KR100685658B1 - Copper ferrite catalyst and decomposition of sulfur trioxide using the same - Google Patents

Copper ferrite catalyst and decomposition of sulfur trioxide using the same Download PDF

Info

Publication number
KR100685658B1
KR100685658B1 KR1020050076017A KR20050076017A KR100685658B1 KR 100685658 B1 KR100685658 B1 KR 100685658B1 KR 1020050076017 A KR1020050076017 A KR 1020050076017A KR 20050076017 A KR20050076017 A KR 20050076017A KR 100685658 B1 KR100685658 B1 KR 100685658B1
Authority
KR
South Korea
Prior art keywords
catalyst
decomposition
sulfur trioxide
copper ferrite
copper
Prior art date
Application number
KR1020050076017A
Other languages
Korean (ko)
Inventor
정광덕
김홍곤
이병권
공경택
김태호
Original Assignee
한국과학기술연구원
한국원자력연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 한국원자력연구소 filed Critical 한국과학기술연구원
Priority to KR1020050076017A priority Critical patent/KR100685658B1/en
Application granted granted Critical
Publication of KR100685658B1 publication Critical patent/KR100685658B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

A sulfur trioxide decomposing highly stable catalyst which exhibits higher activity than existing catalysts, and has high reaction activity at a temperature of 700 deg.C, more preferably at a high temperature of 800 deg.C or more is provided. A copper ferrite catalyst is represented by a formula of Fe(2+delta)Cu(1-delta)O4, wherein the delta is more than or equal to 0 and less than 1. The copper ferrite catalyst is supported on a support. The support is selected from silica, alumina, zirconia and titania. A decomposition process of sulfur trioxide is performed at a temperature of 500 to 1200 deg.C under a pressure of 0.1 to 40 atmospheric pressures. The decomposition process is performed at a temperature of 700 to 1000 deg.C under a pressure of 1 to 25 atmospheric pressures. The decomposition process is used in an IS(Iodine-Sulfur) cycle process for water decomposition.

Description

구리 페라이트 촉매 및 이를 이용한 삼산화황 분해방법 {COPPER FERRITE CATALYST AND DECOMPOSITION OF SULFUR TRIOXIDE USING THE SAME}Copper ferrite catalyst and decomposition method for sulfur trioxide using same {COPPER FERRITE CATALYST AND DECOMPOSITION OF SULFUR TRIOXIDE USING THE SAME}

도 1은 본 발명의 구리 페라이트 촉매의 뫼스바우어 분석결과이고;1 is a Mossbauer analysis of the copper ferrite catalyst of the present invention;

도 2는 다양한 페라이트 촉매의 삼산화황 전환율을 비교하여 나타낸 그래프이고;2 is a graph showing a comparison of sulfur trioxide conversion of various ferrite catalysts;

도 3은 다양한 Ni, Co, Fe 담지촉매의 삼산화황 전환율을 나타낸 그래프이다.3 is a graph showing sulfur trioxide conversion of various Ni, Co, Fe supported catalysts.

본 발명은 구리 페라이트 촉매, 보다 구체적으로 SO3를 분해해서 SO2와 산소를 제조하는 반응에 작용하는 촉매에 관한 것이다.The present invention relates to a copper ferrite catalyst, and more particularly to a catalyst which acts on a reaction for decomposing SO 3 to produce SO 2 and oxygen.

IS(Iodine-sulfur) 싸이클 공정은 미국특허 제4,089,940호에 개시되어 있으며 하기와 같은 반응식을 거쳐 일어난다. The Iodine-sulfur (IS) cycle process is disclosed in US Pat. No. 4,089,940 and occurs through the following reaction scheme.

H2SO4 → SO2 + H2O + 1/2 O2 H 2 SO 4 → SO 2 + H 2 O + 1/2 O 2

SO2 + I2 + 2H2O → 2HI + H2SO4 SO 2 + I 2 + 2H 2 O → 2HI + H 2 SO 4

2HI → I2 + H2 2HI → I 2 + H 2

상기 반응식과 같이, 우선 황산분해반응은 이산화황 및 산소를 발생하는 반응으로 약 700℃에서 수행되며, 여기서 생성된 이산화황은 요오드와 반응하여 분센반응에 의해 요오드산과 황산으로 바뀌고, 여기서 생성된 황산은 다시 황산분해반응으로 순환된다. 분리된 요오드산은 요오드산 반응기에서 분해반응을 통해 수소와 요오드로 나뉘고, 생성된 요오드는 다시 분센반응기로 순환된다. 결국, 전체적으로 보아 물을 분해해서 물과 산소를 제조하는 폐싸이클을 구성한다. As shown in the above scheme, first, sulfuric acid decomposition reaction is performed at about 700 ° C. to generate sulfur dioxide and oxygen, and the produced sulfur dioxide reacts with iodine to be converted into iodic acid and sulfuric acid by Bunsen reaction, and the sulfuric acid produced is Circulated by sulfuric acid decomposition. The separated iodic acid is divided into hydrogen and iodine through a decomposition reaction in the iodic acid reactor, and the generated iodine is circulated back to the Bunsen reactor. Eventually, it constitutes a waste cycle that breaks down water to produce water and oxygen.

상기 반응과 관련하여, 미국특허 제3,888,750호에서는, 황산이 촉매반응에 의해 400∼950℃에서 반응하며 담지된 백금촉매가 750℃의 온도범위에서 사용될 수 있다고 제시하고 있다.In connection with the reaction, US Pat. No. 3,888,750 suggests that sulfuric acid reacts at 400 to 950 ° C. by catalytic reaction and the supported platinum catalyst can be used in the temperature range of 750 ° C.

또한, 미국특허 제4,314,982호에서는 상기의 황산분해반응을 아래의 두 단계의 반응으로 나누어 각각의 반응에 다른 촉매를 사용하는 것을 제시하였다.In addition, U.S. Patent No. 4,314,982 suggests that the sulfuric acid decomposition reaction is divided into two reactions below to use a different catalyst for each reaction.

H2SO4 → SO3 + H2OH 2 SO 4 → SO 3 + H 2 O

SO3 → SO2 + 1/2O2 SO 3 → SO 2 + 1 / 2O 2

가령, 427∼697℃에서는 백금을 타이타니아(TiO2: Titania) 또는 바륨 설페이트에 담지시킨 촉매, 그 이상의 온도에서는 타이타니아에 담지된 철촉매와 지르코니아에 담지된 구리촉매를 제시하였다.For example, at 427 to 697 ° C, a catalyst in which platinum is supported on TiO 2 (Titania) or barium sulphate, and at higher temperatures, an iron catalyst supported on titania and a copper catalyst supported on zirconia are presented.

그 후 황산분해촉매에 대한 연구가 각 촉매산화물에 대해 수행되었고 타가와/엔도(Int. J. Hydrogen Energy, 14(1) (1989) 11 참고)는 Pt

Figure 112005045549444-pat00001
Cr2O3>Fe2O3>CuO >CeO2>NiO>Al2O3의 순으로 촉매활성의 강약을 기술하였고, 도키야(Bull. of The Chemical Society of Japan, 50(10) (1977) 1657 참고)등은 Fe2O3>Cr2O3>CuO>CeO2 >NiO>Al2O3의 순으로 촉매활성을 기술하였다.Subsequently, a study on sulfuric acid decomposition catalysts was carried out for each catalyst oxide, and Tagawa / endo (see Int. J. Hydrogen Energy, 14 (1) (1989) 11) was Pt.
Figure 112005045549444-pat00001
The strength and weakness of catalytic activity were described in order of Cr 2 O 3 > Fe 2 O 3 >CuO> CeO 2 >NiO> Al 2 O 3 , and Tokiya (Bull. Of The Chemical Society of Japan, 50 (10) (1977) 1657) described the catalytic activity in the order of Fe 2 O 3 > Cr 2 O 3 >CuO> CeO 2 >NiO> Al 2 O 3 .

따라서, 최근에는 황산분해반응을 상기 미국특허 제4,314,982호에서 제시된 바와 같이, 황산을 삼산화황과 물로 전환하는 반응과 삼산화황을 이산화황으로 전환하는 반응으로 나누어 수행하는 추세에 있다. 따라서, 상기방법에 있어서 700-950℃에서 통상 수행되는 삼산화황의 분해반응용 촉매로서 귀금속이 아닌 저가의 고 안정성 촉매를 개발할 필요성이 있어 왔다. 기존의 단일상 촉매는 고온에서 소결현상이 일어나 장기 안정성 면에서 문제가 있었고, 또한 황산의 직접분해에 최적화된 촉매들은 삼산화황의 분해에 적합하지 않았다.Therefore, recently, the sulfuric acid decomposition reaction has been tended to be divided into a reaction of converting sulfuric acid into sulfur trioxide and water and a reaction of converting sulfur trioxide into sulfur dioxide, as shown in US Pat. No. 4,314,982. Therefore, in the above method, there has been a need to develop a low cost, high stability catalyst other than a noble metal as a catalyst for decomposition reaction of sulfur trioxide which is usually performed at 700-950 ° C. Conventional single-phase catalysts have problems in terms of long-term stability due to sintering at high temperatures, and catalysts optimized for direct decomposition of sulfuric acid are not suitable for decomposition of sulfur trioxide.

따라서 본 발명의 목적은 기존의 촉매보다 높은 활성을 보이면서도 700℃ 이상, 더욱 바람직하게는 800℃ 이상의 고온에서 높은 반응활성을 갖는 고 안정성의 삼산화황 분해용 촉매를 제공하고자 하는 것이다.Accordingly, an object of the present invention is to provide a catalyst for decomposition of sulfur trioxide having high activity at high temperatures of 700 ° C. or higher, more preferably 800 ° C. or higher while showing higher activity than conventional catalysts.

본 발명은 상기 기술적 과제를 달성하기 위하여, 하기 화학식 1을 가진 구리 페라이트 촉매를 제공한다:The present invention provides a copper ferrite catalyst having the following general formula (1) to achieve the above technical problem:

Fe(2+δ)Cu(1-δ)O4 Fe (2 + δ) Cu (1-δ) O 4

상기 식에서, δ는 0

Figure 112006079593317-pat00002
δ〈1, 바람직하게는 0.1
Figure 112006079593317-pat00003
δ
Figure 112006079593317-pat00014
0.9의 범위이다. Wherein δ is 0
Figure 112006079593317-pat00002
δ <1, preferably 0.1
Figure 112006079593317-pat00003
δ
Figure 112006079593317-pat00014
It is in the range of 0.9.

본 발명에 따른 구리 페라이트 촉매는 고상법, 공침법, 스프레이법, 졸겔법, 마이크로웨이브법 등 다양한 방법으로 제조가 가능하며, 그 활성이 구리산화물이나 철산화물촉매 또는 그의 혼합물보다 높으면서도, 안정성 면에서 월등히 우수하다.The copper ferrite catalyst according to the present invention can be manufactured by various methods such as a solid phase method, a coprecipitation method, a spray method, a sol gel method, a microwave method, and the activity thereof is higher than that of a copper oxide, an iron oxide catalyst or a mixture thereof. Outstanding in

본 발명에 따른 촉매는 담지체에 담지시킨 형태로 사용할 수도 있으나, 담지하지 않고 직접 펠릿형태로 성형하여 사용할 수도 있다. 담지할 경우, 담지체로는 실리카, 알루미나, 지르코니아, 타이타니아 등이 가능하며, 타이타니아에 담지되는 경우가 가장 안정성이 높다.The catalyst according to the present invention may be used in the form of being supported on a carrier, but may be molded and used directly into pellets without being supported. In the case of supporting, the supporting body may be silica, alumina, zirconia, titania, and the like, and it is most stable when supported on titania.

본 발명의 촉매는 삼산화황 분해 반응 활성을 갖는 것으로서, 500-1200℃ 범 위, 특히, 700-1000℃ 범위의 온도, 0.1-40 기압, 특히, 1-25 기압 범위의 압력에서 활성 및 안정성이 뛰어나며, 반응에 공급되는 반응물의 공간속도는 100-500,000 mL/gcatㆍh에 이르는 범위, 특히, 500-100,000mL/gcatㆍh에 이르는 공간속도 범위에서 사용될 수 있다.The catalyst of the present invention has sulfur trioxide decomposition activity, and has excellent activity and stability in the temperature range of 500-1200 ° C., in particular, in the range of 700-1000 ° C., 0.1-40 atm, especially in the range of 1-25 atm. The space velocity of the reactants fed to the reaction can be used in the range of 100-500,000 mL / gcat · h, in particular in the space velocity range of 500-100,000 mL / gcat · h.

고온에서 대부분의 촉매들은 소결이 일어나 표면적이 줄어들어 촉매의 활성을 유지하기가 어렵게 되므로, 본 발명에 따른 페라이트 구조의 촉매 역시 고온에서 장기간 처리하는 경우 비 표면적은 측정하기 어려울 정도로 작게 되지만, 비 표면적이 10m2/g 이상 되는 담지 철산화물 또는 구리산화물 촉매와 비교해 보면 그 활성이 매우 높으며 장기 안정성 또한 매우 높게 나타나고 있다. 이는 안정적인 구조를 유지하면서도 활성이 높은 구리산화물이 역시 활성이 높은 철산화물 상에 잘 분포되어 있어, 촉매의 고활성과 고온 안정성이 동시에 확보된 것으로 해석된다.Most catalysts at high temperatures cause sintering to reduce the surface area, making it difficult to maintain the activity of the catalyst. Therefore, the ferrite-structured catalyst according to the present invention also has a small surface area that is difficult to measure when subjected to prolonged treatment at a high temperature, but the specific surface area Compared with the supported iron oxide or copper oxide catalyst of 10 m 2 / g or more, the activity is very high and the long-term stability is also very high. It is interpreted that the copper oxide having high activity while maintaining a stable structure is well distributed on the iron oxide having high activity, so that the high activity and high temperature stability of the catalyst are simultaneously secured.

이하, 실시예를 들어 본 발명을 보다 구체적으로 설명한다.Hereinafter, an Example is given and this invention is demonstrated more concretely.

촉매의 제조Preparation of the catalyst

<실시예 1><Example 1>

CuCl2 8.067g을 증류수 100mL에 용해시키고 FeCl3 19.4652g을 증류수 100mL에 용해시켰다. 두 용액을 1000mL 삼구플라스크에서 5분간 혼합한 후, 여기에 NaOH 20g을 증류수 100mL에 용해시킨 알칼리용액을 넣어 공침 반응을 시켰다. 용액의 pH를 10으로 맞춘 후 5시간 동안 교반하고, 공침물을 여과, 세척하여 건조기 에서 12시간동안 건조시킨 후 분쇄하였다. 이어서, 분쇄된 고형물을 900℃에서 16시간 동안 소성하여 목적하는 구리 페라이트를 제조하였다. 8.067 g of CuCl 2 was dissolved in 100 mL of distilled water, and 19.4652 g of FeCl 3 was dissolved in 100 mL of distilled water. After the two solutions were mixed for 5 minutes in a 1000 mL three-necked flask, an alkali solution in which 20 g of NaOH was dissolved in 100 mL of distilled water was added thereto, followed by a coprecipitation reaction. The pH of the solution was adjusted to 10, followed by stirring for 5 hours, and the co-precipitate was filtered and washed, dried in a drier for 12 hours, and then ground. The milled solid was then calcined at 900 ° C. for 16 hours to produce the desired copper ferrite.

제조된 구리 페라이트의 뫼스바우어 분석결과를 도 1 및 표 1에 나타내었다.Mossbauer analysis of the prepared copper ferrite is shown in Figure 1 and Table 1.

Figure 112005045549444-pat00004
Figure 112005045549444-pat00004

Figure 112005045549444-pat00005
Figure 112005045549444-pat00005

분석결과를 보면 본 발명의 촉매는 ABO2 형태로 나타낼 때 A site의 철함량이 B site의 철함량보다 많다는 것을 알 수 있고 이는 구리가 주로 B site에 분포되어 있는 전형적인 역 스피넬 구조임을 보여주고 있다. As a result of the analysis, the catalyst of the present invention shows that the iron content of the A site is higher than that of the B site when expressed in the form of ABO 2 , indicating that the copper is a typical inverted spinel structure mainly distributed in the B site. .

<실시예 2><Example 2>

실시예 1과 동일하게 수행하되, 구리의 함량을 변화시켜가며 구리 페라이트(Fe(2+δ)Cu(1-δ)O4)를 제조하였으며(δ: 0.3, 0.5, 0.7), 이를 뫼스바우어 분석한 결과 역시 역스피넬 구조를 갖는 것을 확인하였다.In the same manner as in Example 1, copper ferrite (Fe (2 + δ) Cu (1-δ) O 4 ) was prepared by varying the content of copper (δ: 0.3, 0.5, 0.7), which was obtained from Mossbauer. The results of the analysis also confirmed that it has a reverse spinel structure.

<비교예 1>Comparative Example 1

실시예 1과 동일하게 수행하되 구리 화합물 대신 니켈 화합물, 코발트 화합물, 망간 화합물 및 스트론튬 화합물을 이용하여 코발트 망간 페라이트, 니켈페라이트 및 스트론튬 페라이트를 제조하였으며, 그 구조는 XRD 및 뫼스바우어 분석으로 확인하였다.Cobalt manganese ferrite, nickel ferrite and strontium ferrite were prepared in the same manner as in Example 1 using nickel, cobalt, manganese and strontium compounds instead of copper compounds, and the structure thereof was confirmed by XRD and Mossbauer analysis.

<비교예 2>Comparative Example 2

실시예 1과 유사하게 공침법에 의해 코발트, 구리, 니켈, 철산화물을 Al2O3 또는 TiO2에 담지시켜 CoO/Al2O3, CoO/TiO2, NiO/TiO2, NiO/Al2O3, CuO/Al2O3, CuO/TiO2, Fe2O3/Al2O3, Fe2O3/TiO2 촉매를 제조하였다. 이때, 촉매성분과 담지체인 알루미나 또는 타이타니아는 1:1 몰비가 되도록 제조하였으며, 침전제로는 암모니아를 사용하였고, 공침 후 촉매는 800℃에서 3시간동안 소성하였다.Similar to Example 1, cobalt, copper, nickel, and iron oxides were supported on Al 2 O 3 or TiO 2 by coprecipitation to form CoO / Al 2 O 3 , CoO / TiO 2 , NiO / TiO 2 , NiO / Al 2. O 3 , CuO / Al 2 O 3 , CuO / TiO 2 , Fe 2 O 3 / Al 2 O 3 , Fe 2 O 3 / TiO 2 catalysts were prepared. At this time, the catalyst component and the supporting alumina or titania were prepared in a 1: 1 molar ratio, ammonia was used as a precipitant, and the catalyst was calcined at 800 ° C. for 3 hours.

삼산화황 분해 성능 평가Sulfur trioxide decomposition performance evaluation

<실시예 3><Example 3>

고정층 반응기에서 삼산화황의 분해에 대한 촉매의 활성을 평가하였다. 삼산화황은 20 mL/min의 유속, 질소는 40 mL/min으로 반응기에 공급하였고 촉매의 양을 0.5g, 0.2g, 0.05g으로 변화시켜가며 실험을 수행하였다. 생성물은 0.4 N의 요오드 용액 250 ml를 통과하고 500 mL의 희석 황산을 또한 통과하도록 하였다. 요오드용액에서는 이산화황이 황산으로 전환되고 요오드용액에 포집되지 않는 삼산화황은 희석황산용액에서 대부분 포집되었다. 생성물의 이산화황의 양은 요오드의 남은 양으로 분석을 하였고 미반응 삼산화황은 요오드용액의 산염기 적정으로 산의 양을 측정하고 희석용액의 무게변화를 측정하여 계산하였다.The activity of the catalyst on the decomposition of sulfur trioxide in a fixed bed reactor was evaluated. Sulfur trioxide was supplied to the reactor at a flow rate of 20 mL / min and nitrogen at 40 mL / min, and the experiment was carried out while varying the amount of catalyst to 0.5 g, 0.2 g, and 0.05 g. The product was passed through 250 ml of 0.4 N iodine solution and also through 500 mL dilute sulfuric acid. In iodine solution, sulfur trioxide was converted to sulfuric acid and sulfur trioxide, which was not collected in iodine solution, was mostly collected in dilute sulfuric acid solution. The amount of sulfur dioxide in the product was analyzed by the remaining amount of iodine, and the unreacted sulfur trioxide was calculated by measuring the amount of acid by acidic titration of iodine solution and the weight change of the diluted solution.

도 2에 촉매 양이 0.05g인 경우, 실시예 1 및 비교예 1에서 제조된 촉매(GHSV: 72,000 mL/gcat.h)의 반응활성을 온도에 따라 측정한 결과를 나타내었다. In FIG. 2, when the amount of the catalyst is 0.05 g, the reaction activity of the catalysts prepared in Example 1 and Comparative Example 1 (GHSV: 72,000 mL / gcat.h) was measured according to temperature.

도 2로부터 본 발명에 따른 구리 페라이트 촉매가 삼산화황의 분해활성이 가장 높은 것을 알 수 있다.It can be seen from FIG. 2 that the copper ferrite catalyst according to the present invention has the highest decomposition activity of sulfur trioxide.

<실시예 4> <Example 4>

실시예 2에서 제조한 촉매를 이용하여 실시예 3과 동일한 실험을 수행하였다. 그 결과를 하기의 표 2에 나타내었다. The same experiment as in Example 3 was carried out using the catalyst prepared in Example 2. The results are shown in Table 2 below.

Figure 112005045549444-pat00006
Figure 112005045549444-pat00006

표 2로부터, 본 발명에 따른 구리 페라이트 구조에서는 δ의 함량에 따른 전환율의 변화가 크지 않음을 알 수 있다.From Table 2, it can be seen that in the copper ferrite structure according to the present invention, the change in conversion according to the content of δ is not large.

<실시예 5> <Example 5>

비교예 2에서 얻은 촉매에 대해 실시예 3의 방법에 의해 반응활성을 측정하되, 이때는 0.5g의 촉매를 사용하였다. The reaction activity of the catalyst obtained in Comparative Example 2 was measured by the method of Example 3, in which case 0.5 g of a catalyst was used.

측정된 결과를 도 3 및 하기의 표 3에 나타내었다. The measured results are shown in FIG. 3 and Table 3 below.

Figure 112005045549444-pat00007
Figure 112005045549444-pat00007

상기 표 3 및 도 3으로부터 본 발명에 따른 구리 페라이트 촉매가 다른 촉매에 비해 월등히 우수한 촉매활성을 나타냄을 알 수 있다. It can be seen from the above Table 3 and FIG. 3 that the copper ferrite catalyst according to the present invention shows an excellent catalytic activity compared to other catalysts.

본 발명의 촉매는 황산 분해반응에 있어서 특히 삼산화황 분해 공정에 유용하게 이용될 수 있다.The catalyst of the present invention can be usefully used in sulfuric acid decomposition reactions, particularly in sulfur trioxide decomposition processes.

Claims (8)

하기 화학식 1의 구리 페라이트 촉매: Copper ferrite catalyst of formula Fe(2+δ)Cu(1-δ)O4 Fe (2 + δ) Cu (1-δ) O 4 상기 식에서, Where δ는 0
Figure 112006079593317-pat00008
δ 〈 1이다.
δ is 0
Figure 112006079593317-pat00008
δ <1.
제 1 항에 있어서,The method of claim 1, δ가 0.1
Figure 112005045549444-pat00009
δ
Figure 112005045549444-pat00010
0.9인 것을 특징으로 하는 구리 페라이트 촉매.
δ is 0.1
Figure 112005045549444-pat00009
δ
Figure 112005045549444-pat00010
Copper ferrite catalyst, characterized in that 0.9.
제 1 항에 있어서,The method of claim 1, 담지체에 담지된 것임을 특징으로 하는 구리 페라이트 촉매.Copper ferrite catalyst, characterized in that supported on the support. 제 3 항에 있어서,The method of claim 3, wherein 담지체가 실리카, 알루미나, 지르코니아 및 타이타니아 중에서 선택된 것임을 특징으로 하는 구리 페라이트계 촉매.Copper ferrite catalyst, characterized in that the support is selected from silica, alumina, zirconia and titania. 제 1 항 내지 제 4 항 중 어느 한 항의 촉매의 존재하에 삼산화황을 분해하는 방 법.A method of decomposing sulfur trioxide in the presence of the catalyst of claim 1. 제 5 항에 있어서, The method of claim 5, 500 내지 1200℃의 온도 및 0.1 내지 40 기압 하에서 수행됨을 특징으로 하는 방법.The process is characterized in that it is carried out at a temperature of 500 to 1200 ℃ and 0.1 to 40 atm. 제 6 항에 있어서,The method of claim 6, 700 내지 1000℃의 온도 및 1 내지 25 기압 하에서 수행됨을 특징으로 하는 방법.The process is characterized in that it is carried out at a temperature of 700 to 1000 ℃ and 1 to 25 atm. 제 5 항에 있어서,The method of claim 5, 물 분해용 IS (Iodine-Sulfur) 싸이클 공정에 이용됨을 특징으로 하는 방법.Characterized in that it is used in the Iodine-Sulfur (IS) cycle process for water decomposition.
KR1020050076017A 2005-08-19 2005-08-19 Copper ferrite catalyst and decomposition of sulfur trioxide using the same KR100685658B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050076017A KR100685658B1 (en) 2005-08-19 2005-08-19 Copper ferrite catalyst and decomposition of sulfur trioxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050076017A KR100685658B1 (en) 2005-08-19 2005-08-19 Copper ferrite catalyst and decomposition of sulfur trioxide using the same

Publications (1)

Publication Number Publication Date
KR100685658B1 true KR100685658B1 (en) 2007-02-26

Family

ID=38104320

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050076017A KR100685658B1 (en) 2005-08-19 2005-08-19 Copper ferrite catalyst and decomposition of sulfur trioxide using the same

Country Status (1)

Country Link
KR (1) KR100685658B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857240B1 (en) 2006-11-29 2008-09-05 한국원자력연구원 Method and Apparatus for Decomposing SO3 for Producing Nuclear Hydrogen
KR100930978B1 (en) 2007-10-15 2009-12-10 한국과학기술연구원 Metal-alumina granular particle catalyst and sulfur trioxide decomposition method using the same
CN109562938A (en) * 2016-04-28 2019-04-02 印度德里技术研究院 Method for sulphur trioxide conversion and hydrogen gas production
KR20190039883A (en) * 2016-04-28 2019-04-16 인디안 인스터튜트 오브 테크놀로지, 델리 Catalyst composition for conversion of sulfur trioxide and hydrogen production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763350A (en) * 1991-02-12 1998-06-09 Bayer Aktiengesellschaft Catalysts for removing sulfur compounds from industrial gases, a process for their production and their use
JPH10328534A (en) * 1997-05-29 1998-12-15 Hitachi Zosen Corp Method for preventing deposition of acid ammonium sulfate and ammonium sulfate
JPH11519A (en) * 1997-06-11 1999-01-06 Mitsubishi Heavy Ind Ltd Desulfurizing agent and its production
KR100274904B1 (en) * 1992-06-29 2000-12-15 엘마레, 알프레드 Novel absorbent sulfur oxide composition and use thereof
WO2002022239A1 (en) * 2000-09-12 2002-03-21 Emerachem Llc Removal of sulfur oxides from exhaust gases of combustion processes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763350A (en) * 1991-02-12 1998-06-09 Bayer Aktiengesellschaft Catalysts for removing sulfur compounds from industrial gases, a process for their production and their use
KR100274904B1 (en) * 1992-06-29 2000-12-15 엘마레, 알프레드 Novel absorbent sulfur oxide composition and use thereof
JPH10328534A (en) * 1997-05-29 1998-12-15 Hitachi Zosen Corp Method for preventing deposition of acid ammonium sulfate and ammonium sulfate
JPH11519A (en) * 1997-06-11 1999-01-06 Mitsubishi Heavy Ind Ltd Desulfurizing agent and its production
WO2002022239A1 (en) * 2000-09-12 2002-03-21 Emerachem Llc Removal of sulfur oxides from exhaust gases of combustion processes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857240B1 (en) 2006-11-29 2008-09-05 한국원자력연구원 Method and Apparatus for Decomposing SO3 for Producing Nuclear Hydrogen
KR100930978B1 (en) 2007-10-15 2009-12-10 한국과학기술연구원 Metal-alumina granular particle catalyst and sulfur trioxide decomposition method using the same
CN109562938A (en) * 2016-04-28 2019-04-02 印度德里技术研究院 Method for sulphur trioxide conversion and hydrogen gas production
KR20190039883A (en) * 2016-04-28 2019-04-16 인디안 인스터튜트 오브 테크놀로지, 델리 Catalyst composition for conversion of sulfur trioxide and hydrogen production method
JP2019514688A (en) * 2016-04-28 2019-06-06 インディアン・インスティテゥート・オブ・テクノロジー Catalyst composition for conversion of sulfur trioxide and method of hydrogen generation
EP3448807A4 (en) * 2016-04-28 2019-11-06 Indian Institute of Technology Delhi Catalyst composition for conversion of sulfur trioxide and hydrogen production process
KR102346850B1 (en) * 2016-04-28 2022-01-04 인디안 인스터튜트 오브 테크놀로지, 델리 Catalyst composition for conversion of sulfur trioxide and process for hydrogen production

Similar Documents

Publication Publication Date Title
US8946113B2 (en) Iron-modified Ni-based perovskite-type catalyst, preparing method thereof, and producing method of synthesis gas from combined steam CO2 reforming of methane using the same
EP1866083B1 (en) Nickel on Ceria/Zirconia catalyst
Wang et al. Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique
Choudhary et al. Solvent-free selective oxidation of benzyl alcohol by molecular oxygen over uranium oxide supported nano-gold catalyst for the production of chlorine-free benzaldehyde
US6342538B1 (en) Catalyst for the synthesis of methanol and a method for the synthesis of methanol
CN109833877B (en) Catalyst for preparing synthesis gas by oxidizing methane through chemical chain part and preparation and application thereof
JP5553484B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
WO2022070597A1 (en) Ammonia decomposition catalyst
JP2021130100A (en) Ammonia decomposition catalyst
KR100685658B1 (en) Copper ferrite catalyst and decomposition of sulfur trioxide using the same
KR20130074843A (en) Catalyst for reforming of methane with the enhanced stability for sulfur components, preparing method thereof and methane reforming method using the catalyst
CN111992213B (en) Preparation method of core-shell catalyst for preparing cyclohexanol by catalytic hydrogenation and deoxidation of guaiacol
CN112774674A (en) Supported ruthenium cluster catalyst for ammonia synthesis, and preparation method and application thereof
JP7527052B2 (en) Ammonia synthesis catalyst
CN107427819B (en) Ruthenium-rhenium-based catalyst for the selective methanation of carbon monoxide
Bonelli et al. Reverse Micelle Strategy for the Synthesis of MnO x–TiO2 Active Catalysts for NH3-Selective Catalytic Reduction of NO x at Both Low Temperature and Low Mn Content
CN113083324B (en) Formaldehyde oxidation catalyst used at room temperature and preparation method thereof
CN107876055B (en) Catalyst for preparing glyoxylic acid from methyl glycolate, preparation method and application
CN106560239B (en) A kind of catalyst and its preparation method and application of catalytic chlorination hydroxide
Zhang et al. An efficient noble-metal-free supported copper catalyst for selective nitrocyclohexane hydrogenation to cyclohexanone oxime
KR100860538B1 (en) Copper-iron oxide catalyst and decomposition of sulfuric acid using same
JP4254381B2 (en) Water gas reaction catalyst, carbon monoxide reduction method, and fuel cell power generation system
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
JP2012223768A (en) Catalyst and method for decomposing ammonia
CN110756221A (en) Co/CN-H nano material, preparation method and application thereof in visible light catalysis

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120131

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee