JPH11273683A - Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture - Google Patents

Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture

Info

Publication number
JPH11273683A
JPH11273683A JP10070620A JP7062098A JPH11273683A JP H11273683 A JPH11273683 A JP H11273683A JP 10070620 A JP10070620 A JP 10070620A JP 7062098 A JP7062098 A JP 7062098A JP H11273683 A JPH11273683 A JP H11273683A
Authority
JP
Japan
Prior art keywords
copper foil
negative electrode
current collector
secondary battery
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10070620A
Other languages
Japanese (ja)
Other versions
JP3581784B2 (en
Inventor
Toshio Tani
俊夫 谷
Ryoichi Oguro
了一 小黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Circuit Foil Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP07062098A priority Critical patent/JP3581784B2/en
Publication of JPH11273683A publication Critical patent/JPH11273683A/en
Application granted granted Critical
Publication of JP3581784B2 publication Critical patent/JP3581784B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide copper foil for the negative electrode current collector of a nonaqueous solvent secondary battery having a large battery capacity when discharged for the first time and being excellent in charge/discharge cycle life, particularly an Li ion secondary battery, and a method for manufacturing the same. SOLUTION: This copper foil has the inverse number (1/C) of an electric double layer capacity on at least one side of the copper foil being 0.1 to 0.3 cm<2> /μF, and is manufactured by dipping either degreased rolled copper coil or electrolytic copper foil, which is water washed and dried after electrolytic foiling, either in a solution obtained by dissolving at least triazoles in a solvent or in an aqueous solution obtained by dissolving in water at least one kind selected from the group consisting of chromium trioxide, chromates, and bichromates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水溶媒二次電池の
負極集電体用銅箔とその製造方法に関し、更に詳しく
は、例えばジェリーロール型Liイオン二次電池の負極
集電体として用いると、当該電池の充放電特性を向上さ
せることができる銅箔とそれを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery and a method for producing the same. And a copper foil capable of improving the charge / discharge characteristics of the battery and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、各種の電気・電子機器の駆動
電源としてはニッケル・カドミウム二次電池に代表され
る水系電解液を用いた二次電池が多用されている。しか
しながら、水系電解液を用いた二次電池は、作動電圧が
ある一定値を超えると電解液が分解してしまうため、一
般にその起電力は低く、またエネルギー密度も低く、例
えば今後の需要増が予想される電気自動車用の電源のよ
うに高出力を長時間持続させる分野の電源としては問題
がある。更に、例えばニッケル・カドミウム二次電池の
場合には、カドミウムによる環境汚染の問題も懸念され
ている。
2. Description of the Related Art Conventionally, secondary batteries using an aqueous electrolyte typified by nickel-cadmium secondary batteries have been widely used as driving power sources for various electric and electronic devices. However, in a secondary battery using an aqueous electrolyte, when the operating voltage exceeds a certain value, the electrolyte is decomposed, so that the electromotive force is generally low, and the energy density is also low. There is a problem as a power source in a field that maintains a high output for a long time, such as a power source for an expected electric vehicle. Furthermore, in the case of a nickel-cadmium secondary battery, for example, there is a concern about environmental pollution due to cadmium.

【0003】このようなことから、最近では、非水電解
液を用いた二次電池の研究開発が進められている。この
非水電解液を用いた二次電池(以後、非水溶媒二次電池
という)は、一般に、起電力は高く、またエネルギー密
度も高いという特徴を備えており、その代表例としてL
i二次電池が開発され、その実用化が進んでいる。この
Li二次電池のうち、負極にLi箔を用いたものは充放
電サイクル寿命が短く、短時間で電池容量は低下し、ま
た安全性の点でも不安が残るとされ、結局、実用化には
至っておらず、実用化されているのはLiイオン二次電
池である。
[0003] Under such circumstances, research and development of a secondary battery using a non-aqueous electrolyte has recently been promoted. A secondary battery using this non-aqueous electrolyte (hereinafter referred to as a non-aqueous solvent secondary battery) is generally characterized by a high electromotive force and a high energy density.
i-secondary batteries have been developed and are being put to practical use. Among these Li secondary batteries, those using Li foil for the negative electrode have a short charge-discharge cycle life, decrease the battery capacity in a short time, and remain uneasy in terms of safety. However, a Li-ion secondary battery has been put to practical use.

【0004】このLiイオン二次電池は、一般に、後述
する正極と同じく後述する負極の間に電気絶縁性と保液
性を備えたセパレータを介装して成る電極群を負極端子
も兼ねる電池缶の中に所定の非水電解液と一緒に収容
し、前記電池缶の開口部を、正極端子を備えた封口板で
絶縁性のガスケットを介して密閉した構造になってい
て、これはジェリーロール型構造とも呼ばれている。
In general, this Li-ion secondary battery has a battery can which also serves as a negative electrode terminal and an electrode group formed by interposing a separator having electrical insulation and liquid retaining properties between a positive electrode described later and a negative electrode described later. And a predetermined non-aqueous electrolyte solution, and the opening of the battery can is sealed with a sealing plate provided with a positive electrode terminal through an insulating gasket. Also called type structure.

【0005】ここで、正極は、次のようにして製造され
ている。まず、正極活物質として機能する例えばLiC
oO2粉末と、例えばカーボンブラックや黒鉛粉末のよ
うな導電材と、例えばPVDFのような結着剤とを例え
ばN−メチルピロリドンのような非水溶媒で混練して所
定組成の正極合剤ペーストを調製する。ついで、このペ
ーストの所定量を、正極集電体として機能する例えばア
ルミニウム箔の両面に塗着し、乾燥したのちプレス成形
して、所定厚みの正極シートを製造する。そして、その
正極シートの所定箇所にリードが取り付けられて正極と
なる。
Here, the positive electrode is manufactured as follows. First, for example, LiC that functions as a positive electrode active material
A positive electrode mixture paste having a predetermined composition obtained by kneading oO 2 powder, a conductive material such as carbon black or graphite powder, and a binder such as PVDF with a non-aqueous solvent such as N-methylpyrrolidone Is prepared. Next, a predetermined amount of the paste is applied to both surfaces of, for example, an aluminum foil functioning as a positive electrode current collector, dried, and then press-formed to produce a positive electrode sheet having a predetermined thickness. Then, a lead is attached to a predetermined portion of the positive electrode sheet to form a positive electrode.

【0006】一方、負極は次のようにして製造されてい
る。まず、Liイオンの挿入(放電時)と脱離(充電
時)のフィールドとして機能する例えば黒鉛粉末や無定
形炭素粉末と、例えばPVDFのような結着剤とを例え
ばN−メチルピロリドンのような非水溶媒で混練して負
極合剤ペーストを調製する。
On the other hand, the negative electrode is manufactured as follows. First, for example, graphite powder or amorphous carbon powder that functions as a field for insertion (during discharge) and desorption (during charging) of Li ions and a binder such as PVDF are mixed with N-methylpyrrolidone or the like. A negative electrode mixture paste is prepared by kneading with a non-aqueous solvent.

【0007】ついで、このペーストの所定量を負極集電
体として機能する例えば銅箔の両面に塗着し、乾燥した
のちプレス成形して所定厚みの負極シートにする。そし
て、その所定箇所にリードが取り付けられて負極とな
る。ここで、負極の集電体として一般に銅箔が採用され
ているのは次の理由による。すなわち、銅箔は導電性が
優れているので集電能が高く、またその機械的強度も高
いので電極群の製造時に取り扱いやすく、そして、充放
電の過程で出入りするLiイオンとの間で合金を生成し
ないからである。更には、銅箔は低コストで薄膜にする
ことができ、かつ大容量電池の製造にとって必要な広幅
な集電体であっても、それは電解銅箔として容易に製造
できることも負極集電体として銅箔が採用される大きな
理由である。
Next, a predetermined amount of the paste is applied to both surfaces of, for example, a copper foil functioning as a negative electrode current collector, dried, and then pressed to form a negative electrode sheet having a predetermined thickness. Then, a lead is attached to the predetermined location to form a negative electrode. Here, copper foil is generally adopted as the current collector of the negative electrode for the following reason. In other words, the copper foil has a high conductivity because of its excellent electrical conductivity, and its mechanical strength is also high, so that it is easy to handle at the time of manufacturing an electrode group, and an alloy is formed between Li ions coming and going in the process of charging and discharging. It is not generated. Furthermore, copper foil can be made into a thin film at low cost, and even if it is a wide current collector required for the production of a large capacity battery, it can be easily produced as an electrolytic copper foil. This is a major reason copper foil is used.

【0008】[0008]

【発明が解決しようとする課題】ところで、Liイオン
二次電池を代表例とする非水溶媒二次電池に対しても、
最近では、更なる高エネルギー密度化と充放電サイクル
寿命の長期化への要望が強まり、それに対応すべく研究
が進められている。このような動向の中で、負極集電体
として銅箔を用いた場合の電池特性に関して、最近、次
のようなことが問題となっている。
By the way, a non-aqueous solvent secondary battery represented by a Li-ion secondary battery is also considered.
Recently, there has been an increasing demand for higher energy density and a longer charge / discharge cycle life, and research is being conducted to meet the demand. Under such a trend, the following has recently become a problem regarding battery characteristics when a copper foil is used as a negative electrode current collector.

【0009】第1の問題は、前記した負極合剤ペースト
の組成が異なると、集電体として同一の仕様の銅箔を用
いているにもかかわらず、組み立てられた電池の特性が
異なってくるという事実である。第2の問題は、負極合
剤ペーストの組成が同じである場合には、厚み以外の仕
様が異なる銅箔を用いると同じく電池特性が異なってく
るという事実である。
The first problem is that if the composition of the above-mentioned negative electrode mixture paste is different, the characteristics of the assembled battery will be different even though copper foil of the same specification is used as the current collector. That is the fact. The second problem is the fact that when the composition of the negative electrode mixture paste is the same, the use of copper foils having different specifications other than the thickness results in different battery characteristics.

【0010】とくに、電池にとって最も重要な特性であ
る充放電サイクル寿命特性と充電初期の電池容量は、負
極集電体である銅箔の仕様によっては低下することもあ
り、このような問題を起こさない銅箔の提供が要求され
ている。本発明は、非水溶媒二次電池の負極集電体とし
て銅箔を用いたときにおける当該銅箔の上記した問題を
解決し、負極合剤ペーストの組成が変化した場合であっ
ても、優れた充放電サイクル寿命特性と高い電池容量の
保持を可能にする非水溶媒二次電池の負極集電体用電極
とその製造方法の提供を目的とする。
In particular, the charge-discharge cycle life characteristics and the battery capacity at the initial stage of charging, which are the most important characteristics for a battery, may be reduced depending on the specifications of the copper foil as the negative electrode current collector, and such a problem is caused. The provision of no copper foil is required. The present invention solves the above-described problems of the copper foil when the copper foil is used as the negative electrode current collector of the non-aqueous solvent secondary battery, even when the composition of the negative electrode mixture paste changes, excellent. It is an object of the present invention to provide an electrode for a negative electrode current collector of a non-aqueous solvent secondary battery capable of maintaining charge / discharge cycle life characteristics and high battery capacity, and a method of manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明者らは上記した目
的を達成するために鋭意研究を重ねる過程で、最初に、
銅箔の製箔工程に関する検討を加えた。まず、銅箔に
は、原料の溶解−インゴットの鋳造−インゴットの圧延
−得られた圧延箔の焼鈍・均質化の工程を経て得られる
圧延銅箔と、銅イオンを含む水溶液中で湿式電解して製
箔する電解銅箔の2種類がある。そして、製箔後の銅箔
は、その表面に例えば防錆油を薄く塗布して防錆皮膜と
する防錆処理が施されたのち保管され、出荷に向けた待
機状態に置かれている。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to achieve the above-mentioned object.
A study on the copper foil making process was added. First, the copper foil, the raw material melting-casting of the ingot-rolling of the ingot-rolled copper foil obtained through the process of annealing and homogenization of the obtained rolled foil, and wet electrolysis in an aqueous solution containing copper ions. There are two types of electrolytic copper foil to make foil. Then, the copper foil after the foil making is stored after being subjected to a rust-preventive treatment for forming a rust-preventive film by thinly applying a rust-preventive oil, for example, to the surface thereof, and placed in a standby state for shipment.

【0012】したがって、電池の負極製造時には、上記
したような状態にある銅箔が負極集電体として製造ライ
ンに供給され、その表面に負極合剤ペーストが塗着され
ることになる。ところで、上記した防錆皮膜は通常電気
絶縁性である。そして、製造された負極の場合、銅箔の
表面に担持されている負極合剤の中の導電材を媒介にし
て電池反応によって得られた電流が銅箔表面から集電さ
れるのであるから、仮に防錆性の問題を捨象すれば、こ
の防錆皮膜の存在は電池特性を阻害する因子になり、除
去すべきことになる。
Therefore, when a negative electrode of a battery is manufactured, the copper foil in the above-described state is supplied to a manufacturing line as a negative electrode current collector, and the negative electrode mixture paste is applied to the surface thereof. By the way, the above-mentioned rust prevention film is usually electrically insulating. And, in the case of the manufactured negative electrode, the current obtained by the battery reaction through the conductive material in the negative electrode mixture supported on the surface of the copper foil is collected from the copper foil surface, If the problem of rust prevention properties is neglected, the presence of this rust prevention film becomes a factor inhibiting battery characteristics and should be removed.

【0013】しかしながら、この防錆皮膜を除去したと
しても、次のような問題がある。すなわち、製箔された
銅箔はすべからくその表面が活性であって、その表面に
は、大気中や水中において厚みが10〜50Å程度の電
気絶縁性の酸化皮膜が容易に形成されてしまうことであ
る。したがって、銅箔を負極集電体として使用する場
合、当該銅箔の表面には、不可避的にある厚みの誘電体
層が形成されていることになる。そして、その誘電体層
の厚みの大小により、当該銅箔の集電能、ひいては電池
特性は影響を受けるものと考えられる。
However, even if this rust-preventive film is removed, there are the following problems. That is, the surface of the produced copper foil is active at all times, and the surface thereof is easily formed with an electrically insulating oxide film having a thickness of about 10 to 50 ° in the air or water. is there. Therefore, when a copper foil is used as a negative electrode current collector, a dielectric layer having a certain thickness is inevitably formed on the surface of the copper foil. It is considered that the current collecting ability of the copper foil, and eventually the battery characteristics are affected by the thickness of the dielectric layer.

【0014】そこで、本発明者らは、上記した銅箔表面
の誘電体層の厚みを確認する手段に付き探索した結果、
電気二重層容量(C:μF)を測定し、一般に知られて
いる次式: A/C=A・d+B ……(1) (dは銅箔表面に形成されている電気二重層の厚み、
A,Bは定数)に基づいて当該誘電体層の厚みを把握で
きるということを着想した。
Therefore, the present inventors have searched for means for confirming the thickness of the dielectric layer on the surface of the copper foil, and as a result,
The electric double layer capacity (C: μF) is measured, and the following formula is generally known: A / C = A · d + B (1) (d is the thickness of the electric double layer formed on the copper foil surface,
(A and B are constants) based on the idea that the thickness of the dielectric layer can be grasped.

【0015】そして、本発明者らは、この誘電体層の厚
み(d)と電池特性との関係を調べて初回充電容量と充
放電サイクル寿命の向上にとって適切な厚み(d)を把
握し、更には銅箔の表面粗さも電池特性の向上にとって
重要な因子であることを把握することにより、本発明を
開発するに至った。すなわち、本発明の非水溶媒二次電
池の負極集電体用銅箔は、少なくとも片面における電気
二重層容量の逆数(1/C)が、0.1〜0.3cm2/μF
であることを特徴とし、両面の表面粗さが、JISB0
601で規定する10点平均粗さ(Rz)で2.5μm
以下であることを好適とする。
The present inventors have examined the relationship between the thickness (d) of the dielectric layer and the battery characteristics, and have found the thickness (d) suitable for improving the initial charge capacity and the charge / discharge cycle life. Further, the present inventors have developed the present invention by grasping that the surface roughness of the copper foil is also an important factor for improving the battery characteristics. That is, the reciprocal (1 / C) of the electric double layer capacity on at least one side of the copper foil for a negative electrode current collector of the nonaqueous solvent secondary battery of the present invention has a value of 0.1 to 0.3 cm 2 / μF.
Characterized in that the surface roughness of both surfaces is JIS B0
2.5 μm in 10-point average roughness (Rz) specified in 601
It is preferable that the following is true.

【0016】また、本発明においては、脱脂後の圧延銅
箔または電解製箔後に水洗・乾燥処理を施して成る電解
銅箔を、少なくともトリアゾール類を溶媒に溶解して成
るpH5〜8.5の溶液に浸漬することを特徴とする非
水溶媒二次電池の負極集電体用銅箔の製造方法、また
は、脱脂後の圧延銅箔または電解製箔後に水洗、ないし
は水洗・乾燥処理を施して成る電解銅箔を、三酸化クロ
ム,クロム酸塩,重クロム酸塩の群から選ばれる少なく
とも1種を水に溶解して成る水溶液に浸漬することを特
徴とする非水溶媒二次電池の負極集電体用銅箔の製造方
法が提供される。
In the present invention, the degreased rolled copper foil or the electrolytic copper foil obtained by subjecting the electrolytic foil to rinsing and drying treatment is then used to form a solution having a pH of 5 to 8.5 obtained by dissolving at least a triazole in a solvent. A method for producing a copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery characterized by being immersed in a solution, or washing with rolled copper foil or electrolytic foil after degreased, or subjected to water washing and drying treatment. Negative electrode for a non-aqueous solvent secondary battery, characterized in that the electrolytic copper foil is immersed in an aqueous solution obtained by dissolving at least one selected from the group consisting of chromium trioxide, chromate and dichromate in water. A method for producing a copper foil for a current collector is provided.

【0017】[0017]

【発明の実施の形態】まず、本発明の銅箔について説明
する。この銅箔を製造するための素材は、圧延銅箔,電
解銅箔のいずれであってもよい。電解銅箔の場合には、
低コストで広幅なものを製箔できるので、電極面積を大
きくすることが必要な例えば電気自動車用電池の負極集
電体として使用することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the copper foil of the present invention will be described. The material for producing this copper foil may be any of a rolled copper foil and an electrolytic copper foil. In case of electrolytic copper foil,
Since a wide product can be made at low cost, it can be used as a negative electrode current collector of a battery for an electric vehicle, for example, which requires a large electrode area.

【0018】この銅箔の表面に形成されている誘電体層
の厚みは、市販の直読式電気二重層容量測定器で銅箔表
面の電気二重層容量を測定し、(1)式で示したよう
に、その逆数値(1/C)として算出される。本発明の
銅箔においては、この1/C値が0.1〜0.3cm2/μF
の範囲内に設定される。1/C値が0.1cm2/μFよりも
小さい値として計測される誘電体層が形成される銅箔の
場合は、負極集電体として実使用する前段における保管
や搬送時に、表面の酸化や変色、スポット錆などが発生
して使用不能になる。また1/C値が0.3cm2/μFより
大きくなる銅箔は、負極集電体としての集電能を低める
とともに、セパレータを介した正極・負極合剤中で進行
するLiイオンの吸蔵・脱離反応も低下させ、結局、電
池の充放電サイクル寿命特性と初回充電時の電池容量を
低下させることになる。
The thickness of the dielectric layer formed on the surface of the copper foil was determined by measuring the electric double layer capacitance on the surface of the copper foil using a commercially available direct-reading electric double layer capacitance measuring instrument and expressed by the following equation (1). Thus, it is calculated as its reciprocal value (1 / C). In the copper foil of the present invention, the 1 / C value is 0.1 to 0.3 cm 2 / μF.
Is set within the range. In the case of a copper foil on which a dielectric layer is formed whose 1 / C value is measured as a value smaller than 0.1 cm 2 / μF, the surface is oxidized during storage or transport before the actual use as a negative electrode current collector. And discoloration, spot rust, etc. occur, making it unusable. Further, the copper foil having a 1 / C value larger than 0.3 cm 2 / μF reduces the current collecting ability as a negative electrode current collector, and inserts / desorbs Li ions progressing in the positive electrode / negative electrode mixture through a separator. The separation reaction is also reduced, and eventually, the charge / discharge cycle life characteristics of the battery and the battery capacity at the time of the first charge are reduced.

【0019】なお、上記誘電体層は、正常な銅箔表面の
場合にも不可避的に成膜されている極めて薄い酸化皮膜
と、後述する防錆処理時に前記酸化皮膜の上に形成され
る有機誘電体皮膜または無機誘電体皮膜との積層構造に
なっている。その場合、前記酸化皮膜だけの場合には、
その1/C値は0.05cm2/μF程度の値として計測され
る。
The dielectric layer has an extremely thin oxide film inevitably formed even on a normal copper foil surface, and an organic film formed on the oxide film at the time of rust prevention treatment described later. It has a laminated structure with a dielectric film or an inorganic dielectric film. In that case, in the case of only the oxide film,
The 1 / C value is measured as a value of about 0.05 cm 2 / μF.

【0020】また、本発明の銅箔の表面粗さは、JIS
B0601で規定する10点平均粗さ(Rz)で2.5
μm以下であることが好適である。そのような銅箔は、
後述する防錆処理時に前記した誘電体皮膜を薄く均一な
厚みで形成することができ、しかもその上に担持される
負極合剤も均一となって負極全体としての集電能を高め
ることができ、もって電池の充放電サイクル寿命特性と
初回充電時の電池容量が向上するからである。
Further, the surface roughness of the copper foil of the present invention is determined according to JIS.
2.5-point average roughness (Rz) specified in B0601
It is preferable that it is not more than μm. Such copper foil is
The dielectric film described above can be formed with a thin and uniform thickness at the time of rust prevention treatment described below, and the negative electrode mixture carried thereon can be uniform, and the current collecting ability of the entire negative electrode can be increased, This is because the charge-discharge cycle life characteristics of the battery and the battery capacity at the time of the first charge are improved.

【0021】この誘電体層は、一般に、銅箔の両面に形
成されるが、電池の製造工程、負極としての形態や使用
目的との関係で片面だけであってよい。しかしながら、
ジェリーロール型構造の二次電池の正極、負極の場合に
は、いずれも各集電体の両面に活物質が担持された構造
になっているので、負極集電体であるこの銅箔の場合
は、その両面に上記したような誘電体層が形成されてい
ることをもって好適とする。
The dielectric layer is generally formed on both sides of the copper foil, but may be formed on only one side in consideration of the battery manufacturing process, the form of the negative electrode, and the purpose of use. However,
In the case of a positive electrode and a negative electrode of a jelly roll type secondary battery, since both have a structure in which an active material is supported on both surfaces of each current collector, in the case of this copper foil which is a negative electrode current collector It is preferable that the above-mentioned dielectric layer is formed on both surfaces thereof.

【0022】なお、対象とする電池がジェリーロール型
構造である場合には用いる銅箔の厚みは薄ければ薄いほ
ど全体としての電極面積が大きくなり、また、上記した
表面粗さを小さくできるので、高エネルギー密度化や充
放電サイクル寿命特性にとって有利である。例えば、携
帯用の電気・電子機器用の電池には、銅箔の厚みを20
μm以下にすることが好ましく、また電気自動車用など
の大型電池の場合でも50μm以下にすることが好まし
い。
When the target battery has a jelly-roll type structure, the thinner the copper foil used, the larger the electrode area as a whole, and the above-mentioned surface roughness can be reduced. This is advantageous for high energy density and charge / discharge cycle life characteristics. For example, a battery for a portable electric / electronic device has a copper foil thickness of 20 mm.
μm or less, and preferably 50 μm or less even in the case of large batteries for electric vehicles and the like.

【0023】しかしながら、銅箔の厚みをあまり薄くす
ると、その機械的強度が低下し、またピンホールなども
多くなってくるので、実使用に耐え得る銅箔としての厚
みの下限は、通常、7μm程度にする。次に、本発明の
銅箔の製造方法について説明する。まず、第1の製造方
法は、脱脂後の圧延銅箔または電解銅箔後に水洗・乾燥
処理を施して成る電解銅箔を、少なくともトリアゾール
類を溶媒に溶解して成るpH5〜8.5の溶液に浸漬す
ることにより、既に形成されている酸化皮膜の上に更に
有機誘電体皮膜を形成する方法である。
However, if the thickness of the copper foil is too small, the mechanical strength of the copper foil is reduced and the number of pinholes is increased. Therefore, the lower limit of the thickness of the copper foil that can withstand actual use is usually 7 μm. About. Next, the method for producing a copper foil of the present invention will be described. First, a first production method is a method of dissolving a rolled copper foil or an electrolytic copper foil after degreased, followed by washing and drying, followed by dissolving at least a triazole in a solvent at a pH of 5 to 8.5. This is a method in which an organic dielectric film is further formed on an already formed oxide film by immersion in the film.

【0024】トリアゾール類としては、ベンゾトリアゾ
ール(BTA)やトリルトリアゾール(TTA)などを
好適例とするが、銅に対して防錆効果を有する各種の有
機防錆材,チアゾール類,イミダゾール類,メルカプタ
ン類,トルエタノールアミンなども使用することができ
る。用いる溶媒としては、水の外に、アルコール類や他
の有機溶媒であってもよいが、形成される有機誘電体皮
膜の均一性と量産時における厚み制御が行いやすく、ま
た簡便であり、更には環境への影響などのことを考える
と、脱イオン水を主体とする水であることが好ましい。
Preferred examples of the triazole include benzotriazole (BTA) and tolyltriazole (TTA). Various organic rust preventives having a rust-preventing effect on copper, thiazoles, imidazoles, mercaptan , Toluethanolamine and the like can also be used. As the solvent to be used, in addition to water, alcohols or other organic solvents may be used, but the uniformity of the formed organic dielectric film and the thickness control during mass production are easy to perform, and it is also simple. Considering the effect on the environment, it is preferable that the water is mainly deionized water.

【0025】前記トリアゾール類の溶解濃度は、形成す
る有機誘電体皮膜の厚みや処理可能時間との関係で適宜
に決められるが、通常、0.005〜1重量%程度であ
ればよい。また、溶液の温度は室温であればよいが、必
要に応じては加温して使用してもよい。また、用いる溶
液のpH値は5〜8.5に設定される。pH値が5より
小さくなると、不可避的に生成される酸化皮膜も溶解除
去されやすくなり、安定な有機誘電体皮膜の形成を妨げ
る結果となり、また8.5より大きくなると酸化銅を生
成させる可能性が高まり、酸化皮膜を更に厚く形成して
かえって安定な有機誘電体皮膜の形成を妨げる結果とな
ってしまうからである。
The dissolution concentration of the triazole is appropriately determined depending on the thickness of the organic dielectric film to be formed and the processable time, but is usually about 0.005 to 1% by weight. Further, the temperature of the solution may be room temperature, but it may be heated if necessary. The pH value of the solution to be used is set at 5 to 8.5. If the pH value is lower than 5, the oxide film that is inevitably generated is easily dissolved and removed, which results in preventing the formation of a stable organic dielectric film. If the pH value is higher than 8.5, copper oxide may be generated. This increases the thickness of the oxide film, thereby preventing formation of a stable organic dielectric film.

【0026】溶液への銅箔の浸漬時間は、トリアゾール
類の溶解濃度や形成する有機誘電体皮膜の厚みとの関係
で適宜に決められるが、通常、0.5〜30秒程度であ
ればよい。第2の製造方法は、脱脂後の圧延銅箔または
電解製箔後に水洗、ないしは水洗・乾燥処理を施して成
る電解銅箔を、三酸化クロム,クロム酸塩,重クロム酸
塩の群から選ばれる少なくとも1種を水に溶解して成る
水溶液に浸漬することにより、既に形成されている酸化
皮膜の上に更にクロムの水和酸化物を主体とする無機誘
電体皮膜を形成する方法である。
The immersion time of the copper foil in the solution is appropriately determined depending on the dissolution concentration of the triazoles and the thickness of the organic dielectric film to be formed, but is usually about 0.5 to 30 seconds. . In the second production method, a rolled copper foil after degreasing or electrolytic copper foil is washed with water or subjected to a water washing and drying treatment to select an electrolytic copper foil from the group of chromium trioxide, chromate, and dichromate. In this method, at least one of the chromium hydrated oxides is further formed on the already formed oxide film by immersing at least one of the oxidized films in an aqueous solution of water.

【0027】ここで、クロム酸塩としては例えばクロム
酸カリウムやクロム酸ナトリウムを好適とし、また重ク
ロム酸塩としては例えば重クロム酸カリウムや重クロム
酸ナトリウムを好適とする。そして、その溶解濃度は、
通常、0.1〜10重量%に設定され、また液温は室温
〜60℃程度でよい。水溶液のpH値は、酸性領域から
アルカリ性領域まで格別限定されるものではないが、通
常、1〜12に設定される。
The chromate is preferably, for example, potassium chromate or sodium chromate, and the dichromate is, for example, potassium dichromate or sodium dichromate. And the dissolution concentration is
Usually, it is set to 0.1 to 10% by weight, and the liquid temperature may be room temperature to about 60 ° C. The pH value of the aqueous solution is not particularly limited from the acidic region to the alkaline region, but is usually set to 1 to 12.

【0028】また、銅箔の浸漬時間は、形成する無機誘
電体皮膜の厚みなどにより適宜に選定される。このよう
にして、第1の製造方法では、銅箔表面に既に形成され
ている酸化皮膜の上に有機誘電体皮膜が成膜され、また
第2の製造方法では、クロメート層またはその水和物層
を主体とする無機誘電体皮膜が成膜される。
The immersion time of the copper foil is appropriately selected depending on the thickness of the inorganic dielectric film to be formed. Thus, in the first manufacturing method, the organic dielectric film is formed on the oxide film already formed on the copper foil surface, and in the second manufacturing method, the chromate layer or its hydrate is formed. A layer-based inorganic dielectric film is formed.

【0029】第1の製造方法で成膜された有機誘電体皮
膜は、前記した酸化皮膜を介して銅箔表面と結合してい
るので銅と直接結合して成膜された例えば有機キレート
皮膜の場合に比べてその電気二重層容量は安定な状態に
なっている。そして、第1の製造方法においても、第2
の製造方法においても、最上層に位置する皮膜の直下に
位置する酸化皮膜(第1の製造方法の場合)や水和酸化
物層(第2の製造方法の場合)が、銅箔環境において柔
軟な保湿効果を発揮し、最上層の皮膜とともに負極活物
質の上にパッシベーション皮膜を形成し、もって充放電
サイクル寿命特性が向上するものと考えられる。
Since the organic dielectric film formed by the first manufacturing method is bonded to the copper foil surface via the above-mentioned oxide film, it is directly bonded to copper to form an organic chelate film. The electric double layer capacity is more stable than in the case. And also in the first manufacturing method, the second
In the production method of (1), the oxide film (in the case of the first production method) or the hydrated oxide layer (in the case of the second production method) located immediately below the film located on the uppermost layer is flexible in a copper foil environment. It is considered that a good moisturizing effect is exhibited, and a passivation film is formed on the negative electrode active material together with the uppermost film, thereby improving the charge-discharge cycle life characteristics.

【0030】[0030]

【実施例】実施例1〜14,比較例1〜4 (1)銅箔の製造 熱間圧延後の純銅板に、中間焼鈍を反復して施し、途
中、溶剤脱脂と硫酸水溶液による酸洗・研磨を行い、更
に充分な水洗を行ったのち最終仕上げ圧延により表1で
示した厚みの圧延銅箔にした。
EXAMPLES Examples 1 to 14 and Comparative Examples 1 to 4 (1) Production of copper foil Intermediate annealing was repeatedly applied to a pure copper plate after hot rolling, and during the process, solvent degreasing and pickling with a sulfuric acid aqueous solution were performed. After being polished and further sufficiently washed with water, final rolling was performed to obtain a rolled copper foil having a thickness shown in Table 1.

【0031】一方、硫酸100g/dm3,銅100g/dm3
塩素イオン30ppm,から成る水溶液に、要求される表
面粗さに対応してヒドロキシセルロースエーテル0〜1
0ppm,または3−メルカプト1−プロパンスルホン酸
ナトリウム0.5〜1.5ppm,にかわ0〜6ppmを添加し
て、浴温58℃,電流密度50A/dm2の条件で電解し、
Ti製回転ドラムの表面に銅を電着させ、連続的に巻き
取ることにより電解銅箔を製箔した。このとき、めっき
時間を変化させて表1で示した厚みにした。
On the other hand, sulfuric acid 100 g / dm 3 , copper 100 g / dm 3 ,
An aqueous solution consisting of 30 ppm of chloride ions is added to hydroxycellulose ether 0 to 1 in accordance with the required surface roughness.
0 ppm, or 0.5 to 1.5 ppm of sodium 3-mercapto 1-propanesulfonate, and 0 to 6 ppm of glue are added, and electrolysis is performed at a bath temperature of 58 ° C. and a current density of 50 A / dm 2 .
Copper was electrodeposited on the surface of the rotating drum made of Ti, and continuously rolled up to make an electrolytic copper foil. At this time, the plating time was changed to the thickness shown in Table 1.

【0032】ついで、これらの圧延銅箔と電解銅箔の両
面につき、小坂研究所製の表面粗さ計(サーフコーダS
E−30H)を用いて、Rz値を測定した。その結果を
表1に示した。また、これら圧延銅箔と電解銅箔に関し
ては、次のようにして防錆処理を施した。
Next, both surfaces of the rolled copper foil and the electrolytic copper foil were coated with a surface roughness meter (Surfcoder S) manufactured by Kosaka Laboratory.
Rz value was measured using E-30H). The results are shown in Table 1. The rolled copper foil and the electrolytic copper foil were subjected to a rustproofing treatment as follows.

【0033】なお、防錆処理に先立ち、圧延銅箔の場合
には、表面をトルエンなどを含む溶剤で洗浄する脱脂処
理を行い、電解銅箔の場合には、製箔後に充分な洗浄を
行い、乾燥したのち、巻き取る前に連続的に防錆処理を
施した。 有機誘電体皮膜の形成の場合:表1で示したトリアゾー
ル類で表示した濃度の水溶液を調製し、pH値を約5〜
6とし、室温下において前記水溶液に各銅箔を浸漬し
た。
Prior to the rust preventive treatment, in the case of rolled copper foil, the surface is subjected to a degreasing treatment in which the surface is washed with a solvent containing toluene or the like. After being dried, it was subjected to a rust-proof treatment continuously before winding. In the case of forming an organic dielectric film: an aqueous solution having a concentration indicated by triazoles shown in Table 1 was prepared, and the pH value was adjusted to about 5 to 5.
The copper foil was immersed in the aqueous solution at room temperature.

【0034】無機誘電体皮膜の形成の場合:表1で示し
た濃度のCrO3水溶液を調製し、室温下において前記
水溶液に各銅箔を浸漬した。 防錆処理を施した各銅箔の両面については、(株)北電
子製の直続式電気二重層容量測定器(連続10点自動測
定式)により、電解液としては0.1N硝酸カリウムを
用い、ステップ電流50μA/cm2の条件で電気二重層容
量を測定し、その逆数(1/C)を算出した。その結果
を表1に示した。
In the case of forming an inorganic dielectric film: A CrO 3 aqueous solution having a concentration shown in Table 1 was prepared, and each copper foil was immersed in the aqueous solution at room temperature. On both sides of each copper foil subjected to rust prevention treatment, a direct electric double layer capacity measuring device (continuous 10-point automatic measuring type) manufactured by Hokuden Co., Ltd., using 0.1N potassium nitrate as an electrolytic solution. The electric double layer capacity was measured under the conditions of a step current of 50 μA / cm 2 and the reciprocal (1 / C) was calculated. The results are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】(2)電池の製造 LiCoO2粉末90重量%,黒鉛粉末7重量%,ポリ
フッ化ビニリデン粉末3重量%を混合し、その混合物に
N−メチルピロリドンをエタノールに溶解して成る溶液
を添加して混練し、正極合剤ペーストを調製した。この
ペーストを、厚み15μmのアルミニウム箔に均一に塗
着したのちN2雰囲気中で乾燥してエタノールを揮散せ
しめ、ついでロール圧延を行って、全体の厚みが100
μmであるシートを成形した。そして、このシートを幅
43mm,長さ290mmに裁断したのち、その一端にアル
ミニウム箔のリード端子を超音波溶接して取り付け、正
極とした。
(2) Production of Battery 90% by weight of LiCoO 2 powder, 7% by weight of graphite powder and 3% by weight of polyvinylidene fluoride powder are mixed, and a solution obtained by dissolving N-methylpyrrolidone in ethanol is added to the mixture. And kneaded to prepare a positive electrode mixture paste. This paste was uniformly applied to a 15-μm-thick aluminum foil, dried in an N 2 atmosphere to volatilize ethanol, and then roll-rolled to a total thickness of 100 μm.
A sheet having a size of μm was formed. Then, the sheet was cut into a width of 43 mm and a length of 290 mm, and a lead terminal of an aluminum foil was attached to one end of the sheet by ultrasonic welding to obtain a positive electrode.

【0037】一方、負極を次のようにして製造した。ま
ず、負極製造に先立ち、表1で示した各銅箔を温度40
℃,相対湿度80%の大気雰囲気中に2日間放置して外
観検査を行い、異常のないものを負極用集電体として選
定した。なお、このときの外観検査の結果は表1に示し
た。次に、導電材として以下のような炭素材を用意し
た。
On the other hand, a negative electrode was manufactured as follows. First, prior to the production of the negative electrode, each copper foil shown in Table 1 was heated at a temperature of 40 ° C.
It was left standing in an air atmosphere at a temperature of 80 ° C. and a relative humidity of 80% for 2 days to perform an appearance inspection, and one having no abnormality was selected as a negative electrode current collector. The results of the appearance inspection at this time are shown in Table 1. Next, the following carbon materials were prepared as conductive materials.

【0038】炭素材1:平均粒径10μmの微細組織が
無配向である黒鉛粉末。 炭素材2:メソフェーズを黒鉛化した粉末(平均粒径1
0μm)。 炭素材3:多数の微細孔を有する難黒鉛化性炭素粉末
(平均粒径10μm)。 炭素材4:天然黒鉛粉末(平均粒径10μm)。
Carbon material 1: Graphite powder having an average particle size of 10 μm and a non-oriented fine structure. Carbon material 2: Mesophase graphitized powder (average particle size 1
0 μm). Carbon material 3: Non-graphitizable carbon powder having a large number of micropores (average particle size: 10 μm). Carbon material 4: natural graphite powder (average particle size: 10 μm).

【0039】炭素材5:平均短径5μmの炭素繊維。 各炭素材90重量%,ポリフッ化ビニリデン粉末10重
量%を混合し、その混合物にN−メチルピロリドンをエ
タノールに溶解して成る溶液を添加して混練し負極合剤
ペーストを調製した。ついで、このペーストを表1で示
した各銅箔の両面に均一に塗着した。このときのペース
ト内の炭素材の種類と銅箔との関係は表2で示したとお
りである。
Carbon material 5: Carbon fiber having an average minor diameter of 5 μm. 90% by weight of each carbon material and 10% by weight of polyvinylidene fluoride powder were mixed, and a solution obtained by dissolving N-methylpyrrolidone in ethanol was added to the mixture and kneaded to prepare a negative electrode mixture paste. Then, this paste was uniformly applied to both surfaces of each copper foil shown in Table 1. The relationship between the type of carbon material in the paste and the copper foil at this time is as shown in Table 2.

【0040】各ペーストが塗着されている銅箔をN2
囲気で乾燥してエタノールを揮発せしめ、ついで、ロー
ル圧延して全体の厚みが100μmであるシートを成形
した。そして、このシートを幅43mm,長さ285mmに
裁断したのち、その一端にニッケル箔のリード端子を超
音波溶接して取り付け、負極とした。
The copper foil coated with each paste was dried in an N 2 atmosphere to volatilize ethanol, and then roll-rolled to form a sheet having a total thickness of 100 μm. Then, this sheet was cut into a width of 43 mm and a length of 285 mm, and a lead terminal of nickel foil was attached to one end of the sheet by ultrasonic welding to form a negative electrode.

【0041】以上のようにして製造した正極と負極の間
に厚み25μmのポリプロピレン製のセパレータを挟
み、全体を巻回したのちその巻回体を軟鋼表面にニッケ
ルめっきが施されている電池缶の中に収容し、負極のリ
ード端子を缶底にスポット溶接した。ついで、巻回体の
上に絶縁板を置き、ガスケットを挿入したのち、正極の
リード端子とアルミニウム製安全弁とを超音波溶接して
接続し、炭酸プロピレンと炭酸ジエチルと炭酸エチレン
とから成る非水電解液を電池缶の中に注入したのち前記
安全弁に蓋を取り付け、外径14mm,高さ50mmの密閉
構造のLiイオン二次電池を組み立てた。
A separator made of polypropylene having a thickness of 25 μm is sandwiched between the positive electrode and the negative electrode manufactured as described above, and the whole is wound. The lead terminal of the negative electrode was spot-welded to the bottom of the can. Then, an insulating plate is placed on the wound body, and after inserting a gasket, the lead terminal of the positive electrode and the aluminum safety valve are connected by ultrasonic welding to form a non-aqueous solution composed of propylene carbonate, diethyl carbonate, and ethylene carbonate. After the electrolyte was injected into the battery can, a lid was attached to the safety valve, and a sealed Li-ion secondary battery having an outer diameter of 14 mm and a height of 50 mm was assembled.

【0042】(3)電池特性の測定 以上の電池つき、充電電流50mAで4.2Vになるまで
充電し、50mAで2.5Vになるまで放電することを1
サイクルとする充放電サイクル試験を行った。初回充電
時の電池容量とサイクル寿命を表2に示した。なお、表
2のサイクル寿命は、電池の放電容量が300mAhを割
り込んだときのサイクル数である。
(3) Measurement of Battery Characteristics With the above-mentioned battery, charging at a charging current of 50 mA until it reaches 4.2 V and discharging at 50 mA until it reaches 2.5 V are as follows.
A charge / discharge cycle test as a cycle was performed. Table 2 shows the battery capacity and the cycle life at the time of the first charge. The cycle life in Table 2 is the number of cycles when the discharge capacity of the battery falls below 300 mAh.

【0043】[0043]

【表2】 [Table 2]

【0044】表1と表2から次のようなことが明らかと
なる。 1.まず、表1から明らかなように、比較例1,比較例
2はいずれも、実使用する前段で錆などを発生している
ので、負極用集電体としては使用不能のものになってい
る。
The following is clear from Tables 1 and 2. 1. First, as is clear from Table 1, both Comparative Examples 1 and 2 generate rust and the like before the actual use, and thus cannot be used as a negative electrode current collector. .

【0045】2.実施例の銅箔を負極集電体として用い
た電池は、いずれも、初回充電時の電池容量が400mA
hを超え、かつ、サイクル寿命も400サイクルを超え
ており、高容量・長寿命の電池になっている。なお、比
較例3,比較例4を負極集電体とする電池は初回充電時
の電池容量が400mAhを割り込み、しかもサイクル寿
命も400サイクルに達しておらず、その放電特性は実
施例の銅箔を用いた電池に比べて非常に劣ったものにな
っている。
2. Each of the batteries using the copper foil of the example as the negative electrode current collector had a battery capacity of 400 mA at the time of the first charge.
h, and the cycle life also exceeds 400 cycles, resulting in a battery with high capacity and long life. The batteries using the negative electrode current collectors of Comparative Examples 3 and 4 had a battery capacity of 400 mAh at the time of the first charge, and the cycle life did not reach 400 cycles. It is very inferior to a battery using.

【0046】3.表2における電池1〜20の充放電サ
イクル特性と表1における実施例1〜14の銅箔の表面
粗さを対比して明らかなように、銅箔の表面粗さが小さ
いほど電池特性は向上している。とくに、表面粗さ(R
z)が2.5μm以下になっている銅箔を負極集電体と
する電池は、良好な充放電サイクル特性を示している。
3. As is clear from the comparison between the charge / discharge cycle characteristics of the batteries 1 to 20 in Table 2 and the surface roughness of the copper foils of Examples 1 to 14 in Table 1, the smaller the surface roughness of the copper foil, the better the battery characteristics. doing. In particular, the surface roughness (R
A battery using a copper foil having z) of 2.5 μm or less as a negative electrode current collector shows good charge / discharge cycle characteristics.

【0047】4.厚みが厚い銅箔を負極集電体として用
いた電池(例えば電池9や電池10)は充放電サイクル
特性が若干の低下しているが、これは全て同一形状の小
型電池による特性の評価結果であり、厚みが厚いほど巻
回体における電極面積が小さくなるからである。しか
し、厚みの厚い銅箔は、大型電池に用いられる場合が多
いが、そのときにおける実用上の電池特性は更に向上す
ることになる。
4. Batteries using a thick copper foil as a negative electrode current collector (for example, battery 9 and battery 10) have slightly reduced charge / discharge cycle characteristics, but this is an evaluation result of the characteristics of small batteries having the same shape. This is because, as the thickness increases, the electrode area in the wound body decreases. However, a thick copper foil is often used for a large battery, but the practical battery characteristics at that time are further improved.

【0048】[0048]

【発明の効果】以上の説明で明らかなように、本発明の
銅箔は、それを負極集電体として用いると、そこに担持
される負極合剤の組成が変化していたとしても、初回充
電時の電池容量が大きく、充放電サイクル寿命も優れて
いるジェリーロール型構造の非水溶媒二次電池を製造す
ることができる。これは、銅箔表面における誘電体層の
厚みを、1/C値で0.1〜0.3cm2/μFに規定したこ
とによってもたらされる効果である。
As is clear from the above description, when the copper foil of the present invention is used as a negative electrode current collector, even if the composition of the negative electrode mixture carried thereon changes, It is possible to manufacture a non-aqueous solvent secondary battery having a jelly roll structure, which has a large battery capacity during charging and an excellent charge / discharge cycle life. This is an effect brought about by regulating the thickness of the dielectric layer on the copper foil surface to 0.1 to 0.3 cm 2 / μF in 1 / C value.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも片面における電気二重層容量
の逆数(1/C)が、0.1〜0.3cm2/μFであること
を特徴とする非水溶媒二次電池の負極集電体用銅箔。
1. A negative electrode current collector for a non-aqueous solvent secondary battery, wherein the reciprocal (1 / C) of the electric double layer capacity on at least one side is 0.1 to 0.3 cm 2 / μF. Copper foil.
【請求項2】 両面の表面粗さが、JISB0601で
規定する10点平均粗さ(Rz)で2.5μm以下であ
る請求項1の非水溶媒二次電池の負極集電体用銅箔。
2. The copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery according to claim 1, wherein the surface roughness of both surfaces is not more than 2.5 μm in terms of a 10-point average roughness (Rz) specified in JIS B0601.
【請求項3】 脱脂後の圧延銅箔、または、電解製箔後
に水洗、ないしは水洗・乾燥処理を施して成る電解銅箔
を、少なくともトリアゾール類を溶媒に溶解して成るp
H5〜8.5の溶液に浸漬することを特徴とする非水溶
媒二次電池の負極集電体用銅箔の製造方法。
3. A rolled copper foil after degreasing, or an electrolytic copper foil formed by electrolytic washing, followed by washing with water, or washing and drying, is prepared by dissolving at least a triazole in a solvent.
A method for producing a copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery, wherein the method is immersed in a solution of H5 to 8.5.
【請求項4】 脱脂後の圧延銅箔または電解製箔後に水
洗・乾燥処理を施して成る電解銅箔を、三酸化クロム,
クロム酸塩,重クロム酸塩の群から選ばれる少なくとも
1種を水に溶解して成る水溶液に浸漬することを特徴と
する非水溶媒二次電池の負極集電体用銅箔の製造方法。
4. An electrolytic copper foil, which is obtained by subjecting a degreased rolled copper foil or an electrolytic foil to a washing and drying treatment after the degreased copper foil,
A method for producing a copper foil for a negative electrode current collector of a non-aqueous solvent secondary battery, characterized by immersing at least one selected from the group consisting of chromate and dichromate in water.
JP07062098A 1998-03-19 1998-03-19 Copper foil for negative electrode current collector of non-aqueous solvent secondary battery Expired - Lifetime JP3581784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07062098A JP3581784B2 (en) 1998-03-19 1998-03-19 Copper foil for negative electrode current collector of non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07062098A JP3581784B2 (en) 1998-03-19 1998-03-19 Copper foil for negative electrode current collector of non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH11273683A true JPH11273683A (en) 1999-10-08
JP3581784B2 JP3581784B2 (en) 2004-10-27

Family

ID=13436849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07062098A Expired - Lifetime JP3581784B2 (en) 1998-03-19 1998-03-19 Copper foil for negative electrode current collector of non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3581784B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329500A (en) * 1998-05-14 1999-11-30 Sony Corp Solid state electrolyte battery
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001031722A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001031724A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
JP2001189154A (en) * 2000-01-06 2001-07-10 Hitachi Maxell Ltd Lithium secondary battery
JP2001243957A (en) * 2000-02-29 2001-09-07 Sanyo Electric Co Ltd Lithium secondary battery
WO2001073884A1 (en) * 2000-03-28 2001-10-04 Ngk Insulators, Ltd. Lithium secondary cell
JP2003051340A (en) * 2001-08-07 2003-02-21 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2004035932A (en) * 2002-07-02 2004-02-05 Mitsui Mining & Smelting Co Ltd Method of producing electrolytic copper foil
JP2004079523A (en) * 2002-08-01 2004-03-11 Furukawa Techno Research Kk Electrolytic copper foil and electrolytic copper foil for current collector of secondary battery
JP2005285651A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Lithium secondary battery
JP2006202635A (en) * 2005-01-21 2006-08-03 Furukawa Circuit Foil Kk Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2007026913A (en) * 2005-07-19 2007-02-01 Matsushita Electric Ind Co Ltd Stacked metal foil for lithium ion battery, and lithium ion battery using the same
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2007165061A (en) * 2004-12-10 2007-06-28 Canon Inc Electrode structure for lithium secondary battery and secondary battery having such electrode structure
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7258950B2 (en) 2000-09-20 2007-08-21 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2009068042A (en) * 2007-09-11 2009-04-02 Furukawa Circuit Foil Kk Copper foil having excellent ultrasonic weldability, and surface treatment method therefor
JP2010157520A (en) * 2010-03-09 2010-07-15 Hitachi Maxell Ltd Lithium secondary cell, and electrolytic copper foil
WO2011078357A1 (en) * 2009-12-25 2011-06-30 古河電気工業株式会社 Copper foil and method for producing copper foil
WO2011078356A1 (en) * 2009-12-25 2011-06-30 古河電気工業株式会社 Copper foil for negative electrode current collector for use in non-aqueous solvent secondary battery, process for production of the copper foil, and process for production of non-aqueous solvent secondary battery negative electrode
JP2011134623A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2012002418A1 (en) * 2010-06-30 2012-01-05 三井金属鉱業株式会社 Process for production of copper foil for negative electrode current collector
JP2012038700A (en) * 2010-08-10 2012-02-23 Ls Mtron Ltd Copper foil for current collector of lithium secondary battery
JP2012099351A (en) * 2010-11-02 2012-05-24 Jx Nippon Mining & Metals Corp Copper foil for lithium ion battery collector
WO2012091060A1 (en) * 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
WO2012141178A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Copper foil for negative electrode current collector with chromate film, and negative electrode member using copper foil for negative electrode current collector with chromate film
WO2013129588A1 (en) * 2012-02-28 2013-09-06 古河電気工業株式会社 Lithium ion secondary battery, collector constituting negative electrode of lithium ion secondary battery, and electrolytic copper foil constituting negative electrode collector
JP2017079208A (en) * 2015-10-21 2017-04-27 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil, current collector for lithium secondary battery, including the same, and lithium secondary battery
CN111279019A (en) * 2017-08-30 2020-06-12 Kcf技术有限公司 Electrolytic copper foil, method for producing the electrolytic copper foil, and anode for high-capacity lithium secondary battery comprising the electrolytic copper foil
WO2022230517A1 (en) * 2021-04-27 2022-11-03 日産化学株式会社 Composition for forming thin film for energy storage device electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666839B2 (en) 2010-06-30 2015-02-12 古河電気工業株式会社 Negative electrode for secondary battery, negative electrode current collector, secondary battery, and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028373A (en) * 1988-06-25 1990-01-11 Toshio Hanya Chromate treatment liquid, its preparation and chromate treatment
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH1021928A (en) * 1996-06-28 1998-01-23 Furukawa Circuit Foil Kk Electrode material for secondary battery
JPH11158652A (en) * 1997-11-25 1999-06-15 Furukawa Circuit Foil Kk Production of electrode material for secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028373A (en) * 1988-06-25 1990-01-11 Toshio Hanya Chromate treatment liquid, its preparation and chromate treatment
JPH09306504A (en) * 1996-05-08 1997-11-28 Sony Corp Nonaqueous electrolyte secondary battery
JPH1021928A (en) * 1996-06-28 1998-01-23 Furukawa Circuit Foil Kk Electrode material for secondary battery
JPH11158652A (en) * 1997-11-25 1999-06-15 Furukawa Circuit Foil Kk Production of electrode material for secondary battery

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329500A (en) * 1998-05-14 1999-11-30 Sony Corp Solid state electrolyte battery
JP3733069B2 (en) * 1999-10-22 2006-01-11 三洋電機株式会社 Lithium battery electrode and lithium secondary battery
WO2001029912A1 (en) * 1999-10-22 2001-04-26 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001031722A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
WO2001031724A1 (en) * 1999-10-22 2001-05-03 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7241533B1 (en) 1999-10-22 2007-07-10 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7410728B1 (en) 1999-10-22 2008-08-12 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
US7235330B1 (en) 1999-10-22 2007-06-26 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7195842B1 (en) 1999-10-22 2007-03-27 Sanyo Electric Co., Ltd. Electrode for use in lithium battery and rechargeable lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7794881B1 (en) 1999-10-22 2010-09-14 Sanyo Electric Co., Ltd. Electrode for lithium batteries and rechargeable lithium battery
JP3733071B2 (en) * 1999-10-22 2006-01-11 三洋電機株式会社 Lithium battery electrode and lithium secondary battery
JP4632272B2 (en) * 2000-01-06 2011-02-16 日立マクセル株式会社 Lithium secondary battery and electrolytic copper foil
JP2001189154A (en) * 2000-01-06 2001-07-10 Hitachi Maxell Ltd Lithium secondary battery
JP2001243957A (en) * 2000-02-29 2001-09-07 Sanyo Electric Co Ltd Lithium secondary battery
WO2001073884A1 (en) * 2000-03-28 2001-10-04 Ngk Insulators, Ltd. Lithium secondary cell
US7122279B2 (en) 2000-04-26 2006-10-17 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
US7258950B2 (en) 2000-09-20 2007-08-21 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2003051340A (en) * 2001-08-07 2003-02-21 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2004035932A (en) * 2002-07-02 2004-02-05 Mitsui Mining & Smelting Co Ltd Method of producing electrolytic copper foil
JP2004079523A (en) * 2002-08-01 2004-03-11 Furukawa Techno Research Kk Electrolytic copper foil and electrolytic copper foil for current collector of secondary battery
US7767344B2 (en) 2004-03-30 2010-08-03 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2005285651A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Lithium secondary battery
JP2007165061A (en) * 2004-12-10 2007-06-28 Canon Inc Electrode structure for lithium secondary battery and secondary battery having such electrode structure
JP2006202635A (en) * 2005-01-21 2006-08-03 Furukawa Circuit Foil Kk Copper foil for lithium secondary battery electrode, manufacturing method of copper foil, electrode for lithium secondary battery using copper foil, and lithium secondary battery
JP4630072B2 (en) * 2005-01-21 2011-02-09 古河電気工業株式会社 Copper foil for lithium secondary battery electrode, method for producing the copper foil, electrode for lithium secondary battery using the copper foil, and lithium secondary battery
JP2007026913A (en) * 2005-07-19 2007-02-01 Matsushita Electric Ind Co Ltd Stacked metal foil for lithium ion battery, and lithium ion battery using the same
JP2009068042A (en) * 2007-09-11 2009-04-02 Furukawa Circuit Foil Kk Copper foil having excellent ultrasonic weldability, and surface treatment method therefor
CN102713006A (en) * 2009-12-25 2012-10-03 古河电气工业株式会社 Copper foil and method for producing copper foil
WO2011078356A1 (en) * 2009-12-25 2011-06-30 古河電気工業株式会社 Copper foil for negative electrode current collector for use in non-aqueous solvent secondary battery, process for production of the copper foil, and process for production of non-aqueous solvent secondary battery negative electrode
JP2011134623A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2011134651A (en) * 2009-12-25 2011-07-07 Furukawa Electric Co Ltd:The Copper foil for nonaqueous solvent secondary battery negative electrode collector, its manufacturing method, and method of manufacturing nonaqueous solvent secondary battery negative electrode
JP2011149098A (en) * 2009-12-25 2011-08-04 Furukawa Electric Co Ltd:The Surface-treated copper foil and method for producing surface-treated copper foil
WO2011078357A1 (en) * 2009-12-25 2011-06-30 古河電気工業株式会社 Copper foil and method for producing copper foil
JP2010157520A (en) * 2010-03-09 2010-07-15 Hitachi Maxell Ltd Lithium secondary cell, and electrolytic copper foil
CN102933746A (en) * 2010-06-30 2013-02-13 三井金属矿业株式会社 Process for production of copper foil for negative electrode current collector
WO2012002418A1 (en) * 2010-06-30 2012-01-05 三井金属鉱業株式会社 Process for production of copper foil for negative electrode current collector
JP5898616B2 (en) * 2010-06-30 2016-04-06 三井金属鉱業株式会社 Method for producing copper foil for negative electrode current collector
JPWO2012002418A1 (en) * 2010-06-30 2013-08-29 三井金属鉱業株式会社 Method for producing copper foil for negative electrode current collector
JP2012038700A (en) * 2010-08-10 2012-02-23 Ls Mtron Ltd Copper foil for current collector of lithium secondary battery
JP2012099351A (en) * 2010-11-02 2012-05-24 Jx Nippon Mining & Metals Corp Copper foil for lithium ion battery collector
CN103314474A (en) * 2010-12-27 2013-09-18 古河电气工业株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
WO2012091060A1 (en) * 2010-12-27 2012-07-05 古河電気工業株式会社 Lithium-ion secondary battery, electrode for secondary battery, and electrolytic copper foil for secondary battery electrode
US9603245B2 (en) 2010-12-27 2017-03-21 Furukawa Electric Co., Ltd. Lithium-ion secondary battery, electrode for the secondary battery, and electrolytic copper foil for electrode for the secondary battery
WO2012141178A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Copper foil for negative electrode current collector with chromate film, and negative electrode member using copper foil for negative electrode current collector with chromate film
JP6025711B2 (en) * 2011-04-12 2016-11-16 三井金属鉱業株式会社 Method for producing copper foil for negative electrode current collector with chromate film and method for producing negative electrode material for lithium ion secondary battery using copper foil for negative electrode current collector with chromate film
WO2013129588A1 (en) * 2012-02-28 2013-09-06 古河電気工業株式会社 Lithium ion secondary battery, collector constituting negative electrode of lithium ion secondary battery, and electrolytic copper foil constituting negative electrode collector
JP5598884B2 (en) * 2012-02-28 2014-10-01 古河電気工業株式会社 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
JPWO2013129588A1 (en) * 2012-02-28 2015-07-30 古河電気工業株式会社 Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
JP2017079208A (en) * 2015-10-21 2017-04-27 エル エス エムトロン リミテッドLS Mtron Ltd. Electrolytic copper foil, current collector for lithium secondary battery, including the same, and lithium secondary battery
CN111279019A (en) * 2017-08-30 2020-06-12 Kcf技术有限公司 Electrolytic copper foil, method for producing the electrolytic copper foil, and anode for high-capacity lithium secondary battery comprising the electrolytic copper foil
CN111279019B (en) * 2017-08-30 2022-08-05 Sk纳力世有限公司 Electrolytic copper foil, method for producing the electrolytic copper foil, and anode for high-capacity lithium secondary battery comprising the electrolytic copper foil
US11949110B2 (en) 2017-08-30 2024-04-02 Sk Nexilis Co., Ltd. Electrolytic copper foil, method for manufacturing the same, and anode for lithium secondary battery of high capacity
WO2022230517A1 (en) * 2021-04-27 2022-11-03 日産化学株式会社 Composition for forming thin film for energy storage device electrode

Also Published As

Publication number Publication date
JP3581784B2 (en) 2004-10-27

Similar Documents

Publication Publication Date Title
JP3581784B2 (en) Copper foil for negative electrode current collector of non-aqueous solvent secondary battery
CN111801444B (en) Electrolytic copper foil, electrode and lithium ion secondary battery comprising same
JP5119277B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
US20140199588A1 (en) Electrolytic copper foil, method of producing electrolytic copper foil, lithium ion secondary cell using electrolytic copper foil as collector
US20110159361A1 (en) Nonaqueous electrolyte secondary battery and method for producing the same
EP3297066A1 (en) Secondary battery, battery pack, and vehicle
KR20150120870A (en) Nonaqueous electrolyte secondary battery and production method thereof
WO2011078356A1 (en) Copper foil for negative electrode current collector for use in non-aqueous solvent secondary battery, process for production of the copper foil, and process for production of non-aqueous solvent secondary battery negative electrode
JP6822629B2 (en) Copper foil, its manufacturing method, electrodes containing it, and secondary batteries containing it
JP2005259682A (en) Collector for non-aqueous electrolyte secondary battery, electrode plate for non-aqueous electrolyte secondary battery comprising the same and method of manufacturing electrode plate for non-aqueous electrolyte secondary battery
TWI668903B (en) Copper foil having improved adhesive force, electrode including the same, secondary battery including the same, and method of manufacturing the same
CN111225997B (en) Aluminum foil and aluminum member for electrode
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
CN113497231A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery provided with same
TWI684651B (en) Electrolytic copper foil, method for manufacturing the same, and anode for lithium secondary battery of high capacity
JP4107004B2 (en) Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery
KR20190060587A (en) Process for preparing current collector for pseudo capacitor
JP4460058B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
JP3406984B2 (en) Electrode for Li battery and Li battery using the same
WO1999062133A1 (en) Battery plate and battery
JPS60253157A (en) Nonaqueous secondary battery
JP4460055B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
EP3757256B1 (en) Electrodeposited copper foil
US20230078710A1 (en) Secondary battery, battery pack, vehicle, and stationary power supply
JP2005063764A (en) Copper foil for lithium ion secondary battery, and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

EXPY Cancellation because of completion of term