JP2005342611A - Desulfurizing agent and its manufacturing method, desulfurizing method and method for producing high-purity hydrogen - Google Patents

Desulfurizing agent and its manufacturing method, desulfurizing method and method for producing high-purity hydrogen Download PDF

Info

Publication number
JP2005342611A
JP2005342611A JP2004164861A JP2004164861A JP2005342611A JP 2005342611 A JP2005342611 A JP 2005342611A JP 2004164861 A JP2004164861 A JP 2004164861A JP 2004164861 A JP2004164861 A JP 2004164861A JP 2005342611 A JP2005342611 A JP 2005342611A
Authority
JP
Japan
Prior art keywords
desulfurization
sulfur
agent
compound
desulfurizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004164861A
Other languages
Japanese (ja)
Other versions
JP4722414B2 (en
Inventor
Kyo Ishimori
岐洋 石森
Masabumi Katsuta
正文 勝田
Kouichiro Furusawa
宏一朗 古澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2004164861A priority Critical patent/JP4722414B2/en
Publication of JP2005342611A publication Critical patent/JP2005342611A/en
Application granted granted Critical
Publication of JP4722414B2 publication Critical patent/JP4722414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrahigh-performance desulfurizing agent by which sulfur can be removed instantaneously from a sulfur-containing compound such as hydrogen sulfide, sulfide and thiophene in high efficiency by a one-stage process (usually, a three-stage process) and which can be regenerated repeatedly and to provide a method for manufacturing the desulfurizing agent, a desulfurizing method for removing the sulfur content of the sulfur-containing compound highly efficiently by using the desulfurizing agent and a method for producing high-purity hydrogen for a fuel cell or highly-desulfurized hydrogen in large quantities at a low cost by furthermore steam-reforming the desulfurized hydrocarbon. <P>SOLUTION: This sulfurizing agent is shown by the general formula: ZnFe<SB>2</SB>O<SB>4</SB>/SiO<SB>2</SB>/a molybdenum compound (MoS<SB>2</SB>)/a tungsten compound (WS<SB>2</SB>)/TiO<SB>2</SB>. The desulfurizing agent is brought into contact with the sulfur-containing compound to perform instantaneous ultrahigh-level desulfurization (so that the residual sulfur is ≤5-10 ppb). The instantaneous ultrahigh-level desulfurization can be restarted by repeatedly using the oxidatively-regenerated desulfurizing agent or after temporarily stopping the desulfurization reaction using the desulfurizing agent. High-purity hydrogen applicable to a solid macromolecule type fuel cell or the like can be obtained by performing the ultrahigh-level desulfurization on the sulfur-containing compound and steam-reforming the sulfur-removed hydrocarbon with excellent profitability in high efficiency. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、脱硫剤及びその製造方法、脱硫方法並びに高純度水素の製造方法に関し、特に詳しくは、有機硫黄含有化合物等の種々の硫黄含有化合物から、硫黄を効率良く除去することができる脱硫剤及びその経済的にかつ効率的な製造方法、また、当該脱硫剤を用いた脱硫方法、更には当該脱硫剤を用いて燃料電池用の高純度水素、高度脱硫水素を製造する方法に関する。   The present invention relates to a desulfurization agent, a method for producing the same, a method for producing desulfurization, and a method for producing high-purity hydrogen, and more particularly, a desulfurization agent capable of efficiently removing sulfur from various sulfur-containing compounds such as organic sulfur-containing compounds. The present invention also relates to an economical and efficient production method thereof, a desulfurization method using the desulfurizing agent, and a method of producing high-purity hydrogen and advanced desulfurized hydrogen for fuel cells using the desulfurizing agent.

近年、環境性に優れた高効率エネルギー変換技術として、燃料電池が国内外で脚光を浴びている。
この燃料電池には、使用する電解質の種類に応じて、燐酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのものがあり、特に固体高分子型燃料電池は低温度で作動することもあり、次世代の燃料電池用自動車の動力源として着目されている。
In recent years, fuel cells have been spotlighted at home and abroad as high-efficiency energy conversion technologies with excellent environmental performance.
These fuel cells include phosphoric acid type, molten carbonate type, solid oxide type, solid polymer type, etc., depending on the type of electrolyte used, especially solid polymer type fuel cells that operate at low temperatures. As a result, it is attracting attention as a power source for next-generation fuel cell vehicles.

燃料電池は、水素と酸素を電気化学的に反応させて化学エネルギーを電気エネルギーに効率良く変換できるものであるが、燃料源としての水素は、高純度であることが必要とされる。
かかる水素源としては、天然ガス、都市ガス、メタノール、合成液体燃料(GTL)、バイオフューエル、廃プラスチック油、またLPガス、石油系ナフサ、ガソリン、灯油等の石油系炭化水素化合物が考えられ、特に石油系炭化水素化合物は、保管及び取り扱いが容易である上、ガソリンスタンド等での供給施設が整備されていることから、水素源として有利である。
A fuel cell can efficiently convert chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, but hydrogen as a fuel source is required to have high purity.
Examples of such hydrogen sources include natural gas, city gas, methanol, synthetic liquid fuel (GTL), biofuel, waste plastic oil, and petroleum hydrocarbon compounds such as LP gas, petroleum naphtha, gasoline, kerosene, In particular, petroleum-based hydrocarbon compounds are advantageous as a hydrogen source because they are easy to store and handle and have a supply facility at a gas station or the like.

しかし、石油系炭化水素化合物は、硫黄分の含有量が多いという欠点があり、これでは、燃料電池の電極を硫黄が腐食してしまうため、特に固体高分子型燃料電池の場合、硫黄化合物は数十ppbレベル(望ましくは10ppb以下)まで除去されなければならないが、硫黄化合物中のH−S結合に加えてC−S結合を有効に切断して高い脱硫効率を実現することは未だ確立されていない。   However, petroleum-based hydrocarbon compounds have the disadvantage that the sulfur content is high, and in this case, sulfur corrodes the electrode of the fuel cell, so in the case of a polymer electrolyte fuel cell in particular, the sulfur compound is Although it must be removed to tens of ppb level (preferably 10 ppb or less), it has not yet been established to achieve high desulfurization efficiency by effectively cleaving the C—S bond in addition to the H—S bond in the sulfur compound. Not.

更に、一般に燃料油は、水蒸気改質、部分酸化改質、オートサーマル改質等の改質処理を課して、改質処理されるが、硫黄分により、改質触媒が被毒されてしまうため、燃料油中の硫黄分を高度に脱硫することが必要とされる。   Further, in general, fuel oil is subjected to reforming treatment such as steam reforming, partial oxidation reforming, autothermal reforming, etc., but the reforming catalyst is poisoned by the sulfur content. Therefore, it is necessary to highly desulfurize the sulfur content in the fuel oil.

現在使用されている硫化水素(HS)などの脱硫方法としては、湿式方法と乾式方法とがある。湿式方法は、脱硫温度が低く、エネルギー損失が大きいという問題点があり、一方、乾式方法は、エネルギー損失が小さい一方、脱硫温度が高く商用的に利用可能(特に、再生利用可能)な脱硫方式はまだ開発されていない。通常使用されている乾式脱硫剤としては、酸化鉄や酸化亜鉛がある。 Currently used desulfurization methods such as hydrogen sulfide (H 2 S) include a wet method and a dry method. The wet method has a problem that the desulfurization temperature is low and the energy loss is large. On the other hand, the dry method has a low energy loss, but the desulfurization temperature is high and can be used commercially (especially recyclable). Has not been developed yet. Commonly used dry desulfurization agents include iron oxide and zinc oxide.

また、従来の乾式脱硫剤としての酸化鉄は、硫黄化合物を除去できる程度があまり高くなく、従って、酸化鉄を燃料電池のような硫黄化合物の存在によって著しく性能を低下させてしまうものに用いることはできず、脱硫剤としては十分な性能を有さない。
さらに、脱硫剤として使用されている酸化亜鉛は、硫黄化合物の吸収容量が劣り、再生も困難であり、繰り返し使用することはできない。
In addition, iron oxide as a conventional dry desulfurization agent is not so high that sulfur compounds can be removed. Therefore, iron oxide should be used for those that significantly reduce performance due to the presence of sulfur compounds such as fuel cells. Cannot be used as a desulfurizing agent.
Furthermore, zinc oxide used as a desulfurizing agent has poor sulfur compound absorption capacity and is difficult to regenerate and cannot be used repeatedly.

さらに、天然ガスの高度脱硫方法による水素製造方法としては、天然ガス・改質方法がある。天然ガスを改質して高度に脱硫した水素は燃料電池等に用いることができるものである。かかる高度脱硫水素を製造する従来の方法は、天然ガスを脱硫装置に流入し、酸化亜鉛等で硫化水素を精密脱硫し、高度脱硫天然ガスを得、次いで、得られた高度脱硫天然ガスを改質装置に送入することにより、高度脱硫水素を得るものである。   Further, as a method for producing hydrogen by a natural gas advanced desulfurization method, there is a natural gas / reforming method. Hydrogen obtained by reforming natural gas and highly desulfurized can be used for fuel cells and the like. In the conventional method for producing such highly desulfurized hydrogen, natural gas is introduced into a desulfurization apparatus, hydrogen sulfide is precisely desulfurized with zinc oxide or the like to obtain highly desulfurized natural gas, and then the obtained highly desulfurized natural gas is modified. Highly desulfurized hydrogen is obtained by sending it to a quality device.

しかし、かかる従来の天然ガスの高度脱硫方法は、使用した酸化亜鉛等は廃棄され再利用することはできない。また、天然ガス中に含まれる硫化水素の濃度が高い場合(30〜1000ppm)には、精密脱硫を行う前に、MDEA(アミン)等を用いた粗脱硫を実施する必要があり、工程が煩雑となってしまう。   However, in the conventional advanced desulfurization method of natural gas, the used zinc oxide or the like is discarded and cannot be reused. Further, when the concentration of hydrogen sulfide contained in natural gas is high (30 to 1000 ppm), it is necessary to carry out rough desulfurization using MDEA (amine) or the like before performing precise desulfurization, and the process is complicated. End up.

このような問題点を解決するため、以下の特許文献1に、脱硫剤として使用する亜鉛フェライトの製造方法が開示されている。脱硫剤としてのかかる亜鉛フェライトは、亜鉛―鉄二元系酸化物とすることで硫黄化合物の除去効率を向上させ、さらにその吸収容量を向上させようとするものである。
特開平4−74526号公報
In order to solve such problems, the following Patent Document 1 discloses a method for producing zinc ferrite used as a desulfurizing agent. Such zinc ferrite as a desulfurizing agent is intended to improve the removal efficiency of the sulfur compound and further improve its absorption capacity by using a zinc-iron binary oxide.
Japanese Patent Laid-Open No. 4-74526

しかし、前記亜鉛フェライト脱硫剤は、脱硫工程で使用した場合に、脱硫剤の分解または脱硫剤の内で炭素が析出し、硫黄化合物ガスが拡散する脱硫剤の細孔を閉塞したり、脱硫に関与しない副生成物を生成したりして脱硫効率を低下させてしまっている。また、再生後の脱硫剤の脱硫性能は大幅に低下してしまう。   However, when the zinc ferrite desulfurizing agent is used in the desulfurization process, the desulfurization agent is decomposed or carbon is deposited in the desulfurization agent, and the pores of the desulfurization agent through which the sulfur compound gas diffuses are blocked, Desulfurization efficiency has been reduced by generating by-products that are not involved. Further, the desulfurization performance of the desulfurizing agent after regeneration is greatly reduced.

また、脱硫剤として亜鉛フェライトにシリカを添加したZnFe−SiOも提案されている。かかる脱硫剤は、ZnFeにSiOを添加することにより脱硫性能は向上するものの、再生後の脱硫性能は著しく低下してしまい、繰り返し使用することは困難であった。 Further, ZnFe 2 O 4 —SiO 2 in which silica is added to zinc ferrite as a desulfurizing agent has been proposed. Although the desulfurization performance of such a desulfurizing agent is improved by adding SiO 2 to ZnFe 2 O 4 , the desulfurization performance after regeneration is remarkably lowered, and it is difficult to use it repeatedly.

更に、以下の特許文献2には、燃料ガス中の硫黄化合物を除去するための脱硫剤として、ゼオライト担体に触媒活性金属を担持した脱硫剤が提案されているが、かかる脱硫剤は、燃料ガスからの吸着により硫黄化合物を脱硫するもので、かかる脱硫剤を液体燃料に適用することは困難であり、汎用性が狭く、また再生使用後の脱硫性能は著しく低下してしまい、やはり繰り返し使用することは困難であった。
特開2003−64386号公報
Further, Patent Document 2 below proposes a desulfurization agent in which a catalytically active metal is supported on a zeolite carrier as a desulfurization agent for removing sulfur compounds in the fuel gas. It is difficult to apply such a desulfurizing agent to liquid fuel, its versatility is narrow, and the desulfurization performance after recycling is remarkably lowered, and it is used repeatedly. It was difficult.
JP 2003-64386 A

これらの問題を解消するため本発明者らは、以下の特許文献3において、ZnFe/SiO/モリブデン化合物(式中、モリブデン化合物は、MoS及び/又はMoOを示す)で表される化合物を含む脱硫剤、また、ZnFe/SiO/モリブデン化合物/チタン化合物(式中、モリブデン化合物は、MoS及び/又はMoOを、また、チタン化合物はTiOを示す)で表される化合物を含む脱硫剤を提案した。
特願2003−386108号(平成15年11月17日出願。優先日平成15年3月11日)
In order to solve these problems, the present inventors represented in the following Patent Document 3 as a ZnFe 2 O 4 / SiO 2 / molybdenum compound (wherein the molybdenum compound represents MoS 2 and / or MoO 3 ). A desulfurizing agent containing a compound to be prepared, ZnFe 2 O 4 / SiO 2 / molybdenum compound / titanium compound (wherein the molybdenum compound represents MoS 2 and / or MoO 3 , and the titanium compound represents TiO 2 ) The desulfurization agent containing the compound represented by this was proposed.
Japanese Patent Application No. 2003-386108 (filed on November 17, 2003, priority date: March 11, 2003)

本発明者らによるこれらの脱硫剤は、硫黄含有化合物中の硫黄分を高度に効率良く除去することができ、硫化ジメチル((CH32S)で30ppb以下のレベル、硫化水素(HS)で30ppb以下のレベルにまで、硫黄濃度を低減することを可能とするものである。
しかも、1段工程(従来は3段工程)で硫黄分を除去することができ、脱硫剤の再生利用、脱硫反応の一時停止やその後の脱硫瞬時再開も可能となるなど、極めて優れた脱硫剤である。
These desulfurizing agents by the present inventors can remove sulfur content in sulfur-containing compounds with high efficiency, and have a dimethyl sulfide ((CH 3 ) 2 S) level of 30 ppb or less, hydrogen sulfide (H 2 S) makes it possible to reduce the sulfur concentration to a level of 30 ppb or less.
In addition, the sulfur component can be removed in a single step (previously three steps), and the desulfurization agent can be recycled, the desulfurization reaction can be temporarily stopped and the desulfurization can be resumed instantly. It is.

本発明の目的は、上記のZnFe/SiO/モリブデン化合物や、ZnFe/SiO/モリブデン化合物/チタン化合物が含有する脱硫剤の性能を上回る優れた脱硫性能を有する脱硫剤を提供することであり、特に、硫黄化合物を10ppb以下にまで除去できる超高性能脱硫剤(固体高分子型燃料電池用の水素製造に容易に適用可能)を提供すること、また1段工程による脱硫が困難なチオフェン(CS)を含む硫黄含有化合物に対しても、高効率な脱硫性能を有する脱硫剤を提供することである。 An object of the present invention is to provide a desulfurization agent having excellent desulfurization performance that exceeds the performance of the above-described ZnFe 2 O 4 / SiO 2 / molybdenum compound and the desulfurization agent contained in the ZnFe 2 O 4 / SiO 2 / molybdenum compound / titanium compound. In particular, providing an ultra-high performance desulfurization agent (which can be easily applied to hydrogen production for polymer electrolyte fuel cells) capable of removing sulfur compounds to 10 ppb or less, and by a one-stage process An object of the present invention is to provide a desulfurization agent having a highly efficient desulfurization performance even for a sulfur-containing compound containing thiophene (C 4 H 4 S), which is difficult to desulfurize.

また、本発明の目的は、硫黄含有化合物から硫黄を高効率で瞬時に1段工程で除去することができ、繰り返し再生の可能な超高性能の脱硫剤を提供すること、このような脱硫剤を経済的かつ効率的に製造できる脱硫剤の製造方法を提供すること、さらには、本発明の脱硫剤を用いて、硫黄含有化合物中の硫黄分を高度に効率良く除去することができる脱硫方法を提供することである。   Another object of the present invention is to provide an ultra-high performance desulfurizing agent capable of removing sulfur from a sulfur-containing compound instantaneously in a single step with high efficiency and capable of repeated regeneration. Is provided, and a method for producing a desulfurizing agent capable of producing the desulfurizing agent economically and efficiently, and further, using the desulfurizing agent of the present invention, a sulfur content in a sulfur-containing compound can be removed highly efficiently. Is to provide.

また更に本発明の目的は、本発明の脱硫剤を用いて、硫黄含有化合物中の硫黄分を高度に効率良く除去し、改質処理を施すことにより、燃料電池用の高純度水素、高度脱硫水素を大量に低コストで製造する方法を提供することである。   Furthermore, the object of the present invention is to remove sulfur content in a sulfur-containing compound with high efficiency by using the desulfurizing agent of the present invention, and to perform a reforming treatment. It is to provide a method for producing hydrogen in large quantities at low cost.

本発明者らは上記課題を解決するため研究した結果、特定の組成を有する脱硫剤が、水素−硫黄結合や炭素−硫黄結合等の種々の硫黄結合を効率良く切断でき、脱硫性能を向上させるとともに、再生後の繰り返し使用においても脱硫性能が劣化しない脱硫剤が得られることを見いだし、本発明に到達した。   As a result of studies conducted by the present inventors to solve the above-mentioned problems, a desulfurization agent having a specific composition can efficiently cut various sulfur bonds such as hydrogen-sulfur bonds and carbon-sulfur bonds, thereby improving desulfurization performance. At the same time, the inventors have found that a desulfurizing agent that does not deteriorate the desulfurization performance even after repeated use after regeneration is obtained, and the present invention has been achieved.

本発明の脱硫剤は、次の一般式;
ZnFe/SiO/モリブデン化合物/タングステン化合物/TiO
(式中、モリブデン化合物は、MoS及び/又はMoOを、また、タングステン化合物は、WSを示す)で表される化合物を含むことを特徴とする。
そして、上記本発明の脱硫剤の製造方法は、次の式;ZnFe/SiOで示される亜鉛フェライト・シリカに、モリブデン化合物(モリブデン化合物は、MoS及び/又はMoOを示す)と、タングステン化合物(タングステン化合物は、WSを示す)と、TiOとを添加して粉砕混合し、得られた混合物に成形助剤を添加して焼成することを特徴とする。
The desulfurizing agent of the present invention has the following general formula:
ZnFe 2 O 4 / SiO 2 / molybdenum compound / tungsten compound / TiO 2
(Wherein the molybdenum compound represents MoS 2 and / or MoO 3 , and the tungsten compound represents WS 2 ).
Then, the method for producing a desulfurizing agent of the present invention have the formula: zinc ferrite silica represented by ZnFe 2 O 4 / SiO 2, molybdenum compounds (molybdenum compounds show MoS 2 and / or MoO 3) And a tungsten compound (a tungsten compound indicates WS 2 ) and TiO 2 are added and pulverized and mixed, and a molding aid is added to the resulting mixture and fired.

本発明の脱硫方法は、硫黄含有化合物から脱硫するにあたり、上記本発明の脱硫剤を、硫黄含有化合物と接触させることにより脱硫することを特徴とする。
好適には、上記脱硫方法において、使用した脱硫剤を酸化することにより再生し、当該再生した脱硫剤を繰り返し使用することが望ましい。
あるいは、上記脱硫方法において、脱硫剤と硫黄含有化合物との接触を一時停止した後、再度、脱硫剤と硫黄含有化合物とを接触させることが望ましい。
The desulfurization method of the present invention is characterized by desulfurizing a sulfur-containing compound by bringing the desulfurization agent of the present invention into contact with the sulfur-containing compound.
Preferably, in the above desulfurization method, it is desirable to regenerate the used desulfurizing agent by oxidation and to repeatedly use the regenerated desulfurizing agent.
Alternatively, in the above desulfurization method, it is desirable to temporarily contact the desulfurizing agent and the sulfur-containing compound, and then contact the desulfurizing agent and the sulfur-containing compound again.

また、本発明の高純度水素の製造方法は、硫黄含有化合物と、本発明の脱硫剤とを接触させて硫黄含有化合物を脱硫した後、水蒸気改質することを特徴とする。   In addition, the method for producing high-purity hydrogen according to the present invention is characterized in that the sulfur-containing compound and the desulfurizing agent of the present invention are brought into contact with each other to desulfurize the sulfur-containing compound and then steam reformed.

本発明の脱硫剤は、繰り返し脱硫再生が可能な高性能の脱硫剤であり、かかる脱硫剤を用いると、硫黄含有化合物中の硫黄分を高度に効率良く除去し、改質処理を施すことにより、高純度水素、高度脱硫水素を経済的に製造することが容易にできる。従って、電極や触媒が硫化水素等との反応で劣化しやすい燐酸型燃料電池、固体高分子型燃料電池等の燃料電池のような水素ガス中の許容硫化物濃度が極めて厳しい分野においても非常に有効に用いることができる。
また、本発明の脱硫剤の製造方法は、上記本発明の脱硫剤を経済的かつ効率的に製造することができるものである。
The desulfurizing agent of the present invention is a high-performance desulfurizing agent that can be repeatedly desulfurized and regenerated, and when such a desulfurizing agent is used, the sulfur content in the sulfur-containing compound is highly efficiently removed and subjected to a modification treatment. High purity hydrogen and highly desulfurized hydrogen can be easily produced economically. Therefore, even in fields where the allowable sulfide concentration in hydrogen gas is extremely severe, such as fuel cells such as phosphoric acid fuel cells and polymer electrolyte fuel cells, where electrodes and catalysts tend to deteriorate due to reaction with hydrogen sulfide, etc. It can be used effectively.
Moreover, the manufacturing method of the desulfurization agent of this invention can manufacture the said desulfurization agent of this invention economically and efficiently.

本発明の脱硫方法は、硫黄含有化合物中の硫黄分を高度に効率良く除去することができ、硫化水素(HS)で5ppb以下のレベル、硫化ジメチル((CHS)で検出限界濃度(5ppb)以下のレベル、さらにガソリン中で極めて脱硫が困難とされているチオフェン(CS)で400ppb以下にまで硫黄濃度を低減することを可能とするものである。また、本発明の脱硫剤を用いることにより、脱硫開始から高度脱硫開始までの時間(誘導期)が大幅に短縮され、しかも、脱硫に際して、脱硫反応と一時停止とを繰り返す断続的使用も可能となるなど、優れた脱硫性能を有している。すなわち、高度脱硫の開始および停止を容易に行うことができ、特に、脱硫一時停止状態から高度脱硫の瞬時開始(誘導期無し)が可能である。 The desulfurization method of the present invention can remove sulfur content in a sulfur-containing compound with high efficiency, and is detected with hydrogen sulfide (H 2 S) at a level of 5 ppb or less and with dimethyl sulfide ((CH 3 ) 2 S). It is possible to reduce the sulfur concentration to a level below the limit concentration (5 ppb) and further to 400 ppb or less with thiophene (C 4 H 4 S), which is extremely difficult to desulfurize in gasoline. Further, by using the desulfurizing agent of the present invention, the time from the start of desulfurization to the start of advanced desulfurization (induction period) is greatly shortened, and in addition, during desulfurization, intermittent use that repeats desulfurization reaction and temporary suspension is possible. It has excellent desulfurization performance. That is, it is possible to easily start and stop advanced desulfurization, and in particular, it is possible to start advanced desulfurization instantaneously (without induction period) from the desulfurization temporarily stopped state.

また更に、本発明の脱硫剤を用いて、硫黄含有化合物中の硫黄分を高度に効率良く除去し、改質処理を施すことにより、大量に燃料電池用の高純度水素、高度脱硫水素を低コストで製造できることを可能とする。   Furthermore, by using the desulfurizing agent of the present invention, the sulfur content in the sulfur-containing compound is highly efficiently removed and reformed to reduce the amount of high-purity hydrogen and advanced desulfurized hydrogen for fuel cells in large quantities. It enables manufacturing at a cost.

本発明を、以下の好適例に基づいて説明する。
本発明の好適な脱硫剤は、次の一般式;ZnFe/SiO/モリブデン化合物/タングステン化合物/TiO(モリブデン化合物は、MoS及び/又はMoOを、また、タングステン化合物は、WSを示す)で表される化合物を含む。
上記式中のモリブデン化合物であるMoS及び/又はMoOや、タングステン化合物であるWSは、含硫黄化合物の炭素−硫黄結合を水素化切断する際の触媒としての機能を有すると共に、ZnFe/SiOの構造安定化剤としての機能を有し、特に再生後の脱硫剤としての高性能性の維持を可能とする。
The present invention will be described based on the following preferred examples.
A suitable desulfurizing agent of the present invention has the following general formula: ZnFe 2 O 4 / SiO 2 / molybdenum compound / tungsten compound / TiO 2 (the molybdenum compound is MoS 2 and / or MoO 3 , and the tungsten compound is A compound represented by WS 2 ).
MoS 2 and / or MoO 3 which is a molybdenum compound in the above formula and WS 2 which is a tungsten compound have a function as a catalyst when hydrogen-cutting a carbon-sulfur bond of a sulfur-containing compound, and ZnFe 2 It has a function as a structural stabilizer of O 4 / SiO 2 and can maintain high performance as a desulfurizing agent after regeneration.

これらの構造安定化剤としてのMoS及び/又はMoOやWSは、TiOと同様にZnFeとSiOとの結合を安定化させ、脱硫した後の再生処理における亜鉛フェライトの凝集・不安定化を防止することができる機能を有する。
さらに必要に応じて、MoS及び/又はMoOやWSと、担体としてのTiOとを組み合わせて用いることにより、高度脱硫開始までの時間の大幅な短縮並びに脱硫反応と一時停止とを繰り返す断続的使用も可能とする。すなわち、高効率脱硫を瞬時に開始でき、脱硫停止、さらに脱硫再開始も容易に行うことができる。
MoS 2 and / or MoO 3 or WS 2 as a structural stabilizer stabilizes the bond between ZnFe 2 O 4 and SiO 2 in the same manner as TiO 2 and regenerates zinc ferrite in the regeneration treatment after desulfurization. It has a function that can prevent aggregation and destabilization.
Further, if necessary, by using a combination of MoS 2 and / or MoO 3 or WS 2 and TiO 2 as a support, the time until the start of advanced desulfurization is greatly shortened and the desulfurization reaction and suspension are repeated. Intermittent use is also possible. That is, high-efficiency desulfurization can be started instantly, desulfurization can be stopped, and desulfurization and restart can be easily performed.

上記本発明の脱硫剤の製造方法を以下に説明する。
その製造方法としては、酸化鉄及び酸化亜鉛の前駆物質と酸化珪素の前駆物資とを混合し、共沈法または均一沈殿法により水酸化物の形態で鉄及び亜鉛及び珪素成分を含有する沈殿物を形成させ、これを濾過、洗浄した後、乾燥、焼成することにより、さらには必要に応じて粉砕することにより、ZnFe―SiOを製造する。
亜鉛と鉄と珪素とが相互作用できる状態にあれば珪素の添加形態は特に制限されない。
The method for producing the desulfurizing agent of the present invention will be described below.
As a production method thereof, a precipitate containing iron, zinc and silicon components in the form of hydroxide by mixing a precursor of iron oxide and zinc oxide and a precursor of silicon oxide and coprecipitation method or uniform precipitation method. This is filtered, washed, dried, fired, and pulverized as necessary to produce ZnFe 2 O 4 —SiO 2 .
The form of addition of silicon is not particularly limited as long as zinc, iron, and silicon can interact with each other.

亜鉛と鉄との混合比(Zn:Fe)は特に制限されないが、原子比として1:2〜1:4、好ましくは1:2〜1:3が使用する脱硫剤の量に対する脱硫効率の点から好ましい。なお、原子比が1:2よりFeの含有率が大きくなる場合には、Fe等が含まれることとなる。また、酸化珪素の添加量も、特に制限されないが、ZnFeとSiOの重量比(SiO/ZnFe)は、1/4〜2/1であることが、得られる脱硫剤の脱硫性能の点から好ましい。 The mixing ratio of zinc and iron (Zn: Fe) is not particularly limited, but the desulfurization efficiency with respect to the amount of desulfurization agent used is an atomic ratio of 1: 2 to 1: 4, preferably 1: 2 to 1: 3. To preferred. In addition, when the atomic ratio is greater than 1: 2, the Fe content becomes larger, such as Fe 2 O 3 . The amount of silicon oxide added is not particularly limited, but the desulfurization obtained is that the weight ratio of ZnFe 2 O 4 and SiO 2 (SiO 2 / ZnFe 2 O 4 ) is 1/4 to 2/1. From the viewpoint of the desulfurization performance of the agent.

酸化鉄または酸化亜鉛の前駆物質としては、例えば硝酸塩、硫酸塩、塩化塩等の水溶性塩が使用できる。また、珪素は、酸化珪素の前駆物質としては、ケイ酸、コロイダルシリカ、アモルファスシリカ等が使用できる。   As a precursor of iron oxide or zinc oxide, for example, water-soluble salts such as nitrates, sulfates and chlorides can be used. Silicon may be silicic acid, colloidal silica, amorphous silica or the like as a precursor of silicon oxide.

具体的には、これらの鉄前駆物質、亜鉛前駆物質、珪素前駆物質が混合されている水溶液を攪拌した後、アンモニア等を用いた共沈法あるいは尿素等を用いた均一沈殿法で水酸化物として沈殿物を得る。沈殿物を得るための他の添加物質としては、水酸化ナトリウムや水酸化カリウムも用いることができる。この沈殿物を熟成、洗浄、濾過した後、乾燥し、例えば300〜900℃の温度で焼成する。必要に応じて、得られた焼成物を粉砕することにより、ZnFe―SiOを製造する。 Specifically, after stirring an aqueous solution in which these iron precursors, zinc precursors, and silicon precursors are mixed, a hydroxide is obtained by a coprecipitation method using ammonia or the like, or a uniform precipitation method using urea or the like. As a precipitate. As another additive substance for obtaining a precipitate, sodium hydroxide or potassium hydroxide can also be used. The precipitate is aged, washed, filtered, dried, and calcined at a temperature of 300 to 900 ° C., for example. If necessary, the obtained fired product is pulverized to produce ZnFe 2 O 4 —SiO 2 .

次いで、得られたZnFe―SiO焼成物に、水素化脱硫触媒兼構造安定化剤としてのMoS及び/又はMoOやWSを、さらに担体兼構造安定化剤としてのTiOを添加する。これらの混合物を粉砕混合し、得られた混合物に成形助剤を添加して焼成することにより、本発明のZnFe―SiO―モリブデン化合物―タングステン化合物―TiO(式中、モリブデン化合物は、MoS及び/又はMoOを、また、タングステン化合物はWSを示す)を得る。 Subsequently, MoS 2 and / or MoO 3 or WS 2 as a hydrodesulfurization catalyst / structure stabilizer are added to the obtained ZnFe 2 O 4 —SiO 2 fired product, and TiO 2 as a carrier / structure stabilizer is further added. Add. These mixtures are pulverized and mixed, and a molding aid is added to the obtained mixture, followed by firing. Thus, the ZnFe 2 O 4 —SiO 2 —molybdenum compound—tungsten compound—TiO 2 of the present invention (wherein the molybdenum compound is Gives MoS 2 and / or MoO 3 and the tungsten compound shows WS 2 ).

添加するMoS(及び/又はMoO)、WS、さらにはTiOの量は、特に制限されないが、好適にはZnFe―SiOの重量に対して、その添加総量は1〜3倍程度が、得られる脱硫剤の脱硫性能を再生後においても維持させる点から好ましい。TiOの添加量は、モリブデン化合物及びタングステン化合物の総重量に対し1〜3倍とするのが、脱硫剤の反応性という点から好ましい。 The amount of MoS 2 (and / or MoO 3 ), WS 2 , and TiO 2 to be added is not particularly limited, but the total addition amount is preferably 1 to 1 based on the weight of ZnFe 2 O 4 —SiO 2 . About 3 times is preferable from the point of maintaining the desulfurization performance of the obtained desulfurizing agent even after regeneration. The amount of TiO 2 added is preferably 1 to 3 times the total weight of the molybdenum compound and the tungsten compound from the viewpoint of the reactivity of the desulfurizing agent.

脱硫剤の成形に際しては、成形助剤としてメチルセルソルブ、ポリエチレングリコール、ポリビニルアルコール、でんぷん、リグニン等の有機物を用いることができる。
また更に、ガラス繊維、炭素繊維、金属繊維等の無機剤を加えて成形することも可能である。
In molding the desulfurization agent, organic substances such as methyl cellosolve, polyethylene glycol, polyvinyl alcohol, starch, and lignin can be used as a molding aid.
Furthermore, it is also possible to mold by adding an inorganic agent such as glass fiber, carbon fiber, or metal fiber.

次いで、焼成を温度400〜700℃で行い、例えば粒状、ペレット状、球状、円筒状、ハニカム状、板状等の任意の所望する形状に焼成成形して、本発明のZnFe―SiO―モリブデン化合物―タングステン化合物―TiO(式中、モリブデン化合物は、MoS及び/又はMoOを、また、タングステン化合物はWSを示す)の脱硫剤を得る。 Next, firing is carried out at a temperature of 400 to 700 ° C., and fired and molded into any desired shape such as a granular shape, a pellet shape, a spherical shape, a cylindrical shape, a honeycomb shape, a plate shape, etc., and the ZnFe 2 O 4 —SiO of the present invention 2 —Molybdenum compound—Tungsten compound—TiO 2 (wherein the molybdenum compound represents MoS 2 and / or MoO 3 , and the tungsten compound represents WS 2 ).

このようにして得られた本発明の脱硫剤と、天然ガス、都市ガス、LPガス、ナフサ、ガソリン等の有機硫黄含有化合物や、HS、(CHS、CS等の硫黄化合物含有物質とを接触させることにより、これらの硫黄含有物質から硫黄分を脱硫することを可能とする。
具体的には、例えば天然ガス、都市ガス、LPガスや、加熱気化したナフサ、ガソリン等を、水素ととともに、本発明の脱硫剤と気相脱硫することにより、硫黄分の脱硫が図られる。
ここで使用される水素は、後述する水素製造工程により得られた水素を循環させて用いてもよいことは当然である。
Thus obtained desulfurization agent of the present invention, organic sulfur-containing compounds such as natural gas, city gas, LP gas, naphtha and gasoline, H 2 S, (CH 3 ) 2 S, C 4 H 4 S It is possible to desulfurize sulfur from these sulfur-containing materials by bringing them into contact with such a sulfur compound-containing material.
Specifically, for example, natural gas, city gas, LP gas, heat-vaporized naphtha, gasoline, and the like are vapor-desulfurized with the desulfurization agent of the present invention together with hydrogen to achieve desulfurization of sulfur.
Naturally, the hydrogen used here may be used by circulating the hydrogen obtained by the hydrogen production process described later.

脱硫条件としては、特に限定されず、有機硫黄含有化合物の性状により種々の設定が可能であるが、温度が300〜600℃、圧力が常圧〜1MPa・Gの範囲で行なわれることが、脱硫剤の反応性及び脱硫装置材料の経済性という理由の点から望ましい。   The desulfurization conditions are not particularly limited, and various settings are possible depending on the properties of the organic sulfur-containing compound. However, the desulfurization may be performed at a temperature of 300 to 600 ° C. and a pressure of normal pressure to 1 MPa · G. It is desirable in terms of the reactivity of the agent and the economics of the desulfurization equipment material.

有機硫黄含有化合物の液体燃料の代表例であるガソリンには、チオフェン類、メルカプタン類、スルフィド類等の多くの硫黄化合物が含まれているが、その中のC−S結合の結合エネルギー性状は、ジメチルスルフィド(RS)と類似しており、ガソリン中の硫黄化合物を硫化水素と炭化水素とへ水素化分解する反応は、当該硫黄化合物の分子サイズ、結合性状等の考慮すべき点があるものの、基本的にはジメチルスルフィドの脱硫反応と同様である。 Gasoline, which is a typical example of a liquid fuel of an organic sulfur-containing compound, contains many sulfur compounds such as thiophenes, mercaptans, sulfides, etc., but the bond energy property of the C—S bond therein is Similar to dimethyl sulfide (R 2 S), the reaction of hydrocracking sulfur compounds in gasoline into hydrogen sulfide and hydrocarbons has some considerations such as the molecular size and binding properties of the sulfur compounds. However, it is basically the same as the desulfurization reaction of dimethyl sulfide.

本発明の脱硫方法は、有機硫黄含有化合物の脱硫に有効である。
かかる脱硫機構は、例えば以下の反応式で表される(式中、Rは、炭化水素基を示す)。
脱硫(C−S結合切断,炭化水素及びHS生成)
(触媒:モリブデン化合物/タングステン化合物);
RSH+H→RH+H
S+H→RH+H
脱硫(HS吸収);
S+ZnFe+H→ZnS+FeS+H
The desulfurization method of the present invention is effective for desulfurization of organic sulfur-containing compounds.
Such a desulfurization mechanism is represented, for example, by the following reaction formula (wherein R represents a hydrocarbon group).
Desulfurization (C—S bond breaking, hydrocarbon and H 2 S formation)
(Catalyst: Molybdenum compound / Tungsten compound);
RSH + H 2 → RH + H 2 S
R 2 S + H 2 → RH + H 2 S
Desulfurization (H 2 S absorption);
H 2 S + ZnFe 2 O 4 + H 2 → ZnS + FeS + H 2 O

上記したように、本発明の脱硫剤は、上記反応式で表される脱硫(C−S結合切断,HS生成)反応と脱硫(HS吸収)反応とを同時に進行させることができるため、本発明の脱硫方法は、有機硫黄含有化合物中の有機硫黄化合物を一工程で除去できる超高性能脱硫方法であり、例えば、硫黄濃度1000ppm以上の有機硫黄含有化合物の硫黄濃度を10ppb以下にまでクリーン化することを可能とする。また、硫黄濃度80ppm程度の有機硫黄含有化合物の硫黄濃度を5ppb以下にまでクリーン化可能である。
一方、従来の脱硫技術では、有機硫黄含有化合物中の有機硫黄化合物は、通常、次の3段階の反応工程にて除去される。
(1)水素化分解反応工程(C−S結合切断,HS生成反応):水素化触媒使用
(2)HS除去反応工程(粗脱硫,HS吸収反応):MDEA(アミン)等使用
(3)HS除去反応工程(精密脱硫,HS吸収反応):酸化亜鉛等使用
本発明の脱硫方法は、従来の3段階工程を要する脱硫が、1段工程で脱硫できる超高性能脱硫方法であり、従来の脱硫方法と比較して大幅な高効率方式である。また、酸化亜鉛等による従来の上記精密脱硫方式では、有機硫黄含有化合物の硫黄濃度を30〜25ppb程度(平衡濃度)までしか低減できないが、本発明の脱硫方法では5ppb以下にまでクリーン化可能である。
しかも、本発明の脱硫方法は、高性能脱硫のため、後流の改質プロセス(水素製造用)における触媒被毒は消失もしくは大幅に軽減される。さらに、再生可能な脱硫剤のため、環境保全性、資源再利用、システムのコンパクト化、経済性等の観点からも優れたものと評価できる。
As described above, the desulfurization agent of the present invention can simultaneously proceed with the desulfurization (C—S bond cleavage, H 2 S formation) reaction and the desulfurization (H 2 S absorption) reaction represented by the above reaction formula. Therefore, the desulfurization method of the present invention is an ultra-high performance desulfurization method capable of removing the organic sulfur compound in the organic sulfur-containing compound in one step. For example, the sulfur concentration of the organic sulfur-containing compound having a sulfur concentration of 1000 ppm or more is set to 10 ppb or less. It is possible to clean up. Moreover, the sulfur concentration of the organic sulfur-containing compound having a sulfur concentration of about 80 ppm can be reduced to 5 ppb or less.
On the other hand, in the conventional desulfurization technique, the organic sulfur compound in the organic sulfur-containing compound is usually removed in the following three-stage reaction process.
(1) Hydrocracking reaction step (C—S bond cleavage, H 2 S production reaction): using hydrogenation catalyst (2) H 2 S removal reaction step (crude desulfurization, H 2 S absorption reaction): MDEA (amine) (3) H 2 S removal reaction process (precise desulfurization, H 2 S absorption reaction): use of zinc oxide, etc. The desulfurization method of the present invention is an ultra-desulfurization process that requires a conventional three-stage process and can be desulfurized in a single-stage process. It is a high-performance desulfurization method, and is a highly efficient method compared with the conventional desulfurization method. Further, in the conventional precision desulfurization method using zinc oxide or the like, the sulfur concentration of the organic sulfur-containing compound can be reduced only to about 30 to 25 ppb (equilibrium concentration), but the desulfurization method of the present invention can be cleaned to 5 ppb or less. is there.
Moreover, since the desulfurization method of the present invention is high-performance desulfurization, catalyst poisoning in the downstream reforming process (for hydrogen production) is eliminated or greatly reduced. Furthermore, since it is a recyclable desulfurization agent, it can be evaluated that it is excellent from the viewpoints of environmental conservation, resource reuse, system compactness, and economic efficiency.

本発明の脱硫方法に用いることができる硫黄含有化合物は、気相脱硫が可能なものであれば特に限定されず、天然ガス、都市ガス、アルコール、エーテル、LPG,ナフサ、ガソリン、灯油、軽油、石炭液化オイル等の種々の有機硫黄含有化合物や、硫化水素含有化合物が上げられる。石油産業(石油精製)、鉄鋼産業(コークス炉)等からのオフガスや副生水素、更に有機性廃棄物からの水素生成細菌にて得られる水素系ガス等の高度脱硫、高純度化にも適用可能である。   The sulfur-containing compound that can be used in the desulfurization method of the present invention is not particularly limited as long as gas-phase desulfurization is possible, natural gas, city gas, alcohol, ether, LPG, naphtha, gasoline, kerosene, light oil, Various organic sulfur-containing compounds such as coal liquefied oil and hydrogen sulfide-containing compounds are raised. Applicable to advanced desulfurization and purification of off-gas and by-product hydrogen from the petroleum industry (petroleum refining), steel industry (coke oven), and hydrogen-based gas obtained from hydrogen-producing bacteria from organic waste. Is possible.

また、本発明の脱硫剤は、脱硫剤として使用した後、低濃度の酸素ガスにより酸化することにより再生でき、当該再生した脱硫剤を繰り返し使用することができる。このような繰り返しの使用によっても、脱硫性能が劣ることなく、むしろ性能向上する。また、脱硫反応において、一時停止と脱硫反応を繰り返す断続的使用も可能であり、必要時に瞬時に高度脱硫を可能とする優れた脱硫性能を発揮することができる。
これは、上記したように、本発明の脱硫剤の構造中、モリブデン化合物として使用するMoSやMoO、及びタングステン化合物であるWS、並びにTiOが、ZnFe−SiOの結合を安定化させ、脱硫した後の再生処理における亜鉛フェライトの凝集・不安定化を防止するとともに脱硫性能を強化する機能を有するからである。
The desulfurizing agent of the present invention can be regenerated by using it as a desulfurizing agent and then oxidizing with a low concentration of oxygen gas, and the regenerated desulfurizing agent can be used repeatedly. Even by such repeated use, the desulfurization performance is not inferior, but rather the performance is improved. In addition, the desulfurization reaction can be intermittently used by repeatedly stopping and desulfurization reaction, and can exhibit excellent desulfurization performance that enables high-level desulfurization instantaneously when necessary.
This is because, as described above, in the structure of the desulfurizing agent of the present invention, MoS 2 and MoO 3 used as a molybdenum compound, WS 2 as a tungsten compound, and TiO 2 are bonded to ZnFe 2 O 4 —SiO 2 . This is because it has a function of stabilizing the desulfurization performance while preventing the aggregation and destabilization of zinc ferrite in the regeneration treatment after desulfurization.

本発明の脱硫剤は、脱硫初期段階において脱硫−酸化再生を繰り返すと、より優れた脱硫性能を示す。脱硫再生を繰り返すと、硫化モリブデン(及び/又はタングステン)や酸化モリブデン(及び/又はタングステン)等が混在するコンプレックス型の脱硫剤となり、当該使用モリブデン(及び/又はタングステン)化合物自体よりも優れた脱硫性能を発揮するものと考えられる。
担体として使用するTiOは、上記脱硫反応を速やかに行わせる機能を有すると考えられる。
The desulfurization agent of the present invention exhibits more excellent desulfurization performance when repeated desulfurization-oxidation regeneration is performed in the initial stage of desulfurization. Repeating the desulfurization regeneration results in a complex type desulfurization agent in which molybdenum sulfide (and / or tungsten), molybdenum oxide (and / or tungsten), etc. are mixed, and desulfurization superior to the molybdenum (and / or tungsten) compound itself used. It is thought that performance is demonstrated.
TiO 2 used as a support is considered to have a function of promptly performing the desulfurization reaction.

このようにして得られた再生脱硫剤の脱硫性能は、新規に調製した脱硫剤よりも、より優れた脱硫性能を示し、例えば硫化ジメチルを検出限界以下(5ppb以下)、また硫化水素も5ppb以下、さらに、脱硫困難とされるチオフェンも400ppb以下にまでクリーン化することを可能とする。   The desulfurization performance of the regenerated desulfurization agent thus obtained is superior to that of a newly prepared desulfurization agent. For example, dimethyl sulfide is below the detection limit (5 ppb or less), and hydrogen sulfide is also 5 ppb or less. Furthermore, thiophene, which is considered to be difficult to desulfurize, can be cleaned to 400 ppb or less.

また、本発明の高純度水素の製造方法、特に燃料電池用水素の製造方法は、上記脱硫工程を経た後に、水蒸気改質して、CO変性することにより、高純度水素又は高度脱硫水素を製造することができる。   The high purity hydrogen production method of the present invention, particularly the fuel cell hydrogen production method, produces high purity hydrogen or highly desulfurized hydrogen by steam reforming and CO modification after the above desulfurization step. can do.

かかる反応機構は、以下の反応式で表される。
水蒸気改質 C2n+2+HO→H+CO+CO
CO変性 CO+HO→H+CO
Such a reaction mechanism is represented by the following reaction formula.
Steam reforming C n H 2n + 2 + H 2 O → H 2 + CO + CO 2
CO modification CO + H 2 O → H 2 + CO 2

本発明においては、脱硫装置にて高度脱硫を実施し、次いで脱硫装置から出たガスを改質装置に通じ、改質装置にて改質生成したHガスの一部を、例えば5%程度の水素ガスを、脱硫装置の上流に戻すことにより、脱硫装置に流入する被脱硫物を、水素還元性雰囲気として高度脱硫し、この高度脱硫物を改質装置に送入することにより、高度脱硫水素が得られるのである。 In the present invention, advanced desulfurization is performed in the desulfurization apparatus, then the gas discharged from the desulfurization apparatus is passed to the reformer, and a part of the H 2 gas reformed and generated in the reformer is, for example, about 5% By returning the hydrogen gas from the desulfurization unit upstream to the desulfurization unit, the desulfurization product flowing into the desulfurization unit is highly desulfurized as a hydrogen-reducing atmosphere, and the advanced desulfurization product is sent to the reforming unit to perform high desulfurization. Hydrogen is obtained.

このように、本発明の脱硫剤を用いると、有機硫黄含有化合物等の硫黄化合物の分解及び硫化水素の吸収を同時に進行させることができ、例えば天然ガス、都市ガス、LPガス、ナフサ、ガソリンなどから、改質により高純度水素又は高度脱硫水素が容易にかつ経済的に得られる。
改質段階(従来技術)においても、以下のメリットが期待できる。水素原料が超高度脱硫(10ppb以下)されているため、水蒸気改質触媒(Ni触媒等)やCO変性触媒の硫黄被毒は大幅もしくは完全に防止される。これにより、改質触媒の活性劣化や炭素析出は極度に減少し、プラント効率的に優れた低S/C(スチーム/カーボン比)改質装置運転が可能となること、またCO変性装置の運転効率も向上し、水素製造コストの大幅低減が可能となる。
Thus, when the desulfurizing agent of the present invention is used, decomposition of sulfur compounds such as organic sulfur-containing compounds and absorption of hydrogen sulfide can proceed simultaneously, such as natural gas, city gas, LP gas, naphtha, gasoline, etc. Therefore, high purity hydrogen or highly desulfurized hydrogen can be obtained easily and economically by reforming.
The following merits can also be expected in the reforming stage (prior art). Since the hydrogen raw material is ultra-highly desulfurized (10 ppb or less), sulfur poisoning of the steam reforming catalyst (Ni catalyst or the like) or the CO modification catalyst is largely or completely prevented. As a result, the activity deterioration and carbon deposition of the reforming catalyst are drastically reduced, and it is possible to operate a low S / C (steam / carbon ratio) reformer with excellent plant efficiency, and the operation of the CO reformer. Efficiency is also improved, and hydrogen production costs can be significantly reduced.

従って、電極が硫化水素等との反応で劣化しやすい燐酸型燃料電池、固体高分子型燃料電池のような水素ガス中の許容硫化物濃度が厳しい分野においても、高純度の水素が得られるため、産業上非常に有効である。また、燃料ガスの許容硫化物濃度が緩やかな(1ppm以下)溶融炭酸塩型燃料電池又は固体電解質型燃料電池等の燃料電池へも容易に適用できる。   Therefore, high purity hydrogen can be obtained even in fields where the allowable sulfide concentration in the hydrogen gas is severe, such as phosphoric acid fuel cells and polymer electrolyte fuel cells, where the electrodes are likely to deteriorate due to reaction with hydrogen sulfide and the like. It is very effective in industry. Further, the present invention can be easily applied to a fuel cell such as a molten carbonate fuel cell or a solid oxide fuel cell in which the allowable sulfide concentration of the fuel gas is moderate (1 ppm or less).

本発明を以下の実施例及び試験例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
硝酸亜鉛六水和物を約22.3g、硝酸鉄(III)九水和物を約60.6g、コロイダルシリカを約30.1g及び、蒸留水を、全体で150mlとなるよう添加して攪拌混合した。
得られた混合液にアンモニアを約35ml添加して溶液のpHを7に調整し、水酸化物を共沈させた。
The present invention will be described more specifically with reference to the following examples and test examples, but the present invention is not limited to these examples.
(Example 1)
Add about 22.3 g of zinc nitrate hexahydrate, about 60.6 g of iron (III) nitrate nonahydrate, about 30.1 g of colloidal silica, and distilled water to a total of 150 ml and stir Mixed.
About 35 ml of ammonia was added to the obtained mixed solution to adjust the pH of the solution to 7, and a hydroxide was coprecipitated.

得られた水酸化物を1時間熟成後、濾過し、純水を用いて5回洗浄し、120℃で12時間乾燥した後、電気炉にて3時間で800℃まで昇温し、その後800℃で5時間焼成し、乳鉢を用いて粉砕して、ZnFe―SiOを得た。 The obtained hydroxide was aged for 1 hour, filtered, washed 5 times with pure water, dried at 120 ° C. for 12 hours, heated to 800 ° C. in 3 hours in an electric furnace, and then 800 calcined ℃ in 5 hours, and pulverized in a mortar, to give a ZnFe 2 O 4 -SiO 2.

次いで、得られたZnFe―SiOに対して、重量で1倍のTiO、各0.5倍のMoSとWSを添加して、成形助剤としてのリグニンを全質量の5%添加し、乳鉢にて混合した。
混合して得られた物質を、錠剤成形器にてタブレット状に成形し、乾燥させた後、500℃で1時間焼成して、焼成物を乳鉢にて粉砕し、平均粒径500〜700μmに分級して、本発明のZnFe/SiO/MoS/WS/TiO脱硫剤を得た。
Then, for ZnFe 2 O 4 -SiO 2 was obtained by adding 1 times the TiO 2, each 0.5 times the MoS 2 and WS 2 by weight, the lignin as a molding aid of the total mass 5% was added and mixed in a mortar.
The substance obtained by mixing is shaped into a tablet with a tableting machine, dried, then fired at 500 ° C. for 1 hour, and the fired product is pulverized in a mortar to obtain an average particle size of 500 to 700 μm. Classification was performed to obtain a ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2 desulfurization agent of the present invention.

(試験例)
<脱硫剤再生方式脱硫試験および脱硫一時停止瞬時再開方式脱硫試験>
脱硫剤再生方式・脱硫試験は、脱硫反応において、脱硫剤の硫化が進んだ時点もしくは脱硫剤の脱硫性能が消失した時点(破過時点)で、当該脱硫剤を酸化することにより再生して次の脱硫反応を実施する方式であり、脱硫と脱硫剤再生とを断続的に繰り返す脱硫試験である。
一方、脱硫一時停止瞬時再開方式・脱硫試験は、脱硫反応において、脱硫剤が高度脱硫性能を維持している期間を対象とするものであり、脱硫反応を一時停止して試験用ガスをNガスに切り替え、必要に応じて次の脱硫反応を瞬時に再開する脱硫方式であり、脱硫と一時停止とを断続的に繰り返す脱硫試験である。
上記実施例1で得られた脱硫剤を用いて、下記の固定床流通式反応装置(反応管)により脱硫剤再生方式脱硫試験及び脱硫一時停止・瞬時再開方式脱硫試験を行った。
反応管:石英ガラス製 内径7.6mm 外径10.0mm
長さ40.0mm(反応領域) 反応管全長 450.0mm
(Test example)
<Desulfurization agent regeneration method desulfurization test and desulfurization temporary stop instantaneous restart method desulfurization test>
The desulfurization agent regeneration method / desulfurization test is performed by regenerating the desulfurization agent by oxidizing it at the time when the desulfurization of the desulfurization agent progresses or when the desulfurization performance of the desulfurization agent disappears (breakthrough time). This is a desulfurization test in which desulfurization and desulfurization agent regeneration are repeated intermittently.
On the other hand, at desulfurization pause instantaneously resume mode and desulfurization test, the desulfurization reaction, which is directed to a period in which the desulfurizing agent is maintained high desulfurization performance, a pause to test gas desulfurization N 2 This is a desulfurization method that switches to gas and instantaneously resumes the next desulfurization reaction as necessary, and is a desulfurization test in which desulfurization and temporary stop are repeated intermittently.
Using the desulfurization agent obtained in Example 1, the desulfurization agent regeneration system desulfurization test and the desulfurization temporary stop / instantaneous restart system desulfurization test were carried out by the following fixed bed flow reactor (reaction tube).
Reaction tube: quartz glass inner diameter 7.6mm outer diameter 10.0mm
Length 40.0mm (reaction area) Total length of reaction tube 450.0mm

(1)脱硫試験(脱硫剤再生方式)条件
圧力 常圧
温度 450℃
ガス組成1 HS濃度 1000ppm
20容量%
バランス(80容量%)
ガス組成2 (CHS濃度 100ppm
20容量%
バランス(80容量%)
ガス組成3 CS濃度 20ppm
20容量%
バランス(80容量%)
ガス流量 100ml/分
脱硫剤試料重量 600mg
(1) Desulfurization test (desulfurization agent regeneration method) Conditional pressure Normal pressure temperature 450 ° C
Gas composition 1 H 2 S concentration 1000 ppm
H 2 20% by volume
N 2 balance (80% by volume)
Gas composition 2 (CH 3 ) 2 S concentration 100 ppm
H 2 20% by volume
N 2 balance (80% by volume)
Gas composition 3 C 4 H 4 S concentration 20 ppm
H 2 20% by volume
N 2 balance (80% by volume)
Gas flow rate 100ml / min Desulfurization agent sample weight 600mg

(2)脱硫剤再生試験条件
圧力 常圧
温度 450℃
ガス組成4(酸化再生時間:60分)
2容量%
98容量%
ガス流量 100ml/分
脱硫剤試料重量 600mg
(2) Desulfurization agent regeneration test condition pressure Normal pressure temperature 450 ℃
Gas composition 4 (oxidation regeneration time: 60 minutes)
O 2 2% by volume
N 2 98% by volume
Gas flow rate 100ml / min Desulfurization agent sample weight 600mg

(3)脱硫試験(脱硫一時停止瞬時再開方式)条件
圧力 常圧
温度 450℃
ガス組成5(脱硫反応:1回100分)
S濃度 80ppm
20容量%
バランス(80容量%)
ガス組成6(脱硫反応:1回60分) ガス組成2と同じ
(CHS濃度 100ppm
20容量%
バランス(80容量%)
ガス組成7(脱硫反応:1回80分) ガス組成3と同じ
S濃度 20ppm
20容量%
バランス(80容量%)
ガス組成8(脱硫一時停止:1回5分)
100容量%
ガス流量 100ml/分
脱硫剤試料重量 600mg
(3) Desulfurization test (desulfurization temporary stop instantaneous restart method) Conditional pressure Normal pressure temperature 450 ℃
Gas composition 5 (desulfurization reaction: 100 minutes once)
H 2 S concentration 80ppm
H 2 20% by volume
N 2 balance (80% by volume)
Gas composition 6 (desulfurization reaction: 60 minutes once) Same as gas composition 2
(CH 3 ) 2 S concentration 100 ppm
H 2 20% by volume
N 2 balance (80% by volume)
Gas composition 7 (desulfurization reaction: 80 minutes once) Same as gas composition 3
C 4 H 4 S concentration 20 ppm
H 2 20% by volume
N 2 balance (80% by volume)
Gas composition 8 (desulfurization temporary suspension: 5 minutes once)
N 2 100% by volume
Gas flow rate 100ml / min Desulfurization agent sample weight 600mg

試験例1(ガス組成1;HS:1000ppm)(脱硫剤再生方式)
実施例1で得られた脱硫剤を上記脱硫条件(脱硫温度;450℃、脱硫ガス組成1;HS)にて脱硫し、次いで上記脱硫剤再生条件にて酸化再生をして繰り返し脱硫試験をおこない、固定床流通式反応装置の出口ガスのHS濃度を、FPD検出器を有するガスクロマトグラフ(装置番号;G2800−FPD、株式会社柳本製作所製)にて測定した。その結果を図1に示す。
Test Example 1 (gas composition 1; H 2 S: 1000 ppm) (desulfurization agent regeneration method)
The desulfurization agent obtained in Example 1 was desulfurized under the above desulfurization conditions (desulfurization temperature: 450 ° C., desulfurization gas composition 1; H 2 S), and then oxidized and regenerated under the above desulfurization agent regeneration conditions to repeatedly perform desulfurization tests. The H 2 S concentration of the outlet gas of the fixed bed flow type reactor was measured with a gas chromatograph (device number; G2800-FPD, manufactured by Yanagimoto Seisakusho Co., Ltd.) having an FPD detector. The result is shown in FIG.

図1は、当該脱硫剤(酸化再生処理済)を使用し、HS(硫化水素)濃度1000ppmのガスの脱硫試験結果であるが、脱硫装置出口ガスの定常状態での残留HS濃度は、第1回脱硫が15ppb程度であり、第2回脱硫が10ppb程度であった。これらにより、本発明のZnFe/SiO/MoS/WS/TiO脱硫剤は、HS吸収能力が極めて優れた脱硫剤であり、しかも脱硫再生処理を行った後も、HS吸収能力が衰えず、高性能脱硫維持時間も長くなっていることがわかる。 FIG. 1 shows the result of a desulfurization test of a gas having an H 2 S (hydrogen sulfide) concentration of 1000 ppm using the desulfurizing agent (oxidized and regenerated), and the residual H 2 S concentration in the steady state of the desulfurizer outlet gas. The first desulfurization was about 15 ppb and the second desulfurization was about 10 ppb. As a result, the ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2 desulfurization agent of the present invention is a desulfurization agent with extremely excellent H 2 S absorption capability, and even after performing desulfurization regeneration treatment, It can be seen that the H 2 S absorption capacity does not decline and the high-performance desulfurization maintenance time is also prolonged.

試験例2(ガス組成5;HS:80ppm)(脱硫一時停止瞬時再開方式)
実施例1で得られた脱硫剤(新規調製)を用いて、上記脱硫一時停止瞬時再開方式試験条件にて、低濃度HS(80ppm)試験ガスによる脱硫試験を行った。当該試験は、脱硫ガス組成をガス組成5;HSで100分間の脱硫を行い、その後脱硫反応を一時停止させ5分間はガス組成8;Nを流し、反応管の中にあるHSを流し出し、その後再度脱硫ガス組成をガス組成5に代え脱硫反応行う。さらに、同様に一時停止と脱硫反応を繰り返す。また、固定床流通式脱硫反応装置の出口ガスのHS濃度を測定した。その結果を図2に示す。
Test example 2 (gas composition 5; H 2 S: 80 ppm) (desulfurization temporary stop instantaneous restart system)
Using the desulfurization agent (new preparation) obtained in Example 1, a desulfurization test was conducted with a low concentration H 2 S (80 ppm) test gas under the above desulfurization temporary stop instantaneous restart system test conditions. In this test, the desulfurization gas composition was gas composition 5; H 2 S was desulfurized for 100 minutes, then the desulfurization reaction was temporarily stopped, and gas composition 8; N 2 was allowed to flow for 5 minutes, and H 2 in the reaction tube. S is flowed out, and then the desulfurization gas composition is replaced with the gas composition 5 to perform a desulfurization reaction. Further, the suspension and desulfurization reaction are repeated in the same manner. It was also measured concentration of H 2 S in the outlet gas of the fixed bed flow desulfurization reactor. The result is shown in FIG.

図2の結果により、定常状態における残留HS濃度は、第1回脱硫では15ppb以下であり、第2回脱硫では10ppb以下、第3回脱硫以降では5〜3ppb以下の値を示す。しかも、残留HSに関し、第1回脱硫では定常状態になるまでの時間が約70分程度を要しているが、脱硫反応を一時停止した後、第2回脱硫以降では、ほぼ瞬時に定常状態に達し、脱硫性能も極めて高いことを示している。更に一時停止して、その後再び脱硫反応を繰り返す断続的使用も可能である。
これにより、本発明の脱硫剤は、脱硫反応において、一時停止状態から高度脱硫の瞬時再開(ホット・リスタート)が可能であることが明示される。
According to the results of FIG. 2, the residual H 2 S concentration in the steady state is 15 ppb or less in the first desulfurization, 10 ppb or less in the second desulfurization, and 5 to 3 ppb or less in the third desulfurization and later. Moreover, with regard to residual H 2 S, the time required to reach a steady state in the first desulfurization requires about 70 minutes, but after the desulfurization reaction is temporarily stopped, after the second desulfurization, almost instantaneously. The steady state is reached, and the desulfurization performance is very high. Further, intermittent use is also possible in which the desulfurization reaction is repeated after a temporary stop.
This clearly shows that the desulfurization agent of the present invention can instantaneously restart (hot restart) advanced desulfurization from a temporarily stopped state in the desulfurization reaction.

試験例3(ガス組成2;(CHS 100ppm)(脱硫剤再生方式)
実施例1の脱硫剤に対し酸化再生を行ない、脱硫ガス組成を脱硫ガス組成2;(CHS(硫化ジメチル)に代えて、1回のみ脱硫試験を行い、固定床流通式反応装置の出口ガスの(CHS濃度とHS(硫化水素)濃度とを測定した。その結果を図3に示す。
この脱硫反応では、(CHSは水素化分解され、その分解で副生したHSは脱硫剤に吸収されるが、図3の結果(低感度計測)より、残留(CHSおよび残留HSは、定常状態で殆ど検出されない。低感度計測の濃度検出限界値より、残留(CHSおよびHSはいずれも10ppb程度以下となることが示される。本発明の脱硫剤は、硫化ジメチルに対しても、極めて優れた脱硫性能を有している。しかも、脱硫開始から15分程度で定常状態となるなど、極めて短時間で効果的に硫化ジメチルを脱硫していることが理解される。
Test Example 3 (gas composition 2; (CH 3 ) 2 S 100 ppm) (desulfurization agent regeneration system)
The desulfurization agent of Example 1 was oxidized and regenerated, and the desulfurization gas composition was replaced with desulfurization gas composition 2; (CH 3 ) 2 S (dimethyl sulfide), and the desulfurization test was performed only once. The (CH 3 ) 2 S concentration and the H 2 S (hydrogen sulfide) concentration of the outlet gas were measured. The result is shown in FIG.
In this desulfurization reaction, (CH 3) 2 S is hydrocracked, but the by-product H 2 S in the decomposition is absorbed in the desulfurizing agent, from the results of FIG. 3 (low sensitivity measurement), the residual (CH 3 ) 2 S and residual H 2 S are hardly detected in steady state. The concentration detection limit value of the low-sensitivity measurement shows that the residual (CH 3 ) 2 S and H 2 S are both about 10 ppb or less. The desulfurization agent of the present invention has extremely excellent desulfurization performance with respect to dimethyl sulfide. Moreover, it is understood that dimethyl sulfide is effectively desulfurized in a very short time, for example, a steady state is reached in about 15 minutes from the start of desulfurization.

試験例4(ガス組成2/6;(CHS 100ppm)(脱硫一時停止瞬時再開方式)
実施例1の脱硫剤に対し酸化再生を行ない、上記脱硫一時停止瞬時再開方式試験条件にて脱硫試験を行った。当該試験は、脱硫ガス組成をガス組成2;(CHS(硫化ジメチル)で60分間の脱硫を行い、その後脱硫反応を一時停止させ5分間はガス組成8;Nを流し、その後再度脱硫ガス組成2に代え脱硫反応行う。さらに、同様に一時停止と脱硫反応を繰り返す。また、固定床流通式反応装置の出口ガスの(CHS濃度とHS濃度とを測定した。その結果を図4に示す
Test Example 4 (gas composition 2/6; (CH 3 ) 2 S 100 ppm) (desulfurization temporary stop instantaneous restart system)
The desulfurization agent of Example 1 was oxidized and regenerated, and the desulfurization test was conducted under the above desulfurization temporary stop instantaneous restart system test conditions. In this test, the desulfurization gas composition was desulfurized for 60 minutes with gas composition 2; (CH 3 ) 2 S (dimethyl sulfide), then the desulfurization reaction was temporarily stopped, and the gas composition 8; N 2 was allowed to flow for 5 minutes. The desulfurization reaction is performed again in place of the desulfurization gas composition 2. Further, the suspension and desulfurization reaction are repeated in the same manner. Further, the (CH 3 ) 2 S concentration and the H 2 S concentration of the outlet gas of the fixed bed flow type reactor were measured. The result is shown in FIG.

この脱硫方式では、図4の結果より、第1回一時停止後の第2回以降の脱硫反応において残留(CHSは全く検出されない(検出限界:5ppb)。また、残留HSは、5ppb以下である。残留(CHS濃度は、平衡論的には1ppb以下と考えられる。これにより、本発明の脱硫剤は、硫化ジメチルに対しても極めて優れた脱硫性能を有すること、特に、脱硫開始から定常状態までに誘導期は無く、一時停止状態から超高度脱硫の瞬時再開(ホット・リスタート)が可能であることが明示される。 In this desulfurization method, from the result of FIG. 4, no residual (CH 3 ) 2 S is detected in the second and subsequent desulfurization reactions after the first temporary stop (detection limit: 5 ppb). Further, residual H 2 S is less 5 ppb. The residual (CH 3 ) 2 S concentration is considered to be 1 ppb or less in terms of equilibrium. As a result, the desulfurization agent of the present invention has extremely excellent desulfurization performance even for dimethyl sulfide, in particular, there is no induction period from the start of desulfurization to the steady state, and instantaneous resumption of ultra-high desulfurization from the suspended state ( It is clearly indicated that a hot restart is possible.

試験例5(ガス組成3;CS 20ppm)(脱硫剤再生方式)
実施例1の脱硫剤に対し酸化再生を行ない、脱硫ガス組成を脱硫ガス組成3;CS(チオフェン)に代えた以外は、試験例1と同様に脱硫試験を行った。固定床流通式反応装置の出口ガスのCS濃度とHS濃度とを測定した。その結果を図5に示す。
Test Example 5 (gas composition 3; C 4 H 4 S 20 ppm) (desulfurization agent regeneration system)
A desulfurization test was performed in the same manner as in Test Example 1 except that the desulfurization agent of Example 1 was oxidized and regenerated and the desulfurization gas composition was replaced with desulfurization gas composition 3; C 4 H 4 S (thiophene). The C 4 H 4 S concentration and H 2 S concentration of the outlet gas of the fixed bed flow type reactor were measured. The result is shown in FIG.

この脱硫反応では、CSは水素化分解され、その分解で副生したHSは脱硫剤に吸収されるが、図5の結果(低感度計測)より、CS及びHSは、定常状態で殆ど検出されない。低感度計測の検出限界値より、残留CS濃度は500ppb以下、残留HS濃度は検出限界値10ppb以下である。本発明の脱硫剤は、チオフェンに対しても、優れた脱硫性能を有している。脱硫開始から45分程度で定常状態となる。また、脱硫剤の酸化再生を行い、繰り返し脱硫反応を行った場合の方が、より高い脱硫性能を示す傾向にある。 In this desulfurization reaction, C 4 H 4 S is hydrocracked, but the by-product H 2 S in the decomposition is absorbed in the desulfurizing agent, from the results of FIG. 5 (Slow measurement), C 4 H 4 S And H 2 S are hardly detected in steady state. From the detection limit value of low sensitivity measurement, the residual C 4 H 4 S concentration is 500 ppb or less, and the residual H 2 S concentration is 10 ppb or less. The desulfurizing agent of the present invention has excellent desulfurization performance even for thiophene. A steady state is reached in about 45 minutes from the start of desulfurization. Further, when the desulfurization agent is oxidized and regenerated and the desulfurization reaction is repeatedly performed, higher desulfurization performance tends to be exhibited.

試験例6(ガス組成3/7;CS 20ppm)(脱硫一時停止瞬時再開方式)
実施例1の脱硫剤を用いて、上記の脱硫一時停止瞬時再開方式試験条件により、脱硫試験を行った。当該脱硫試験は、脱硫ガス組成をガス組成3;CS(チオフェン)で80分間、脱硫を行い、その後5分間はガス組成8;Nを流し、反応管の中にあるチオフェンを流し出すことにより、脱硫反応を一時停止させ、その後、再度脱硫ガス組成をガス組成3に代え脱硫反応行う。さらに、同様に一時停止と脱硫反応を繰り返す。また、固定床流通式反応装置の出口ガスのCS濃度とHS濃度とを測定した。その結果を図6に示す。
Test Example 6 (gas composition 3/7; C 4 H 4 S 20 ppm) (desulfurization temporary stop instantaneous restart system)
Using the desulfurizing agent of Example 1, a desulfurization test was performed under the above desulfurization temporary stop instantaneous restart system test conditions. In the desulfurization test, desulfurization gas composition was gas composition 3; C 4 H 4 S (thiophene) was desulfurized for 80 minutes, and then gas composition 8; N 2 was flowed for 5 minutes, and thiophene in the reaction tube was removed. The desulfurization reaction is temporarily stopped by pouring out, and then the desulfurization gas composition is replaced with the gas composition 3 and the desulfurization reaction is performed again. Further, the suspension and desulfurization reaction are repeated in the same manner. It was also measured and C 4 H 4 S concentration and the concentration of H 2 S in the outlet gas of the fixed bed flow reactor. The result is shown in FIG.

図6の結果により、定常状態における残留CS濃度は、400ppb以下であり、残留HS濃度は、一時停止後の第2回脱硫以降では5ppb以下の値を示す。チオフェンに関し、第1回脱硫では定常状態になるまでの時間が約40分程度を要しているが、脱硫反応を一時停止した後の場合では、約20分程度で定常状態に達し、脱硫性能も極めて高いことを示している。これにより、本発明の脱硫剤は、チオフェンの脱硫反応において、脱硫反応と一時停止を繰り返す断続的使用が可能であることが明示される。
本発明の脱硫剤は、ガソリン中の脱硫困難とされるチオフェンに対しても極めて優れた脱硫剤であるが、この物質から高度脱硫水素(10ppb以下)の製造を目的とする場合の脱硫剤としては更に工夫が必要とされる。
According to the result of FIG. 6, the residual C 4 H 4 S concentration in the steady state is 400 ppb or less, and the residual H 2 S concentration shows a value of 5 ppb or less after the second desulfurization after the temporary stop. With regard to thiophene, it takes about 40 minutes to reach the steady state in the first desulfurization. However, after the desulfurization reaction is temporarily stopped, the desulfurization performance reaches the steady state in about 20 minutes. Is also extremely high. This clearly shows that the desulfurization agent of the present invention can be used intermittently in a thiophene desulfurization reaction, in which a desulfurization reaction and a temporary stop are repeated.
The desulfurizing agent of the present invention is an excellent desulfurizing agent for thiophene, which is considered to be difficult to desulfurize in gasoline, but as a desulfurizing agent for the purpose of producing highly desulfurized hydrogen (less than 10 ppb) from this substance. Further ingenuity is required.

本発明の脱硫剤は、硫化水素、スルフィド、チオフェンなどの硫黄含有化合物から硫黄を高効率で瞬時に1段工程(従来は3段工程)で除去することができ、繰り返し脱硫剤の再生が可能な超高性能の脱硫剤である。
上述したように、大別して2方式の脱硫法がある。「脱硫剤再生方式」は、脱硫反応において、脱硫剤の脱硫性能が低下した時点(破過時点等)で、当該脱硫剤を酸化させることにより、脱硫剤の脱硫性能を最初の状態に再生することを可能とするものである。当該方式では、脱硫剤再生により長時間にわたり高度脱硫を行うことを可能とするものであり、ガス化プラントにおけるガス精製の長時間連続運転(2塔切換え方式)等に適している。
一方、「脱硫一時停止瞬時再開方式」は、脱硫剤が高脱硫性能を維持している期間を対象とするものであり、脱硫装置を一時停止状態しておき、脱硫すべき物質が到着した時点で瞬時に高度脱硫を開始できる利便性の高い脱硫方式である。脱硫反応一時停止期間においては、脱硫装置を窒素置換することにより、安全確保することが可能となる。
また、本発明の脱硫剤の製造方法は、上記本発明の脱硫剤を経済的かつ効率的に製造することができるものである。
The desulfurization agent of the present invention can efficiently remove sulfur from sulfur-containing compounds such as hydrogen sulfide, sulfide, and thiophene instantly in a single step (three steps in the past), and can be repeatedly regenerated. Is an ultra-high performance desulfurization agent.
As described above, there are roughly two types of desulfurization methods. The “desulfurization agent regeneration method” is to regenerate the desulfurization performance of the desulfurization agent to the initial state by oxidizing the desulfurization agent at the time when the desulfurization performance of the desulfurization agent is reduced (breakthrough time, etc.). It is possible to do that. This method makes it possible to perform high-level desulfurization over a long period of time by regeneration of the desulfurization agent, and is suitable for long-term continuous operation of gas purification in a gasification plant (two-column switching method).
On the other hand, the “desulfurization temporary stop instantaneous resumption method” is intended for the period when the desulfurization agent maintains high desulfurization performance, and when the desulfurization equipment is suspended and the material to be desulfurized arrives. This is a highly convenient desulfurization method that can immediately start advanced desulfurization. In the desulfurization reaction suspension period, it is possible to ensure safety by replacing the desulfurization apparatus with nitrogen.
Moreover, the manufacturing method of the desulfurization agent of this invention can manufacture the said desulfurization agent of this invention economically and efficiently.

本発明の脱硫剤を用いた脱硫方法は、硫黄含有化合物中の硫黄分を高度に効率良く除去することができ、硫化水素(HS)で5ppb以下のレベル、スルフィド類の代表的化合物としての硫化ジメチル((CHS)で5ppb以下のレベル、さらにガソリン中で極めて脱硫が困難とされているチオフェン(CS)で400ppb以下にまで、硫黄濃度を低減することを可能とする。
しかもこの脱硫方法により、高度脱硫開始までの時間が短く、脱硫に際して、脱硫反応と一時停止を繰り返す断続的使用も可能となるなど、優れた脱硫性能を提供することができる。
The desulfurization method using the desulfurizing agent of the present invention can highly efficiently remove the sulfur content in the sulfur-containing compound, and has a hydrogen sulfide (H 2 S) level of 5 ppb or less, as a representative compound of sulfides. To reduce the sulfur concentration to a level of 5 ppb or less with dimethyl sulfide ((CH 3 ) 2 S), and to 400 ppb or less with thiophene (C 4 H 4 S), which is considered extremely difficult to desulfurize in gasoline. Make it possible.
Moreover, this desulfurization method can provide excellent desulfurization performance such that the time until the start of advanced desulfurization is short, and the desulfurization reaction can be intermittently used repeatedly and repeatedly during desulfurization.

また更に、本発明の脱硫剤を用いて、硫黄含有化合物中の硫黄分を高度に効率良く除去し、改質処理を施すことにより、大量に燃料電池用の高純度水素、高度脱硫水素を低コストで製造できることを可能とする。
かかる脱硫剤を用いて得られた低硫黄濃度(5〜10ppb以下)の化合物を改質することにより、高純度水素、高度脱硫水素を経済的に製造することが容易にできる。従って、電極や触媒が硫化水素等との反応で劣化しやすい燐酸型燃料電池、固体高分子型燃料電池等の燃料電池のような水素ガス中の許容硫化物濃度が極めて厳しい分野においても非常に有効に用いることができる。
Furthermore, by using the desulfurizing agent of the present invention, the sulfur content in the sulfur-containing compound is highly efficiently removed and reformed to reduce the amount of high-purity hydrogen and advanced desulfurized hydrogen for fuel cells in large quantities. It enables manufacturing at a cost.
By modifying a compound having a low sulfur concentration (5 to 10 ppb or less) obtained by using such a desulfurizing agent, it is possible to easily produce high purity hydrogen and highly desulfurized hydrogen economically. Therefore, even in fields where the allowable sulfide concentration in hydrogen gas is extremely severe, such as fuel cells such as phosphoric acid fuel cells and polymer electrolyte fuel cells, where electrodes and catalysts tend to deteriorate due to reaction with hydrogen sulfide, etc. It can be used effectively.

本発明の超高性能脱硫剤は、従来の脱硫プロセスを大幅にシンプル化できること、超高度脱硫性能を有すること等に基づく優れた経済性により、以下に示す適用が可能である。
天然ガス、都市ガス、LPG、ナフサ等への適用により、水蒸気改質系の燃料電池用高純度水素製造、また高度脱硫合成ガスを経る液体燃料合成(GTL:メタノール、DME合成等)の大幅効率改善が可能である。
石油精製副生ガス、鉄鉱業コークス炉副生ガス、バイオガス等への適用により、高度脱硫水素系ガス、燃料電池用高純度水素製造の大幅経済性向上が可能である。
石炭ガス化ガスへの適用により、次世代型石炭ガス化複合発電(高温GT使用)や、石炭ガス化燃料電池複合発電等の高効率発電システムの構築が可能である。
自動車用ガソリンの脱硫精製工程への適用により、高度脱硫・高オクタン価ガソリンの高効率製造が可能である。
The ultra-high performance desulfurization agent of the present invention can be applied to the following because of its excellent economic efficiency based on the fact that the conventional desulfurization process can be greatly simplified and it has ultra-high desulfurization performance.
Application to natural gas, city gas, LPG, naphtha, etc. greatly improves the efficiency of high-purity hydrogen production for steam reforming fuel cells and liquid fuel synthesis (GTL: methanol, DME synthesis, etc.) via highly desulfurized synthesis gas Improvement is possible.
Application to petroleum refining by-product gas, iron mining coke oven by-product gas, biogas, etc. can greatly improve the economic efficiency of the production of advanced desulfurized hydrogen gas and high-purity hydrogen for fuel cells.
Application to coal gasification gas enables construction of high-efficiency power generation systems such as next-generation coal gasification combined power generation (using high-temperature GT) and coal gasification fuel cell combined power generation.
By applying it to the desulfurization and purification process of automotive gasoline, highly efficient production of highly desulfurized and high octane gasoline is possible.

硫化水素の脱硫試験(脱硫剤酸化再生方式;使用硫化水素:1000ppm)。本発明の脱硫剤(ZnFe/SiO/MoS/WS/TiO)の脱硫再生特性を時間と硫化水素濃度(ppb)との関係で示した線図(硫化水素濃度:脱硫装置出口ガス)である。Hydrogen sulfide desulfurization test (desulfurization agent oxidation regeneration method; hydrogen sulfide used: 1000 ppm). A diagram showing the desulfurization regeneration characteristics of the desulfurization agent (ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2 ) of the present invention in relation to time and hydrogen sulfide concentration (ppb) (hydrogen sulfide concentration: desulfurization) Device outlet gas). 硫化水素の脱硫試験(脱硫一時停止瞬時再開方式;使用硫化水素:80ppm)。本発明の脱硫剤(ZnFe/SiO/MoS/WS/TiO)の脱硫特性を時間と硫化水素濃度(ppb)との関係で示した線図(硫化水素濃度:脱硫装置出口ガス)である。Hydrogen sulfide desulfurization test (desulfurization temporary stop instantaneous restart method; used hydrogen sulfide: 80 ppm). A diagram showing the desulfurization characteristics of the desulfurization agent (ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2 ) of the present invention in relation to time and hydrogen sulfide concentration (ppb) (hydrogen sulfide concentration: desulfurization apparatus) Outlet gas). 硫化ジメチルの脱硫試験(脱硫剤酸化再生方式;使用硫化ジメチル:100ppm)。本発明の脱硫剤(ZnFe/SiO/MoS/WS/TiO)の酸化再生後の脱硫特性を時間と硫化ジメチル濃度(ppm)及び硫化水素濃度(ppb)との関係で示した線図(硫化ジメチル及び硫化水素濃度:脱硫装置出口ガス;低感度計測値)である。Desulfurization test of dimethyl sulfide (desulfurization agent oxidation regeneration method; used dimethyl sulfide: 100 ppm). The desulfurization characteristics after oxidation regeneration of the desulfurization agent (ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2 ) of the present invention are related to time, dimethyl sulfide concentration (ppm), and hydrogen sulfide concentration (ppb). It is the diagram shown (dimethyl sulfide and hydrogen sulfide concentration: desulfurizer outlet gas; low sensitivity measurement value). 硫化ジメチルの脱硫試験(脱硫一時停止瞬時再開方式;使用硫化ジメチル:100ppm)。本発明の脱硫剤(ZnFe/SiO/MoS/WS/TiO)の脱硫特性を時間と硫化ジメチル濃度(ppb)及び硫化水素濃度(ppb)との関係で示した線図(硫化ジメチル及び硫化水素濃度:脱硫装置出口ガス)である。Desulfurization test of dimethyl sulfide (desulfurization temporary stop instantaneous restart method; dimethyl sulfide used: 100 ppm). A diagram showing the desulfurization characteristics of the desulfurization agent (ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2 ) of the present invention in relation to time, dimethyl sulfide concentration (ppb) and hydrogen sulfide concentration (ppb). (Concentration of dimethyl sulfide and hydrogen sulfide: desulfurization apparatus outlet gas). チオフェンの脱硫試験(脱硫剤酸化再生方式;使用チオフェン:20ppm)。本発明の脱硫剤(ZnFe/SiO/MoS/WS/TiO)の脱硫再生特性を時間とチオフェン濃度(ppm)及び硫化水素濃度(ppb)との関係で示した線図(チオフェン濃度及び硫化水素濃度:脱硫装置出口ガス;低感度計測値)である。Desulfurization test of thiophene (desulfurization agent oxidation regeneration method; used thiophene: 20 ppm). Diagram showing the relationship between the desulfurization agent (ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2) Time and thiophene concentration desulfurization characteristics of (ppm), and hydrogen sulfide concentration of the present invention (ppb) (Thiophene concentration and hydrogen sulfide concentration: desulfurizer outlet gas; low sensitivity measurement value). チオフェンの脱硫試験(脱硫一時停止瞬時再開方式;使用チオフェン:20ppm)。本発明の脱硫剤(ZnFe/SiO/MoS/WS/TiO)の脱硫特性を時間とチオフェン濃度(ppm)及び硫化水素濃度(ppb)との関係で示した線図(チオフェン濃度及び硫化水素濃度:脱硫装置出口ガス)である。Desulfurization test of thiophene (desulfurization temporary stop instantaneous restart method; thiophene used: 20 ppm). A diagram showing the desulfurization characteristics of the desulfurization agent (ZnFe 2 O 4 / SiO 2 / MoS 2 / WS 2 / TiO 2 ) of the present invention in relation to time, thiophene concentration (ppm) and hydrogen sulfide concentration (ppb) ( Thiophene concentration and hydrogen sulfide concentration: desulfurizer outlet gas).

Claims (6)

次の一般式;
ZnFe/SiO/モリブデン化合物/タングステン化合物/TiO
(式中、モリブデン化合物は、MoS及び/又はMoOを、また、タングステン化合物は、WSを示す)で表される化合物を含むことを特徴とする脱硫剤。
The following general formula:
ZnFe 2 O 4 / SiO 2 / molybdenum compound / tungsten compound / TiO 2
A desulfurization agent comprising a compound represented by the formula: (wherein the molybdenum compound represents MoS 2 and / or MoO 3 and the tungsten compound represents WS 2 ).
請求項1記載の脱硫剤を製造するにあたり、次の式;ZnFe/SiOで示される亜鉛フェライト・シリカに、モリブデン化合物(モリブデン化合物は、MoS及び/又はMoOを示す)と、タングステン化合物(タングステン化合物は、WSを示す)と、TiOとを添加して粉砕混合し、得られた混合物に成形助剤を添加して焼成することを特徴とする脱硫剤の製造方法。 In producing the desulfurizing agent according to claim 1, the following formula: zinc ferrite silica represented by ZnFe 2 O 4 / SiO 2 , molybdenum compound (molybdenum compound indicates MoS 2 and / or MoO 3 ) and A method for producing a desulfurization agent, comprising adding a tungsten compound (tungsten compound indicates WS 2 ) and TiO 2 and pulverizing and mixing, adding a molding aid to the resulting mixture and firing the mixture. . 硫黄含有化合物から脱硫するにあたり、請求項1記載の脱硫剤を、硫黄含有化合物と接触させることにより脱硫することを特徴とする硫黄含有化合物の脱硫方法。   A method for desulfurizing a sulfur-containing compound, comprising desulfurizing the sulfur-containing compound by bringing the desulfurizing agent according to claim 1 into contact with the sulfur-containing compound. 請求項3記載の脱硫方法において、使用した脱硫剤を酸化することにより再生し、当該再生した脱硫剤を繰り返し使用することを特徴とする硫黄含有化合物の脱硫方法。   The desulfurization method according to claim 3, wherein the desulfurization agent used is regenerated by oxidation, and the regenerated desulfurization agent is repeatedly used. 請求項3記載の脱硫方法において、脱硫剤と硫黄含有化合物との接触を一時停止した後、再度、脱硫剤と硫黄含有化合物とを接触させることを特徴とする硫黄含有化合物の脱硫方法。   The desulfurization method according to claim 3, wherein the contact between the desulfurizing agent and the sulfur-containing compound is temporarily stopped, and then the desulfurizing agent and the sulfur-containing compound are contacted again. 硫黄含有化合物と、請求項1記載の脱硫剤とを接触させて硫黄含有化合物を脱硫した後、改質処理することを特徴とする高純度水素の製造方法。
A method for producing high-purity hydrogen, comprising: bringing a sulfur-containing compound into contact with the desulfurizing agent according to claim 1 to desulfurize the sulfur-containing compound;
JP2004164861A 2004-06-02 2004-06-02 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen Active JP4722414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004164861A JP4722414B2 (en) 2004-06-02 2004-06-02 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004164861A JP4722414B2 (en) 2004-06-02 2004-06-02 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen

Publications (2)

Publication Number Publication Date
JP2005342611A true JP2005342611A (en) 2005-12-15
JP4722414B2 JP4722414B2 (en) 2011-07-13

Family

ID=35495465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004164861A Active JP4722414B2 (en) 2004-06-02 2004-06-02 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen

Country Status (1)

Country Link
JP (1) JP4722414B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100620A (en) * 2008-10-10 2010-05-06 Ifp Use of solid based on zinc ferrite in process for deep-desulphurizing oxygen-containing feed
JP2016064352A (en) * 2014-09-24 2016-04-28 一般財団法人電力中央研究所 Desulfurizing agent, and manufacturing method of desulfurizing agent
CN106861603A (en) * 2017-02-23 2017-06-20 中国石油大学(北京) Targeting anchoring agent of sulfide and its preparation method and application in a kind of oil product
JP2018198191A (en) * 2017-05-22 2018-12-13 日本碍子株式会社 Electrochemical device
CN111589417A (en) * 2020-05-25 2020-08-28 南昌航空大学 Preparation method of supported molybdenum disulfide silver ion adsorbent
CN112175179A (en) * 2020-09-23 2021-01-05 成都孚吉科技有限责任公司 Preparation method of novel polymerized triazine derivative desulfurizer
CN112933980A (en) * 2021-01-29 2021-06-11 三明学院 Thiophene selective MoSe2-rGO foam composite membrane, preparation method thereof and method for separating thiophene
CN112933985A (en) * 2021-01-29 2021-06-11 三明学院 Thiophene selective molybdenum diselenide vertical graphene hybrid film, preparation method thereof and thiophene separation method
CN115893625A (en) * 2022-10-26 2023-04-04 中国石油化工股份有限公司 Biological desulfurizer for removing organic sulfur in press return liquid and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332376A (en) * 1995-06-07 1996-12-17 Phillips Petroleum Co Preparation of sorbent composition
JPH10211432A (en) * 1997-01-15 1998-08-11 Inst Fr Petrole Catalyst containing sulfide mixture and its applications for hydrofining/hydrogenating conversion of hydrocarbons by hydrogenation
JPH11519A (en) * 1997-06-11 1999-01-06 Mitsubishi Heavy Ind Ltd Desulfurizing agent and its production
WO2002074883A1 (en) * 2001-03-21 2002-09-26 Waseda University Desulfurizing agent, method for production thereof, and method of use thereof
JP2004290955A (en) * 2003-03-11 2004-10-21 Univ Waseda Desulfurizing agent and its manufacturing method, and desulfurizing method and method for manufacturing hydrogen used for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332376A (en) * 1995-06-07 1996-12-17 Phillips Petroleum Co Preparation of sorbent composition
JPH10211432A (en) * 1997-01-15 1998-08-11 Inst Fr Petrole Catalyst containing sulfide mixture and its applications for hydrofining/hydrogenating conversion of hydrocarbons by hydrogenation
JPH11519A (en) * 1997-06-11 1999-01-06 Mitsubishi Heavy Ind Ltd Desulfurizing agent and its production
WO2002074883A1 (en) * 2001-03-21 2002-09-26 Waseda University Desulfurizing agent, method for production thereof, and method of use thereof
JP2004290955A (en) * 2003-03-11 2004-10-21 Univ Waseda Desulfurizing agent and its manufacturing method, and desulfurizing method and method for manufacturing hydrogen used for fuel cell
JP4625970B2 (en) * 2003-03-11 2011-02-02 学校法人早稲田大学 Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing hydrogen for fuel cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061851A (en) * 2008-10-10 2015-04-02 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles Use of solids based on zinc ferrite in process for deep desulfurizing oxygen-containing feeds
JP2010100620A (en) * 2008-10-10 2010-05-06 Ifp Use of solid based on zinc ferrite in process for deep-desulphurizing oxygen-containing feed
JP2016064352A (en) * 2014-09-24 2016-04-28 一般財団法人電力中央研究所 Desulfurizing agent, and manufacturing method of desulfurizing agent
CN106861603A (en) * 2017-02-23 2017-06-20 中国石油大学(北京) Targeting anchoring agent of sulfide and its preparation method and application in a kind of oil product
CN106861603B (en) * 2017-02-23 2019-07-26 中国石油大学(北京) The targeting anchoring agent and its preparation method and application of sulfide in a kind of oil product
JP2018198191A (en) * 2017-05-22 2018-12-13 日本碍子株式会社 Electrochemical device
CN111589417B (en) * 2020-05-25 2021-11-16 南昌航空大学 Preparation method of supported molybdenum disulfide silver ion adsorbent
CN111589417A (en) * 2020-05-25 2020-08-28 南昌航空大学 Preparation method of supported molybdenum disulfide silver ion adsorbent
CN112175179A (en) * 2020-09-23 2021-01-05 成都孚吉科技有限责任公司 Preparation method of novel polymerized triazine derivative desulfurizer
CN112175179B (en) * 2020-09-23 2023-08-29 成都孚吉科技有限责任公司 Preparation method of polymeric triazine derivative desulfurizing agent
CN112933980A (en) * 2021-01-29 2021-06-11 三明学院 Thiophene selective MoSe2-rGO foam composite membrane, preparation method thereof and method for separating thiophene
CN112933980B (en) * 2021-01-29 2022-04-19 三明学院 Thiophene selective MoSe2-rGO foam composite membrane, preparation method thereof and method for separating thiophene
CN112933985A (en) * 2021-01-29 2021-06-11 三明学院 Thiophene selective molybdenum diselenide vertical graphene hybrid film, preparation method thereof and thiophene separation method
CN115893625A (en) * 2022-10-26 2023-04-04 中国石油化工股份有限公司 Biological desulfurizer for removing organic sulfur in press return liquid and preparation method thereof
CN115893625B (en) * 2022-10-26 2023-09-15 中国石油化工股份有限公司 Biological desulfurizing agent for removing organic sulfur in press-back liquid and preparation method thereof
US11926544B1 (en) 2022-10-26 2024-03-12 China Petroleum & Chemical Corporation Biological desulfurizer for removing organic sulfur in fracturing flowback fluid and application thereof

Also Published As

Publication number Publication date
JP4722414B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4096128B2 (en) Method for producing desulfurizing agent and method for desulfurizing hydrocarbon
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
US7060233B1 (en) Process for the simultaneous removal of sulfur and mercury
EP2804692B1 (en) Method for removing sulfur containing compounds from fluid fuel streams
WO2003082455A2 (en) Catalysts and process for oxidizing hydrogen sulfide to sulfur dioxide and sulfur
NZ211554A (en) Removing hydrogen sulphide from gases and absorbent used therefor
JP4722414B2 (en) Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing high-purity hydrogen
EA032617B1 (en) Sulphur recovery process with concurrent hydrogen production
Huang et al. Effect of pretreatment on the adsorption performance of Ni/ZnO adsorbent for dibenzothiophene desulfurization
CN102259835B (en) Method for purifying and upgrading crude synthesis gas based on molten salt characteristics
JP5755999B2 (en) Method for producing desulfurizing agent, desulfurizing agent, and method for desulfurizing hydrocarbon
JP4625970B2 (en) Desulfurizing agent, method for producing the same, desulfurizing method, and method for producing hydrogen for fuel cell
CN101372628B (en) Method for producing clean fuel oil and high-purity chemical products from calcium carbide tail gas
Hoguet et al. Gas and liquid phase fuels desulphurization for hydrogen production via reforming processes
JP2008528266A (en) Process for producing a catalyst for desulfurization of a hydrocarbon stream
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP5911551B2 (en) Method for producing desulfurizing agent and method for desulfurizing hydrocarbon
CA2854463A1 (en) Method for removing sulfur-comprising compounds from a hydrocarbonaceous gas mixture
TW201234703A (en) Desulfurization system for fuel cell, hydrogen production system for fuel cell, fuel cell system, desulfurization method for hydrocarbon fuel, and method for producing hydrogen
WO2002074883A1 (en) Desulfurizing agent, method for production thereof, and method of use thereof
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
CN113877405B (en) Waste lubricating oil hydrogenation gas treatment and discharge process
Jung et al. Properties of nanosize zinc titanium desulfurization sorbents promoted with iron and cerium oxides
Sun et al. Recovery of elemental sulfur direct from nonferrous flue gas by a low-temperature Claus process with H2S as the interim reducer
EP0599351A1 (en) Method of desulfurization of town gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110406

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4722414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250