式会社 Desulfurization agent for hydrocarbon fuel and method for producing the same
JP2005281358A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Desulfurization agent for hydrocarbonaceous fuel and method for producing the same
JP4722414B2 (en) * 2004-06-02 2011-07-13 学校法人早稲田大学 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen
JP2005342611A (en) * 2004-06-02 2005-12-15 Univ Waseda Desulfurizing agent and its manufacturing method, desulfurizing method and method for producing high-purity hydrogen
JP2008519134A (en) * 2004-11-08 2008-06-05 トラスティーズ オブ タフツ カレッジ Apparatus and method for non-regenerative and regenerative hot gas desulfurization
KR100685658B1 (en) * 2005-08-19 2007-02-26 한국과학기술연구원 Copper ferrite catalyst and decomposition of sulfur trioxide using the same
KR101223846B1 (en) 2010-12-28 2013-01-17 재단법인 포항산업과학연구원 Method for removal of hydrogen sulfide by hydrogen sulfide removing agent
CN118105936A (en) * 2024-04-30 2024-05-31 山东海嘉石油化工有限公司 Solid desulfurizing agent and preparation method thereof

Also Published As

Publication number Publication date
JP3563923B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
JPH08196B2 (en) Catalyst for reducing nitrogen oxide content in flue gas
JPS63240945A (en) Catalyst based on cerium oxide and treatment of industrial gas containing sulfur compound
US5010052A (en) Zirconium dioxide gas desulfurization catalyst
JPS6090043A (en) Catalyst for purifying nitrogen oxide
US5106607A (en) Multilobar catalysts for the conversion of sulfur containing gaseous effluents
JP5947939B2 (en) Titanium-containing powder, exhaust gas treatment catalyst, and method for producing titanium-containing powder
JPS59131569A (en) Manufacture of spinel composition containing alkali earth metal and aluminum
JP3563923B2 (en) Desulfurizing agent and method for producing the same
JP2012139625A (en) Titanium containing powder, exhaust gas treatment catalyst, and method of manufacturing titanium containing powder
EP2075065A1 (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
KR20190068850A (en) Low Temperature SCR Catalyst Added Carbon Supported Active Catalystic Materials and Preparation Method Thereof
RU1837957C (en) Catalyst for treatment of sulfur-containing gases
JPH0242536B2 (en)
CA1201699A (en) Preparative process for alkaline earth metal, aluminum-containing spinels
JP2007083126A (en) Oxygen storage substance, and method for storing oxygen in three-way catalyst for cleaning exhaust gas from car
CA2044067C (en) A catalyst for the oxidation of sulfur dioxide
JP3263406B2 (en) Catalyst for decomposing nitrous oxide and method for purifying exhaust gas containing nitrous oxide
JP2594337B2 (en) Desulfurizing agent
JPS5935027A (en) Preparation of calcined titanium oxide and catalyst
KR102230840B1 (en) Catalyst and method for removing NOx from combustion exhaust gas
JPH11300213A (en) Denitration catalyst
JPS6215247B2 (en)
JP3746609B2 (en) Hydrolysis catalyst and hydrolysis method of carbonyl sulfide
JP5570122B2 (en) Nitrous oxide decomposition catalyst and treatment method of nitrous oxide-containing gas
JPH0798149B2 (en) Method for producing desulfurizing agent

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term