JPH11274721A - Manufacture of multilayer printed-wiring board - Google Patents

Manufacture of multilayer printed-wiring board

Info

Publication number
JPH11274721A
JPH11274721A JP668399A JP668399A JPH11274721A JP H11274721 A JPH11274721 A JP H11274721A JP 668399 A JP668399 A JP 668399A JP 668399 A JP668399 A JP 668399A JP H11274721 A JPH11274721 A JP H11274721A
Authority
JP
Japan
Prior art keywords
layer
copper foil
alkali
copper
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP668399A
Other languages
Japanese (ja)
Other versions
JP3815765B2 (en
Inventor
Fujio Kuwako
子 富士夫 桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP668399A priority Critical patent/JP3815765B2/en
Publication of JPH11274721A publication Critical patent/JPH11274721A/en
Application granted granted Critical
Publication of JP3815765B2 publication Critical patent/JP3815765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacture of a multilayer printed-wiring board that facilitates formation of via holes by a laser and improves adhesion between the external layer circuits and a thermosetting insulating resin provided between the external layer circuits and the internal layer circuits connected to the external layer circuits when a multilayer printed-wiring board is manufactured. SOLUTION: After a metal hardly soluble in alkali 2 is electrodeposited on the surface of a copper foil 1, a thermosetting resin 3 is applied on the surface and heated until it is half-set. Using the resin side as an adhesion surface, the compound copper foil is placed on one surface or both surfaces of the internal layer resin substrate having internal layer circuits on one surface or both surfaces, heated and laminated. The copper foil 1 on the surface is removed by alkaline etching, leaving selectively the metal layer hardly soluble in alkali 2. Subsequently, after a laser beam is irradiated to pierce the metal layer slightly soluble in alkali 2 and the thermosetting resin layer 3 at the same time, a copper layer is formed to form the external layer circuits connected to the internal layer circuits in this manufacture of a multilayer printed- wiring board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は多層プリント配線板
の製造方法に関し、特に、多層プリント配線板の製造時
におけるレーザによるバイアホール形成を容易にし、か
つメッキ銅(銅層)から形成される外層回路と、この外
層回路と内層回路間に存在する絶縁樹脂(熱硬化性絶縁
樹脂)との密着性が改善された多層プリント配線板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a multilayer printed wiring board, and more particularly to a method of manufacturing a multilayer printed wiring board, which facilitates formation of a via hole by a laser at the time of manufacturing the multilayer printed wiring board and an outer layer formed of plated copper (copper layer). The present invention relates to a method for manufacturing a multilayer printed wiring board having improved adhesion between a circuit and an insulating resin (thermosetting insulating resin) existing between the outer layer circuit and the inner layer circuit.

【0002】[0002]

【従来の技術】電子機器の小型化、軽量化、高性能化の
要求に応えるために、多層プリント配線板は回路幅の縮
小とバイアホールの小径化が求められている。直径20
0μm以下の穴開けは機械的なドリル加工では困難であ
り、このため最近、レーザが広く用いられるようになっ
てきた。
2. Description of the Related Art In order to meet demands for smaller, lighter, and higher-performance electronic devices, multilayer printed wiring boards are required to have smaller circuit widths and smaller via holes. Diameter 20
Drilling of 0 μm or less is difficult with mechanical drilling, and lasers have recently been widely used.

【0003】各種のレーザの中でも特に炭酸ガスレーザ
はエポキシ樹脂、ポリイミド樹脂等の有機物に高速で穴
開けすることができ、プリント配線用として工業的にも
っとも多く用いられるようになったが、銅表面はレーザ
ビームを反射するため、厚膜の銅箔の穴開けは困難であ
る。そのため、特開平4−3676号公報に開示される
ように、あらかじめバイアホール径と同じ大きさの穴の
部分だけエッチング法で銅箔を除去しておき、次いで同
じ位置にレーザビームを照射して穴開けする必要があ
る。この際用いられるレーザビームの直径は、バイアホ
ールの直径より大である。
[0003] Among various lasers, a carbon dioxide gas laser, in particular, is capable of forming holes at high speed in organic substances such as epoxy resin and polyimide resin, and has been used most industrially for printed wiring. Since the laser beam is reflected, it is difficult to make a hole in a thick copper foil. Therefore, as disclosed in Japanese Patent Application Laid-Open No. Hei 4-3676, the copper foil is removed by etching only in the portion of the hole having the same size as the via hole diameter, and then the same position is irradiated with a laser beam. It is necessary to make a hole. The diameter of the laser beam used at this time is larger than the diameter of the via hole.

【0004】[0004]

【発明が解決しようとする課題】通常の樹脂付き銅箔を
内層樹脂基板の両面に張り合わせた多層板に窓開けエッ
チングを行い、次いでレーザビームを照射して穴開けす
る方法では、銅箔の厚みの上にメッキを施さなければな
らないので、外層銅層の厚みは本来の銅箔の厚さとメッ
キ銅の厚さの合計になってしまい、回路形成のためのエ
ッチングでファインな回路を得ることは容易ではない。
また、内層回路の位置に合わせて外層回路の穴部分をエ
ッチングするには、位置合わせに特別な高い精度が要求
され容易ではない。
In a method in which an ordinary resin-coated copper foil is laminated on both sides of an inner resin substrate and a multilayer board is opened and etched, and then a laser beam is applied to form a hole, the thickness of the copper foil is increased. Since the plating must be applied on top, the thickness of the outer copper layer is the sum of the original copper foil thickness and the thickness of the plated copper, and it is not possible to obtain a fine circuit by etching for circuit formation. It's not easy.
Further, it is not easy to etch a hole portion of an outer layer circuit in accordance with the position of an inner layer circuit because special high precision is required for alignment.

【0005】一方、内層回路が形成された内層絶縁樹脂
基板の両面に絶縁性樹脂をコーティングし、レーザで穴
開けした後に樹脂表面に直接銅メッキをかけて外層銅層
を形成する方法もある。この場合には、銅層のみが付与
される。そしてこのような場合、銅層と絶縁樹脂をコー
ティングして形成した絶縁樹脂との密着強度を得るため
には絶縁樹脂の表面粗化を施さなければならず、さらに
絶縁樹脂の表面粗化を施しても絶縁樹脂との密着強度が
不十分であることが多い。
On the other hand, there is a method in which an insulating resin is coated on both surfaces of an inner insulating resin substrate on which an inner circuit is formed, a hole is formed by a laser, and then a copper surface is directly plated with copper to form an outer copper layer. In this case, only the copper layer is applied. In such a case, in order to obtain the adhesion strength between the copper layer and the insulating resin formed by coating the insulating resin, the surface of the insulating resin must be roughened, and further the surface of the insulating resin is roughened. However, the adhesive strength with the insulating resin is often insufficient.

【0006】本発明は、これら従来技術の問題点を解決
し、多層プリント配線板の製造時におけるレーザによる
バイアホール形成を容易にし、かつ外層回路と絶縁樹脂
との密着性が改善された多層プリント配線板の製造方法
を提供することにある。
The present invention solves these problems of the prior art, and facilitates the formation of via holes by laser during the manufacture of a multilayer printed wiring board, and improves the adhesion between an outer layer circuit and an insulating resin. An object of the present invention is to provide a method for manufacturing a wiring board.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記従来技
術の問題点について鋭意研究を重ねた結果、銅箔の表面
に通常の酸性エッチング液には溶解するが、アルカリ性
エッチング液には溶解しないアルカリ難溶性金属を電着
させることにより、上記従来技術の問題点を解決し、多
層プリント配線板のレーザによるバイアホール形成を容
易にし、かつ外層回路と絶縁樹脂の密着性を改善した多
層プリント配線板が得られることを見出し、本発明を完
成するに至ったものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above-mentioned problems of the prior art, and as a result, they have been found to be soluble in the surface of a copper foil in a normal acidic etching solution but not in an alkaline etching solution. A multi-layer print that solves the above-mentioned problems of the prior art by facilitating electrodeposition of a poorly soluble alkali metal, facilitates formation of via holes by a laser on a multi-layer printed wiring board, and improves adhesion between an outer layer circuit and an insulating resin. They have found that a wiring board can be obtained, and have completed the present invention.

【0008】すなわち、本発明の多層プリント配線板の
製造方法は、銅箔の表面に、酸エッチング液に可溶であ
るアルカリ難溶性金属を電着させた後、その表面に熱硬
化性樹脂を塗布し、該熱硬化性樹脂を加熱により半硬化
状態にして複合銅箔を形成し、該複合銅箔の樹脂側を接
着面として、片面または両面に内層回路を有する内層樹
脂基板の片面または両面に配置した後加熱成型して積層
し、アルカリエッチングにより前記アルカリ難溶性金属
層を選択的に残して表面の銅箔を除去し、次いでレーザ
ビームを照射して前記アルカリ難溶性金属層と前記熱硬
化性樹脂層を同時に穴開けした後、無電解メッキ後に電
解メッキをするかあるいは無電解メッキをすることによ
り銅層を形成して、内層回路と接続された外層回路を形
成することを特徴とするものである。
That is, according to the method for producing a multilayer printed wiring board of the present invention, after a copper alkali foil is electrodeposited with an alkali-insoluble metal soluble in an acid etching solution, a thermosetting resin is applied to the surface. Applying the heat-curable resin to a semi-cured state by heating to form a composite copper foil, using the resin side of the composite copper foil as an adhesive surface, one or both surfaces of an inner resin substrate having an inner circuit on one or both surfaces Then, heat-molded and laminated, and the copper foil on the surface was removed by alkali etching to selectively leave the alkali-insoluble metal layer selectively, and then irradiated with a laser beam to form the alkali-insoluble metal layer and the heat. After drilling the curable resin layer at the same time, form the copper layer by electroplating after electroless plating or electroless plating to form the outer layer circuit connected to the inner layer circuit It is intended to.

【0009】アルカリ難溶性金属が電着される銅箔表面
としては、1)光沢面、2)マット面、3)粗面化され
た光沢面あるいは4)粗面化されたマット面が用いられ
る。
As the copper foil surface on which the alkali-insoluble metal is electrodeposited, 1) glossy surface, 2) matte surface, 3) roughened glossy surface or 4) roughened matte surface is used. .

【0010】このような方法によれば、レーザビームに
よって多層プリント配線板にバイアホールを容易に形成
することができ、また銅層から形成される外層回路と、
この外層回路と内層回路間に存在する絶縁樹脂との間の
接着力を向上させることができる。
According to such a method, a via hole can be easily formed in a multilayer printed wiring board by a laser beam, and an outer layer circuit formed from a copper layer;
The adhesive force between the outer layer circuit and the insulating resin existing between the inner layer circuits can be improved.

【0011】[0011]

【発明を実施するための形態】以下、本発明の多層プリ
ント配線板の製造方法について図1〜2を用いてさらに
詳しく説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for manufacturing a multilayer printed wiring board according to the present invention will be described in more detail with reference to FIGS.

【0012】銅箔としては、電解銅箔でも圧延銅箔でも
使用できるが、以下電解銅箔を用いた場合について説明
する。
As the copper foil, either an electrolytic copper foil or a rolled copper foil can be used. Hereinafter, the case where the electrolytic copper foil is used will be described.

【0013】図1は、本発明のうちパネルメッキ法によ
る多層プリント配線板の製造工程を示す図である。図2
は、本発明のうちパターンメッキ法による多層プリント
配線板の製造工程を示す図である。これらの図1〜2に
おいて、1は銅箔、2はアルカリ難溶性金属、3は熱硬
化性絶縁樹脂、4は内層回路、5は内層樹脂層、6はバ
イアホール、7は外層銅層、8は外層回路、9はレジス
トパターンおよび10はパッドを示す。
FIG. 1 is a view showing a process of manufacturing a multilayer printed wiring board by a panel plating method according to the present invention. FIG.
FIG. 3 is a view showing a manufacturing process of a multilayer printed wiring board by a pattern plating method in the present invention. In these FIGS. 1 and 2, 1 is a copper foil, 2 is a poorly soluble alkali metal, 3 is a thermosetting insulating resin, 4 is an inner circuit, 5 is an inner resin layer, 6 is a via hole, 7 is an outer copper layer, Reference numeral 8 denotes an outer layer circuit, 9 denotes a resist pattern, and 10 denotes a pad.

【0014】本発明の多層プリント配線板の製造におい
ては、まず、銅箔1の表面(光沢面、マット面、粗面化
された光沢面あるいは粗面化されたマット面)上にアル
カリ難溶性金属2を電着させる。このアルカリ難溶性金
属2が電着される銅箔面の粗度(Rz)は、0.5〜1
5μm、好ましくは2.5〜15μmの範囲が望まし
い。この銅箔面の粗度が0.5μmより小さいと、アル
カリ難溶性金属と熱硬化性樹脂との接着強度が不足する
という点で好ましくなく、15μmより大きいとエッチ
ングに長時間を要し、アンダーカット現象を起こしやす
いという点で好ましくない。
In the production of the multilayer printed wiring board of the present invention, first, the surface of the copper foil 1 (a glossy surface, a matte surface, a roughened glossy surface or a roughened matte surface) is hardly alkali-soluble. Metal 2 is electrodeposited. The roughness (Rz) of the copper foil surface on which the alkali poorly soluble metal 2 is electrodeposited is 0.5 to 1
5 μm, preferably in the range of 2.5 to 15 μm. When the roughness of the copper foil surface is smaller than 0.5 μm, it is not preferable in that the adhesive strength between the alkali-insoluble metal and the thermosetting resin is insufficient. This is not preferable in that a cutting phenomenon easily occurs.

【0015】この銅箔の粗化処理は、例えば、銅箔1の
光沢面あるいはマット面に、銅10〜20g/L、硫酸
30〜100g/L、温度20〜40℃の硫酸銅溶液中
で、前記銅箔を陰極として30〜50A/dm2の電流
密度で5〜20秒間、銅を片面に電着することにより行
うことができる。
The roughening treatment of the copper foil is performed, for example, by applying a copper sulfate solution of 10 to 20 g / L, 30 to 100 g / L of sulfuric acid, and a temperature of 20 to 40 ° C. on the glossy or matte surface of the copper foil 1. It can be performed by electrodepositing copper on one side at a current density of 30 to 50 A / dm 2 for 5 to 20 seconds using the copper foil as a cathode.

【0016】用いる銅箔1の厚さは、5〜100μmの
範囲が好ましい。銅箔が100μmより厚すぎるとエッ
チングに時間がかかり、生産性に問題が生ずる。一方、
銅箔が5μmより薄すぎると、銅箔としての生産が困難
である。
The thickness of the copper foil 1 used is preferably in the range of 5 to 100 μm. If the copper foil is too thick, the etching takes a long time, which causes a problem in productivity. on the other hand,
If the copper foil is too thin, the production as a copper foil is difficult.

【0017】次に、本発明では銅箔1の表面に通常の酸
性エッチング液には溶解するが、アルカリ性エッチング
液には溶解しない、アルカリ難溶性金属2を電着させ
る。本発明ではアルカリ難溶性で酸に可溶な各種金属を
使用することができるが、アルカリ難溶性金属2として
は、錫、ニッケルおよびコバルト、あるいは錫−亜鉛合
金、亜鉛−ニッケル合金および錫−銅合金などの合金が
挙げられ、このうち錫、亜鉛−錫合金、亜鉛−ニッケル
合金および錫−銅合金からなるグループから選ばれる1
種が好ましく、錫および錫−亜鉛合金が耐アルカリエッ
チング性の点で最も好ましい。このアルカリ難溶性金属
層2の形成方法としては、銅箔を陰極として、例えば、
錫メッキ浴組成として以下に示す浴中で電解処理を行
う。
Next, in the present invention, a poorly alkali-soluble metal 2 which is dissolved in a normal acidic etching solution but not dissolved in an alkaline etching solution is electrodeposited on the surface of the copper foil 1. In the present invention, various metals which are hardly soluble in an alkali and soluble in an acid can be used. Examples of the hardly soluble alkali metal 2 include tin, nickel and cobalt, or a tin-zinc alloy, a zinc-nickel alloy and a tin-copper. Alloys, such as tin, zinc-tin alloy, zinc-nickel alloy, and tin-copper alloy.
Species are preferred, and tin and tin-zinc alloys are most preferred in terms of alkali etching resistance. As a method for forming the alkali poorly soluble metal layer 2, for example, a copper foil is used as a cathode, for example,
The electrolytic treatment is performed in a bath shown below as a tin plating bath composition.

【0018】[0018]

【表1】 [Table 1]

【0019】このアルカリ難溶性金属層2の厚さは、
0.005〜3.0μmの範囲が好ましい。このアルカ
リ難溶性金属層2の厚さが0.005μmより薄いと該
アルカリ難溶性金属層と熱硬化性樹脂層との密着強度が
弱く、このため該アルカリ難溶性金属層上に形成される
外層銅層7と熱硬化性樹脂層3との充分な密着強度が得
られず、3.0μmより厚すぎると炭酸ガスレーザによ
る穴開けが困難となる。
The thickness of the poorly soluble alkali metal layer 2 is as follows:
The range of 0.005 to 3.0 μm is preferred. When the thickness of the alkali-poorly-soluble metal layer 2 is less than 0.005 μm, the adhesion strength between the alkali-poorly-soluble metal layer and the thermosetting resin layer is weak, so that an outer layer formed on the alkali-poorly-soluble metal layer Sufficient adhesion strength between the copper layer 7 and the thermosetting resin layer 3 cannot be obtained. If the thickness is more than 3.0 μm, it becomes difficult to form a hole by a carbon dioxide gas laser.

【0020】また、本発明ではアルカリ難溶性金属層2
の外側にクロメート処理、さらにその外側にシランカッ
プリング剤処理を行うと、熱硬化性樹脂3とアルカリ難
溶性金属2を介した外層銅層7との接着強度をさらに高
めることができる。さらに、銅箔1のアルカリ難溶性金
属層2が設けられていない面(たとえばシャイン面)上
に亜鉛、錫、ニッケル、クロメートやイミダゾール、ア
ミノトリアゾール、ベンゾトリアゾールなどの防錆処理
を施すことができる。
In the present invention, the alkali-insoluble metal layer 2
When the outside is subjected to a chromate treatment, and the outside thereof is further treated with a silane coupling agent, the adhesive strength between the thermosetting resin 3 and the outer copper layer 7 via the alkali-insoluble metal 2 can be further increased. Further, a rust-preventive treatment such as zinc, tin, nickel, chromate, imidazole, aminotriazole, benzotriazole or the like can be performed on a surface of the copper foil 1 on which the hardly alkali-soluble metal layer 2 is not provided (for example, a shine surface). .

【0021】次に、このように銅箔の表面に電着された
アルカリ難溶性金属層2の表面に熱硬化性樹脂ワニスを
塗布して熱硬化性樹脂3を形成した後、該熱硬化性樹脂
を140〜150℃で5〜20分間加熱し、半硬化状態
にして、複合銅箔を得る。この熱硬化性樹脂ワニスのベ
ース樹脂としては、エポキシ樹脂(油化シェル(株)製
エピコート1001)などを用いることができる。この
熱硬化性樹脂3を形成するための熱硬化性樹脂ワニスと
しては、エポキシ樹脂に、硬化剤としてジシアンジアミ
ド、硬化促進剤として2E4MZ(四国化成(株)
製)、溶剤としてメチルエチルケトンを用いてこれらを
適宜混合して得たエポキシ樹脂組成物を用いることがで
きる。この熱硬化性樹脂層としては、熱硬化性樹脂をガ
ラスクロス、アラミドペーパーなどの繊維基材に含浸半
硬化させたプリプレグまたは熱硬化性樹脂フィルムを使
用してもよい。この半硬化状態の熱硬化性樹脂3の厚さ
としては、20〜200μmの範囲が好ましい。この熱
硬化性樹脂3の厚さが20μmより薄いと層間絶縁性お
よび充分な密着強度が得られず、また、200μmより
厚すぎると小径のバイアホールが形成しにくくなり好ま
しくない。
Next, a thermosetting resin varnish is applied to the surface of the poorly alkali-soluble metal layer 2 electrodeposited on the surface of the copper foil to form a thermosetting resin 3. The resin is heated at 140 to 150 ° C. for 5 to 20 minutes to be in a semi-cured state to obtain a composite copper foil. An epoxy resin (Epicoat 1001 manufactured by Yuka Shell Co., Ltd.) or the like can be used as a base resin of the thermosetting resin varnish. As the thermosetting resin varnish for forming the thermosetting resin 3, epoxy resin, dicyandiamide as a curing agent, and 2E4MZ as a curing accelerator (Shikoku Chemicals Co., Ltd.)
And an epoxy resin composition obtained by appropriately mixing them using methyl ethyl ketone as a solvent. As the thermosetting resin layer, a prepreg or a thermosetting resin film in which a thermosetting resin is impregnated and semi-cured into a fiber base material such as glass cloth or aramid paper may be used. The thickness of the thermosetting resin 3 in the semi-cured state is preferably in the range of 20 to 200 μm. If the thickness of the thermosetting resin 3 is less than 20 μm, the interlayer insulating property and sufficient adhesive strength cannot be obtained, and if it is more than 200 μm, it becomes difficult to form small-diameter via holes, which is not preferable.

【0022】このように熱硬化樹脂層3を半硬化状態に
した樹脂付き複合銅箔を、樹脂側を接着面として、内層
回路を有する内層樹脂基板の片面または両面に配置した
後、150〜200℃で加熱成型して積層して、内層回
路入り多層板を得る(図1(a))。
After the composite copper foil with resin in which the thermosetting resin layer 3 is in a semi-cured state is placed on one or both sides of an inner resin substrate having an inner circuit with the resin side as an adhesive surface, 150 to 200 The laminate is formed by heating and forming at a temperature of ° C. (FIG. 1A).

【0023】次に、このように積層された内層回路入り
多層板をアルカリエッチングによりアルカリ難溶性金属
層を選択的に残して表面の銅箔を除去する(図1
(b))。このようなアルカリエッチング液としては、
例えば、NH4OH200〜250g/L、NH4C11
30〜160g/L、Cu150〜160g/Lを含む
溶液を用いて、温度40〜50℃で行う。アルカリ難溶
性金属2の表面形状は、アルカリ難溶性金属が電着され
る銅箔面により異なるが、銅箔面としては、銅箔粗化面
の使用が好ましい。このような銅箔粗化面にアルカリ難
溶性金属を電着すると、アルカリ難溶性金属2の表面は
銅箔粗化面の転写となるためレーザビームが吸収されや
すい凹凸に富んだ表面となり、レーザ穴開けが容易とな
る。
Next, the copper foil on the surface is removed by selectively etching the thus-laminated multilayer board containing the inner layer circuit by alkali etching while leaving the poorly alkali-soluble metal layer (FIG. 1).
(B)). As such an alkaline etching solution,
For example, NH 4 OH 200 to 250 g / L, NH 4 C11
The reaction is performed at a temperature of 40 to 50 ° C. using a solution containing 30 to 160 g / L and 150 to 160 g / L of Cu. Although the surface shape of the alkali-soluble metal 2 differs depending on the copper foil surface on which the alkali-soluble metal is electrodeposited, it is preferable to use a copper foil roughened surface as the copper foil surface. When such an alkali-soluble metal is electrodeposited on the roughened surface of the copper foil, the surface of the hardly-soluble alkali metal 2 becomes a transfer of the roughened surface of the copper foil, so that the surface becomes rich in irregularities where the laser beam is easily absorbed. Drilling becomes easy.

【0024】次いで、表面の銅箔層が除去された図1
(b)に示された内層回路入り多層板にレーザビームを
照射してアルカリ難溶性金属層2と樹脂層3を同時に穴
開けしてバイアホール6を形成して穴開き多層板(a)
を製造する(図1(c))。本発明に用いられるレーザ
の種類は特に限定されないが、炭酸ガスレーザが好まし
く用いられる。レーザビームを照射し、穴開け後、必要
に応じてデスミア処理を行っても良い。
Next, FIG. 1 from which the copper foil layer on the surface has been removed
The multilayer board with the inner layer circuit shown in (b) is irradiated with a laser beam to pierce the alkali-poorly soluble metal layer 2 and the resin layer 3 at the same time to form a via hole 6 to form a perforated multilayer board (a).
Is manufactured (FIG. 1C). The type of laser used in the present invention is not particularly limited, but a carbon dioxide laser is preferably used. After irradiating a laser beam and making a hole, desmearing may be performed as necessary.

【0025】このようにバイアホールが形成された内層
回路入り多層板(a)の表面上に、ピロリン酸銅メッキ
溶液(奥野製薬(株)製OPC−750無電解銅メッキ
溶液)を用いて液温20〜25℃で15〜20分間の無
電解メッキを行い、約0.1ミクロンのメッキ層を形成
する。このメッキ層はバイアホールの絶縁樹脂層表面に
も形成される。さらに、この無電解銅メッキ表面に銅3
0〜100g/L、硫酸50〜200g/Lを含む溶液
を用いて、温度30〜80℃、陰極電流密度10〜10
0A/dm2で電解メッキを行い、5〜35μmの銅メ
ッキ層7を形成する(図1(d))。この銅メッキ層7
はバイアホールの絶縁樹脂層表面にも形成される。絶縁
樹脂と強固な接着力を有するアルカリ難溶性金属2上に
銅メッキ層7を形成させると、この外層銅層7とアルカ
リ難溶性金属層2には結合力があるため、外層銅層7を
樹脂層3に直接メッキする場合と比べ、絶縁樹脂層と外
層銅層との間に高い接着強度が得られる。
A copper pyrophosphate plating solution (OPC-750 electroless copper plating solution manufactured by Okuno Pharmaceutical Co., Ltd.) is applied to the surface of the multilayer board (a) containing the inner layer circuit in which the via holes are formed as described above. Electroless plating is performed at a temperature of 20 to 25 ° C. for 15 to 20 minutes to form a plating layer of about 0.1 μm. This plating layer is also formed on the surface of the insulating resin layer in the via hole. Furthermore, copper 3 is applied to the surface of the electroless copper plating.
Using a solution containing 0 to 100 g / L and sulfuric acid 50 to 200 g / L, a temperature of 30 to 80 ° C. and a cathode current density of 10 to 10
Electroplating is performed at 0 A / dm 2 to form a copper plating layer 7 having a thickness of 5 to 35 μm (FIG. 1D). This copper plating layer 7
Is also formed on the surface of the insulating resin layer of the via hole. When the copper plating layer 7 is formed on the hardly-soluble alkali metal 2 having a strong adhesive strength with the insulating resin, the outer copper layer 7 and the hardly-soluble alkali metal layer 2 have a bonding force. As compared with the case where the resin layer 3 is directly plated, a higher adhesive strength can be obtained between the insulating resin layer and the outer copper layer.

【0026】このようにして形成された外層銅層7の表
面に、定法に従い、フォトレジストとしてマイクロポジ
ット2400(シプレー(株)製)を約7μm塗布して
乾燥後、このフォトレジスト面に露光機により、所定の
回路を形成したマスクを用いて露光部と非露光部を形成
する。露光後、KOH10%溶液により現像してレジス
トパターン9を形成する(図1(e))。次いで、塩化
第二銅(CuCl2)100g/L、遊離塩酸濃度10
0g/Lを含む溶液を用いて、温度50℃で酸エッチン
グを行い、アルカリ難溶性金属層2と外層銅層7の一部
を溶解して、内層回路4上のパッド10と接続された外
層回路8を形成する。
According to a standard method, a microposit 2400 (manufactured by Shipley Co., Ltd.) is applied to the surface of the outer copper layer 7 formed as described above in a thickness of about 7 μm and dried. Thus, an exposed portion and a non-exposed portion are formed using a mask on which a predetermined circuit is formed. After exposure, the resist pattern 9 is formed by developing with a KOH 10% solution (FIG. 1E). Subsequently, cupric chloride (CuCl 2 ) 100 g / L, free hydrochloric acid concentration 10
Using a solution containing 0 g / L, acid etching is performed at a temperature of 50 ° C. to dissolve a part of the poorly alkali-soluble metal layer 2 and a part of the outer copper layer 7 to form an outer layer connected to the pad 10 on the inner circuit 4. The circuit 8 is formed.

【0027】最後に、NaOH3%溶液を用いて温度5
0℃で銅箔面に塗布したフォトレジストを溶解除去し、
多層プリント配線板を作成する(図1(f))。
Finally, using a 3% NaOH solution at a temperature of 5
Dissolve and remove the photoresist applied to the copper foil surface at 0 ° C,
A multilayer printed wiring board is created (FIG. 1 (f)).

【0028】本発明の場合、アルカリ難溶性金属層2の
厚さは外層銅層7の厚さに比べ非常に薄く、金属箔の合
計厚さが通常のサブトラクト法と比べ、通常使用する銅
箔の厚さ(通常は18μm)とアルカリ難溶性金属の厚
さ(最大3μm)の差の分(15μm以上)薄くなるた
め、エッチング性が著しく改善されファイン回路の形成
が容易となる。
In the case of the present invention, the thickness of the poorly soluble alkali metal layer 2 is very thin as compared with the thickness of the outer copper layer 7, and the total thickness of the metal foil is smaller than that of the usual subtractive method. (Usually 18 μm) and the thickness (up to 15 μm) of the thickness of the alkali poorly soluble metal (up to 3 μm), thereby significantly improving the etching property and facilitating the formation of a fine circuit.

【0029】またもう一つの方法としては、図2に示す
パターンメッキ法がある。図2(a)〜(c)は、上記
図1(a)〜(c)と同様なものであって、バイアホー
ル6が形成された内層回路入り多層板(a)の表面にフ
ォトレジストをラミネートまたは塗布後、露光、現像し
てレジストパターン9を形成し、回路およびパッド10
とする部分のみアルカリ難溶性金属を露出させる(図2
(d))。次いで、前記方法と同様にして無電解メッ
キ、電解メッキを行い回路と同じ配置を有する銅層7を
形成する(図2(e))。メッキ終了後、フォトレジス
トをNaOH3%溶液を用いる通常の方法で溶解除去す
ると、外層回路8が形成されるとともに銅回路の間にア
ルカリ難溶性金属が残る(図2(f))。
As another method, there is a pattern plating method shown in FIG. 2 (a) to 2 (c) are similar to FIGS. 1 (a) to 1 (c), in which a photoresist is formed on the surface of the multilayer board (a) containing the inner layer circuit in which the via holes 6 are formed. After lamination or coating, exposure and development are performed to form a resist pattern 9, and a circuit and a pad 10 are formed.
Only the portion where the hardly soluble alkali metal is exposed (see FIG. 2)
(D)). Next, electroless plating and electrolytic plating are performed in the same manner as above to form a copper layer 7 having the same arrangement as that of the circuit (FIG. 2E). After the plating is completed, the photoresist is dissolved and removed by a normal method using a 3% NaOH solution, so that an outer layer circuit 8 is formed and a poorly alkali-soluble metal remains between the copper circuits (FIG. 2 (f)).

【0030】このアルカリ難溶性金属層は、外層回路8
の銅の厚さと比べ極めて薄いため、塩化第二銅や塩化第
二鉄などの通常の酸エッチング液で短時間処理して溶解
させることができ、外層回路8を錫メッキで保護するこ
となく、外層銅回路間のアルカリ難溶性金属層を除去す
ることができる(図2(g))。このようにして本発明
では、アンダーカットを発生させずにファインパターン
を精度よく形成することができる。
The alkali-insoluble metal layer is formed on the outer layer circuit 8.
Is extremely thin compared to the thickness of copper, and can be dissolved by treating with a normal acid etching solution such as cupric chloride or ferric chloride for a short time, without protecting the outer layer circuit 8 with tin plating. The alkali-insoluble metal layer between the outer copper circuits can be removed (FIG. 2 (g)). As described above, according to the present invention, a fine pattern can be formed with high precision without causing undercut.

【0031】本発明は3層以上の多層の内層樹脂基板に
対しても適用できる。また、積層、レーザ穴開け、メッ
キ、パターニングの工程を繰り返すことにより、レーザ
バイアを持つ層の多層化も可能であり、任意の層数の多
層プリント配線板の製造に適用できる。
The present invention is also applicable to a multilayer inner resin substrate having three or more layers. Also, by repeating the steps of lamination, laser drilling, plating, and patterning, a layer having a laser via can be formed into multiple layers, and the present invention can be applied to the manufacture of a multilayer printed wiring board having an arbitrary number of layers.

【0032】[0032]

【実施例】以下、実施例及び比較例に基づき本発明をさ
らに具体的に説明する。実施例1 光沢面粗度(Rz)1.9μm、粗面粗度(Rz)5μ
mを有する公称厚さ18μmの電解銅箔の光沢面に、銅
10g/L、硫酸100g/L、温度40℃の硫酸銅溶
液中で、前記銅箔を陰極として30A/dm2の電流密
度で5秒間、銅を片面に電着して粗化処理した。このよ
うに粗化処理した表面の粗度(Rz)は2.9μmであ
った。
EXAMPLES The present invention will be described below more specifically based on examples and comparative examples. Example 1 Glossy Surface Roughness (Rz) 1.9 μm, Roughness Roughness (Rz) 5 μm
m on a glossy surface of an electrolytic copper foil having a nominal thickness of 18 μm, in a copper sulfate solution of 10 g / L of copper, 100 g / L of sulfuric acid and a temperature of 40 ° C. at a current density of 30 A / dm 2 using the copper foil as a cathode. Copper was electrodeposited on one side for 5 seconds for roughening treatment. The roughness (Rz) of the surface thus roughened was 2.9 μm.

【0033】このように粗化処理した電解銅箔を陰極と
して、次に示す浴中で温度20℃で電解処理を行い、錫
メッキ(アルカリ難溶性金属)を施して錫層を形成し
た。処理面上の錫の量は、1.2g/m2(約0.2μ
m)であった。
Using the thus roughened electrolytic copper foil as a cathode, an electrolytic treatment was carried out at a temperature of 20 ° C. in the following bath, and tin plating (a poorly soluble alkali metal) was performed to form a tin layer. The amount of tin on the treated surface was 1.2 g / m 2 (about 0.2 μm).
m).

【0034】[0034]

【表2】 [Table 2]

【0035】水洗後、錫メッキを施した表面に、さらに
無水クロム酸2g/L、pH11.0の電解溶液を用い
て、電流密度0.5A/dm2で5秒間、電解クロメー
ト処理を行い粗化処理された銅箔を得た。
After washing with water, the tin-plated surface is further subjected to electrolytic chromate treatment at a current density of 0.5 A / dm 2 for 5 seconds using an electrolytic solution of 2 g / L of chromic anhydride and a pH of 11.0. A chemically treated copper foil was obtained.

【0036】この銅箔の粗化表面に、エポキシ樹脂(油
化シェル(株)製エピコート1001)100部、硬化
剤としてジシアンジアミド2.5部、促進剤として2E
4MZ(四国化成(株)製)0.2部をメチルエチルケ
トンの溶剤中で混合して得たエポキシ樹脂ワニスを75
μmの厚みで塗布し、130℃で10分間加熱して半硬
化状態とした樹脂付きの複合銅箔を作成した。
On the roughened surface of this copper foil, 100 parts of an epoxy resin (Epicoat 1001 manufactured by Yuka Shell Co., Ltd.), 2.5 parts of dicyandiamide as a curing agent, and 2E as an accelerator
75 parts of an epoxy resin varnish obtained by mixing 0.2 parts of 4MZ (manufactured by Shikoku Chemicals) in a solvent of methyl ethyl ketone.
A composite copper foil with a resin was applied in a thickness of μm and heated in a semi-cured state by heating at 130 ° C. for 10 minutes.

【0037】両面に内層回路が形成され、黒化処理が施
された0.5mm厚さのFR−4基材(松下電工(株)
製R−1766)をコアとして、この両面に前記樹脂付
きの複合銅箔を樹脂面が内層回路側になるように積み重
ね、180℃で60分間、圧力20kg/cm2で真空
プレスを用いて成型し、図1(a)に示すような内層回
路入り多層板を得た。
A 0.5 mm-thick FR-4 substrate having an inner layer circuit formed on both surfaces and subjected to a blackening treatment (Matsushita Electric Works, Ltd.)
R-1766) as a core, the composite copper foil with the resin is stacked on both sides thereof such that the resin surface is on the inner layer circuit side, and molded at 180 ° C. for 60 minutes using a vacuum press at a pressure of 20 kg / cm 2. Then, a multilayer board containing an inner circuit as shown in FIG. 1 (a) was obtained.

【0038】このように成形された内層回路入り多層板
の銅箔面に、NH4OH200g/L、NH4Cl130
g/L、Cu150g/Lを含む溶液を用いて、温度5
0℃にてアルカリエッチングを行い、銅箔を除去して錫
層(アルカリ難溶性金属層)を露出させた。
On the copper foil surface of the multilayer board containing the inner layer circuit thus formed, NH 4 OH 200 g / L, NH 4 Cl 130
g / L and a solution containing 150 g / L of Cu at a temperature of 5
Alkaline etching was performed at 0 ° C., and the copper foil was removed to expose a tin layer (a poorly soluble alkali metal layer).

【0039】次に、このようにエッチング除去され、錫
層が露出した面に炭酸ガスレーザ(レーザ出力60W)
により、レーザ径100μmで前記内層回路部分まで1
00μmφの穴開けを行い、バイアホールを形成して、
図1(c)に示すような穴開き多層板(a)を得た。
Next, a carbon dioxide gas laser (laser output: 60 W) is applied to the surface where the tin layer is exposed by etching as described above.
With a laser diameter of 100 μm, the
Drill a hole of 00 μmφ to form a via hole,
A perforated multilayer board (a) as shown in FIG. 1 (c) was obtained.

【0040】このようにバイアホールが形成された開口
部を含む錫層の上にOPC−750無電解銅メッキ溶液
(奥野製薬(株)製)を用いて液温23℃で18分間の
無電解メッキを行い、約0.1ミクロンのメッキ厚とし
た。さらに、この無電解銅メッキ表面に銅100g/
L、硫酸150g/Lを含む溶液を用いて、温度25℃
で陰極電流密度5A/dm2で電解メッキを行い、20
μmメッキ厚の外層銅層を形成した。
The electroless electroless copper plating solution (manufactured by Okuno Pharmaceutical Co., Ltd.) is used on the tin layer including the opening in which the via hole is formed as described above, for 18 minutes at a liquid temperature of 23 ° C. Plating was performed to a plating thickness of about 0.1 micron. Furthermore, 100 g of copper /
L, using a solution containing 150 g / L of sulfuric acid, at a temperature of 25 ° C.
Electrolytic plating at a cathode current density of 5 A / dm 2 at 20
An outer copper layer having a thickness of μm was formed.

【0041】このように形成された外層銅層の表面に、
定法に従い、フォトレジストとしてマイクロポジット2
400(シプレー(株)製)を約7μm塗布して乾燥
後、このフォトレジスト面に露光機により、所定の回路
を形成したマスクを用いて露光部と非露光部を形成して
レジストパターンを設けた。露光後、KOH10%溶液
により現像し、塩化第二銅(CuCl2)100g/
L、遊離塩酸濃度100g/Lを含む溶液を用いて、温
度50℃で酸エッチングを行い外層回路を形成した。最
後に、NaOH5%溶液を用いて温度30℃で外層回路
上に残留したフォトレジストを除去し、多層プリント配
線板を作成した。
On the surface of the outer copper layer thus formed,
Microposit 2 is used as a photoresist according to the usual method.
400 (manufactured by Shipley Co., Ltd.) is applied to a thickness of about 7 μm and dried. After that, an exposed portion and a non-exposed portion are formed on the photoresist surface by using an exposure machine using a mask on which a predetermined circuit is formed, and a resist pattern is provided. Was. After exposure, the film was developed with a KOH 10% solution, and cupric chloride (CuCl 2 ) 100 g /
L, acid etching was performed at a temperature of 50 ° C. using a solution containing a free hydrochloric acid concentration of 100 g / L to form an outer layer circuit. Finally, the photoresist remaining on the outer layer circuit was removed at a temperature of 30 ° C. by using a 5% NaOH solution to prepare a multilayer printed wiring board.

【0042】このようにして得られた20μm厚さの外
層銅回路の多層プリント配線板からの引き剥がし強さ
(kgf/cm)をJIS−C6481法により測定し
た。得られた結果を表3に示す。比較例1 銅箔1として通常の18μm銅箔(三井金属鉱業製3E
C−III)を使用し、アルカリ難溶性金属(錫)を電着
させない以外は、実施例1と同様にしてエポキシ樹脂ワ
ニスを粗面上に塗布し、130℃で10分間加熱して半
硬化状態とした樹脂付きの複合銅箔を作成した。
The peel strength (kgf / cm) of the thus obtained outer copper circuit having a thickness of 20 μm from the multilayer printed wiring board was measured by the JIS-C6481 method. Table 3 shows the obtained results. Comparative Example 1 As a copper foil 1, a normal 18 μm copper foil (3E manufactured by Mitsui Kinzoku Mining)
Epoxy resin varnish is applied on a rough surface in the same manner as in Example 1 except that C-III) is not used and electrodeposition of a poorly alkali-soluble metal (tin) is performed, and the coating is semi-cured by heating at 130 ° C. for 10 minutes. A composite copper foil with a resin in a state was prepared.

【0043】この樹脂付き銅箔を、両面に内層回路を形
成し、黒化処理を施した0.5mm厚さのFR−4内層
回路基板をコアとして、この両面に前記樹脂付き銅箔を
樹脂面が内層回路側になるように積み重ね、実施例1と
同じ条件で成型し、内層回路入り多層板を得た。以後実
施例1と同じ工程で多層プリント配線板を作成した。
An inner layer circuit is formed on both sides of this copper foil with resin, and a 0.5 mm thick FR-4 inner layer circuit board which has been subjected to a blackening process is used as a core. They were stacked so that the surface was on the side of the inner layer circuit, and were molded under the same conditions as in Example 1 to obtain a multilayer board containing the inner layer circuit. Thereafter, a multilayer printed wiring board was prepared in the same steps as in Example 1.

【0044】このようにして得られた20μm厚さの外
層銅層の多層プリント配線板からの引き剥がし強さ(k
gf/cm)をJIS−C6481法により測定した。
得られた結果を表3に示す。比較例2 比較例1と同様の樹脂付きの銅箔を使用し、同様に成型
して内層回路入り多層板を作成した。次に、レーザ加工
前に穴開けする部分の銅箔に同じ直径の穴をエッチング
により形成し、以後、実施例1と同じ条件で加工して多
層プリント配線板を作成した。ただし外層銅層は除去し
なかった。
The peel strength (k) of the thus obtained outer copper layer having a thickness of 20 μm from the multilayer printed wiring board was measured.
gf / cm) was measured by JIS-C6481 method.
Table 3 shows the obtained results. Comparative Example 2 The same copper foil with resin as in Comparative Example 1 was used and molded in the same manner to form a multilayer board with an inner circuit. Next, a hole having the same diameter was formed in the portion of the copper foil to be drilled by etching before laser processing, and thereafter, processing was performed under the same conditions as in Example 1 to produce a multilayer printed wiring board. However, the outer copper layer was not removed.

【0045】このようにして得られたトータル銅層の厚
み38μmを有する外層回路の引き剥がし強さ(kgf
/cm)をJIS−C6481法により測定した。得ら
れた結果を表3に示す。
The peel strength (kgf) of the outer layer circuit having a thickness of 38 μm of the total copper layer thus obtained was obtained.
/ Cm) was measured by JIS-C6481 method. Table 3 shows the obtained results.

【0046】[0046]

【表3】 [Table 3]

【0047】表3に示すように、実施例1では比較例1
と比べて内層樹脂と外層回路の接着強度を高めることが
でき、かつ比較例2よりもファインな外層回路をエッチ
ング加工することができる。
As shown in Table 3, in Example 1, Comparative Example 1
In comparison with Comparative Example 2, the adhesive strength between the inner resin and the outer layer circuit can be increased, and the outer layer circuit finer than Comparative Example 2 can be etched.

【0048】[0048]

【発明の効果】本発明の多層プリント配線板の製造方法
によれば、従来の方法に比べて多層プリント配線板のレ
ーザによるバイアホール形成を容易に行うことができ、
かつ外層回路と絶縁樹脂との密着性が改善される。
According to the method for manufacturing a multilayer printed wiring board of the present invention, via holes can be easily formed by laser on the multilayer printed wiring board, as compared with the conventional method.
In addition, the adhesion between the outer layer circuit and the insulating resin is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の多層プリント配線板の製造工程を示
す図である。
FIG. 1 is a diagram showing a manufacturing process of a multilayer printed wiring board according to the present invention.

【図2】 本発明の多層プリント配線板の製造工程を示
す図である。
FIG. 2 is a diagram showing a manufacturing process of the multilayer printed wiring board of the present invention.

【符号の説明】[Explanation of symbols]

1:銅箔 2:アルカリ難溶性金属 3:熱硬化性樹脂層 4:内層回路 5:内層樹脂層 6:バイアホール 7:外層銅層 8:外層回路 9:レジストパターン 10:パッド 1: Copper foil 2: Alkali sparingly soluble metal 3: Thermosetting resin layer 4: Inner layer circuit 5: Inner layer resin layer 6: Via hole 7: Outer layer copper layer 8: Outer layer circuit 9: Resist pattern 10: Pad

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 銅箔の表面に、酸エッチング液に可溶で
あるがアルカリエッチング液に難溶であるアルカリ難溶
性金属を電着させた後、その表面に熱硬化性樹脂を塗布
し、該熱硬化性樹脂を加熱により半硬化状態にして複合
銅箔を形成し、該複合銅箔の樹脂側を接着面として、片
面または両面に内層回路を有する内層樹脂基板の片面ま
たは両面に配置した後加熱成型して積層し、アルカリエ
ッチングにより前記アルカリ難溶性金属層を選択的に残
して表面の銅箔を除去し、次いでレーザビームを照射し
て前記アルカリ難溶性金属層と前記熱硬化性樹脂層を同
時に穴開けして穴開き多層板(a)を製造した後、該多
層板上に銅層を形成して、内層回路と接続された外層回
路を形成することを特徴とする多層プリント配線板の製
造方法。
Claims: 1. An electrodepositive solution of a poorly alkali-soluble metal, which is soluble in an acid etching solution but hardly soluble in an alkali etching solution, is applied to the surface of a copper foil, and then a thermosetting resin is applied to the surface thereof. The thermosetting resin was heated to a semi-cured state to form a composite copper foil, and the resin side of the composite copper foil was placed on one or both sides of an inner layer resin substrate having an inner layer circuit on one or both sides as an adhesive surface. After heat molding and laminating, the copper foil on the surface is selectively removed by alkali etching while leaving the alkali-insoluble metal layer selectively, and then the alkali-soluble metal layer and the thermosetting resin are irradiated with a laser beam. Forming a perforated multilayer board (a) by simultaneously perforating layers, forming a copper layer on the perforated multilayer board, and forming an outer layer circuit connected to the inner layer circuit; Plate manufacturing method.
【請求項2】 前記穴開き多層板(a)上に銅層を形成
し、次いでレジストを塗布した後レジストパターンを形
成した後、酸エッチングし、外層銅層およびアルカリ難
溶性金属の一部を除去して、外層回路を形成することを
特徴とする請求項1に記載の多層プリント配線板の製造
方法。
2. A copper layer is formed on the perforated multilayer board (a), a resist is applied, a resist pattern is formed, and then an acid etching is performed to remove the outer layer copper layer and a part of the alkali poorly soluble metal. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein the outer layer circuit is formed by removing.
【請求項3】 前記穴開き外層板(a)上にレジストを
塗布した後レジストパターンを形成し、銅層をレジスト
パターン間および穴開けした樹脂表面に形成し、次いで
レジストパターンを除去した後に酸エッチングしてアル
カリ難溶性金属層を除去して、内層回路と接続された外
層回路を形成することを特徴とする請求項1に記載の多
層プリント配線板の製造方法。
3. A resist pattern is formed after applying a resist on the perforated outer layer plate (a), a copper layer is formed between the resist patterns and on the surface of the perforated resin, and after removing the resist pattern, an acid is formed. 2. The method according to claim 1, wherein the outer layer circuit connected to the inner layer circuit is formed by removing the hardly soluble alkali metal layer by etching.
【請求項4】 前記銅箔のアルカリ難溶性金属が電着さ
れる面の粗度Rzが0.5〜15μmであることを特徴
とする請求項1に記載の方法。
4. The method according to claim 1, wherein a roughness Rz of a surface of the copper foil on which the poorly alkali-soluble metal is electrodeposited is 0.5 to 15 μm.
【請求項5】 前記銅箔の厚さが5〜100μm、アル
カリ難溶性金属層の厚さが0.005〜3.0μmであ
ることを特徴とする請求項1ないし4のいずれかに記載
の方法。
5. The method according to claim 1, wherein the copper foil has a thickness of 5 to 100 μm, and the alkali-refractory metal layer has a thickness of 0.005 to 3.0 μm. Method.
【請求項6】 前記アルカリ難溶性金属が錫、亜鉛−錫
合金、亜鉛−ニッケル合金および錫−銅合金からなるグ
ループから選ばれる1種であることを特徴とする請求項
1ないし5のいずれかに記載の方法。
6. The method according to claim 1, wherein the poorly soluble alkali metal is one selected from the group consisting of tin, a zinc-tin alloy, a zinc-nickel alloy, and a tin-copper alloy. The method described in.
【請求項7】 銅箔が電解銅箔または圧延銅箔であるこ
とを特徴とする請求項1ないし4のいずれかに記載の方
法。
7. The method according to claim 1, wherein the copper foil is an electrolytic copper foil or a rolled copper foil.
【請求項8】 前記複合銅箔のアルカリ難溶性金属層上
にさらにクロメート層を設けたことを特徴とする請求項
1ないし5のいずれかに記載の方法。
8. The method according to claim 1, wherein a chromate layer is further provided on the hardly-soluble alkali metal layer of the composite copper foil.
【請求項9】 前記熱硬化性樹脂層のかわりに、熱硬化
性樹脂を繊維基材に含浸したプリプレグまたは熱硬化性
樹脂フィルムを用いることを特徴とする請求項1ないし
6のいずれかに記載の方法。
9. A prepreg or a thermosetting resin film in which a thermosetting resin is impregnated into a fiber base material is used instead of the thermosetting resin layer. the method of.
【請求項10】 請求項1に記載の方法によって製造さ
れた多層プリント配線板。
10. A multilayer printed wiring board manufactured by the method according to claim 1.
JP668399A 1998-01-14 1999-01-13 Manufacturing method of multilayer printed wiring board Expired - Fee Related JP3815765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP668399A JP3815765B2 (en) 1998-01-14 1999-01-13 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-17784 1998-01-14
JP1778498 1998-01-14
JP668399A JP3815765B2 (en) 1998-01-14 1999-01-13 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH11274721A true JPH11274721A (en) 1999-10-08
JP3815765B2 JP3815765B2 (en) 2006-08-30

Family

ID=26340882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP668399A Expired - Fee Related JP3815765B2 (en) 1998-01-14 1999-01-13 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3815765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043201A (en) * 2006-10-24 2007-02-15 Fujitsu Ltd Method for manufacturing multilayer wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165265B2 (en) * 2007-03-23 2013-03-21 日本メクトロン株式会社 Manufacturing method of multilayer printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043201A (en) * 2006-10-24 2007-02-15 Fujitsu Ltd Method for manufacturing multilayer wiring board

Also Published As

Publication number Publication date
JP3815765B2 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
KR100535770B1 (en) Method for producing multi-layer printed wiring boards having blind vias
EP0948247B1 (en) Method For Making A Multi-Layer Printed Wiring Board
JP4656209B2 (en) Metal foil with resin, metal-clad laminate, printed wiring board using the same, and manufacturing method thereof
JP3142270B2 (en) Manufacturing method of printed wiring board
JPWO2002024444A1 (en) Copper foil for high-density ultra-fine wiring boards
US6548153B2 (en) Composite material used in making printed wiring boards
EP1102524A1 (en) Double-sided printed wiring board and method for manufacturing multilayer printed wiring board having three or more layers
JP4032712B2 (en) Method for manufacturing printed wiring board
JP2003304068A (en) Resin-attached metal foil for printed wiring board and multilayer printed wiring board using the same
US6884944B1 (en) Multi-layer printed wiring boards having blind vias
JP4407680B2 (en) Copper foil with resin, printed wiring board using the same, and manufacturing method thereof
JP3815765B2 (en) Manufacturing method of multilayer printed wiring board
JP4240243B2 (en) Manufacturing method of build-up multilayer wiring board
JP2008258309A (en) Punching method for printed circuit board, and printed circuit board
JPH0243358B2 (en)
JP2003243810A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern
JP2000036662A (en) Manufacture of build-up multilayer interconnection board
JP3615973B2 (en) Novel composite foil and manufacturing method thereof, copper-clad laminate
JP2003051657A (en) Method for manufacturing printed circuit substrate having ultra fine wiring pattern
JP2005191080A (en) Laminate plate and multilayer printed circuit board using it and these manufacturing method
JP4978820B2 (en) Manufacturing method of high-density printed wiring board.
JP2003017835A (en) Method of manufacturing printed wiring board with ultra fine wire pattern
JPH07263870A (en) Method for manufacturing wiring board
JP2005216902A (en) Method of manufacturing printed circuit board and printed circuit board
JP2003243808A (en) Method of manufacturing printed wiring board equipped with very fine wire pattern

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140616

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees