JP2007165061A - Electrode structure for lithium secondary battery and secondary battery having such electrode structure - Google Patents

Electrode structure for lithium secondary battery and secondary battery having such electrode structure Download PDF

Info

Publication number
JP2007165061A
JP2007165061A JP2005358197A JP2005358197A JP2007165061A JP 2007165061 A JP2007165061 A JP 2007165061A JP 2005358197 A JP2005358197 A JP 2005358197A JP 2005358197 A JP2005358197 A JP 2005358197A JP 2007165061 A JP2007165061 A JP 2007165061A
Authority
JP
Japan
Prior art keywords
electrode structure
secondary battery
active material
powder
main active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005358197A
Other languages
Japanese (ja)
Other versions
JP5094013B2 (en
Inventor
Soichiro Kawakami
総一郎 川上
Akira Morita
暁 森田
Takao Ogura
孝夫 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005358197A priority Critical patent/JP5094013B2/en
Publication of JP2007165061A publication Critical patent/JP2007165061A/en
Application granted granted Critical
Publication of JP5094013B2 publication Critical patent/JP5094013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure for a lithium secondary battery having a high capacity and a long lifetime; and to provide a lithium secondary battery using the electrode structure and having the high capacity, high energy density, and the long lifetime. <P>SOLUTION: The electrode structure for the lithium secondary battery includes a main active material layer formed from a metal powder selected from silicon, tin and an alloy thereof that can store and discharge and capable of lithium by electrochemical reaction, and a binder of an organic polymer; and an electrode structure comprising a current collector. The main active material layer is formed at least by a powder of a support material for supporting the electron conduction of the main active material layer in addition to the metal powder. The powder of the support material is a particle having a spherical, pseudo-spherical or pillar shape with an average particle size of 0.3 to 1.35 times the thickness of the main active material layer. The support material is one or more materials selected from a group consisting of graphite, oxides of transition metals and metals that do not electrochemically form alloy with lithium. Organic polymer compounded with a conductive polymer is used for the binder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シリコン、スズ等の電気化学反応にてリチウムと合金化する金属を主成分とする粒子の粉末からなるリチウム二次電池用の電極材料、該電極材料を有する電極構造体、該電極構造体を有する二次電池に関する。   The present invention relates to an electrode material for a lithium secondary battery comprising a powder of particles mainly composed of a metal alloyed with lithium by an electrochemical reaction such as silicon and tin, an electrode structure having the electrode material, and the electrode The present invention relates to a secondary battery having a structure.

最近、大気中に含まれるCO2ガス量が増加しつつある為、温室効果により地球の温暖化が生じる可能性が指摘されている。火力発電所は化石燃料などを燃焼させて得られる熱エネルギーを電気エネルギーに変換しているが、燃焼によりCO2ガスを多量に排出するため新たな火力発電所は、建設することが難しくなってきている。したがって、火力発電所などの発電機にて作られた電力の有効利用として、余剰電力である夜間電力を一般家庭等に設置した二次電池に蓄えて、これを電力消費量が多い昼間に使用して負荷を平準化する、いわゆるロードレベリングが提案されている。 Recently, since the amount of CO 2 gas contained in the atmosphere is increasing, it has been pointed out that global warming may occur due to the greenhouse effect. Thermal power plants convert thermal energy obtained by burning fossil fuels into electrical energy. However, it is difficult to construct new thermal power plants because they emit a large amount of CO 2 gas by combustion. ing. Therefore, as an effective use of power generated by generators such as thermal power plants, surplus power nighttime power is stored in secondary batteries installed in ordinary households and used in the daytime when power consumption is high So-called load leveling has been proposed to level the load.

また、CO2、NOx、炭化水素などを含む大気汚染にかかわる物質を排出しないという特徴を有する電気自動車用途では、高エネルギー密度の二次電池の開発が期待されている。さらに、ブック型パーソナルコンピューター、ビデオカメラ、デジタルカメラ、携帯電話、PDA(Personal Digital Assistant)等のポータブル機器の電源用途では、小型・軽量で高性能な二次電池の開発が急務になっている。 In addition, for electric vehicle applications that are characterized by not discharging substances related to air pollution including CO 2 , NO x , hydrocarbons, etc., development of secondary batteries with high energy density is expected. Furthermore, for power applications of portable devices such as book-type personal computers, video cameras, digital cameras, mobile phones, and PDAs (Personal Digital Assistants), it is urgent to develop a small, lightweight, high-performance secondary battery.

このような小型・軽量で高性能な二次電池としては、充電時の反応で、リチウムイオンを層間からデインターカレートするリチウムインターカレーション化合物を正極物質に、リチウムイオンを炭素原子で形成される六員環網状平面の層間にインターカレートできる黒鉛に代表されるカーボン材料を負極物質に用いた、ロッキングチェアー型のいわゆる“リチムイオン電池”の開発が進み、実用化されて一般的に使用されている。   As such a small, lightweight and high-performance secondary battery, a lithium intercalation compound that deintercalates lithium ions from the interlayer is used as a positive electrode material, and lithium ions are formed from carbon atoms. The development of so-called “lithium ion batteries” of rocking chair type using a carbon material typified by graphite, which can be intercalated between the layers of a six-membered ring network plane, as a negative electrode material has been put into practical use and is generally used. ing.

しかし、この“リチウムイオン電池”では、カーボン材料で構成される負極は理論的には炭素原子当たり最大1/6のリチウム原子しかインターカレートできないため、金属リチウムを負極物質に使用したときのリチウム一次電池に匹敵する高エネルギー密度の二次電池は実現できない。もし、充電時に“リチウムイオン電池”のカーボンからなる負極に理論量以上のリチウム量をインターカレートしようとした場合あるいは高電流密度の条件で充電した場合には、カーボン負極表面にリチウム金属がデンドライト(樹枝)状に成長し、最終的に充放電サイクルの繰り返しで負極と正極間の内部短絡に至る可能性があり、黒鉛負極の理論容量を越える“リチウムイオン電池”では十分なサイクル寿命が得られていない。   However, in this “lithium ion battery”, a negative electrode composed of a carbon material can theoretically intercalate only a maximum of 1/6 lithium atoms per carbon atom. A secondary battery having a high energy density comparable to that of the primary battery cannot be realized. If a negative electrode made of carbon in a “lithium ion battery” is intercalated with a lithium amount greater than the theoretical amount during charging, or if charging is performed under conditions of high current density, lithium metal is dendrited on the surface of the carbon negative electrode. There is a possibility that it will grow into a (dendritic) shape and eventually lead to an internal short circuit between the negative electrode and the positive electrode through repeated charge / discharge cycles. A “lithium ion battery” exceeding the theoretical capacity of a graphite negative electrode will provide a sufficient cycle life. It is not done.

一方、金属リチウムを負極に用いる高容量のリチウム二次電池が高エネルギー密度を示す二次電池として注目されているが、実用化に至っていない。その理由は、充放電のサイクル寿命が極めて短いためである。充放電のサイクル寿命が極めて短い主原因としては、金属リチウムが電解液中の水分などの不純物や有機溶媒と反応して絶縁膜が形成されること、金属リチウム箔表面が平坦でなく電界が集中する箇所があり、これが原因で充放電の繰り返しによってリチウム金属がデンドライト状に成長し、負極と正極間の内部短絡を引き起こし寿命に至ることにあると、考えられている。   On the other hand, a high-capacity lithium secondary battery using metallic lithium as a negative electrode has attracted attention as a secondary battery exhibiting a high energy density, but has not yet been put into practical use. This is because the cycle life of charge / discharge is extremely short. The main reasons for the extremely short charge / discharge cycle life are that metal lithium reacts with impurities such as moisture in the electrolyte and an organic solvent to form an insulating film, and the surface of the metal lithium foil is not flat and the electric field is concentrated. It is considered that the lithium metal grows in a dendrite shape due to repeated charge and discharge due to this, causing an internal short circuit between the negative electrode and the positive electrode and reaching the life.

上述の金属リチウムを負極に用いた二次電池の問題点である、金属リチウムと電解液中の水分や有機溶媒との反応進行を抑えるために、負極にリチウムとアルミニウムなどからなるリチウム合金を用いる方法が提案されている。しかしながら、この場合、リチウム合金が硬いためにスパイラル状に巻くことができないのでスパイラル円筒形電池の作製ができないこと、サイクル寿命が充分に延びないこと、金属リチウムを負極に用いた電池に匹敵するエネルギー密度は充分に得られないこと、などの理由から、広範囲な実用化には至っていないのが現状である。   A lithium alloy made of lithium and aluminum is used for the negative electrode in order to suppress the progress of the reaction between the lithium metal and the water in the electrolyte or the organic solvent, which is a problem of the secondary battery using the lithium metal as the negative electrode. A method has been proposed. However, in this case, since the lithium alloy is hard, it cannot be spirally wound, so that a spiral cylindrical battery cannot be produced, the cycle life is not sufficiently extended, and energy comparable to a battery using metallic lithium as a negative electrode. The current situation is that a wide range of practical applications has not been achieved because the density cannot be obtained sufficiently.

本発明者らは、以上のような問題を解決するために、シリコンやスズ元素からなるリチウム二次電池用負極として、特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6、を提案している。特許文献1ではリチウムと合金化しない金属材料の集電体上にシリコンやスズのリチウムと合金化する金属とニッケルや銅のリチウムと合金化しない金属から形成された電極層を形成した負極を用いたリチウム二次電池を提案している。特許文献2ではニッケルや銅等の元素とスズ等の元素との合金粉末から形成された負極を、特許文献3では電極材料層が平均粒径0.5〜60μmのシリコンやスズから成る粒子を35重量%以上含有し空隙率が0.10〜0.86で密度が1.00〜6.56g/cm3の負極を用いたリチウム二次電池を提案している。特許文献4では非晶質相を有するシリコンやスズを有した負極を用いたリチウム二次電池を提案している。特許文献5では非化学量論組成の非晶質スズ−遷移金属合金粒子からなる負極を用いたリチウム二次電池を提案している。特許文献6では非化学量論組成の非晶質シリコン−遷移金属合金粒子からなる負極を用いたリチウム二次電池を提案している。 In order to solve the above problems, the present inventors have disclosed Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and Patent Document 5 as negative electrodes for lithium secondary batteries made of silicon or tin element. Patent Document 6 is proposed. Patent Document 1 uses a negative electrode in which a metal material that is not alloyed with lithium and an electrode layer formed of a metal that is alloyed with lithium such as silicon or tin and a metal that is not alloyed with nickel or copper is used. We have proposed a lithium secondary battery. In Patent Document 2, a negative electrode formed from an alloy powder of an element such as nickel or copper and an element such as tin is used. In Patent Document 3, particles made of silicon or tin having an average particle size of 0.5 to 60 μm are used. A lithium secondary battery using a negative electrode containing 35% by weight or more, having a porosity of 0.10 to 0.86 and a density of 1.00 to 6.56 g / cm 3 is proposed. Patent Document 4 proposes a lithium secondary battery using a negative electrode having silicon or tin having an amorphous phase. Patent Document 5 proposes a lithium secondary battery using a negative electrode made of non-stoichiometric amorphous tin-transition metal alloy particles. Patent Document 6 proposes a lithium secondary battery using a negative electrode made of non-stoichiometric amorphous silicon-transition metal alloy particles.

また、特許文献7では、ベンゼン等の熱分解の化学蒸着処理法により、リチウム合金を形成可能な金属または半金属、特にシリコン粒子表面に炭素層を形成して導電性を向上させることで、リチウムとの合金化時の体積膨張を抑制して電極の破壊を防ぎ、高容量で充放電効率の高いリチウム二次電池が提案されている。しかし、上記熱分解による化学蒸着法では、均一にシリコン粒子の表面を被覆することができない、熱分解温度が高く、シリコン粒子の酸化も起きやすいことなどの問題点があり、性能面でも充放電を繰り返すことで、電池の内部抵抗が増し、取り出せる電気量が徐々に低下するという問題が黒鉛電極ほど十分に解決されてはいなかった。   Further, in Patent Document 7, a metal layer or metalloid capable of forming a lithium alloy, particularly a carbon layer on the surface of silicon particles is formed by a thermal decomposition chemical vapor deposition method such as benzene to improve conductivity, thereby improving lithium There has been proposed a lithium secondary battery that suppresses volume expansion during alloying to prevent electrode destruction, and has a high capacity and high charge / discharge efficiency. However, the chemical vapor deposition method using thermal decomposition has problems such as that the surface of silicon particles cannot be uniformly coated, the thermal decomposition temperature is high, and oxidation of silicon particles is likely to occur. By repeating the above, the problem that the internal resistance of the battery increases and the amount of electricity that can be taken out gradually decreases has not been solved as well as the graphite electrode.

また、シリコン,スズ,それらの合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と結着剤から形成されたリチウム二次電池用負極は電池の充放電によって膨張し、放電によって収縮し、充放電の繰り返しによって、膨張収縮が繰り返され、前記金属粉末粒子同士の接触の低下、前記金属粉末粒子の脱落、集電体からの電極層のはがれが発生する場合がある。その原因としては、前記金属粉末粒子との充電時のリチウム合金化反応が不均一におきるためだと考えられる。上記反応の不均一をより均一化にするために、黒鉛等のカーボン粒子を混合して改善する試みもあるが、充電時に負極に蓄えられるLi量が多くなると、前記金属粉末粒子と前記カーボン粒子の蓄電容量と体積膨張の違いによって、充放電に係わる電気化学反応が電極層内で均一には起きていない。(上記金属粉末粒子は金属粉末を構成する単位であり、上記カーボン粒子はカーボン粉末を構成する単位である。)
そのため、上記問題を解決する長寿命の負極の開発が望まれている。
米国特許第6051340号明細書 米国特許第5795679号明細書 米国特許第6432585号明細書 特開平11−283627号公報 特開平2000−311681号公報 特WO00/17949号公報 特開2000−215887号公報
Moreover, the negative electrode for a lithium secondary battery formed from a metal powder capable of storing and releasing lithium by an electrochemical reaction and a binder selected from silicon, tin, and an alloy thereof is expanded by charging and discharging of the battery. Shrinkage due to discharge, and expansion and contraction are repeated by repeated charge and discharge, which may cause a decrease in contact between the metal powder particles, dropping of the metal powder particles, and peeling of the electrode layer from the current collector. The reason is considered to be that the lithium alloying reaction during charging with the metal powder particles occurs unevenly. In order to make the non-uniformity of the reaction more uniform, there is also an attempt to improve by mixing carbon particles such as graphite. However, if the amount of Li stored in the negative electrode during charging increases, the metal powder particles and the carbon particles Due to the difference between the storage capacity and the volume expansion, the electrochemical reaction related to charge / discharge does not occur uniformly in the electrode layer. (The metal powder particles are units constituting metal powder, and the carbon particles are units constituting carbon powder.)
Therefore, development of a long-life negative electrode that solves the above problems is desired.
US Pat. No. 6,051,340 US Pat. No. 5,795,679 US Pat. No. 6,432,585 JP-A-11-283627 Japanese Unexamined Patent Publication No. 2000-311681 Japanese Patent Publication WO00 / 17949 JP 2000-215887 A

そこで、本発明は、充放電の繰り返しによっても容量低下の少ない、高容量、高エネルギー密度のリチウム二次電池負極用の電極構造体、該電極構造体を有するリチウム二次電池を提供することを目的とするものである。   Accordingly, the present invention provides an electrode structure for a negative electrode of a lithium secondary battery having a high capacity and a high energy density, in which the capacity is not decreased even by repeated charge and discharge, and a lithium secondary battery having the electrode structure. It is the purpose.

すなわち、本発明の第一の発明は、シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の平均厚みの0.3〜1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であることを特徴とするリチウム二次電池用の電極構造体である。
That is, the first invention of the present invention is a binding of an organic polymer and a metal powder selected from silicon, tin, or an alloy containing any one of these elements and capable of storing and releasing lithium by an electrochemical reaction. In an electrode structure composed of a main active material layer made of an agent and a current collector,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the average thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and One or more selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys electrochemically An electrode structure for a lithium secondary battery, characterized by being a material.

本発明の第二の発明は、シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の厚みの0.3から1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であり、
(b)前記電極構造体の集電体と主活物質層の間に、電子伝導性の緩衝層が設けられ、該緩衝層が、少なくとも有機高分子の結着剤と、導電性高分子、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から構成され、該材料粒子の平均粒径が0.5μm〜10μmである、
ことを特徴とするリチウム二次電池用の電極構造体である。
According to a second aspect of the present invention, there is provided a metal powder selected from silicon, tin, or an alloy containing any one of these elements and capable of storing and releasing lithium by an electrochemical reaction, and an organic polymer binder. In an electrode structure composed of a main active material layer and a current collector,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and electricity One or more materials selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys chemically And
(B) An electron conductive buffer layer is provided between the current collector and the main active material layer of the electrode structure, and the buffer layer includes at least an organic polymer binder, a conductive polymer, Graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and a metal that does not form an alloy with Li selected from the group of these alloys, TiO 2 , MoO 3 , composed of particles of one or more kinds of materials selected from the group consisting of transition metal oxides selected from WO 3, and the average particle size of the material particles is 0.5 μm to 10 μm.
This is an electrode structure for a lithium secondary battery.

本発明の第三の発明は、シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の厚みの0.3から1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であり、
(c)前記電極構造体の主活物質層の表面に表面被覆層が設けられ、該表面被覆層が、電子伝導性とイオン透過性もしくはイオン伝導性を有し、前記表面被覆層が、少なくとも有機高分子の結着剤と、導電性高分子、非晶質カーボン、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から成り、該粒子の二次粒子の平均粒子サイズが0.5μm〜10μmであることを特徴とするリチウム二次電池用の電極構造体である。
According to a third aspect of the present invention, there is provided a metal powder selected from silicon, tin, or an alloy containing any one of these elements and capable of storing and releasing lithium by an electrochemical reaction, and an organic polymer binder. In an electrode structure composed of a main active material layer and a current collector,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and electricity One or more materials selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys chemically And
(C) A surface coating layer is provided on the surface of the main active material layer of the electrode structure, the surface coating layer has electron conductivity and ion permeability or ion conductivity, and the surface coating layer is at least From the group of organic polymer binders and conductive polymers, amorphous carbon, graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and alloys thereof A particle composed of one or more materials selected from the group consisting of transition metal oxides selected from metals selected from Li, TiO 2 , MoO 3 , and WO 3 that do not electrochemically form an alloy with Li. An electrode structure for a lithium secondary battery, wherein the secondary particles have an average particle size of 0.5 μm to 10 μm.

本発明の第四の発明は、シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の厚みの0.3から1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であり、
(b)前記電極構造体の集電体と主活物質層の間に、電子伝導性の緩衝層が設けられ、該緩衝層が、少なくとも有機高分子の結着剤と、導電性高分子、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から構成され、該材料粒子の平均粒径が0.5μm〜10μmであり、
(c)前記電極構造体の主活物質層の表面に表面被覆層が設けられ、該表面被覆層が、電子伝導性とイオン透過性もしくはイオン伝導性を有し、前記表面被覆層が、少なくとも有機高分子の結着剤と、導電性高分子、非晶質カーボン、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から成り、該粒子の二次粒子の平均粒子サイズが0.5μm〜10μmであることを特徴とするリチウム二次電池用の電極構造体である。
According to a fourth aspect of the present invention, there is provided a metal powder selected from silicon, tin, or an alloy containing any one of these elements and capable of storing and releasing lithium by an electrochemical reaction, and an organic polymer binder. In an electrode structure composed of a main active material layer and a current collector,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and electricity One or more materials selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys chemically And
(B) An electron conductive buffer layer is provided between the current collector and the main active material layer of the electrode structure, and the buffer layer includes at least an organic polymer binder, a conductive polymer, Graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and a metal that does not form an alloy with Li selected from the group of these alloys, TiO 2 , MoO 3, WO 3 is composed of particles of one or more materials selected from the group consisting of transition metal oxide selected from the mean particle size of the material particles is 0.5 ~ 10 m,
(C) A surface coating layer is provided on the surface of the main active material layer of the electrode structure, the surface coating layer has electron conductivity and ion permeability or ion conductivity, and the surface coating layer is at least From the group of organic polymer binders and conductive polymers, amorphous carbon, graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and alloys thereof A particle composed of one or more materials selected from the group consisting of transition metal oxides selected from metals selected from Li, TiO 2 , MoO 3 , and WO 3 that do not electrochemically form an alloy with Li. An electrode structure for a lithium secondary battery, wherein the secondary particles have an average particle size of 0.5 μm to 10 μm.

本発明の第五の発明は、上記の電極構造体を用いた負極、リチウムイオン伝導体及び正極を具備し、リチウムの酸化反応及びリチウムイオンの還元反応を利用した二次電池である。   The fifth invention of the present invention is a secondary battery comprising a negative electrode using the above electrode structure, a lithium ion conductor and a positive electrode, and utilizing a lithium oxidation reaction and a lithium ion reduction reaction.

本発明は上記事情を考慮してなされたものであり、本発明の第一の特徴は、シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似的な球状または柱状で平均粒子サイズが前記主活物質層の厚みの0.3から1.35倍である、点である。前記支持材料が、黒鉛,(TiO2,MoO3,WO3から選択される)遷移金属酸化物,Liと電気化学的に合金を形成しない(Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される)金属から成る群から選択された1種類以上の材料であることが好ましい。また、前記支持材料が、黒鉛であることが好ましい。前記主活物質層の、シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される金属粉末粒子を形成する一次粒子の平均粒径は0.02μm〜5μmであることが好ましい。また、前記集電体の表面粗さの十点平均高さRzが0.7μm〜3μmであることが好ましい。 The present invention has been made in view of the above circumstances, and the first feature of the present invention is that lithium is stored by an electrochemical reaction selected from silicon, tin, or an alloy containing any one of these elements. In an electrode structure composed of a main active material layer and a current collector made of a releasable metal powder and an organic polymer binder, the main active material layer is added to the metal powder and the main active material layer. It is composed of at least a support material powder that supports the electron conduction of the material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar, and the average particle size is 0.3 to 1 of the thickness of the main active material layer. .35 times the point. The support material is not electrochemically alloyed with graphite, transition metal oxide (selected from TiO 2 , MoO 3 , WO 3 ), Li (Cu, Ni, Co, Ti, Fe, Cr, Mo , W, Pd, Pt, Au, and alloys thereof (preferably one or more materials selected from the group consisting of metals). The support material is preferably graphite. It is preferable that an average particle diameter of primary particles forming metal powder particles selected from silicon, tin, or an alloy containing any one of these elements in the main active material layer is 0.02 μm to 5 μm. Further, the ten-point average height Rz of the surface roughness of the current collector is preferably 0.7 μm to 3 μm.

さらに、第二の特徴としては、前記電極構造体の集電体と主活物質層の間に、電子伝導性を有し、充電時にも膨張が少ない、緩衝層が設けられ、該緩衝層が、少なくとも有機高分子の結着剤と、導電性高分子,黒鉛,(Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択される)Liと電気化学的に合金を形成しない金属,(TiO2,MoO3,WO3から選択される)遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から構成され、該材料粒子の平均粒径が0.5μm〜5μmである、点である。 Further, as a second feature, a buffer layer is provided between the current collector and the main active material layer of the electrode structure, and has a conductivity, and is less expanded during charging. And at least an organic polymer binder and a conductive polymer, graphite, (Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and alloys thereof. (I) composed of particles of one or more materials selected from the group consisting of metals that do not electrochemically form an alloy with Li, transition metal oxides (selected from TiO 2 , MoO 3 , WO 3 ), The average particle diameter of the material particles is 0.5 μm to 5 μm.

第三の特徴としては、前記電極構造体の主活物質層の表面に、充放電時に電界の集中が起きるのを和らげるための、表面被覆層が設けられ、該表面被覆層が、電子伝導性が有りかつイオン透過性(イオン伝導性)のある層で、前記表面被覆層が、少なくとも有機高分子の結着剤と、導電性高分子,非晶質カーボン,黒鉛,(Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択される)Liと電気化学的に合金を形成しない金属,(TiO2,MoO3,WO3から選択される)遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から成り、該粒子の二次粒子の平均粒子サイズが0.5μm〜10μmである、ことも好ましい。 As a third feature, a surface coating layer is provided on the surface of the main active material layer of the electrode structure to reduce concentration of an electric field during charge and discharge, and the surface coating layer has electron conductivity. The surface coating layer includes at least an organic polymer binder, a conductive polymer, amorphous carbon, graphite, (Cu, Ni, Co), and a layer having ion permeability (ion conductivity). , Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals that do not electrochemically form an alloy with Li (from TiO 2 , MoO 3 , WO 3) It is also preferred that it consists of particles of one or more materials selected from the group consisting of (selected) transition metal oxides, and that the secondary particles have an average particle size of 0.5 μm to 10 μm.

また、本発明の別の特徴としては、前記主活物質層と前記密着層と前記被覆層の結着剤が同一材料である、点である。
第四の特徴としては、前記結着剤には導電性有機高分子が分散されている点である。
Another feature of the present invention is that the binder of the main active material layer, the adhesion layer, and the coating layer is the same material.
A fourth feature is that a conductive organic polymer is dispersed in the binder.

さらには、本発明の特徴は、前記電極構造体を用いた負極、電解質及び正極を具備し、リチウムの酸化反応及びリチウムイオンの還元反応を利用した二次電池であり、前記負極前記主活物質層内の支持材料粉末の、充電の後の、対向する正極方向への膨張率が1.5倍以下である点である。   Furthermore, a feature of the present invention is a secondary battery including a negative electrode using the electrode structure, an electrolyte, and a positive electrode, and utilizing a lithium oxidation reaction and a lithium ion reduction reaction. The support material powder in the layer has a coefficient of expansion of not more than 1.5 times in the opposite positive electrode direction after charging.

また、本発明の第五の特徴は、シリコン,スズ,それらの合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と、ハードカーボン(難黒鉛化カーボン)粉末または黒鉛のカーボン粉末と、有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
前記金属粉末とカーボン粉末との化学結合もしくは電子伝導を担う「つなぎ」としての機能を有する材料(ここではつなぎ材料と称する)で、前記金属粉末とカーボン粉末とが複合化されている、点である。
The fifth feature of the present invention is that a metal powder capable of storing and releasing lithium by an electrochemical reaction, a hard carbon (non-graphitizable carbon) powder, or graphite is selected from silicon, tin, and alloys thereof. In an electrode structure composed of a carbon powder and a main active material layer composed of a binder of an organic polymer and a current collector,
A material having a function as a “linkage” that bears a chemical bond or electronic conduction between the metal powder and the carbon powder (herein referred to as a “linkage material”), in which the metal powder and the carbon powder are combined. is there.

なお、本発明の電極構造体は、リチウム二次電池以外の電池の電極やキャパシタの電極として用いることも可能である。   The electrode structure of the present invention can also be used as an electrode of a battery other than a lithium secondary battery or an electrode of a capacitor.

本発明の好適な実施例にかかるリチウム二次電池によれば、高蓄電容量を達成することができ、高エネルギー密度とすることができ、充放電のサイクル寿命も確保することが可能になる。   The lithium secondary battery according to the preferred embodiment of the present invention can achieve a high storage capacity, a high energy density, and a charge / discharge cycle life.

本発明者らは、リチウム二次電池用の合金系負極の詳細な検討により、本発明に至ったものである。シリコンもしくはスズの金属または合金の粉末と結着剤とから成る活物質層が金属箔の集電体上に形成された電極を負極に用いたリチウム二次電池では、充放電の繰り返しで、電池の内部抵抗が増大し、性能低下が生じる。本発明者らは、上記負極の活物質層を観察し解析することによって、以下のことが原因であると推察した。充電により、シリコンもしくはスズの金属または合金の粉末が電気化学的にリチウムと合金化する過程で、均一に合金化が起きず、このリチウムの合金化に伴う膨張が不均一に生じるために、活物質層の表面近傍、活物質層の中ほど、活物質層と集電体界面の領域で、いわゆる“す”並びにクラックが発生する。この“す”及びクラックの発生で負極の活物資層内の電子伝導が妨げられ、電極の電気抵抗が増す。これは、シリコンもしくはスズの金属または合金の粉末がリチウムと合金化するときの膨張が非常に大きいことに起因していると考えられる。リチウムとの合金化での膨張を抑えるためには、合金化するリチウム量を抑えることで可能ではあるが、蓄電できる電気量も減少してしまう。   The present inventors have arrived at the present invention through detailed examination of an alloy-based negative electrode for a lithium secondary battery. In a lithium secondary battery in which an electrode in which an active material layer made of silicon or tin metal or alloy powder and a binder is formed on a current collector of a metal foil is used as a negative electrode, the battery is repeatedly charged and discharged. Increases the internal resistance, resulting in performance degradation. The present inventors have inferred that the following is the cause by observing and analyzing the active material layer of the negative electrode. In the process where the powder of silicon or tin metal or alloy is electrochemically alloyed with lithium by charging, uniform alloying does not occur, and the expansion associated with this lithium alloying occurs unevenly. In the vicinity of the surface of the material layer and in the middle of the active material layer, so-called “soot” and cracks are generated in the region of the active material layer and the current collector interface. The occurrence of “soot” and cracks hinders electron conduction in the active material layer of the negative electrode and increases the electrical resistance of the electrode. This is thought to be due to the fact that silicon or tin metal or alloy powders have very large expansion when alloyed with lithium. In order to suppress expansion due to alloying with lithium, it is possible to suppress the amount of lithium to be alloyed, but the amount of electricity that can be stored is also reduced.

そこで、本発明者らは、不均一な膨張に伴う、電極層のクラック、“す”の発生の防止するために、(1)活物質のシリコンもしくはスズの金属または合金の粉末の膨張が生じても、電子伝導が保持できる支持材を活物質層中に分散させる、(2)結着剤の電子伝導性を向上させるために、結着剤に導電性有機高分子を複合化する、(3)集電体と活物質層の間に、活物質のシリコンもしくはスズの金属または合金の粉末の膨張が生じても、活物質層と集電体との電子伝導が確保される電子伝導性の緩衝層を設ける、(4)電極層表面での膨張の不均一化を抑制するために、活物資層主材のシリコンもしくはスズの金属または合金に比較して充電による膨張が小さく、イオン透過性と電子伝導性のある、表面被覆層を設ける、構造の電極構造体を考案した。   Accordingly, the present inventors have developed (1) expansion of silicon or tin metal or alloy powder of the active material in order to prevent generation of cracks and “soot” due to non-uniform expansion. However, a support material capable of maintaining electronic conduction is dispersed in the active material layer. (2) In order to improve the electronic conductivity of the binder, a conductive organic polymer is combined with the binder. 3) Electronic conductivity that ensures electronic conduction between the active material layer and the current collector even when the silicon or tin metal or alloy powder of the active material expands between the current collector and the active material layer. (4) In order to suppress non-uniform expansion on the surface of the electrode layer, the expansion due to charging is small compared to the silicon or tin metal or alloy of the active material layer main material, and ion permeation Electrode structure with a surface coating layer that is conductive and electronically conductive It was devised.

以下、図1乃至図4と図5を参照して、本発明の実施の形態について説明する。
図1において、100は集電体、101はシリコン、スズ、あるいはこれらのいずれかの元素を含む合金の粒子、102は導電補助材粒子、103は結着剤、104は支持材粒子、105は主活物質層、106は電極構造体、であり、101’はリチウムとの合金化で膨張したシリコン、スズ、あるいはこれらのいずれかの元素を含む合金の粒子である。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 4 and FIG.
In FIG. 1, 100 is a current collector, 101 is silicon, tin, or an alloy particle containing any of these elements, 102 is a conductive auxiliary material particle, 103 is a binder, 104 is a support material particle, 105 is The main active material layer 106 is an electrode structure, and 101 'is particles of silicon, tin, or an alloy containing any one of these elements expanded by alloying with lithium.

図2において、200は集電体、201はシリコン、スズ、あるいはこれらのいずれかの元素を含む合金の粒子、202は導電補助材粒子、203は結着剤、204は支持材粒子、205は主活物質層、206は電子伝導性粒子、207は結着剤、208は緩衝層、209は電極構造体である。   In FIG. 2, 200 is a current collector, 201 is particles of silicon, tin, or an alloy containing any of these elements, 202 is a conductive auxiliary material particle, 203 is a binder, 204 is support material particles, 205 is The main active material layer, 206 is an electron conductive particle, 207 is a binder, 208 is a buffer layer, and 209 is an electrode structure.

図3において、300は集電体、301はシリコン、スズ、あるいはこれらのいずれかの元素を含む合金の粒子、302は導電補助材粒子、303は結着剤、304は支持材粒子、305は主活物質層、306はイオン伝導性もしくは電子伝導性の粒子、307は結着剤、308はリチウムイオン透過性の表面被覆層、309は電極構造体である。   In FIG. 3, 300 is a current collector, 301 is silicon, tin, or particles of an alloy containing any of these elements, 302 is a conductive auxiliary material particle, 303 is a binder, 304 is support material particles, 305 is The main active material layer, 306 is an ion conductive or electron conductive particle, 307 is a binder, 308 is a lithium ion permeable surface coating layer, and 309 is an electrode structure.

図4において、400は集電体、401はシリコン、スズ、あるいはこれらのいずれかの元素を含む合金の粒子、402は導電補助材粒子、403は結着剤、404は支持材粒子、405は主活物質層、406は電子伝導性粒子、407は結着剤、408は緩衝層、409はイオン伝導性もしくは電子伝導性の粒子、410は結着剤、411はリチウムイオン透過性の表面被覆層、412は電極構造体、413は表面粗化された集電体である。   In FIG. 4, 400 is a current collector, 401 is silicon, tin, or particles of an alloy containing any of these elements, 402 is a conductive auxiliary material particle, 403 is a binder, 404 is support material particles, and 405 is Main active material layer, 406 is an electron conductive particle, 407 is a binder, 408 is a buffer layer, 409 is an ion conductive or electron conductive particle, 410 is a binder, 411 is a lithium ion permeable surface coating Layers 412 are electrode structures, and 413 is a surface-roughened current collector.

図5において、500は集電体、501はシリコン、スズ、あるいはこれらのいずれかの元素を含む合金の粒子、502は扁平な導電補助材粒子、503は導電補助材粒子、504は結着剤、505は主活物質層、506は電極構造体、501’はリチウムとの合金化で膨張したシリコン、スズ、あるいはこれらのいずれかの元素を含む合金の粒子である。   In FIG. 5, 500 is a current collector, 501 is particles of silicon, tin, or an alloy containing any of these elements, 502 is a flat conductive auxiliary material particle, 503 is a conductive auxiliary material particle, and 504 is a binder. , 505 is a main active material layer, 506 is an electrode structure, and 501 ′ is particles of silicon or tin expanded by alloying with lithium, or an alloy containing any one of these elements.

図1は、シリコンもしくはスズの金属またはそれらの合金の粒子100、(粒子間の電子伝導を助ける)導電補助材粒子102、結着剤103とから成る主活物質層に、層内の垂直水平方向の電子伝導を助ける、主活物質層105の厚みと同レベルの粒子サイズの支持材104を導入して形成された電極構造体106の一例の概略断面構成図である。支持材の導入方法は、集電体上への主活物質形成時に、シリコンもしくはスズの金属またはそれらの合金の粉末、導電補助材粉末、結着剤、に加えて支持材料粉末を混合することで、行なうことができる。   FIG. 1 shows a main active material layer consisting of particles 100 of silicon or tin metal or their alloys, conductive aid particles 102 (helping electronic conduction between the particles), and a binder 103. FIG. 3 is a schematic cross-sectional configuration diagram of an example of an electrode structure 106 formed by introducing a support material 104 having a particle size of the same level as the thickness of a main active material layer 105 that assists electron conduction in a direction. The method of introducing the support material is to mix the support material powder in addition to the silicon or tin metal or their alloy powder, the conductive auxiliary material powder, the binder when forming the main active material on the current collector. It can be done.

また、図1の(b)は、図1の(a)の電極構造体を負極として正極と組み合わせて作製されたリチウム二次電池を充電し、シリコンもしくはスズの金属またはそれら合金の粒子とリチウムが電気化学反応で合金化し膨張した場合の電極構造体断面想像図である。   FIG. 1B shows a lithium secondary battery manufactured by combining the electrode structure of FIG. 1A with the positive electrode using the electrode structure of FIG. 1A, and particles of silicon or tin metal or their alloys and lithium FIG. 3 is an imaginary view of a cross section of an electrode structure when the alloy is expanded by an electrochemical reaction.

図5の(a)は図1の支持材に替えて、扁平な導電補助材粒子を導入した活物質層を形成した電極構造体の概略断面構成図である。また、図5の(b)は、図5の(a)の電極構造体を負極として正極と組み合わせて作製されたリチウム二次電池を充電し、シリコンもしくはスズの金属またはそれら合金の粒子とリチウムが電気化学反応で合金化し膨張した場合の図5の(a)の電極構造体断面イメージ図である。   (A) of FIG. 5 is a schematic cross-sectional block diagram of the electrode structure which formed the active material layer which introduce | transduced the flat electroconductive auxiliary material particle | grains instead of the support material of FIG. FIG. 5B shows a lithium secondary battery manufactured by combining the electrode structure of FIG. 5A with the positive electrode using the negative electrode structure, and particles of silicon or tin metal or their alloys and lithium. FIG. 6 is a cross-sectional image view of the electrode structure of FIG. 5A when the alloy is expanded by an electrochemical reaction.

図1の(b)と図5の(b)の比較により、図1の(a)の構造の電極構造体では、図5の(a)に比較して、充電で膨張が生じたとしても、支持材粒子104の存在により、電極反応時の電子伝導の低下が低減され、電極抵抗の増加が低く抑えられることがわかる。さらに、図1の(b)の結着剤に導電性高分子が複合された場合には膨張時にも結着剤のネットワークを通じて電子伝導が保たれるので(不図示)、充放電効率が向上するとともに、充放電サイクル寿命も伸びることになることがわかる。   1 (b) and FIG. 5 (b), the electrode structure having the structure shown in FIG. 1 (a) may be expanded by charging as compared with FIG. 5 (a). It can be seen that the presence of the support material particles 104 reduces the decrease in electron conduction during the electrode reaction and suppresses the increase in electrode resistance. In addition, when a conductive polymer is combined with the binder shown in FIG. 1 (b), electronic conduction is maintained through the binder network even during expansion (not shown), thereby improving charge / discharge efficiency. In addition, the charge / discharge cycle life is also extended.

図2は、前記電極構造体の集電体と主活物質層の間に、電子伝導性の緩衝層が設けられた電極構造体の一例の概略断面構成図である。図2の電極構造体をリチウム二次電池の負極に用いて充電が行なわれた場合でも、充電で膨張する主活物質層と集電体間の電子伝導を、膨張が小さい緩衝層が補助することができる。さらに、図1の(a)電極構造体とは異なり、有機高分子材の結着剤からなる緩衝層が集電体と主活物質層と間に設けられていることによって、主活物質層の膨張時に発生する集電体界面の応力が緩和し均一化される。そのために、主活物質層の一部が集電体からはがれやすくなることが抑えられ、集電体の応力による変形も抑制される。このとき、主活物質層と緩衝層に用いられる結着剤の材質は同一もしくは同質の材料である方が緩衝層と主活物質層の界面が連続的に形成されるので、より好ましい。   FIG. 2 is a schematic cross-sectional configuration diagram of an example of an electrode structure in which an electron conductive buffer layer is provided between the current collector and the main active material layer of the electrode structure. Even when charging is performed using the electrode structure of FIG. 2 as a negative electrode of a lithium secondary battery, a buffer layer with small expansion assists electronic conduction between the main active material layer that expands by charging and the current collector. be able to. Further, unlike the electrode structure of FIG. 1 (a), a buffer layer made of an organic polymer binder is provided between the current collector and the main active material layer. The stress at the current collector interface generated during the expansion of the material is relaxed and made uniform. Therefore, a part of the main active material layer is prevented from being easily peeled off from the current collector, and deformation due to the stress of the current collector is also suppressed. At this time, the material of the binder used for the main active material layer and the buffer layer is more preferably the same or the same material because the interface between the buffer layer and the main active material layer is continuously formed.

図3は、図1の(a)の電極構造体において、主活物質層の表面に表面被覆層が設けられた電極構造体の一例の概略断面構成図である。図3の電極構造体をリチウム二次電池の負極に用いて充電が行なわれた場合でも、充電による膨張が少なく電子伝導性を有している、表面被覆層306が設けられているため、充電時に図3の電極構造体表面にかかる電界強度の均一化がなされることによって、主活物質層の膨張も均一化でき、膨張時の電気化学反応時の集電体に平行な電子伝導も維持されやすい。このため、充電による膨張時にも電極構造体の電気抵抗をより低く抑えることができる。   FIG. 3 is a schematic cross-sectional configuration diagram of an example of an electrode structure in which a surface coating layer is provided on the surface of the main active material layer in the electrode structure of FIG. Even when charging is performed using the electrode structure of FIG. 3 as the negative electrode of a lithium secondary battery, the surface coating layer 306 is provided which has a low expansion due to charging and has electronic conductivity. Sometimes the electric field strength applied to the surface of the electrode structure in FIG. 3 is made uniform, so that the expansion of the main active material layer can be made uniform, and the electron conduction parallel to the current collector during the electrochemical reaction during the expansion is maintained. Easy to be. For this reason, the electrical resistance of the electrode structure can be further suppressed during expansion due to charging.

図4は、前記電極構造体の集電体と主活物質層の間に、電子伝導性の緩衝層が設けられ、かつ前記電極構造体の主活物質層の表面に表面被覆層が設けられた電極構造体の一例の概略断面構成図である。図4の(a)は集電体に表面が平坦な集電体を用いた例を、(b)では集電体に表面が粗化された集電体を用いた例を示した。表面粗化が施された集電体を用いると、界面の面積を高めて、主活物質層と集電体間の充放電時に発生する応力を低下することができる。ただし、凹凸が大きく不均一であれば、反って、集電体にかかる応力が不均一になり、充放電の繰り返しで破断が起きる場合もある。そのため、集電体の表面粗さの十点平均高さRzが0.5μm〜5μmであることが好ましく、0.7μm〜3μmであることがより好ましい。   FIG. 4 shows that an electron conductive buffer layer is provided between the current collector of the electrode structure and the main active material layer, and a surface coating layer is provided on the surface of the main active material layer of the electrode structure. 2 is a schematic cross-sectional configuration diagram of an example of an electrode structure. 4A shows an example in which a current collector having a flat surface is used as the current collector, and FIG. 4B shows an example in which a current collector with a roughened surface is used as the current collector. When a current collector that has been subjected to surface roughening is used, the area of the interface can be increased, and the stress generated during charging / discharging between the main active material layer and the current collector can be reduced. However, if the unevenness is large and uneven, the stress applied to the current collector is uneven, and breakage may occur due to repeated charge and discharge. Therefore, the ten-point average height Rz of the surface roughness of the current collector is preferably 0.5 μm to 5 μm, and more preferably 0.7 μm to 3 μm.

〔主活物質層〕
本発明のリチウムニ次電池の負極に用いる電極構造体の主活物質層は、主活物質に、支持材粉末、導電補助材粉末、結着剤を混合し、適宜結着剤の溶媒を添加して混練してスラリーを調製する。ついで、集電体に調製したスラリーを、集電体上あるいは後述の緩衝層上に塗工し、乾燥して電極層を形成した後、適宜プレス処理を施し、電極層の厚みと密度を調整して電極構造体を形成する。上記の塗布方法としては、例えば、コーター塗布方法、スクリーン印刷法が適用できる。また、溶剤を添加することなく上記主材と、支持材粉末、導電補助材、結着剤とを、集電体上あるいは後述の緩衝層上に加圧成形して、電極材料層を形成することも可能である。なお、本発明の電極材料層の密度は、0.7〜2.0g/cm3の範囲であることが好ましく、0.9〜1.5g/cm3の範囲であることがより好ましい。電極材料層の密度が大き過ぎるとリチウムの挿入時の膨張が大きくなり、集電体からのはがれが発生することになる。また、電極材料層の密度が小さすぎると、電極の抵抗が大きくなるために、充放電効率の低下、電池の放電時の電圧降下が大きくなる。
[Main active material layer]
The main active material layer of the electrode structure used for the negative electrode of the lithium secondary battery of the present invention is obtained by mixing the main active material with a support material powder, a conductive auxiliary material powder, and a binder, and appropriately adding a binder solvent. Knead to prepare a slurry. Next, the slurry prepared in the current collector is coated on the current collector or a buffer layer described later, dried to form an electrode layer, and then appropriately pressed to adjust the thickness and density of the electrode layer. Thus, an electrode structure is formed. As the coating method, for example, a coater coating method or a screen printing method can be applied. Further, the main material, the support material powder, the conductive auxiliary material, and the binder are pressure-molded on the current collector or a buffer layer described later without adding a solvent to form an electrode material layer. It is also possible. The density of the electrode material layer of the present invention is preferably in the range of 0.7~2.0g / cm 3, and more preferably in the range of 0.9~1.5g / cm 3. If the density of the electrode material layer is too high, expansion upon insertion of lithium increases, and peeling from the current collector occurs. On the other hand, if the density of the electrode material layer is too small, the resistance of the electrode is increased, so that the charge / discharge efficiency is lowered and the voltage drop during battery discharge is increased.

(主活物質)
前記主活物質層を構成する主活物質としては、シリコン、スズもしくはそれらの合金の金属粉末粒子を使用するのが好ましい。上記金属粉末粒子(合金粒子)には、遷移金属元素を含有し、炭素と複合化されているのも好ましい。上記金属粉末粒子(合金粒子)は、結晶子サイズが好ましくは60nm以下、より好ましくは20nm以下の非晶質化粒子で、あることが好ましい。本発明において、粒子の結晶子の大きさとは、線源にCuKαを用いたX線回折曲線のピークの半値幅と回折角から次のScherrerの式を用いて決定できる。
(Main active material)
As the main active material constituting the main active material layer, it is preferable to use metal powder particles of silicon, tin or an alloy thereof. The metal powder particles (alloy particles) preferably contain a transition metal element and are combined with carbon. The metal powder particles (alloy particles) are preferably amorphized particles having a crystallite size of preferably 60 nm or less, more preferably 20 nm or less. In the present invention, the size of the crystallite of the particle can be determined by using the following Scherrer formula from the half width and diffraction angle of the peak of an X-ray diffraction curve using CuKα as a radiation source.

Lc=0.94λ/(βcosθ) (Scherrerの式)
Lc:結晶子の大きさ
λ:X線ビームの波長
β:ピークの半価幅(ラジアン)
θ:回折線のブラッグ角
前記主活物質の金属粉末粒子(合金粒子)を形成する一次粒子の平均粒径としては0.05μm〜5μmの範囲であることが好ましく、0.1μm〜3μmの範囲であることがより好ましい。
Lc = 0.94λ / (βcosθ) (Scherrer equation)
Lc: Crystallite size λ: X-ray beam wavelength β: Half width of peak (radian)
θ: Bragg angle of diffraction line The average particle diameter of primary particles forming the metal powder particles (alloy particles) of the main active material is preferably in the range of 0.05 μm to 5 μm, and in the range of 0.1 μm to 3 μm. It is more preferable that

(シリコン,スズ,それらの合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末の被覆)
前記シリコン、スズもしくはそれらの合金粒子は、ピッチ、ピッチコークス、石油コークス、コールタール、フルオランテン、ピレン、クリセン、フェナントレン、アントラセン、ナフタリン、フルオレン、ビフェニル、アセナフテンから選択される材料で被覆の後、不活性ガス化で炭化して、炭化層で被覆されているのが好ましい。上記炭化原料のうち、ピッチ、ピッチコークス、石油コークス、コールタール、等は、融点が低いので、主活物質の粒子の被覆を容易にし、炭化温度が低いことから、主活物質粒子のリチウム吸蔵性能を低下することなく、炭化層での被覆を容易にする。さらに、それら材料は安価である。前記炭化層被覆の、シリコン、スズもしくは合金粒子の炭化層の割合は、シリコン、スズもしくはそれらの合金粒子のリチウム吸蔵量を損なわず、粒子間の電子伝導を補助し、酸化を抑制するために、1〜10重量%の範囲が好ましく、2〜5重量%の範囲がより好ましい。また、上記炭化の過程で、一部酸化したシリコン、スズもしくは合金粒子から酸素元素を奪う還元反応が起こり、リチウムと不可逆反応を起こす酸化物の低減をすることができる。炭化の過程に用いる不活性ガスとしては、アルゴンガス、窒素ガス、二酸化炭素ガスから選択されるガスを用いることができる。炭化温度としては、400℃〜900℃の範囲が好ましく、炭化が進行し、シリコン、スズもしくは合金粒子の結晶化が進みにくい、500℃〜800℃の範囲がより好ましい。
(Coating with metal powder selected from silicon, tin, and their alloys that can store and release lithium by electrochemical reaction)
The silicon, tin or their alloy particles are coated with a material selected from pitch, pitch coke, petroleum coke, coal tar, fluoranthene, pyrene, chrysene, phenanthrene, anthracene, naphthalene, fluorene, biphenyl, and acenaphthene, and then non-coated. It is preferably carbonized by active gasification and coated with a carbonized layer. Among the carbonized raw materials, pitch, pitch coke, petroleum coke, coal tar, and the like have a low melting point, so that the coating of the main active material particles is facilitated and the carbonization temperature is low. Facilitates coating with a carbonized layer without degrading performance. Furthermore, these materials are inexpensive. The ratio of the carbonized layer of silicon, tin or alloy particles of the carbonized layer coating does not impair the lithium occlusion amount of silicon, tin or alloy particles thereof, assists electronic conduction between particles, and suppresses oxidation. The range of 1 to 10% by weight is preferable, and the range of 2 to 5% by weight is more preferable. Further, in the carbonization process, a reduction reaction for depriving oxygen elements from partially oxidized silicon, tin, or alloy particles occurs, so that oxides that cause an irreversible reaction with lithium can be reduced. As the inert gas used in the carbonization process, a gas selected from argon gas, nitrogen gas, and carbon dioxide gas can be used. The carbonization temperature is preferably in the range of 400 ° C. to 900 ° C., more preferably in the range of 500 ° C. to 800 ° C., where carbonization proceeds and crystallization of silicon, tin, or alloy particles does not proceed easily.

また、シリコン,スズ,それらの合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末は、TiO2,MoO3,WO3、並びに前記金属酸化物のTi,Mo,Wの一部を他の金属元素で置換した酸化物で、その表面の一部もしくは全面を被覆することが望ましい。上記金属酸化物は、構造が安定で、電気的にLiイオンの挿入脱離が容易なために、シリコン,スズ,それらの合金から選択される金属粉末をリチウム二次電池の負極の主材とした電池において、前記シリコン,スズ,それらの合金から選択される金属粉末に、Liイオンが還元され活性なLi金属として析出するのを抑制することができる。その結果として、電池の充放電の繰り返しでの充放電性能の低下を抑制することができ、充放電サイクル寿命を伸ばすことが可能になる。
上記TiO2,MoO3,WO3以外の被覆材料として、Li4/3Ti5/34,V2MoO8等の遷移金属酸化物、TiS2,MoS2等の遷移金属硫化物も使用できる。
Further, metal powders selected from silicon, tin, and alloys thereof and capable of storing and releasing lithium by an electrochemical reaction are TiO 2 , MoO 3 , WO 3 , and Ti, Mo, W of the metal oxides. It is desirable to coat a part or the whole of the surface with an oxide partially substituted with another metal element. Since the metal oxide has a stable structure and facilitates electrical insertion and removal of Li ions, a metal powder selected from silicon, tin, and alloys thereof is used as a negative electrode main material of a lithium secondary battery. In such a battery, it is possible to prevent Li ions from being reduced and deposited as active Li metal on the metal powder selected from the silicon, tin, and alloys thereof. As a result, a decrease in charge / discharge performance due to repeated charge / discharge of the battery can be suppressed, and the charge / discharge cycle life can be extended.
As coating materials other than the above TiO 2 , MoO 3 , and WO 3 , transition metal oxides such as Li 4/3 Ti 5/3 O 4 and V 2 MoO 8 , and transition metal sulfides such as TiS 2 and MoS 2 are also used. it can.

前記金属酸化物での被覆は、前記シリコン,スズ,それらの合金から選択される金属粉末を前記金属酸化物とボールミル等の粉砕機で混合することによって、形成できる。また、前記金属酸化物の原料となる、ポリチタン酸、ポリタングステン酸、ポリモリブデン酸、過酸化ポリチタン酸、過酸化ポリタングステン酸、過酸化ポリモリブデン酸の溶液と、前記前記シリコン,スズ,それらの合金から選択される金属粉末を混合することで、被覆することができる。   The coating with the metal oxide can be formed by mixing a metal powder selected from the silicon, tin, and alloys thereof with a pulverizer such as a ball mill. The raw material of the metal oxide, polytitanic acid, polytungstic acid, polymolybdic acid, polytitanic acid peroxide, polytungstic acid peroxide, polymolybdic peroxide solution, and the silicon, tin, and their It can coat | cover by mixing the metal powder selected from an alloy.

また、炭素−炭素の、二重結合と一重結合の結合交替がある、共役二重結合の導電性高分子で、前記シリコン,スズ,それらの合金から選択される金属粉末の表面の一部または全面を被覆することも望ましい。リチウム二次電池の負極を結着剤とともに構成する場合、結着剤と前記シリコン,スズ,それらの合金から選択される金属粉末との親和性を高め、負極の電極層内に均一に分散させることが可能となり、安定な負極性能を得ることができる。   In addition, a carbon-carbon conductive polymer having a conjugated double bond, in which a double bond and a single bond are alternated, and a part of the surface of the metal powder selected from the silicon, tin, and alloys thereof, or It is also desirable to cover the entire surface. When the negative electrode of a lithium secondary battery is configured with a binder, the affinity between the binder and the metal powder selected from the silicon, tin, and alloys thereof is increased and dispersed uniformly in the electrode layer of the negative electrode. Therefore, stable negative electrode performance can be obtained.

また、上記導電性高分子もまた、電気化学的にLiイオンを挿入脱離することが可能なため、前記金属酸化物の被覆時と同様の効果が得られる。上記導電性高分子としては、チオフェン誘導体,ピロール誘導体,アニリン誘導体,アセチレン誘導体等の各重合体である高分子が好ましい。さらに、結着剤との親和性をより高めるために、上記導電性高分子は、界面活性剤との複合化合物であることがより好ましい。導電性高分子での前記シリコン,スズ,それらの合金から選択される金属粉末の被覆は、金属粉末を導電性高分子の溶液と混合することで形成することができる。   In addition, since the conductive polymer can also electrochemically insert and desorb Li ions, the same effect as that obtained when the metal oxide is coated can be obtained. The conductive polymer is preferably a polymer that is a polymer such as a thiophene derivative, a pyrrole derivative, an aniline derivative, or an acetylene derivative. Furthermore, in order to further increase the affinity with the binder, the conductive polymer is more preferably a complex compound with a surfactant. The coating of the metal powder selected from the silicon, tin, and alloys thereof with the conductive polymer can be formed by mixing the metal powder with a solution of the conductive polymer.

(支持材)
主活物質層の支持材としては、黒鉛,(TiO2,MoO3,WO3から選択される)遷移金属酸化物,Liと電気化学的に合金を形成しない(Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される)金属、から成る群から選択された1種類以上の材料が好ましく、充電でのリチウムのデンドライト成長を抑制する点で、黒鉛,(TiO2,MoO3,WO3から選択される)遷移金属酸化物がより好ましい。黒鉛とTiO2,MoO3,WO3から選択される遷移金属酸化物は、リチウムを層間に吸蔵することが可能であり、リチウム吸蔵時の黒鉛とMoO3,WO3から選択される遷移金属酸化物は金属リチウムとの電位差が小さいために、より好ましい材料である。上記TiO2,MoO3,WO3以外の金属化合物の支持材としては、Li4/3Ti5/34,V2MoO8等の遷移金属酸化物、TiS2,MoS2等の遷移金属硫化物も使用できる。
(Support material)
As a support material for the main active material layer, graphite, a transition metal oxide (selected from TiO 2 , MoO 3 , WO 3 ), and Li do not form an alloy electrochemically (Cu, Ni, Co, Ti, One or more materials selected from the group consisting of metals (selected from Fe, Cr, Mo, W, Pd, Pt, Au, and alloys thereof) are preferred and inhibit lithium dendrite growth upon charging. In this respect, graphite and a transition metal oxide (selected from TiO 2 , MoO 3 , and WO 3 ) are more preferable. The transition metal oxide selected from graphite and TiO 2 , MoO 3 , and WO 3 can occlude lithium between layers, and the transition metal oxide selected from graphite, MoO 3 , and WO 3 during occlusion of lithium Since the potential difference with metallic lithium is small, it is a more preferable material. Examples of the support material for metal compounds other than TiO 2 , MoO 3 and WO 3 include transition metal oxides such as Li 4/3 Ti 5/3 O 4 and V 2 MoO 8 , and transition metals such as TiS 2 and MoS 2. Sulfides can also be used.

電解液の保持をしやすい点では、本発明の支持材料としては黒鉛がもっとも好ましい。前記支持材料の粉末の形状は球状もしくは擬似球状または柱状であることが、好ましい。前記支持材料の平均粒子(二次粒子)サイズは、前記主活物質層内の電子伝導を充電での膨張時にも確保するために、前記主活物質層の平均厚みの0.3〜1.35倍であることが好ましく、0.6〜1.2倍であることがより好ましい。   From the viewpoint of easily holding the electrolytic solution, graphite is most preferable as the support material of the present invention. The shape of the support material powder is preferably spherical, pseudo-spherical, or columnar. The average particle size (secondary particle) size of the support material is 0.3 to 1.1 of the average thickness of the main active material layer in order to ensure the electron conduction in the main active material layer even during expansion by charging. It is preferably 35 times, and more preferably 0.6 to 1.2 times.

(導電補助材)
主活物質層の導電補助材としては、アセチレンブラックやケッチェンブラックなどの非晶質炭素や黒鉛構造炭素などの炭素材、ニッケル、銅、銀、チタン、白金、アルミニウム、コバルト、鉄、クロムなどを用いることができるが、特に黒鉛が電解液を保持でき電子伝導性もあり比表面積も大きいことことから好ましい。上記導電補助材の形状として好ましくは、球状、フレーク状、フィラメント状、繊維状、スパイク状、針状などから選択される形状を採用することができる。さらに、異なる二種類以上の形状の粉末を採用することにより、電極材料層形成時のパッキング密度を上げて電極構造体のインピーダンスを低減することができる。上記導電補助材としての平均粒子(二次粒子)サイズは10μm以下が好ましく、5μm以下がより好ましい。
(Conductive auxiliary material)
As the conductive auxiliary material for the main active material layer, carbon materials such as amorphous carbon such as acetylene black and ketjen black and carbon with graphite structure, nickel, copper, silver, titanium, platinum, aluminum, cobalt, iron, chromium, etc. However, graphite is preferable because graphite can hold an electrolyte solution, has electronic conductivity, and has a large specific surface area. As the shape of the conductive auxiliary material, a shape selected from a spherical shape, a flake shape, a filament shape, a fiber shape, a spike shape, a needle shape, and the like can be preferably used. Furthermore, by adopting two or more different types of powders, the packing density at the time of forming the electrode material layer can be increased and the impedance of the electrode structure can be reduced. The average particle (secondary particle) size as the conductive auxiliary material is preferably 10 μm or less, and more preferably 5 μm or less.

シリコン,スズ,それらの合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末を主材にして構成されるリチウム二次電池の負極に用いる導電補助材として、炭素材料以外に、Ni−Tiの金属間化合物の粉末を(例えば480℃等の温度で)熱処理して得られる、いわゆる超弾性合金(Super Elastic Alloys)の特性を有する金属粉末を用いるのも好ましい。シリコン,スズ,それらの合金から選択される金属粉末から形成され負極のリチウム二次電池では、充電可能な電気量は大きく、充放電で負極が膨張収縮するが、上記導電補助材を負極に用いることで、膨張収縮の繰り返しで、負極の集電能が低下するのを抑制することが可能になる。
これにより、充放電の繰り返し時に電池性能が低下するのを抑制することができる。
As a conductive auxiliary material used for the negative electrode of a lithium secondary battery composed mainly of a metal powder selected from silicon, tin, and alloys thereof and capable of storing and releasing lithium by an electrochemical reaction, in addition to a carbon material It is also preferable to use a metal powder having the characteristics of a so-called super elastic alloy obtained by heat-treating a powder of a Ni—Ti intermetallic compound (for example, at a temperature of 480 ° C. or the like). In a negative electrode lithium secondary battery formed of a metal powder selected from silicon, tin, and alloys thereof, the amount of chargeable electricity is large, and the negative electrode expands and contracts by charging and discharging, but the conductive auxiliary material is used for the negative electrode. As a result, it is possible to suppress a decrease in the current collecting ability of the negative electrode due to repeated expansion and contraction.
Thereby, it can suppress that battery performance falls at the time of repetition of charging / discharging.

(結着剤)
主活物質層の結着剤の材料としては、ポリアミドイミド、ポリイミド、ポリイミド前駆体(ポリイミド化前のポリアミック酸、あるいはポリイミド化が不完全なもの)、スチレンーブタジエンラバー、吸水性を低減した変性ポリビニルアルコール系樹脂、等の有機高分子材料が挙げられる。特に、シリコン合金粉末の結着には、ポリアミドイミド、ポリイミド前駆体(ポリイミド化前のポリアミック酸、あるいはポリイミド化が不完全なもの)を用いるのがより好ましい。ポリイミド前駆体の場合、電極層の塗工後に熱処理を150〜300℃の範囲で施してポリイミド化を進行させるがよい。
(Binder)
The binder material of the main active material layer includes polyamideimide, polyimide, polyimide precursor (polyamic acid before polyimideization or incompletely polyimideized), styrene-butadiene rubber, modified with reduced water absorption Examples thereof include organic polymer materials such as polyvinyl alcohol resins. In particular, it is more preferable to use a polyamideimide or a polyimide precursor (polyamic acid before polyimideization or imperfect polyimideization) for binding the silicon alloy powder. In the case of a polyimide precursor, after the application of the electrode layer, heat treatment is performed in the range of 150 to 300 ° C. to advance the polyimide.

主活物質層中の上記結着剤の含有量は、2〜20重量%が好ましく、5〜10重量%がより好ましい。
上記結着剤のポリアミドイミド、ポリイミド、ポリイミド前駆体(ポリイミド化前のポリアミック酸、あるいはポリイミド化が不完全なもの)、スチレンーブタジエンラバー、吸水性を低減した変性ポリビニルアルコール系樹脂、等の有機高分子材料は電子導電性に乏しいので、−C=C−C=C−の炭素−炭素の二重結合と一重結合の結合交替がある導電性高分子を添加して使用するのが、電極の抵抗を低減するのによい。導電性高分子は上記有機高分子との親和性が高いために、より均一な複合化が可能になる。結着力を維持し電気抵抗を低減ためには、導電性高分子の結着剤としての有機高分子材に混合する導電性高分子の割合は重量比で結着剤100に対して1〜20が好ましく、2〜10が、結着剤の結着力を低下することなく、電気伝導度を高めるのに、より好ましい。導電性高分子の例としては、チオフェン誘導体モノマー、ピロール誘導体モノマー、アニリン誘導体モノマー、アセチレン誘導体モノマー、フェニレン誘導体モノマー等の、重合体の高分子が挙げられる。上記導電性高分子の好ましい具体的代表例としては、ポリチオフェン、ポリ3−ヘキシルチオフェン、ポリ2−アセチルチオフェン、ポリベンゾチオフェン、ポリ2,5−ジメチルチオフェン、ポリ2−エチルチオフェン、ポリ2−チオフェンカルボン酸エチル、ポリチオフェンアセトニトリル、ポリ3,4エチレンジオキシチオフェン、ポリイソチアナフンテ、ポリピロール、ポリアニリン、ポリパラフェニレン、等が挙げられる。上記導電性高分子の結着剤である有機高分子への添加方法は、活物質や導電性高分子と混合する前に、予め先に結着剤に添加して混合しておく方が、結着剤の電子伝導性をより高めることができる。
The content of the binder in the main active material layer is preferably 2 to 20% by weight, and more preferably 5 to 10% by weight.
Organics such as polyamideimide, polyimide, polyimide precursor (polyamic acid before polyimide formation, or imperfect polyimide formation), styrene-butadiene rubber, modified polyvinyl alcohol resin with reduced water absorption, etc. Since the polymer material has poor electronic conductivity, it is necessary to add and use a conductive polymer having a -C = C-C = C- carbon-carbon double bond and single bond replacement. It is good for reducing the resistance. Since the conductive polymer has a high affinity with the organic polymer, a more uniform composite is possible. In order to maintain the binding force and reduce the electrical resistance, the ratio of the conductive polymer mixed with the organic polymer material as the binder of the conductive polymer is 1 to 20 with respect to the binder 100 by weight ratio. Is preferable, and 2 to 10 are more preferable for increasing the electric conductivity without decreasing the binding force of the binder. Examples of the conductive polymer include polymer polymers such as a thiophene derivative monomer, a pyrrole derivative monomer, an aniline derivative monomer, an acetylene derivative monomer, and a phenylene derivative monomer. Preferable specific representative examples of the conductive polymer include polythiophene, poly-3-hexylthiophene, poly-2-acetylthiophene, polybenzothiophene, poly2,5-dimethylthiophene, poly-2-ethylthiophene, poly-2-thiophene. Examples thereof include ethyl carboxylate, polythiophene acetonitrile, poly 3,4 ethylenedioxythiophene, polyisothiafunte, polypyrrole, polyaniline, polyparaphenylene, and the like. The method for adding the conductive polymer to the organic polymer that is the binder is to add the binder to the binder in advance before mixing with the active material or the conductive polymer. The electronic conductivity of the binder can be further increased.

〔集電体〕
本発明の電極構造体の集電体は、充電時の電極反応で消費する電流を効率よく供給する、あるいは放電時の発生する電流を集電する役目を担っている。特に電極構造体を二次電池の負極に適用する場合、集電体を形成する材料としては、電気伝導度が高く、且つ、電池反応に不活性な材質が望ましい。好ましい材質としては、銅、ニッケル、鉄、ステンレススチール、チタン、白金から選択される一種類以上の金属材料から成るものが挙げられる。より好ましい材料としては安価で電気抵抗の低い銅が用いられる。また、集電体の形状としては、板状であるが、この“板状”とは、厚みについては実用の範囲上で特定されず、厚み約5μm〜100μm程度の“箔”といわれる形態をも包含する。また、板状であって、例えばメッシュ状、スポンジ状、繊維状をなす部材、パンチングメタル、表裏両面に三次元の凹凸パターンが形成されたメタル、エキスパンドメタル等を採用することもできる。
[Current collector]
The current collector of the electrode structure of the present invention plays a role of efficiently supplying a current consumed by an electrode reaction during charging or collecting a current generated during discharging. In particular, when the electrode structure is applied to the negative electrode of a secondary battery, the material forming the current collector is preferably a material having high electrical conductivity and inert to battery reaction. Preferable materials include those made of one or more metal materials selected from copper, nickel, iron, stainless steel, titanium, and platinum. As a more preferable material, copper which is inexpensive and has low electric resistance is used. The shape of the current collector is plate-like, but this “plate-like” is not specified in terms of thickness in terms of practical use, and has a form called “foil” having a thickness of about 5 μm to 100 μm. Is also included. Further, a plate-like member such as a mesh, sponge, or fiber, a punching metal, a metal having a three-dimensional concavo-convex pattern formed on both front and back surfaces, an expanded metal, or the like may be employed.

上記三次元の凹凸パターンが形成された板状あるいは箔状金属は、例えば、マイクロアレイパターンあるいはラインアンドスペースパターンを表面に設けた金属製もしくはセラミック製のロールに圧力をかけて、板状あるいは箔状の金属に転写することで、作製できる。特に、三次元の凹凸パターンが形成された集電体を採用した負極の電池には、充放電時の電極面積あたりの実質的な電流密度の低減、電極層との密着性の向上、機械的強度の向上から、充放電の電流特性の向上と充放電サイクル寿命の向上の効果がある。この三次元の凹凸パターンが形成された集電体は、電池の電極の集電体のみならず、キャパシタ等の蓄電デバイスの電極にも応用可能である。   The plate-like or foil-like metal on which the three-dimensional uneven pattern is formed is, for example, a plate-like or foil-like shape by applying pressure to a metal or ceramic roll provided with a microarray pattern or a line and space pattern on the surface. It can be produced by transferring to a metal. In particular, a negative electrode battery employing a current collector with a three-dimensional uneven pattern formed has a substantial reduction in current density per electrode area during charge / discharge, improved adhesion to the electrode layer, mechanical From the improvement in strength, there are the effects of improving the current characteristics of charge / discharge and improving the charge / discharge cycle life. The current collector on which the three-dimensional uneven pattern is formed can be applied not only to a current collector of a battery electrode but also to an electrode of an electricity storage device such as a capacitor.

上記集電体の表面粗さは集電体上に形成する電極層の密着性を保持するために、十点平均高さRzが0.5μm〜5.0μmの範囲であることが好ましく、0.7μm〜3.0μmの範囲であることがより好ましい。Rzが上記範囲の上限値より大きくなると、その上に形成する電極層の厚みが不均一となるとともに、リチウム二次電池に組み込み充放電を行なった場合、主活物質層の膨張収縮にて受ける応力のために、破断しやすくなる。Rzが上記範囲の下限値より小さい場合、リチウム二次電池に組み込み充放電を行なった場合、主活物質層の膨張収縮にて発生する応力のために、集電体の界面ではがれやすくなり、電気抵抗が増すことにはなる。   The surface roughness of the current collector preferably has a ten-point average height Rz in the range of 0.5 μm to 5.0 μm in order to maintain the adhesion of the electrode layer formed on the current collector. More preferably, it is in the range of 7 μm to 3.0 μm. When Rz is larger than the upper limit of the above range, the thickness of the electrode layer formed thereon becomes non-uniform, and when charging and discharging are performed in a lithium secondary battery, it is affected by expansion and contraction of the main active material layer. Due to stress, it tends to break. When Rz is smaller than the lower limit of the above range, when charging / discharging is performed in a lithium secondary battery, it tends to peel off at the interface of the current collector due to the stress generated by the expansion and contraction of the main active material layer, The electrical resistance will increase.

〔緩衝層〕
本発明の緩衝層は、集電体と前記主活物質層との間に設けられ、少なくとも有機高分子の結着剤と、導電性高分子,黒鉛,(Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択される)Liと電気化学的に合金を形成しない金属,(TiO2,MoO3,WO3から選択される)遷移金属酸化物から成る群から選択された1種類以上の電子伝導性材料の粒子から構成されている。
[Buffer layer]
The buffer layer of the present invention is provided between the current collector and the main active material layer, and includes at least an organic polymer binder, a conductive polymer, graphite, (Cu, Ni, Co, Ti, Fe). , Cr, Mo, W, Pd, Pt, Au, and a metal that does not form an alloy with Li) (selected from TiO 2 , MoO 3 , WO 3 ) It is composed of one or more kinds of particles of an electron conductive material selected from the group consisting of transition metal oxides.

上記緩衝層は、先ず、電子伝導性材料粉末、結着剤を混合し、適宜結着剤の溶媒を添加して混練してスラリーを調製する。ついで、調製したスラリーを集電体上に塗工し、乾燥して電極層を形成した後、適宜プレス処理を施し、電極層の厚みと密度を調整して電極構造体を形成する。上記の塗布方法としては、例えば、コーター塗布方法、スクリーン印刷法が適用できる。また、溶剤を添加することなく上記電子伝導性材料粉末、結着剤とを、集電体上に加圧成形して、電極材料層を形成することも可能である。なお、本発明の電極材料層の密度は、0.7〜2.0g/cm3の範囲であることが好ましく、0.9〜1.5g/cm3の範囲であることがより好ましい。 The buffer layer is prepared by first mixing an electron conductive material powder and a binder, adding a binder solvent as appropriate, and kneading to prepare a slurry. Next, the prepared slurry is applied onto a current collector and dried to form an electrode layer, and then appropriately pressed, and the thickness and density of the electrode layer are adjusted to form an electrode structure. As the coating method, for example, a coater coating method or a screen printing method can be applied. It is also possible to form the electrode material layer by pressure-molding the electron conductive material powder and the binder on the current collector without adding a solvent. The density of the electrode material layer of the present invention is preferably in the range of 0.7~2.0g / cm 3, and more preferably in the range of 0.9~1.5g / cm 3.

前記電子伝導性粒子の平均粒径は0.5μm〜10μmであることが緩衝層の厚みを均一に形成するために、好ましい。緩衝層の厚みを厚くすると、(1)電極層全体の厚みを厚くするので、電極層当りの蓄電容量を低下させることになるし、(2)充電時の主活物質層との膨張率の差が大きいので、大きな応力が発生し、反って、はがれやすくなる。   The average particle diameter of the electron conductive particles is preferably 0.5 μm to 10 μm in order to uniformly form the buffer layer. Increasing the thickness of the buffer layer (1) increases the overall thickness of the electrode layer, thereby reducing the storage capacity per electrode layer, and (2) the expansion coefficient of the main active material layer during charging. Since the difference is large, a large stress is generated and warped and easily peels off.

前記緩衝層を構成する結着剤としては、前記活物質層を構成する結着剤と同一あるいは同種の材料を用いるのが、界面を形成しにくいので好ましい。界面が形成されると応力が発生した場合、この界面ではがれが生じやすくなるからである。上記結着剤の材料としては、主活物質層の場合と同様に、ポリアミドイミド、ポリイミド、ポリイミド前駆体(ポリイミド化前のもの、あるいはポリイミド化が不完全なもの)、スチレンーブタジエンラバー、吸水性を低減した変性ポリビニルアルコール系樹脂、等の有機高分子材料が挙げられる。上記緩衝層中の結着剤の含有量は、2〜20重量%が好ましく、5〜10重量%がより好ましい。上記有機高分子材料は絶縁性が高く、そのため、導電性高分子を混合して電子伝導性を高めることが好ましい。導電性高分子は上記有機高分子との親和性が高いために、より均一な複合化が可能になる。結着力を維持し電気抵抗を低減ためには、導電性高分子の結着剤としての有機高分子材に混合する導電性高分子の割合は重量比で結着剤100に対して1〜20が好ましく、2〜10が、より好ましい。導電性高分子の例としては、チオフェン誘導体モノマー、ピロール誘導体モノマー、アニリン誘導体モノマー、アセチレン誘導体モノマー、フェニレン誘導体モノマー等の重合体の高分子が挙げられる。   As the binder constituting the buffer layer, it is preferable to use the same or the same material as the binder constituting the active material layer because it is difficult to form an interface. This is because, when stress is generated when the interface is formed, peeling easily occurs at this interface. As the material of the binder, as in the case of the main active material layer, polyamide imide, polyimide, polyimide precursor (before polyimide formation or incomplete polyimide formation), styrene-butadiene rubber, water absorption Organic polymer materials such as modified polyvinyl alcohol resins having reduced properties. The content of the binder in the buffer layer is preferably 2 to 20% by weight, and more preferably 5 to 10% by weight. The organic polymer material has high insulating properties. Therefore, it is preferable to increase the electron conductivity by mixing a conductive polymer. Since the conductive polymer has a high affinity with the organic polymer, a more uniform composite is possible. In order to maintain the binding force and reduce the electrical resistance, the ratio of the conductive polymer mixed with the organic polymer material as the binder of the conductive polymer is 1 to 20 with respect to the binder 100 by weight ratio. Is preferable, and 2 to 10 is more preferable. Examples of the conductive polymer include polymer polymers such as a thiophene derivative monomer, a pyrrole derivative monomer, an aniline derivative monomer, an acetylene derivative monomer, and a phenylene derivative monomer.

〔表面被覆層〕
本発明の表面被覆層は、前記主活物質層の表面に設けられ、電子伝導性とイオン透過性(イオン伝導性)を有し、前記表面被覆層が、少なくとも有機高分子の結着剤と、導電性高分子,非晶質カーボン,黒鉛,(Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択される)Liと電気化学的に合金を形成しない金属,(TiO2,MoO3,WO3から選択される)遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から構成されている。前記粒子の材料としては、黒鉛,TiO2,MoO3,WO3から選択される)遷移金属酸化物が、リチウムイオンの挿入が可能で、黒鉛,MoO3,WO3はリチウム挿入時の電位が金属リチウムに近いことから好ましい。前記粒子の二次粒子の平均粒子サイズが0.5μm〜10μmであることが電極構造体の電極層の厚みを均一にするために好ましい。被覆層の厚みを厚くすると、電極層全体の厚みを厚くするので、電極層当りの蓄電容量を低下させることになる。
(Surface coating layer)
The surface coating layer of the present invention is provided on the surface of the main active material layer, has electron conductivity and ion permeability (ion conductivity), and the surface coating layer includes at least an organic polymer binder. , Conductive polymer, amorphous carbon, graphite, Li (selected from the group of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and alloys thereof) Li and electricity It is composed of particles of one or more materials selected from the group consisting of metals that do not form alloys chemically, transition metal oxides (selected from TiO 2 , MoO 3 , WO 3 ). As the material of the particles, a transition metal oxide (selected from graphite, TiO 2 , MoO 3 , and WO 3 ) can insert lithium ions, and graphite, MoO 3 , and WO 3 have potentials at the time of lithium insertion. This is preferable because it is close to metallic lithium. The average particle size of the secondary particles of the particles is preferably 0.5 μm to 10 μm in order to make the thickness of the electrode layer of the electrode structure uniform. Increasing the thickness of the covering layer increases the thickness of the entire electrode layer, thereby reducing the storage capacity per electrode layer.

前記表面被覆層を構成する結着剤としては、前記活物質層を構成する結着剤と同一あるいは同種の材料を用いるのが、界面を形成しにくいので好ましい。界面が形成されると応力が発生した場合、この界面ではがれが生じやすくなるからである。上記結着剤の材料としては、主活物質層の場合と同様に、ポリアミドイミド、ポリイミド、ポリイミド前駆体(ポリイミド化前のもの、あるいはポリイミド化が不完全なもの)、スチレンーブタジエンラバー、吸水性を低減した変性ポリビニルアルコール系樹脂、等の有機高分子材料が挙げられる。上記表面被覆層中の結着剤の含有量は、2〜20重量%が好ましく、5〜10重量%がより好ましい。上記有機高分子材料は絶縁性が高く、そのため、−C=C−C=C−の炭素−炭素の二重結合と一重結合の結合交替がある導電性高分子を混合して電子伝導性を高めることが好ましい。導電性高分子は上記有機高分子との親和性が高いために、より均一な複合化が可能になる。結着力を維持し電気抵抗を低減ためには、導電性高分子の結着剤としての有機高分子材に混合する導電性高分子の割合は重量比で結着剤100に対して1〜20が好ましく、2〜10が、より好ましい。導電性高分子の例としては、チオフェン誘導体モノマー、ピロール誘導体モノマー、アニリン誘導体モノマー、アセチレン誘導体モノマー、フェニレン誘導体モノマー等の重合体の高分子が挙げられる。   As the binder constituting the surface coating layer, it is preferable to use the same or the same kind of material as the binder constituting the active material layer because it is difficult to form an interface. This is because, when stress is generated when the interface is formed, peeling easily occurs at this interface. As the material of the binder, as in the case of the main active material layer, polyamide imide, polyimide, polyimide precursor (before polyimide formation or incomplete polyimide formation), styrene-butadiene rubber, water absorption Organic polymer materials such as modified polyvinyl alcohol resins having reduced properties. The content of the binder in the surface coating layer is preferably 2 to 20% by weight, and more preferably 5 to 10% by weight. The organic polymer material has a high insulating property. Therefore, a conductive polymer having a carbon-carbon double bond and a single bond substitution of -C = C-C = C- is mixed to provide electronic conductivity. It is preferable to increase. Since the conductive polymer has a high affinity with the organic polymer, a more uniform composite is possible. In order to maintain the binding force and reduce the electrical resistance, the ratio of the conductive polymer mixed with the organic polymer material as the binder of the conductive polymer is 1 to 20 with respect to the binder 100 by weight ratio. Is preferable, and 2 to 10 is more preferable. Examples of the conductive polymer include polymer polymers such as a thiophene derivative monomer, a pyrrole derivative monomer, an aniline derivative monomer, an acetylene derivative monomer, and a phenylene derivative monomer.

[二次電池]
本発明に係る二次電池は、上述した特徴を有する電極構造体を用いた負極、電解質及び正極を具備し、リチウムの酸化反応及びリチウムイオンの還元反応を利用したものである。図6は、本発明のリチウム二次電池の基本構成を示した図である。図6の二次電池において、601は本発明の電極構造体を使用した負極、602はイオン伝導体、603は正極、604は負極端子、605は正極端子、606は電槽(ハウジング)である。
[Secondary battery]
The secondary battery according to the present invention includes a negative electrode, an electrolyte, and a positive electrode using the electrode structure having the above-described characteristics, and utilizes a lithium oxidation reaction and a lithium ion reduction reaction. FIG. 6 is a diagram showing a basic configuration of the lithium secondary battery of the present invention. In the secondary battery of FIG. 6, 601 is a negative electrode using the electrode structure of the present invention, 602 is an ion conductor, 603 is a positive electrode, 604 is a negative electrode terminal, 605 is a positive electrode terminal, and 606 is a battery case (housing). .

上記二次電池は、イオン伝導体を負極と正極で、はさんで積層して電極群を形成し、十分に露点温度が管理された乾燥空気あるいは乾燥不活性ガス雰囲気下で、この電極群を電槽に挿入した後、各電極と各電極端子とを接続し、電槽を密閉することによって、組み立てられる。イオン伝導体に、微孔性の高分子フィルムに電解液を保持させたものを使用する場合には、負極と正極の間に短絡防止のセパレーターとして微孔性高分子フィルムをはさんで電極群を形成した後、電槽に挿入し、各電極と各電極端子とを接続し、電槽を密閉する前に電解液を注入して電池を組み立てる。   In the secondary battery, an electrode group is formed by laminating an ionic conductor between a negative electrode and a positive electrode, and the electrode group is placed in a dry air or dry inert gas atmosphere in which the dew point temperature is sufficiently controlled. After being inserted into the battery case, it is assembled by connecting each electrode and each electrode terminal and sealing the battery case. When using an ionic conductor with a microporous polymer film holding an electrolyte, an electrode group with a microporous polymer film sandwiched between the negative electrode and the positive electrode as a short-circuit preventing separator After forming the battery, the battery is assembled by inserting it into the battery case, connecting each electrode and each electrode terminal, and injecting an electrolyte before sealing the battery case.

本発明の電極構造体を負極に用いるリチウム二次電池は、前記負極の有益な効果で、高容量及びエネルギー密度を有し、かつ十分な充放電サイクル寿命を有することになる。
なお、本明細書中では、本発明の電極構造体をリチウム二次電池の負極として用いる場合について述べているが、本発明の電極構造体は、キャパシタの電極としても適用可能である。
The lithium secondary battery using the electrode structure of the present invention for the negative electrode has a high capacity and energy density due to the beneficial effects of the negative electrode, and has a sufficient charge / discharge cycle life.
In the present specification, the case where the electrode structure of the present invention is used as the negative electrode of a lithium secondary battery is described. However, the electrode structure of the present invention can also be applied as an electrode of a capacitor.

(正極602)
前述した本発明の電極構造体を負極に用いたリチウム二次電池の対極となる正極602は、少なくともリチウムイオン源でありリチウムイオンのホスト材となる正極材料から成り、好ましくはリチウムイオンのホスト材となる正極材料から形成された層と集電体から成る。さらに該正極材料から形成された層は、リチウムイオンのホスト材となる正極材料と結着剤、場合によってはこれらに導電補助材を加えた材料から成るのが好ましい。
(Positive electrode 602)
The positive electrode 602 serving as a counter electrode of a lithium secondary battery using the above-described electrode structure of the present invention as a negative electrode comprises at least a positive electrode material which is a lithium ion source and serves as a lithium ion host material, preferably a lithium ion host material. A layer formed of a positive electrode material and a current collector. Further, the layer formed from the positive electrode material is preferably made of a positive electrode material which becomes a lithium ion host material and a binder, and in some cases, a material obtained by adding a conductive auxiliary material thereto.

本発明のリチウム二次電池に用いるリチウムイオン源でありホスト材となる正極材料としては、リチウム−遷移金属酸化物、リチウム−遷移金属硫化物、リチウム−遷移金属窒化物、リチウム−遷移金属リン酸化物がより好ましい。上記、遷移金属酸化物、遷移金属硫化物、遷移金属窒化物、遷移金属リン酸化合物の遷移金属元素としては、例えば、d殻あるいはf殻を有する金属元素であり、Sc,Y,ランタノイド,アクチノイド,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W,Mn,Tc,Re,Fe,Ru,Os,Co,Rh,Ir,Ni,Pb,Pt,Cu,Ag,Auが用いられ、特にCo,Ni,Mn,Fe,Cr,Tiが好適に用いられる。   As a positive electrode material that is a lithium ion source and used as a host material for the lithium secondary battery of the present invention, lithium-transition metal oxide, lithium-transition metal sulfide, lithium-transition metal nitride, lithium-transition metal phosphorylation More preferred. Examples of the transition metal element of the transition metal oxide, transition metal sulfide, transition metal nitride, and transition metal phosphate compound are metal elements having a d-shell or f-shell, such as Sc, Y, lanthanoid, and actinoid. , Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pb, Pt, Cu, Ag, Au are used. In particular, Co, Ni, Mn, Fe, Cr, and Ti are preferably used.

上記リチウム−遷移金属酸化物、リチウム−遷移金属硫化物、リチウム−遷移金属窒化物、リチウム−遷移金属リン酸化物においては、含有される遷移金属元素を選択し得られる正極材料を複数種適宜混合することで、本発明の電極構造体である負極の性能を引き出し、電池電圧と蓄電容量を設計でき、高エネルギー密度のリチウム二次電池を得ることができる。   In the above-mentioned lithium-transition metal oxide, lithium-transition metal sulfide, lithium-transition metal nitride, and lithium-transition metal phosphor oxide, a plurality of positive electrode materials obtained by selecting the transition metal element contained are appropriately mixed. By doing so, the performance of the negative electrode which is the electrode structure of the present invention can be drawn, the battery voltage and the storage capacity can be designed, and a lithium secondary battery with high energy density can be obtained.

上記正極活物質の形状が粉末である場合には、結着剤を用いるか、焼結あるいは蒸着させて正極活物質層を集電体上に形成して正極を作製する。また、上記正極活物質粉の導電性が低い場合には、前記電極構造体の活物質層の形成と同様に、導電補助材を混合することが適宜必要になる。また、正極活物質粉末は、ピッチ、ピッチコークス、石油コークス、コールタール、フルオランテン、ピレン、クリセン、フェナントレン、アントラセン、ナフタリン、フルオレン、ビフェニル、アセナフテンから選択される材料で被覆の後、不活性ガス化で炭化して、炭化層で被覆されているのが好ましい。上記炭化原料のうち、ピッチ、ピッチコークス、石油コークス、コールタール、等は、融点が低いので、上記正極材の粒子の被覆を容易にし、炭化温度が低いことから、上記正極材の性能を低下することなく、炭化層での被覆を容易にし、正極材粒子間の接触抵抗を低減することができる。さらに、それら材料は安価である。前記炭化層被覆の割合は、正極活物質のリチウム吸蔵量を損なわず、粒子間の電子伝導を補助するために、1〜5重量%の範囲が好ましい。上記導電補助材並びに結着剤としては、ポリフッ化ビリニデン等のフッ素樹脂、ポリエチレン等のポリオレフィン樹脂、スチレン−ブタジエンラバー等のゴム系樹脂、ポリアミドイミド、ポリイミド、ポリイミド前駆体(ポリイミド化前のもの、あるいはポリイミド化が不完全なもの)、吸水性を低減した変性ポリビニルアルコール系樹脂、を使用することができる。   When the shape of the positive electrode active material is powder, a binder is used, or a positive electrode active material layer is formed on a current collector by sintering or vapor deposition to produce a positive electrode. Further, when the positive electrode active material powder has low conductivity, it is necessary to appropriately mix a conductive auxiliary material as in the formation of the active material layer of the electrode structure. In addition, the positive electrode active material powder is coated with a material selected from pitch, pitch coke, petroleum coke, coal tar, fluoranthene, pyrene, chrysene, phenanthrene, anthracene, naphthalene, fluorene, biphenyl, and acenaphthene, and then inert gasified. It is preferable to be carbonized and coated with a carbonized layer. Among the carbonized raw materials, pitch, pitch coke, petroleum coke, coal tar, and the like have a low melting point, so that the coating of the positive electrode particles is facilitated, and the carbonization temperature is low, so the performance of the positive electrode material is lowered. Without this, the coating with the carbonized layer can be facilitated, and the contact resistance between the positive electrode material particles can be reduced. Furthermore, these materials are inexpensive. The ratio of the carbonized layer coating is preferably in the range of 1 to 5% by weight in order to assist the electron conduction between particles without impairing the lithium occlusion amount of the positive electrode active material. Examples of the conductive auxiliary material and the binder include a fluororesin such as polyvinylidene fluoride, a polyolefin resin such as polyethylene, a rubber-based resin such as styrene-butadiene rubber, a polyamideimide, a polyimide, a polyimide precursor (the one before polyimideization, Alternatively, those that are imperfectly polyimideized) or modified polyvinyl alcohol resins with reduced water absorption can be used.

上記結着剤は絶縁性が高く、そのため、導電性高分子を混合して電子伝導性を高めることが好ましい。導電性高分子は上記有機高分子との親和性が高いために、より均一な複合化が可能になる。結着力を維持し電気抵抗を低減ためには、導電性高分子の結着剤としての有機高分子材に混合する導電性高分子の割合は重量比で結着剤100に対して1〜20が好ましく、2〜10が、より好ましい。上記導電性高分子の例としては、チオフェン誘導体モノマー、ピロール誘導体モノマー、アニリン誘導体モノマー、アセチレン誘導体モノマー、フェニレン誘導体モノマー等の重合体の高分子が挙げられる。   The binder has high insulating properties, and therefore it is preferable to increase the electronic conductivity by mixing a conductive polymer. Since the conductive polymer has a high affinity with the organic polymer, a more uniform composite is possible. In order to maintain the binding force and reduce the electrical resistance, the ratio of the conductive polymer mixed with the organic polymer material as the binder of the conductive polymer is 1 to 20 with respect to the binder 100 by weight ratio. Is preferable, and 2 to 10 is more preferable. Examples of the conductive polymer include polymer polymers such as a thiophene derivative monomer, a pyrrole derivative monomer, an aniline derivative monomer, an acetylene derivative monomer, and a phenylene derivative monomer.

上記正極に用いる集電体材料としては、電気伝導度が高く、且つ、電池反応に不活性な材質であるアルミニウム、チタン、ニッケル、白金が好ましく、具体的には、ニッケル、ステンレス、チタン、アルミニウムが好ましく、中でもアルミニウムが安価で電気伝導性が高いのでより好ましい。また、集電体の形状としては、板状であるが、この“板状”とは、厚みについては実用の範囲上で特定されず、厚み約5μm〜100μm程度の“箔”といわれる形態をも包含する。また、板状であって、例えばメッシュ状、スポンジ状、繊維状をなす部材、パンチングメタル、表裏両面に三次元の凹凸パターンが形成されたメタル、エキスパンドメタル等を採用することもできる。上記三次元の凹凸パターンが形成された板状あるいは箔状の金属は、例えば、マイクロアレイパターンあるいはラインアンドスペースパターンを表面に設けた金属製もしくはセラミック製のロールに圧力をかけて、板状あるいは箔状金属に転写することで、作製できる。特に、三次元の凹凸パターンが形成された集電体を採用した正極の電池には、充放電時の電極面積あたりの実質的な電流密度の低減、電極層との密着性向上、機械的強度の向上から、充放電の電流特性の向上と充放電サイクル寿命の向上の効果がある。   The current collector material used for the positive electrode is preferably aluminum, titanium, nickel, or platinum, which is a material having high electrical conductivity and is inert to battery reaction. Specifically, nickel, stainless steel, titanium, aluminum Among them, aluminum is more preferable because it is inexpensive and has high electrical conductivity. The shape of the current collector is plate-like, but this “plate-like” is not specified in terms of thickness in terms of practical use, and has a form called “foil” having a thickness of about 5 μm to 100 μm. Is also included. Further, a plate-like member such as a mesh, sponge, or fiber, a punching metal, a metal having a three-dimensional concavo-convex pattern formed on both front and back surfaces, an expanded metal, or the like may be employed. The plate-like or foil-like metal on which the three-dimensional concavo-convex pattern is formed is obtained by applying pressure to a metal or ceramic roll provided with a microarray pattern or a line-and-space pattern on the surface, for example. It can be produced by transferring to a metal. In particular, a positive electrode battery that employs a current collector with a three-dimensional uneven pattern formed has a substantial reduction in current density per electrode area during charge / discharge, improved adhesion to the electrode layer, and mechanical strength. As a result, there is an effect of improving the current characteristics of charge / discharge and improving the charge / discharge cycle life.

(イオン伝導体603)
本発明のリチウム二次電池のイオン伝導体には、電解液(電解質を溶媒に溶解させて調製した電解質溶液)を保持させたセパレータ、固体電解質、電解液を高分子ゲルなどでゲル化した固形化電解質、高分子ゲルと固体電解質の複合体、などのリチウムイオンの伝導体が使用できる。
(Ion conductor 603)
The ionic conductor of the lithium secondary battery of the present invention includes a separator holding an electrolytic solution (an electrolytic solution prepared by dissolving an electrolyte in a solvent), a solid electrolyte, and a solid obtained by gelling the electrolytic solution with a polymer gel. Lithium ion conductors such as hydrolyzed electrolytes, composites of polymer gels and solid electrolytes can be used.

本発明の二次電池に用いるイオン伝導体の導電率は、25℃における値として、1×10-3S/cm以上であることが好ましく、5×10-3S/cm以上であることがより好ましい。 The conductivity of the ionic conductor used for the secondary battery of the present invention is preferably 1 × 10 −3 S / cm or more, preferably 5 × 10 −3 S / cm or more, as a value at 25 ° C. More preferred.

前記電解質としては、例えば、リチウムイオン(Li+)とルイス酸イオン(BF - 4,PF - 6,AsF - 6,ClO - 4,CF3SO - 3,BPh - 4(Ph:フェニル基))からなる塩、及びこれらの混合塩、が挙げられる。上記塩は、減圧下で加熱したりして、十分な脱水と脱酸素を行なっておくことが望ましい。さらに、溶融塩に上記リチウム塩を溶解して調製される電解質も使用できる。 As the electrolyte, for example, lithium ion (Li +) and Lewis acid ion (BF - 4, PF - 6 , AsF - 6, ClO - 4, CF 3 SO - 3, BPh - 4 (Ph: phenyl group)) And a mixed salt thereof. It is desirable that the salt be sufficiently dehydrated and deoxygenated by heating under reduced pressure. Furthermore, an electrolyte prepared by dissolving the lithium salt in a molten salt can also be used.

上記電解質の溶媒としては、例えば、アセトニトリル、ベンゾニトリル、プロピレンカーボネイト、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルホルムアミド、テトラヒドロフラン、ニトロベンゼン、ジクロロエタン、ジエトキシエタン、1,2−ジメトキシエタン、クロロベンゼン、γ−ブチロラクトン、ジオキソラン、スルホラン、ニトロメタン、ジメチルサルファイド、ジメチルサルオキシド、ギ酸メチル、3−メチル−2−オキダゾリジノン、2−メチルテトラヒドロフラン、3−プロピルシドノン、二酸化イオウ、塩化ホスホリル、塩化チオニル、塩化スルフリル、又は、これらの混合液が使用できる。   Examples of the solvent for the electrolyte include acetonitrile, benzonitrile, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dimethylformamide, tetrahydrofuran, nitrobenzene, dichloroethane, diethoxyethane, 1,2-dimethoxyethane, Chlorobenzene, γ-butyrolactone, dioxolane, sulfolane, nitromethane, dimethyl sulfide, dimethylsulfoxide, methyl formate, 3-methyl-2-oxazolidinone, 2-methyltetrahydrofuran, 3-propyl sydnone, sulfur dioxide, phosphoryl chloride, thionyl chloride, Sulfuryl chloride or a mixture thereof can be used.

上記溶媒は、例えば、活性アルミナ、モレキュラーシーブ、五酸化リン、塩化カルシウムなどで脱水するか、溶媒によっては、不活性ガス中のアルカリ金属共存下で蒸留して不純物除去と脱水をも行なうのがよい。前記電解質を前記溶媒に溶解して調製される電解液の電解質濃度は、0.5〜2.0モル/リットルの範囲の濃度であることが高いイオン伝導度を有するために好もしい。   For example, the solvent may be dehydrated with activated alumina, molecular sieve, phosphorus pentoxide, calcium chloride, or the like, or depending on the solvent, distillation may be performed in the presence of an alkali metal in an inert gas for impurity removal and dehydration. Good. The electrolyte concentration of the electrolyte prepared by dissolving the electrolyte in the solvent is preferably in the range of 0.5 to 2.0 mol / liter because of high ionic conductivity.

また、電極と電解液との反応を抑制するために、電解重合反応の起きやすい、ビニルモノマーを上記電解液に添加することも好ましい。ビニルモノマーの電解液への添加で、電池の充電反応で上記主活物質のシリコン合金粒子表面に重合被膜が形成され、充電時にシリコン合金粒子に吸蔵されてリチウムあるいはシリコン合金粒子表面に析出したリチウムが電解液の有機溶媒等と反応するのを抑制されるので、充放電サイクル寿命を伸ばすことができる。電解液へのビニルモノマーの添加量が少なすぎると上記効果がなく、多すぎると電解液のイオン伝導度を低下させ、充電時に形成される重合被膜の厚みが厚くなり電極の抵抗を高めるので、ビニルモノマーの電解液への添加量は、1〜5重量%の範囲が好ましい。   Further, in order to suppress the reaction between the electrode and the electrolytic solution, it is also preferable to add a vinyl monomer that easily causes an electrolytic polymerization reaction to the electrolytic solution. By adding vinyl monomer to the electrolyte, a polymerized film is formed on the surface of the silicon alloy particles of the main active material by the charging reaction of the battery, and the lithium or lithium deposited on the surface of the silicon alloy particles is stored in the silicon alloy particles during charging. Is suppressed from reacting with the organic solvent of the electrolytic solution, etc., so that the charge / discharge cycle life can be extended. If the amount of vinyl monomer added to the electrolytic solution is too small, the above effect is not obtained.If the amount is too large, the ionic conductivity of the electrolytic solution is lowered, and the thickness of the polymer film formed during charging is increased, increasing the resistance of the electrode. The amount of vinyl monomer added to the electrolyte is preferably in the range of 1 to 5% by weight.

上記ビニルモノマーの具体的な好ましい例としては、スチレン、2−ビニルナフタレン、2−ビニルピリジン、N−ビニル−2−ピロリドン、ジビニルエーテル、エチルビニルエーテル、ビニルフェニルエーテル、メチルメタクリレート、メチルアクリレート、アクリロニトリル、炭酸ビニレン、等があげられる。より好ましい例としてはスチレン、2−ビニルナフタレン、2−ビニルピリジン、N−ビニル−2−ピロリドン、ジビニルエーテル、エチルビニルエーテル、ビニルフェニルエーテル、炭酸ビニレンが挙げられる。上記ビニルモノマーが芳香族基を有する場合、リチウムイオンとの親和性が高いので好ましい。さらに、電解液の溶媒との親和性の高い、N−ビニル−2−ピロリドン、ジビニルエーテル、エチルビニルエーテル、ビニルフェニルエーテル、炭酸ビニレン等と、芳香族基を有するビニルモノマーと組み合わせて使用するのがより好ましい。   Specific examples of the vinyl monomer include styrene, 2-vinylnaphthalene, 2-vinylpyridine, N-vinyl-2-pyrrolidone, divinyl ether, ethyl vinyl ether, vinyl phenyl ether, methyl methacrylate, methyl acrylate, acrylonitrile, And vinylene carbonate. More preferable examples include styrene, 2-vinylnaphthalene, 2-vinylpyridine, N-vinyl-2-pyrrolidone, divinyl ether, ethyl vinyl ether, vinyl phenyl ether, and vinylene carbonate. When the said vinyl monomer has an aromatic group, since affinity with lithium ion is high, it is preferable. Furthermore, N-vinyl-2-pyrrolidone, divinyl ether, ethyl vinyl ether, vinyl phenyl ether, vinylene carbonate, etc., which have high affinity with the solvent of the electrolytic solution, and a vinyl monomer having an aromatic group may be used in combination. More preferred.

電解液の漏洩を防止するために、固体電解質もしくは固形化電解質を使用するのが好ましい。固体電解質としては、リチウム元素とケイ素元素と酸素元素とリン元素もしくはイオウ元素から成る酸化物などのガラス、エーテル構造を有する有機高分子の高分子錯体、などが挙げられる。固形化電解質としては、前記電解液をゲル化剤でゲル化して固形化したものが好ましい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマー、シリカゲルなどの吸液量の多い多孔質材料を用いるのが望ましい。上記ポリマーとしては、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリロニトリル、ポリメチルメタクリレート、ビニリデンフルオライド−ヘキサフルオロプロピレンコポリマーなどが用いられる。さらに、上記ポリマーは架橋構造のものがより好ましい。   In order to prevent leakage of the electrolytic solution, it is preferable to use a solid electrolyte or a solidified electrolyte. Examples of the solid electrolyte include glass such as an oxide composed of lithium element, silicon element, oxygen element, phosphorus element, or sulfur element, and a polymer complex of an organic polymer having an ether structure. As the solidified electrolyte, a solution obtained by gelling the electrolytic solution with a gelling agent and solidifying it is preferable. As the gelling agent, it is desirable to use a porous material having a large liquid absorption amount, such as a polymer that swells by absorbing the solvent of the electrolytic solution, or silica gel. Examples of the polymer include polyethylene oxide, polyvinyl alcohol, polyacrylonitrile, polymethyl methacrylate, and vinylidene fluoride-hexafluoropropylene copolymer. Further, the polymer preferably has a crosslinked structure.

前記セパレータは、二次電池内で負極601と正極603の短絡を防ぐ役割がある。また、電解液を保持する役割を有する場合もある。前記セパレータとしては、リチウムイオンが移動できる細孔を多数有し、かつ、電解液に不溶で安定である必要がある。したがって、セパレータとしては、例えば、ガラス、ポリプロピレンやポリエチレンなどのポリオレフィン、フッ素樹脂、などのミクロポア構造あるいは不織布の材料が好適に用いられる。また、微細孔を有する金属酸化物フィルム、又は、金属酸化物を複合化した樹脂フィルムも使用できる。   The separator serves to prevent a short circuit between the negative electrode 601 and the positive electrode 603 in the secondary battery. Moreover, it may have a role of holding the electrolytic solution. The separator needs to have many pores through which lithium ions can move and be insoluble and stable in the electrolyte. Therefore, as the separator, for example, glass, polyolefin such as polypropylene or polyethylene, micropore structure such as fluororesin, or non-woven material is preferably used. Moreover, the metal oxide film which has a micropore, or the resin film which compounded the metal oxide can also be used.

[電池の形状と構造]
本発明の二次電池の具体的な形状としては、例えば、扁平形、円筒形、直方体形、シート形などがある。又、電池の構造としては、例えば、単層式、多層式、スパイラル式などがある。その中でも、スパイラル式円筒形の電池は、負極と正極の間にセパレータを挟んで巻くことによって、電極面積を大きくすることができ、充放電時に大電流を流すことができるという特徴を有する。また、直方体形やシート形の電池は、複数の電池を収納して構成する機器の収納スペースを有効に利用することができる特徴を有する。
[Battery shape and structure]
Specific examples of the secondary battery of the present invention include a flat shape, a cylindrical shape, a rectangular parallelepiped shape, and a sheet shape. Examples of the battery structure include a single layer type, a multilayer type, and a spiral type. Among them, the spiral cylindrical battery has a feature that the electrode area can be increased by winding a separator between the negative electrode and the positive electrode, and a large current can be passed during charging and discharging. Moreover, a rectangular parallelepiped type or sheet type battery has a feature that a storage space of a device configured by storing a plurality of batteries can be used effectively.

以下では、図7、図8を参照して、電池の形状と構造についてより詳細な説明を行なう。図7は単層式扁平形(コイン形)電池の断面図であり、図8はスパイラル式円筒型電池の断面図を表している。上記形状のリチウム二次電池は、基本的には図6と同様な構成で、負極、正極、イオン伝導体、電池ハウジング、出力端子を有する。   Hereinafter, the battery shape and structure will be described in more detail with reference to FIGS. FIG. 7 is a cross-sectional view of a single-layer flat (coin-type) battery, and FIG. 8 is a cross-sectional view of a spiral cylindrical battery. The lithium secondary battery having the above shape has basically the same configuration as that shown in FIG. 6 and includes a negative electrode, a positive electrode, an ion conductor, a battery housing, and an output terminal.

図7、図8において、701と803は負極、703と806は正極、704と808は負極端子(負極キャップまたは負極缶)、705と809は正極端子(正極缶または正極キャップ)、702と807はイオン伝導体、706と810はガスケット、801は負極集電体、804は正極集電体、811は絶縁板、812は負極リード、813は正極リード、814は安全弁である。   7 and 8, 701 and 803 are negative electrodes, 703 and 806 are positive electrodes, 704 and 808 are negative terminals (negative electrode cap or negative electrode can), 705 and 809 are positive terminals (positive electrode can or positive electrode cap), and 702 and 807. Is an ion conductor, 706 and 810 are gaskets, 801 is a negative electrode current collector, 804 is a positive electrode current collector, 811 is an insulating plate, 812 is a negative electrode lead, 813 is a positive electrode lead, and 814 is a safety valve.

図7に示す扁平型(コイン型)の二次電池では、正極材料層を含む正極703と負極材料層を備えた負極701が、例えば少なくとも電解液を保持したセパレータで形成されたイオン伝導体702を介して積層されており、この積層体が正極端子としての正極缶705内に正極側から収容され、負極側が負極端子としての負極キャップ704により被覆されている。そして正極缶内の他の部分にはガスケット706が配置されている。   In the flat type (coin type) secondary battery shown in FIG. 7, an ion conductor 702 in which a positive electrode 703 including a positive electrode material layer and a negative electrode 701 including a negative electrode material layer are formed of, for example, a separator holding at least an electrolyte solution. The laminate is accommodated in a positive electrode can 705 as a positive electrode terminal from the positive electrode side, and the negative electrode side is covered with a negative electrode cap 704 as a negative electrode terminal. And the gasket 706 is arrange | positioned in the other part in a positive electrode can.

図8に示すスパイラル式円筒型の二次電池では、正極集電体804上に形成された正極(材料)層805を有する正極806と、負極集電体801上に形成された電極層802を有した負極803が、例えば少なくとも電解液を保持したセパレータで形成されたイオン伝導体807を介して対向し、多重に巻回された円筒状構造の積層体を形成している。当該円筒状構造の積層体が、負極端子としての負極缶808内に収容されている。また、当該負極缶808の開口部側には正極端子としての正極キャップ809が設けられており、負極缶内の他の部分においてガスケット810が配置されている。円筒状構造の電極の
積層体は絶縁板811を介して正極キャップ側と隔てられている。正極806については正極リード813を介して正極キャップ809に接続されている。また負極803については負極リード812を介して負極缶808と接続されている。正極キャップ側には電池内部の内圧を調整するための安全弁814が設けられている。負極803には、前述した本発明の電極構造体を用いる。
In the spiral cylindrical secondary battery shown in FIG. 8, a positive electrode 806 having a positive electrode (material) layer 805 formed on a positive electrode current collector 804 and an electrode layer 802 formed on the negative electrode current collector 801 are provided. The negative electrode 803 provided is opposed to, for example, an ion conductor 807 formed of a separator holding at least an electrolytic solution, and forms a multilayer structure of a cylindrical structure wound in multiple layers. The laminate having the cylindrical structure is accommodated in a negative electrode can 808 serving as a negative electrode terminal. Further, a positive electrode cap 809 as a positive electrode terminal is provided on the opening side of the negative electrode can 808, and a gasket 810 is disposed in another part of the negative electrode can. The electrode stack having a cylindrical structure is separated from the positive electrode cap side by an insulating plate 811. The positive electrode 806 is connected to the positive electrode cap 809 via the positive electrode lead 813. The negative electrode 803 is connected to the negative electrode can 808 via the negative electrode lead 812. A safety valve 814 for adjusting the internal pressure inside the battery is provided on the positive electrode cap side. For the negative electrode 803, the above-described electrode structure of the present invention is used.

以下では、図7や図8に示した電池の組み立て方法の一例を説明する。
(1)負極(701,803)と成形した正極(703,806)の間に、セパレータ(702,807)を挟んで、正極缶(705)または負極缶(808)に組み込む。
(2)電解液を注入した後、負極キャップ(704)または正極キャップ(809)とガスケット(706,810)を組み立てる。
(3)上記(2)をかしめることによって、電池は完成する。
Below, an example of the assembly method of the battery shown in FIG.7 and FIG.8 is demonstrated.
(1) The separator (702, 807) is sandwiched between the negative electrode (701, 803) and the formed positive electrode (703, 806), and is assembled into the positive electrode can (705) or the negative electrode can (808).
(2) After injecting the electrolytic solution, the negative electrode cap (704) or the positive electrode cap (809) and the gaskets (706, 810) are assembled.
(3) The battery is completed by caulking (2) above.

なお、上述したリチウム電池の材料調製、及び電池の組立ては、水分が十分除去された乾燥空気中、又は乾燥不活性ガス中で行なうのが望ましい。
上述のような二次電池を構成する部材について説明する。
It is desirable that the above-described lithium battery material preparation and battery assembly be performed in dry air from which moisture has been sufficiently removed or in a dry inert gas.
The member which comprises the above secondary batteries is demonstrated.

(ガスケット)
ガスケット(706,810)の材料としては、例えば、フッ素樹脂、ポリオレフィン樹脂、ポリアミド樹脂、ポリスルフォン樹脂、各種ゴムが使用できる。電池の封口方法としては、図7と図8のようにガスケットを用いた「かしめ」以外にも、ガラス封管、接着剤、溶接、半田付けなどの方法が用いられる。また、図8の絶縁板(811)の材料としては、各種有機樹脂材料やセラミックスが用いられる。
(gasket)
As a material of the gasket (706, 810), for example, a fluororesin, a polyolefin resin, a polyamide resin, a polysulfone resin, and various rubbers can be used. As a battery sealing method, a glass sealing tube, an adhesive, welding, soldering, or the like is used in addition to “caulking” using a gasket as shown in FIGS. Further, as the material of the insulating plate (811) in FIG. 8, various organic resin materials and ceramics are used.

(外缶)
電池の外缶として、電池の正極缶または負極缶(705,808)、及び負極キャップまたは正極キャップ(704,809)から構成される。外缶の材料としては、ステンレススチールが好適に用いられる。外缶の他の材料としては、アルミニウム合金、チタンクラッドステンレス材、銅クラッドステンレス材、ニッケルメッキ鋼板なども多用される。
(Outside can)
As an outer can of a battery, it is comprised from the positive electrode can or negative electrode can (705,808) of a battery, and a negative electrode cap or a positive electrode cap (704,809). Stainless steel is suitably used as the material for the outer can. As other materials for the outer can, an aluminum alloy, a titanium clad stainless material, a copper clad stainless material, a nickel-plated steel plate and the like are often used.

図7では正極缶(705)が、図8では負極缶(808)が電池ハウジング(ケース)と端子を兼ねているため、上記のステンレススチールが好ましい。ただし、正極缶または負極缶が電池ハウジングと端子を兼用しない場合には、電池ケースの材質としては、ステンレススチール以外にも亜鉛などの金属、ポリプロピレンなどのプラスチック、または、金属もしくはガラス繊維とプラスチックの複合材を用いることができる。   Since the positive electrode can (705) in FIG. 7 and the negative electrode can (808) in FIG. 8 also serve as a battery housing (case) and a terminal, the above stainless steel is preferable. However, if the positive electrode can or negative electrode can does not serve as the battery housing and terminal, the material of the battery case is not only stainless steel but also metals such as zinc, plastics such as polypropylene, or metal or glass fiber and plastic. Composite materials can be used.

(安全弁)
リチウム二次電池には、電池の内圧が高まった時の安全対策として、安全弁が備えられている。安全弁としては、例えば、ゴム、スプリング、金属ボール、破裂箔などが使用できる。
(safety valve)
The lithium secondary battery is provided with a safety valve as a safety measure when the internal pressure of the battery increases. As the safety valve, for example, rubber, a spring, a metal ball, a rupture foil, or the like can be used.

また、本発明者らは、上記主活物質層(電極層)内の前記金属粉末粒子と前記カーボン粒子との接触抵抗を改善できれば、充放電における電極層内の電気化学反応もより均一になると考え、本発明者らは、全く異なる前記金属粉末と黒鉛等のカーボン粒子の接続を均一にする「つなぎ」の役割を果たす材料を加えることにより、より均一に充放電での電気化学反応が起きるようにした。つなぎ材料としては、コールタールピッチ、コールタールピッチの炭化材料、ノニオン系フッ素系界面活性剤が特に有効であった。   In addition, if the inventors can improve the contact resistance between the metal powder particles and the carbon particles in the main active material layer (electrode layer), the electrochemical reaction in the electrode layer in charge and discharge becomes more uniform. In view of the above, the present inventors added a material that plays a role of “linking” to make the connection between completely different metal powders and carbon particles such as graphite uniform, thereby causing more uniform electrochemical reaction in charge and discharge. I did it. As the connecting material, coal tar pitch, carbonized material of coal tar pitch, and nonionic fluorosurfactant were particularly effective.

上記コールタールピッチは親水性表面を有する金属粉末粒子と疎水性表面を有すカーボン粒子の両者に親和性があり、コールタールピッチを前記金属粉末と前記カーボン粉末に添加混合することで、前記金属粉末粒子と前記カーボン粒子との電子伝導を改善できると考えられる。上記主活物質層中への上記コールタールピッチの添加量は0.1〜3重量%が好ましい。コールタールピッチ自体の機械強度は弱いので、その添加量が多いと主活物質層(電極層)の機械強度を弱めることに成る。   The coal tar pitch has affinity for both the metal powder particles having a hydrophilic surface and the carbon particles having a hydrophobic surface, and the coal tar pitch is added to and mixed with the metal powder and the carbon powder. It is considered that the electron conduction between the powder particles and the carbon particles can be improved. The amount of the coal tar pitch added to the main active material layer is preferably 0.1 to 3% by weight. Since the mechanical strength of the coal tar pitch itself is weak, if the amount added is large, the mechanical strength of the main active material layer (electrode layer) is weakened.

コールタールピッチを前記金属粉末と前記カーボン粉末に添加混合した後に、不活性ガス雰囲気下400℃〜700℃の温度範囲で熱処理を施すことが好ましい。それにより、コールタールピッチの炭化を行ない、コールタールピッチの炭化で得られる非晶質カーボンで前記金属粉末粒子と前記カーボン粒子を接合することができ、前記金属粉末粒子と前記カーボン粒子との間の電子伝導を改善できる。   After adding coal tar pitch to the metal powder and the carbon powder, heat treatment is preferably performed in a temperature range of 400 ° C. to 700 ° C. in an inert gas atmosphere. Thereby, carbonization of the coal tar pitch can be performed, and the metal powder particles and the carbon particles can be joined with amorphous carbon obtained by carbonization of the coal tar pitch, and between the metal powder particles and the carbon particles. Can improve electron conduction.

前記金属粉末粒子としては、非晶質化が進んだものが、電池に用いた場合、充放電サイクル寿命が長くなるために、好ましい。非晶質化した金属粉末粒子の熱処理温度が700℃を超える温度のように高いと、結晶化が促進し、吸着酸素や吸着水のために、金属酸化物が形成されやすくなるので、好ましくない。   As the metal powder particles, those that have been made amorphous are preferable because when used in batteries, the charge / discharge cycle life becomes longer. If the heat treatment temperature of the amorphous metal powder particles is higher than 700 ° C., crystallization is promoted and metal oxides are easily formed due to adsorbed oxygen and adsorbed water. .

予め、金属粉末粒子をコールタールピッチでコーティング後、炭化しておいてもよい。
上記炭化するためのコールタールピッチの添加量は1〜10重量%が好ましい。上記コールタールピッチの添加量を多くすると炭化時に生成される非晶質カーボン量が多くなるため、コールタールピッチの炭化で得られる非晶質カーボンで前記金属粉末粒子と前記カーボン粒子を接合した材料で負極を形成し、リチウム二次電池を形成した場合、リチウムの不可逆量が増すために、初期の充放電のクーロン効率が低下する。
The metal powder particles may be previously carbonized after being coated with coal tar pitch.
The amount of coal tar pitch added for carbonization is preferably 1 to 10% by weight. A material in which the metal powder particles and the carbon particles are joined with amorphous carbon obtained by carbonization of coal tar pitch because the amount of amorphous carbon generated during carbonization increases when the addition amount of the coal tar pitch is increased. When the negative electrode is formed and the lithium secondary battery is formed, since the irreversible amount of lithium is increased, the initial charge / discharge coulombic efficiency is lowered.

上記コールタールピッチとしては、軟化点が高く、炭化歩留まりが高いものが好ましい。上記軟化温度としては、110〜500℃の範囲が好ましく、150〜350℃の範囲がより好ましい。上記コールタールピッチの固定炭素分は、58〜90重量%が好ましく、65〜90重量%がより好ましい。また、上記コールタールピッチの1000℃での重量減少率は55%以下であることが好ましい。また、上記コールタールピッチの加熱時に含まれるメソフェーズ小球体の含有量が2〜80%であることも好ましい。   The coal tar pitch is preferably one having a high softening point and a high carbonization yield. As said softening temperature, the range of 110-500 degreeC is preferable, and the range of 150-350 degreeC is more preferable. The fixed carbon content of the coal tar pitch is preferably 58 to 90% by weight, and more preferably 65 to 90% by weight. The weight reduction rate of the coal tar pitch at 1000 ° C. is preferably 55% or less. Moreover, it is also preferable that the content of mesophase microspheres contained during the heating of the coal tar pitch is 2 to 80%.

前記ノニオン系フッ素系界面活性剤は、C−F結合を有し、かつエーテル結合もしくはエステル結合を有し、親水性表面を持つ物質と親油性表面を持つ物質の両物質の濡れ性を改善できるために、前記金属粉末と前記カーボン粉末と有機高分子である結着剤からなる電極層を形成する時に、添加することで、前記金属粉末粒子と前記カーボン粒子間の接触、前記金属粉末粒子と前記結着剤との結合、前記カーボン粒子と前記結着剤との結合、を改善することができる。上記ノニオン系フッ素系界面活性剤の電極層を形成する上での添加量は、0.01〜0.5重量%が好ましい。上記界面活性剤は電池の充放電反応には寄与しない物質であるので、添加量が多くなると電池の性能を低下させることになる。   The nonionic fluorosurfactant has a C—F bond and an ether bond or an ester bond, and can improve the wettability of both a substance having a hydrophilic surface and a substance having a lipophilic surface. Therefore, when forming an electrode layer made of a binder that is the metal powder, the carbon powder, and an organic polymer, it is added so that the metal powder particles and the carbon particles are in contact with each other. The bond between the binder and the bond between the carbon particles and the binder can be improved. The amount of the nonionic fluorosurfactant added to form the electrode layer is preferably 0.01 to 0.5% by weight. Since the surfactant is a substance that does not contribute to the charge / discharge reaction of the battery, when the addition amount is increased, the performance of the battery is deteriorated.

図9の(a)は、シリコン,スズ,それらの合金から選択される金属粉末粒子901とカーボン粒子902との接合を介在するつなぎ材903との関係を示した模式断面図である。親水性表面を有する前記金属粉末粒子901と親油性表面を有する前記カーボン粒子902を、前記両粒子の表面に接合しやすい、コールタールピッチやフッ素系界面活性剤をつなぎ材903として使用することで、前記金属粉末粒子と前記カーボン粒子の接合を容易にして、その効果として電子伝導が容易になり、リチウム二次電池の負極材料にこれらを用いた場合には、充放電クーロン効率を高め、充放電サイクル寿命も伸ばせ、本来のリチウムを高吸蔵可能な金属材料の性能が活かされ、高容量電池が達成されることになる。コールタールピッチとフッ素系界面活性剤は同時に用いるとより高い効果が得られる。   FIG. 9A is a schematic cross-sectional view showing a relationship between a metal powder particle 901 selected from silicon, tin, and an alloy thereof and a binder 903 that interposes a carbon particle 902. By using the coal powder 901 having a hydrophilic surface and the carbon particles 902 having an oleophilic surface as a connecting material 903 that is easy to bond to the surfaces of both particles, a coal tar pitch or a fluorosurfactant is used. As a result, the metal powder particles and the carbon particles can be easily joined to facilitate electronic conduction. When these materials are used as a negative electrode material for a lithium secondary battery, the charge / discharge coulombic efficiency is increased, The discharge cycle life can be extended, the performance of the original metal material capable of storing high lithium can be utilized, and a high capacity battery can be achieved. When the coal tar pitch and the fluorosurfactant are used simultaneously, a higher effect can be obtained.

図9の(b)は、シリコン,スズ,それらの合金から選択される金属粉末粒子901とカーボン粒子902をつなぎ材903で一体化複合化した粒子の模式断面構造を示したものである。前記金属粉末粒子と前記カーボン粒子をコールタールピッチ等の炭化可能材料と混合した後、コールタールピッチ等の炭化可能材料を、窒素、あるいはアルゴンガス等の不活性ガス中で、炭化することで、炭化物で一体化複合化した前記金属粉末粒子と前記カーボン粒子が得られる。上記炭化物を通じて前記金属粉末粒子と前記カーボン粒子の電子伝導が容易になる。その結果、リチウム二次電池の負極材料にこれらを用いた場合には、充放電クーロン効率を高め、充放電サイクル寿命も伸ばせ、本来のリチウムを高吸蔵可能な金属材料の性能が活かされ、高容量電池が達成されることになる。   FIG. 9B shows a schematic cross-sectional structure of particles obtained by integrating and compounding metal powder particles 901 and carbon particles 902 selected from silicon, tin, and alloys thereof with a connecting material 903. After mixing the metal powder particles and the carbon particles with a carbonizable material such as coal tar pitch, carbonizing the carbonizable material such as coal tar pitch in an inert gas such as nitrogen or argon gas, The metal powder particles and the carbon particles integrated and composited with carbide are obtained. Electronic conduction between the metal powder particles and the carbon particles is facilitated through the carbide. As a result, when these materials are used as the negative electrode material of a lithium secondary battery, the charge / discharge coulombic efficiency is increased, the charge / discharge cycle life is extended, and the performance of the original metal material capable of highly absorbing lithium is utilized. A capacity battery will be achieved.

以下、実施例に沿って本発明を更に詳細に説明する。
〔電極材料の調製〕
まず、負極材料を調製した。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Preparation of electrode material)
First, a negative electrode material was prepared.

実施例1
(1)負極の主活物質の調製
シリコン、スズ、銅を原子比で82.9:16.6:0.5(重量比で65:30:5)を混合し、アルゴンガス雰囲気下で溶融し溶湯を形成した後、溶湯を高圧水で噴射する水アトマイゼイション法で、Si−Sn−Cu合金粉末を得た。次に、得られたSi−Sn−Cu合金粉末を、ジルコニアボールを用いたメディアミル装置にて、イソプロピルアルコール中で粉砕し、平均粒径0.3μmのSi−Sn−Cu合金微粉末を得た。ついで、得られたSi−Sn−Cu合金微粉末に黒鉛粉15重量%を加えて、アトライター装置にてアルゴンガス雰囲気中でステンレス製ボールを使用し10時間粉砕して、炭素を複合化したSi−Sn−Cu合金微粉末の電極材料を得た。得られたSi−Sn−Cu合金−炭素複合化粉末は、X線回折装置による分析から、結晶子30nmの非晶質化合金粉末であることがわかった。
Example 1
(1) Preparation of negative electrode main active material Silicon, tin, and copper were mixed in an atomic ratio of 82.9: 16.6: 0.5 (weight ratio of 65: 30: 5) and melted in an argon gas atmosphere. After forming the molten metal, Si—Sn—Cu alloy powder was obtained by a water atomization method in which the molten metal was injected with high-pressure water. Next, the obtained Si—Sn—Cu alloy powder was pulverized in isopropyl alcohol by a media mill apparatus using zirconia balls to obtain a fine Si—Sn—Cu alloy powder having an average particle size of 0.3 μm. It was. Next, 15% by weight of graphite powder was added to the obtained Si—Sn—Cu alloy fine powder, and the resultant was pulverized for 10 hours in an argon gas atmosphere using an attritor apparatus in an argon gas atmosphere to compound carbon. An electrode material of Si-Sn-Cu alloy fine powder was obtained. The obtained Si—Sn—Cu alloy-carbon composite powder was found to be an amorphized alloy powder having a crystallite of 30 nm from analysis by an X-ray diffractometer.

(2)負極の作製
上記(1)で得られた、主活物質であるSi−Sn−Cu合金−炭素複合化粉末、支持材としての平均粒径27μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、ポリアミド前駆体(ポリアミック酸)のN−メチル−2−ピロリドン溶液の固形分が、重量比で74:10:5:11になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加して、混練しスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、さらに220℃で1時間熱処理を施し、200℃で減圧乾燥して、平均厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。
得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。
(2) Production of negative electrode Si-Sn-Cu alloy-carbon composite powder as the main active material obtained in (1) above, pseudo-spherical artificial graphite powder having an average particle size of 27 μm as a support material, conductive auxiliary After mixing the graphite powder having an average particle diameter of 5 μm and the solid content of the N-methyl-2-pyrrolidone solution of the polyamide precursor (polyamic acid) in a weight ratio of 74: 10: 5: 11, the solvent N-methyl-2-pyrrolidone was added and kneaded to prepare a slurry, and the obtained slurry was applied to a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm with a coater device. . Next, heat treatment is performed at 150 ° C. for 30 minutes, further heat treatment is performed at 220 ° C. for 1 hour, and drying is performed at 200 ° C. under reduced pressure to produce a negative electrode structure having an average thickness of 20 μm and a negative electrode layer density of 1.3 g / cm 3. did.
The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.

(3)正極の作製
リチウム−コバルト酸化物LiCoO2に、黒鉛粉5重量%とポリフッ化ビリニデン粉5重量%を混合した後、N−メチル−2−ピロリドンを添加してスラリーを作製した。
(3) Preparation of positive electrode After mixing 5% by weight of graphite powder and 5% by weight of polyvinylidene fluoride powder with lithium-cobalt oxide LiCoO 2 , N-methyl-2-pyrrolidone was added to prepare a slurry.

得られた正極材スラリーを、厚み20ミクロンのアルミニウム箔の集電体に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90μm、密度3.3g/cm3に調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。 The obtained positive electrode material slurry was applied and dried on a current collector of aluminum foil having a thickness of 20 microns, and then the thickness of the positive electrode active material layer on one side was adjusted to 90 μm and the density to 3.3 g / cm 3 with a roll press. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.

(4)電解液の作製手順
十分に水分を除去したエチレンカーボネートとジエチルカーボネートとを、体積比3:7で混合した溶媒を調製した。
得られた上記溶媒に、六フッ化リン酸リチウム塩(LiPF6)を1M(モル/リットル)溶解したものを電解液として用いた。
(4) Preparation Procedure of Electrolytic Solution A solvent was prepared by mixing ethylene carbonate and diethyl carbonate from which water was sufficiently removed at a volume ratio of 3: 7.
A solution obtained by dissolving 1M (mol / liter) of lithium hexafluorophosphate (LiPF 6 ) in the obtained solvent was used as an electrolytic solution.

(5)セパレータ
厚み16μmのポリエチレンの微孔性フィルムをセパレータとして用いた。
(5) Separator A polyethylene microporous film having a thickness of 16 μm was used as a separator.

(6)電池の組み立て
組み立ては、露点−50℃以下の水分を管理した乾燥雰囲気下で全て行なった。
上記操作で準備した負極と正極の間にセパレータを挟み、ポリエチレン/アルミニウム箔/ナイロン構造のアルミラミネートフィルムをポケット状にした電槽に負極/セパレータ/正極を挿入し、電解液を注入し、電極リード取り出し、ヒートシールして、正極容量規制の評価用の電池を作製した。上記アルミラミネートフィルムの外側はナイロンフィルム、その内側はポリエチレンフィルムとした。
(6) Battery assembly The assembly was all performed in a dry atmosphere in which moisture having a dew point of -50 ° C or lower was controlled.
A separator is sandwiched between the negative electrode and the positive electrode prepared in the above operation, and the negative electrode / separator / positive electrode is inserted into a battery case in which a polyethylene / aluminum foil / nylon-structured aluminum laminate film is pocketed, and an electrolyte solution is injected into the electrode. The lead was taken out and heat sealed to produce a battery for evaluation of positive electrode capacity regulation. The outer side of the aluminum laminate film was a nylon film, and the inner side was a polyethylene film.

実施例2
実施例1において、負極の集電体として、十点平均高さRz=2.1μmで厚み15μmの銅箔に替えて、負極を作製した。それ以外は実施例1と同様の操作にて、評価用電池を作製した。
Example 2
In Example 1, the negative electrode current collector was changed to a copper foil having a 10-point average height Rz = 2.1 μm and a thickness of 15 μm as a negative electrode current collector. Otherwise, an evaluation battery was fabricated in the same manner as in Example 1.

実施例3
実施例1における負極を下記操作にて作製した負極に替えて、評価試験用電池を作製した。
Example 3
A battery for evaluation test was produced by replacing the negative electrode in Example 1 with the negative electrode produced by the following operation.

(1)負極の作製
先に、エチレンカーボネートとジエチルカーボネートとを体積比3:7で混合した溶媒に、ポリ2−エチルチオフェンを10重量%分散して得られた溶液を、ポリアミド前駆体(ポリアミック酸)のN−メチル−2−ピロリドン溶液に添加し、ポリ2−エチルチオフェンがポリアミド前駆体(ポリアミック酸)固形分の10重量%となるように、混合した。
(1) Preparation of negative electrode First, a solution obtained by dispersing 10% by weight of poly-2-ethylthiophene in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 3: 7 was used as a polyamide precursor (polyamic). Acid) in an N-methyl-2-pyrrolidone solution and mixed so that poly-2-ethylthiophene is 10% by weight of the solid content of the polyamide precursor (polyamic acid).

次いで、主活物質であるSi−Sn−Cu合金−炭素複合化粉末、平均粒径22μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、ポリ2−エチルチオフェン添加ポリアミド前駆体(ポリアミック酸)のN−メチル−2−ピロリドン溶液を混合した。このとき、Si−Sn−Cu合金−炭素複合化粉末、平均粒径22μmの人造黒鉛粉末、平均粒径5μmの黒鉛粉末、ポリアミド前駆体(ポリアミック酸)の固形分の重量比は74:10:5:11とした。ついで、上記混合物に、溶剤としてN−メチル−2−ピロリドンを添加して、混練しスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、さらに220℃で1時間熱処理を施し、200℃で減圧乾燥して、厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。 Next, Si—Sn—Cu alloy-carbon composite powder as the main active material, artificial artificial graphite powder having an average particle diameter of 22 μm, graphite powder having an average particle diameter of 5 μm of conductive auxiliary material, poly-2-ethylthiophene-added polyamide A N-methyl-2-pyrrolidone solution of a precursor (polyamic acid) was mixed. At this time, the weight ratio of the solid content of the Si—Sn—Cu alloy-carbon composite powder, the artificial graphite powder having an average particle diameter of 22 μm, the graphite powder having an average particle diameter of 5 μm, and the polyamide precursor (polyamic acid) is 74:10: 5:11. Next, N-methyl-2-pyrrolidone as a solvent was added to the above mixture, kneaded to prepare a slurry, and the obtained slurry was applied to a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm. And coated with a coater device. Next, heat treatment was performed at 150 ° C. for 30 minutes, further heat treatment was performed at 220 ° C. for 1 hour, and drying was performed at 200 ° C. under reduced pressure to produce a negative electrode structure having a negative electrode layer density of 1.3 g / cm 3 . .

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。   The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.

実施例4
実施例1における負極を、下記操作にて作製した負極に替えて、評価試験用電池を作製した。
Example 4
An evaluation test battery was prepared by replacing the negative electrode in Example 1 with the negative electrode prepared by the following operation.

(1)負極の作製
以下の操作にて緩衝層を銅箔上に形成した後に、主活物質層を形成した。
先ず、平均粒径5μmの黒鉛粉末、実施例3と同様にして調製したポリ2−エチルチオフェンを添加したポリアミド前駆体(ポリアミック酸)の溶液の固形分が、重量比で93:7になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加し混練しスラリーを調製して、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工し、150℃で乾燥し、本発明の緩衝層を厚さ5μm、密度1.2g/cm3で形成した。なお、導電性高分子であるポリ2−エチルチオフェンを結着剤のポリアミド前駆体(ポリアミック酸)に添加したのは、電子伝導性を付与するためである。なぜならば、黒鉛粉末の粒子が小さいために結着材料を少なくすることができず、電子伝導性が低いために、高電流密度での充放電試験では、低電流密度の場合に比較して、充放電効率が低下するからである。
(1) Preparation of negative electrode After forming the buffer layer on copper foil with the following operation, the main active material layer was formed.
First, the solid content of the graphite powder having an average particle size of 5 μm and the polyamide precursor (polyamic acid) added with poly-2-ethylthiophene prepared in the same manner as in Example 3 is 93: 7 by weight. Then, N-methyl-2-pyrrolidone is added as a solvent and kneaded to prepare a slurry. The obtained slurry is applied to a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm. It was coated with an apparatus and dried at 150 ° C. to form a buffer layer of the present invention with a thickness of 5 μm and a density of 1.2 g / cm 3 . The reason why poly 2-ethylthiophene, which is a conductive polymer, was added to the binder polyamide precursor (polyamic acid) is to impart electron conductivity. Because the particles of graphite powder are small, the binder material cannot be reduced, and the electron conductivity is low, so in the charge / discharge test at high current density, compared to the case of low current density, This is because the charge / discharge efficiency decreases.

次いで、主活物質であるSi−Sn−Cu合金−炭素複合化粉末、平均粒径22μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、ポリアミド前駆体(ポリアミック酸)のN−メチル−2−ピロリドン溶液の固形分が、重量比で74:10:5:11になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加し混練して、スラリーを調製し、得られたスラリーを、上記緩衝層が形成された銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、さらに220℃で1時間熱処理を施し、200℃で減圧乾燥して、厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。 Next, Si—Sn—Cu alloy-carbon composite powder as the main active material, pseudo-spherical artificial graphite powder with an average particle size of 22 μm, graphite powder with an average particle size of 5 μm of conductive auxiliary material, polyamide precursor (polyamic acid) The N-methyl-2-pyrrolidone solution was mixed so that the solid content in the weight ratio was 74: 10: 5: 11, then N-methyl-2-pyrrolidone was added as a solvent and kneaded to prepare a slurry. The prepared slurry was applied to the copper foil on which the buffer layer was formed with a coater device. Next, heat treatment was performed at 150 ° C. for 30 minutes, further heat treatment was performed at 220 ° C. for 1 hour, and drying was performed at 200 ° C. under reduced pressure to produce a negative electrode structure having a negative electrode layer density of 1.3 g / cm 3 . .

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。   The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.

実施例5
実施例1における負極を下記操作にて作製した負極に替えて、評価試験用電池を作製した。
Example 5
A battery for evaluation test was produced by replacing the negative electrode in Example 1 with the negative electrode produced by the following operation.

(1)負極の作製
実施例1にて作製された電極構造体上に、以下の操作で本発明の被覆層を形成した。
先ず、平均粒径5μmの黒鉛粉末、実施例3と同様にして調製したポリ2−エチルチオフェンを添加したポリアミド前駆体(ポリアミック酸)の溶液の固形分が、重量比で93:7になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加し混練して、スラリーを調製した。
(1) Production of negative electrode On the electrode structure produced in Example 1, the coating layer of the present invention was formed by the following operation.
First, the solid content of the graphite powder having an average particle size of 5 μm and the polyamide precursor (polyamic acid) added with poly-2-ethylthiophene prepared in the same manner as in Example 3 is 93: 7 by weight. After mixing, N-methyl-2-pyrrolidone as a solvent was added and kneaded to prepare a slurry.

得られたスラリーを、実施例2で得られた電極構造体に、コーター装置で塗工し、150℃で30分間熱処理し、さらに220℃で1時間熱処理を施し、200℃で減圧乾燥して、本発明の被覆層を厚さ5μm、密度1.0g/cm3で形成した。 The obtained slurry was applied to the electrode structure obtained in Example 2 with a coater, heat-treated at 150 ° C. for 30 minutes, further heat-treated at 220 ° C. for 1 hour, and dried at 200 ° C. under reduced pressure. The coating layer of the present invention was formed with a thickness of 5 μm and a density of 1.0 g / cm 3 .

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。   The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.

実施例6
実施例4の(1)の負極の緩衝層を以下の操作で形成した。すなわち、平均粒径5μmの黒鉛粉末、平均粒径5μmの酸化タングステンWO3、実施例3と同様にして調製したポリ2−エチルチオフェンを添加したポリアミド前駆体(ポリアミック酸)の溶液の固形分が、重量比で50:43:7になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加し、混練しスラリーを調製して、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工し、150℃で乾燥し、本発明の緩衝層を厚さ5μm、密度1.3g/cm3で形成した。
その後の操作は、実施例4と同様にして、評価試験用電池を作製した。
Example 6
The negative electrode buffer layer of Example 4 (1) was formed by the following operation. That is, the solid content of a solution of a graphite precursor (polyamic acid) added with graphite powder having an average particle diameter of 5 μm, tungsten oxide WO 3 having an average particle diameter of 5 μm, and poly-2-ethylthiophene prepared in the same manner as in Example 3 Then, N-methyl-2-pyrrolidone was added as a solvent, and kneaded to prepare a slurry. The obtained slurry was subjected to ten-point average height Rz. = Coating was applied to a copper foil having a thickness of 0.6 μm and a thickness of 15 μm using a coater, and dried at 150 ° C. to form a buffer layer of the present invention with a thickness of 5 μm and a density of 1.3 g / cm 3 .
Subsequent operations were carried out in the same manner as in Example 4 to produce evaluation test batteries.

実施例7
実施例6において、緩衝層の上に主活物質層を形成し、150℃で30分間熱処理し、さらに220℃で1時間熱処理を施す前に、表面被覆層を以下の操作で、形成した。導電補助材の平均粒径5μmの黒鉛粉末、酸化チタンと炭酸リチウムを原料に調製した平均粒径4μmのリチウム−チタン酸化物Li4/3Ti5/34、実施例3と同様にして調製したポリ2−エチルチオフェンを添加したポリアミド前駆体(ポリアミック酸)の溶液の固形分が、重量比で60:33:7になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加し混練して、スラリーを調製した。得られたスラリーを、実施例2で得られた電極構造体に、コーター装置で塗工し、150℃で30分間熱処理し、さらに220℃で1時間熱処理を施し、200℃で減圧乾燥して、本発明の被覆層を厚さ5μm、密度1.1g/cm3で形成し、三層構造の負極用電極構造体を作製した。
その後は、実施例6と同様にして、評価試験用電池を作製した。
Example 7
In Example 6, a main active material layer was formed on the buffer layer, heat-treated at 150 ° C. for 30 minutes, and further subjected to heat treatment at 220 ° C. for 1 hour to form a surface coating layer by the following operation. Graphite powder with an average particle diameter of 5 μm, lithium-titanium oxide Li 4/3 Ti 5/3 O 4 with an average particle diameter of 4 μm prepared from titanium oxide and lithium carbonate as raw materials, in the same manner as in Example 3. After mixing so that the solid content of the prepared polyamide precursor (polyamic acid) solution to which poly-2-ethylthiophene was added was 60: 33: 7 by weight, N-methyl-2-pyrrolidone was used as a solvent. Add and knead to prepare a slurry. The obtained slurry was applied to the electrode structure obtained in Example 2 with a coater, heat-treated at 150 ° C. for 30 minutes, further heat-treated at 220 ° C. for 1 hour, and dried at 200 ° C. under reduced pressure. The coating layer of the present invention was formed with a thickness of 5 μm and a density of 1.1 g / cm 3 to produce a three-layered negative electrode structure.
Thereafter, an evaluation test battery was produced in the same manner as in Example 6.

実施例8
実施例1において、電解液として、重量比で実施例1の六フッ化リン酸リチウム塩(LiPF6)の1M(モル/リットル)エチレンカーボネート/ジエチルカーボネート溶液100部に、2部のスチレンと重量比2部の炭酸ビニレンを添加した電解液を用いて、実施例1と同様な操作で、評価試験用電池を作製した。
Example 8
In Example 1, as an electrolyte, 100 parts of a 1M (mol / liter) ethylene carbonate / diethyl carbonate solution of lithium hexafluorophosphate (LiPF 6 ) of Example 1 by weight was added with 2 parts of styrene and weight. A battery for evaluation test was produced in the same manner as in Example 1 using an electrolytic solution to which 2 parts of vinylene carbonate was added.

実施例9
実施例2において、負極の結着剤に導電性ポリマーを添加した実施例3の結着剤を用い、電解液に、実施例8のスチレンと炭酸ビニレン添加の電解液を用いて、評価試験用電池を作製した。
Example 9
In Example 2, the binder of Example 3 in which a conductive polymer was added to the binder of the negative electrode was used, and the electrolytic solution containing styrene and vinylene carbonate added in Example 8 was used for the evaluation test. A battery was produced.

実施例10
(1)負極の主活物質の調製
実施例1の(1)負極の主活物質の調製で得られたSi−Sn−Cu合金−炭素複合化粉末を、(融点150℃、700℃で炭化する)コールタールピッチで被覆後、窒素ガス雰囲気下、600℃で1時間保持し、次いで700℃で1時間熱処理を行ない、コールタールピッチを炭化し、炭素(5重量%)被覆のSi−Sn−Cu合金−炭素複合化粉末を調製した。
Example 10
(1) Preparation of Main Active Material for Negative Electrode The Si—Sn—Cu alloy-carbon composite powder obtained by the preparation of the main active material for negative electrode of Example 1 (melting point: 150 ° C., carbonized at 700 ° C. After coating with coal tar pitch, hold in nitrogen gas atmosphere at 600 ° C. for 1 hour, then heat-treat at 700 ° C. for 1 hour to carbonize the coal tar pitch, and carbon (5% by weight) coated Si—Sn -Cu alloy-carbon composite powder was prepared.

(2)負極の作製
上記(1)で得られた、主活物質である炭素被覆のSi−Sn−Cu合金−炭素複合化粉末を、実施例1の(2)のSi−Sn−Cu合金−炭素複合化粉末に替えて、実施例1の(2)と同様の操作で、負極を作製した。
ついで、実施例1と同様の操作で、評価用電池を作製した。
(2) Production of Negative Electrode The carbon-coated Si—Sn—Cu alloy-carbon composite powder obtained in (1) above, which is the main active material, was used as the Si—Sn—Cu alloy in (2) of Example 1. -It replaced with carbon composite powder and the negative electrode was produced by operation similar to (2) of Example 1. FIG.
Next, an evaluation battery was produced in the same manner as in Example 1.

実施例11
実施例の3における負極の作製において集電体の銅箔に十点平均高さRz=2.1μmで厚み15μmの銅箔を用い、電解液に、実施例8のスチレンと炭酸ビニレン添加の電解液を用いて、それ以外は実施例3と同様の操作にて、評価電池を作製した。
Example 11
In the production of the negative electrode in Example 3, a copper foil having a 10-point average height Rz = 2.1 μm and a thickness of 15 μm was used for the copper foil of the current collector, and the electrolytic solution containing styrene and vinylene carbonate added in Example 8 was used as the electrolytic solution. An evaluation battery was prepared in the same manner as in Example 3 except that the liquid was used.

参考例1
実施例1の負極用電極構造体作製において、平均粒径22μmの擬似球形の人造黒鉛粉末に替えて、扁平な黒鉛粉末(直径が約5μmで厚みが約1μmの略円板状の黒鉛粉末)を用いて負極用電極構造体を作製した。後は、実施例1と同様な操作にて、評価用電池を作製した。
Reference example 1
In the production of the electrode structure for negative electrode of Example 1, a flat graphite powder (substantially disc-shaped graphite powder having a diameter of about 5 μm and a thickness of about 1 μm) is used instead of the artificial artificial graphite powder having an average particle diameter of 22 μm. The electrode structure for negative electrodes was produced using. Thereafter, an evaluation battery was prepared in the same manner as in Example 1.

比較例1
負極用電極構造体を以下の操作で作製した。
主活物質としての平均粒径22μmの擬似球形の人造黒鉛粉末、ポリアミド前駆体(ポリアミック酸)のN−メチル−2−ピロリドン溶液の固形分が、重量比で89:11になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加して、混練しスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、さらに220℃で1時間熱処理を施し、200℃で減圧乾燥して、厚さ20μm負極層の密度1.4g/cm3の負極用電極構造体を作製した。
Comparative Example 1
A negative electrode structure was prepared by the following operation.
Pseudo-spherical artificial graphite powder having an average particle size of 22 μm as a main active material and a solid content of an N-methyl-2-pyrrolidone solution of a polyamide precursor (polyamic acid) were mixed at a weight ratio of 89:11. Then, N-methyl-2-pyrrolidone was added as a solvent, kneaded to prepare a slurry, and the resulting slurry was applied to a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm using a coater device. Coated. Next, heat treatment was performed at 150 ° C. for 30 minutes, heat treatment was further performed at 220 ° C. for 1 hour, and drying was performed at 200 ° C. under reduced pressure to produce a negative electrode structure having a negative electrode layer thickness of 1.4 g / cm 3 . .

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。
上記負極の作製以外は、実施例1と同様にして、評価試験用電池を作製した。
The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.
A battery for evaluation test was produced in the same manner as in Example 1 except that the negative electrode was produced.

〔電池の評価〕
正極の容量を基準に、1Cレートの定電流で4.2Vまで充電し、電池電圧が4.2V到達した時点で、4.2Vの定電圧充電に切り替え充電する定電流−定電圧で充電し、1Cレートの定電流で電池電圧3.0Vまで放電する試験を100回繰り返し行なった。なお、充電から放電、放電から充電に移る間には30分の休止時間を設けた。1回目の放電量と1回目の充電電気量に対する放電電気量の比(充放電効率)、100回目の放電量と充放電効率を評価し、参考例1のそれぞれの値を1.00として規格化して評価した。評価結果を表1にまとめて示した。
[Battery evaluation]
Based on the capacity of the positive electrode, charge to 4.2V at a constant current of 1C rate, and when the battery voltage reaches 4.2V, switch to 4.2V constant voltage charging and charge at constant current-constant voltage The test of discharging to a battery voltage of 3.0 V at a constant current of 1 C rate was repeated 100 times. In addition, a pause of 30 minutes was provided during the transition from charging to discharging and from discharging to charging. The ratio of the first discharge amount to the first discharge charge amount (charge / discharge efficiency), the 100th discharge amount and the charge / discharge efficiency are evaluated, and each value of Reference Example 1 is set to 1.00. And evaluated. The evaluation results are summarized in Table 1.

ただし、比較例1の評価試験用電池は、負極の蓄電容量が低いため、予め計算される負極の容量の電気量を越えないように充電電気量を規制した。   However, since the battery for evaluation test of Comparative Example 1 has a low storage capacity of the negative electrode, the amount of charge electricity was regulated so as not to exceed the amount of electricity of the negative electrode capacity calculated in advance.

Figure 2007165061
Figure 2007165061

なお、実施例1における(集電体重量を除いた)電極層重量あたりの放電電気量は最大で1300mAh/g以上の電気量を示した。
表1の結果により、いずれの実施例においても参考例1と比較して、第1回目の放電量と充放電効率、第100回目の放電量と充放電効率、ともに優れた性能を有することがわかった。
Note that the amount of electricity discharged per electrode layer weight (excluding the weight of the current collector) in Example 1 was a maximum of 1300 mAh / g.
According to the results in Table 1, both the first discharge amount and the charge / discharge efficiency, and the 100th discharge amount and the charge / discharge efficiency are superior in each example as compared to Reference Example 1. all right.

また、負極材料に黒鉛材料を用いた比較例1の電池と比較しても、第1回目の充放電効率においては劣るものの、第1回目の放電量及び第100回目の放電量においては、本発明の実施例の電池が優れていることがわかった。   Even when compared with the battery of Comparative Example 1 using a graphite material as the negative electrode material, the first charge amount and the 100th discharge amount are inferior in the first charge / discharge efficiency. It has been found that the batteries of the inventive examples are excellent.

次に、電池放電時の電池電圧上昇を図るためと、安全性を高めるために、正極材料を変更して評価試験用電池を作製した。   Next, in order to increase the battery voltage during battery discharge and to improve safety, a positive electrode material was changed to produce an evaluation test battery.

実施例12
実施例11の正極を以下の手順にて作製した正極を用いた以外は、実施例11と同様にして評価試験用電池を作製した。
Example 12
An evaluation test battery was produced in the same manner as in Example 11 except that the positive electrode produced in the following procedure was used as the positive electrode in Example 11.

(3)正極の作製
35重量%のスピネル型リチウムマンガン酸化物系LiMn1.5Ni0.54と55重量%のジルコニウム添加のリチウムコバルト酸化物LiCo0.96Zr0.042に、5重量%の黒鉛粉と5重量%のポリフッ化ビリニデン粉を混合した後、N−メチル−2−ピロリドンを添加してスラリーを作製した。
(3) Preparation of positive electrode 35 wt% spinel type lithium manganese oxide LiMn 1.5 Ni 0.5 O 4 and 55 wt% zirconium-added lithium cobalt oxide LiCo 0.96 Zr 0.04 O 2 with 5 wt% graphite powder After mixing 5% by weight of poly (vinylidene fluoride) powder, N-methyl-2-pyrrolidone was added to prepare a slurry.

得られた正極材スラリーを、厚み20ミクロンのアルミニウム箔の集電体に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90μm、密度3.3g/cm3に調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。 The obtained positive electrode material slurry was applied and dried on a current collector of aluminum foil having a thickness of 20 microns, and then the thickness of the positive electrode active material layer on one side was adjusted to 90 μm and the density to 3.3 g / cm 3 with a roll press. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.

実施例13
実施例11の正極を以下の手順にて作製した正極を用いた以外は、実施例11と同様にして評価試験用電池を作製した。
Example 13
An evaluation test battery was produced in the same manner as in Example 11 except that the positive electrode produced in the following procedure was used as the positive electrode in Example 11.

(1)正極の作製
45重量%のLiCo0.33Ni0.34Mn0.332と45重量%のジルコニウム添加のリチウムコバルト酸化物LiCo0.96Zr0.042に、5重量%の黒鉛粉と5重量%のポリフッ化ビリニデン粉を混合した後、N−メチル−2−ピロリドンを添加してスラリーを作製した。
(1) Preparation of positive electrode 45 wt% LiCo 0.33 Ni 0.34 Mn 0.33 O 2 , 45 wt% zirconium-added lithium cobalt oxide LiCo 0.96 Zr 0.04 O 2 , 5 wt% graphite powder and 5 wt% polyfluoride After the viridinidide powder was mixed, N-methyl-2-pyrrolidone was added to prepare a slurry.

得られた正極材スラリーを、厚み20ミクロンのアルミニウム箔の集電体に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90μm、密度3.3g/cm3に調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。 The obtained positive electrode material slurry was applied and dried on a current collector of aluminum foil having a thickness of 20 microns, and then the thickness of the positive electrode active material layer on one side was adjusted to 90 μm and the density to 3.3 g / cm 3 with a roll press. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.

実施例14
実施例11の正極を以下の手順にて作製した正極を用いた以外は、実施例11と同様にして評価試験用電池を作製した。
Example 14
An evaluation test battery was produced in the same manner as in Example 11 except that the positive electrode produced in the following procedure was used as the positive electrode in Example 11.

(1)正極の作製
40重量%のスピネル型リチウムマンガン酸化物系LiMn1.5Ni0.54と50重量%のLiNi0.34Co0.33Mn0.332に、5重量%の黒鉛粉と5重量%のポリフッ化ビリニデン粉を混合した後、N−メチル−2−ピロリドンを添加してスラリーを作製した。
(1) Fabrication of positive electrode 40% by weight of spinel type lithium manganese oxide based LiMn 1.5 Ni 0.5 O 4 and 50% by weight of LiNi 0.34 Co 0.33 Mn 0.33 O 2 , 5% by weight of graphite powder and 5% by weight of polyfluoride After the viridinidide powder was mixed, N-methyl-2-pyrrolidone was added to prepare a slurry.

得られた正極材スラリーを、厚み20ミクロンのアルミニウム箔の集電体に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90μm、密度3.3g/cm3に調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。 The obtained positive electrode material slurry was applied and dried on a current collector of aluminum foil having a thickness of 20 microns, and then the thickness of the positive electrode active material layer on one side was adjusted to 90 μm and the density to 3.3 g / cm 3 with a roll press. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.

実施例15
実施例11の正極を以下の手順にて作製した正極を用いた以外は、実施例11と同様にして評価試験用電池を作製した。
Example 15
An evaluation test battery was produced in the same manner as in Example 11 except that the positive electrode produced in the following procedure was used as the positive electrode in Example 11.

(1)正極の作製
30重量%のスピネル型リチウムマンガン酸化物系LiMn1.5Ni0.54及び10重量%のLiMn24と50重量%のLiNi0.34Co0.33Mn0.332に、5重量%の黒鉛粉と5重量%のポリフッ化ビリニデン粉を混合した後、N−メチル−2−ピロリドンを添加してスラリーを作製した。
(1) Fabrication of positive electrode 5% by weight on 30% by weight of spinel type lithium manganese oxide-based LiMn 1.5 Ni 0.5 O 4 and 10% by weight of LiMn 2 O 4 and 50% by weight of LiNi 0.34 Co 0.33 Mn 0.33 O 2 The graphite powder and 5 wt% poly (vinylidene fluoride) powder were mixed, and then N-methyl-2-pyrrolidone was added to prepare a slurry.

得られた正極材スラリーを、厚み20ミクロンのアルミニウム箔の集電体に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90μm、密度3.3g/cm3に調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。 The obtained positive electrode material slurry was applied and dried on a current collector of aluminum foil having a thickness of 20 microns, and then the thickness of the positive electrode active material layer on one side was adjusted to 90 μm and the density to 3.3 g / cm 3 with a roll press. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.

〔電池の評価〕
実施例12〜15までの電池の放電容量と平均放電電圧を実施例11及び比較例1で得られた電池と下記方法で比較して評価した。
[Battery evaluation]
The discharge capacity and average discharge voltage of the batteries of Examples 12 to 15 were evaluated by comparing with the batteries obtained in Example 11 and Comparative Example 1 by the following methods.

実施例11における正極の容量を基準に、1Cレートの定電流で4.6Vまで充電し、電池電圧が4.6V到達した時点で、4.6Vの定電圧充電に切り替え充電する定電流−定電圧で充電し、0.2Cレートの定電流で電池電圧2.75Vまで放電する試験を繰り返し行なった。なお、充電から放電、放電から充電に移る間には30分の休止時間を設けた。5回目の放電量と5回目の平均放電電圧を求め、実施例11のそれぞれの値を1.00として規格化して評価した。評価結果を表2にまとめて示した。   Based on the capacity of the positive electrode in Example 11, the battery is charged to 4.6 V at a constant current of 1 C rate, and when the battery voltage reaches 4.6 V, it is switched to 4.6 V constant voltage charging and constant current-constant The test was repeated by charging at a voltage and discharging to a battery voltage of 2.75 V at a constant current of 0.2 C rate. In addition, a pause of 30 minutes was provided during the transition from charging to discharging and from discharging to charging. The fifth discharge amount and the fifth average discharge voltage were determined, and each value of Example 11 was normalized and evaluated. The evaluation results are summarized in Table 2.

Figure 2007165061
Figure 2007165061

上記表2の結果から、リチウム−マンガン−ニッケル酸化物、リチウム−コバルト−ニッケル−マンガン酸化物、リチウム−コバルト酸化物等を適宜混合することで、放電電圧を高め、放電量を増すこともできることがわかった。   From the results in Table 2 above, by appropriately mixing lithium-manganese-nickel oxide, lithium-cobalt-nickel-manganese oxide, lithium-cobalt oxide, etc., the discharge voltage can be increased and the discharge amount can be increased. I understood.

〔安全評価試験〕
実施例12〜15までの電池の安全性を実施例11と比較して以下の方法で評価した。実施例11における正極の容量を基準に、1Cレートの定電流で5.0Vまで充電した。次いで各電池をAccelerating Rate Calorimetry(ARC)で評価した。その結果、発熱開始温度がもっとも早かったのは実施例11の電池で、100℃付近の発熱速度の大きさは、大きい順に実施例11、実施例13、実施例12、実施例14、実施例実施例15の順であった。マンガン化合物を正極に含むことで、安全性が向上することがわかった。
[Safety evaluation test]
The safety of the batteries of Examples 12 to 15 was evaluated by the following method in comparison with Example 11. Based on the capacity of the positive electrode in Example 11, the battery was charged to 5.0 V with a constant current of 1 C rate. Each battery was then evaluated by Accelerating Rate Calibration (ARC). As a result, the heat generation start temperature was the fastest in the battery of Example 11, and the magnitude of the heat generation rate in the vicinity of 100 ° C. was in the order of Example 11, Example 13, Example 12, Example 14, and Example. The order was as in Example 15. It has been found that the safety is improved by including the manganese compound in the positive electrode.

以上、表2と安全評価試験の結果から、シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される負極材料から形成される負極のリチウム二次電池では、正極材料の適宜組み合わせで、高エネルギー密度で安全な電池が得られることがわかった。   As described above, from the results of Table 2 and the safety evaluation test, in the lithium secondary battery of the negative electrode formed from the negative electrode material selected from silicon, tin, or an alloy containing any of these elements, an appropriate combination of the positive electrode materials can be used. It was found that a safe battery with high energy density can be obtained.

実施例16
実施例11の正極を以下の手順にて作製した正極を用いた以外は、実施例11と同様にして評価試験用電池を作製した。
Example 16
An evaluation test battery was produced in the same manner as in Example 11 except that the positive electrode produced in the following procedure was used as the positive electrode in Example 11.

(1)正極の作製
LiCo0.33Ni0.34Mn0.332とジルコニウム添加のリチウムコバルト酸化物LiCo0.96Zr0.042を重量比50:50で混合し、重量比でその混合物100部に対し、(融点350℃、700℃で炭化する)コールタールピッチを3部混合し、アルゴンガス雰囲気下で、400℃1時間処理の後、700℃1時間処理して、コールタールピッチの炭化物で被覆された、LiCo0.33Ni0.34Mn0.332とLiCo0.96Zr0.042を得た。得られた生成物のコールタールピッチ炭化物の含有量は1重量%であった。
(1) Production of positive electrode LiCo 0.33 Ni 0.34 Mn 0.33 O 2 and zirconium-added lithium cobalt oxide LiCo 0.96 Zr 0.04 O 2 were mixed at a weight ratio of 50:50, and the melting point was 100 parts by weight (melting point). 3 parts of coal tar pitch (carbonized at 350 ° C. and 700 ° C.) were mixed, treated in argon gas atmosphere at 400 ° C. for 1 hour, then treated at 700 ° C. for 1 hour, and coated with carbide of coal tar pitch. LiCo 0.33 Ni 0.34 Mn 0.33 O 2 and LiCo 0.96 Zr 0.04 O 2 were obtained. The content of coal tar pitch carbide in the obtained product was 1% by weight.

次いで、90重量%の炭化したコールタールピッチで被覆されたLiCo0.33Ni0.34Mn0.334とLiCo0.96Zr0.042と5重量%の黒鉛粉と5重量%のポリフッ化ビリニデン粉を混合した後、N−メチル−2−ピロリドンを添加してスラリーを作製した。 Next, after mixing LiCo 0.33 Ni 0.34 Mn 0.33 O 4 , LiCo 0.96 Zr 0.04 O 2 , 5 wt% graphite powder and 5 wt% poly (vinylidene fluoride) powder coated with 90 wt% carbonized coal tar pitch N-methyl-2-pyrrolidone was added to prepare a slurry.

得られた正極材スラリーを、厚み20ミクロンのアルミニウム箔の集電体に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90μm、密度3.3g/cm3に調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。 The obtained positive electrode material slurry was applied and dried on a current collector of aluminum foil having a thickness of 20 microns, and then the thickness of the positive electrode active material layer on one side was adjusted to 90 μm and the density to 3.3 g / cm 3 with a roll press. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.

実施例16で得られた電池の高率放電の性能を実施例11で得られた電池と下記方法で比較して評価した。
実施例11における正極の容量を基準に、1Cレートの定電流で4.6Vまで充電し、電池電圧が4.6V到達した時点で、4.6Vの定電圧充電に切り替え充電する定電流−定電圧で充電し、2.0Cレートの定電流で電池電圧2.75Vまで放電する試験を繰り返し行ない、5回目の放電量を求めた。その結果、実施例16の電池の放電量は、実施例11の電池の1.2倍であった。このことから、コールタールピッチを炭化して正極活物質粒子を被覆することで、電流密度を高めた効率放電での性能が向上することがわかった。
The high rate discharge performance of the battery obtained in Example 16 was evaluated by comparing with the battery obtained in Example 11 by the following method.
Based on the capacity of the positive electrode in Example 11, the battery is charged to 4.6 V at a constant current of 1 C rate, and when the battery voltage reaches 4.6 V, it is switched to 4.6 V constant voltage charging and constant current-constant The test of charging at a voltage and discharging to a battery voltage of 2.75 V at a constant current of 2.0 C was repeated, and the fifth discharge amount was determined. As a result, the discharge amount of the battery of Example 16 was 1.2 times that of the battery of Example 11. From this, it was found that carbonization of the coal tar pitch to coat the positive electrode active material particles improves the performance in efficient discharge with increased current density.

参考例2
(1)負極電極層の主材に用いるシリコン合金の調製
負極層の形成に用いた金属粉末は、金属シリコン粉末をジルコニアビーズのメディアミルを使用してイソプロピルアルコール中で、平均粒径0.2μmまで粉砕して、シリコン微粉末を得た。
Reference example 2
(1) Preparation of silicon alloy used as main material of negative electrode layer The metal powder used for forming the negative electrode layer was obtained by using a metal silicon powder in isopropyl alcohol using a media mill of zirconia beads and having an average particle size of 0.2 μm. To obtain a fine silicon powder.

得られたシリコン微粉末に、スズ粉末、銅粉末、ホウ素粉末、黒鉛粉末を、重量比で58.5:27.0:4.5:1.0:9.0になるように混合し、アトライター装置にてアルゴンガス雰囲気中でステンレス製ボールを使用し24時間粉砕して、炭素を複合化したSi−Sn−Cu−B合金微粉末の電極材料を得た。   To the obtained silicon fine powder, tin powder, copper powder, boron powder, and graphite powder were mixed at a weight ratio of 58.5: 27.0: 4.5: 1.0: 9.0, A stainless steel ball was pulverized for 24 hours in an argon gas atmosphere using an attritor apparatus to obtain an electrode material of Si—Sn—Cu—B alloy fine powder combined with carbon.

(2)負極の作製
上記(1)で得られた、主活物質であるSi−Sn−Cu合金−炭素複合化粉末、平均粒径27μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、ポリアミドイミドのN−メチル−2−ピロリドン溶液の固形分が、重量比で74:10:5:11になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加して、混練しスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、200℃で減圧乾燥して、平均厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。
(2) Production of negative electrode Si-Sn-Cu alloy-carbon composite powder as the main active material obtained in (1) above, pseudo-spherical artificial graphite powder having an average particle diameter of 27 μm, and average particle of conductive auxiliary material After mixing the graphite powder having a diameter of 5 μm and the solid content of the polyamide-imide N-methyl-2-pyrrolidone solution in a weight ratio of 74: 10: 5: 11, N-methyl-2-pyrrolidone was used as a solvent. The slurry was added and kneaded to prepare a slurry, and the obtained slurry was coated on a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm with a coater device. Subsequently, it heat-processed for 30 minutes at 150 degreeC, and it dried under reduced pressure at 200 degreeC, and produced the electrode structure for negative electrodes with a density of 1.3 g / cm < 3 > of 20 micrometers of average thickness negative electrode layers.

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。   The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.

(3)正極の作製
リチウム−コバルト酸化物LiCoO2に、黒鉛粉5重量%とポリフッ化ビリニデン粉5重量%を混合した後、N−メチル−2−ピロリドンを添加してスラリーを作製した。
(3) Preparation of positive electrode After mixing 5% by weight of graphite powder and 5% by weight of polyvinylidene fluoride powder with lithium-cobalt oxide LiCoO 2 , N-methyl-2-pyrrolidone was added to prepare a slurry.

得られた正極材スラリーを、厚み20ミクロンのアルミニウム箔の集電体に塗布乾燥した後、ロールプレス機で片側の正極活物質層の厚みを90μm、密度3.3g/cm3に調整した。さらに、アルミニウムのリードを超音波溶接機で接続し、150℃で減圧乾燥して正極を作製した。 The obtained positive electrode material slurry was applied and dried on a current collector of aluminum foil having a thickness of 20 microns, and then the thickness of the positive electrode active material layer on one side was adjusted to 90 μm and the density to 3.3 g / cm 3 with a roll press. Further, aluminum leads were connected with an ultrasonic welder and dried under reduced pressure at 150 ° C. to produce a positive electrode.

(4)電解液の作製手順
十分に水分を除去したエチレンカーボネートとジエチルカーボネートとを、体積比3:7で混合した溶媒を調製した。
(4) Preparation Procedure of Electrolytic Solution A solvent was prepared by mixing ethylene carbonate and diethyl carbonate from which water was sufficiently removed at a volume ratio of 3: 7.

得られた上記溶媒に、六フッ化リン酸リチウム塩(LiPF6)を1M(モル/リットル)溶解したものを電解液として用いた。
(5)セパレータ
厚み16ミクロンのポリエチレンの微孔性フィルムをセパレータとして用いた。
A solution obtained by dissolving 1M (mol / liter) of lithium hexafluorophosphate (LiPF 6 ) in the obtained solvent was used as an electrolytic solution.
(5) Separator A polyethylene microporous film having a thickness of 16 microns was used as a separator.

(6)電池の組み立て
組み立ては、露点−50℃以下の水分を管理した乾燥雰囲気下で全て行なった。
上記操作で準備した負極と正極の間にセパレータを挟み、ポリエチレン/アルミニウム箔/ナイロン構造のアルミラミネートフィルムをポケット状にした電槽に負極/セパレータ/正極を挿入し、電解液を注入し、電極リード取り出し、ヒートシールして、正極容量規制の評価用の電池を作製した。上記アルミラミネートフィルムの外側はナイロンフィルム、その内側はポリエチレンフィルムとした。
(6) Battery assembly The assembly was all performed in a dry atmosphere in which moisture having a dew point of -50 ° C or lower was controlled.
A separator is sandwiched between the negative electrode and the positive electrode prepared in the above operation, and the negative electrode / separator / positive electrode is inserted into a battery case in which a polyethylene / aluminum foil / nylon-structured aluminum laminate film is pocketed, and an electrolyte solution is injected into the electrode. The lead was taken out and heat sealed to produce a battery for evaluation of positive electrode capacity regulation. The outer side of the aluminum laminate film was a nylon film, and the inner side was a polyethylene film.

実施例17
(1)負極電極層の主材の調製
前記参考例2の(1)で得られたSi−Sn−Cu合金−炭素複合化粉末、平均粒径27μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、(軟化温度350℃、固定炭素88%、1000℃重量減16%の)JFEケミカル(株)製コールタールピッチMCP−350、をそれぞれ、重量比で74:10:5:1の比率で混合し、イソプロピルアルコールを添加し、メノウ製の容器とボールを用い、遊星型ボールミル装置で混合し、得られた混合物を80℃で乾燥して、合金−黒鉛−コールタールピッチ複合粉末を得た。
Example 17
(1) Preparation of main material of negative electrode layer Si-Sn-Cu alloy-carbon composite powder obtained in (1) of Reference Example 2, pseudo-spherical artificial graphite powder having an average particle size of 27 μm, conductive auxiliary material Graphite powder having an average particle diameter of 5 μm and a coal tar pitch MCP-350 (softening temperature 350 ° C., fixed carbon 88%, 1000 ° C., weight loss 16%) manufactured by JFE Chemical Co., Ltd. in a weight ratio of 74:10 : 5: 1 ratio, add isopropyl alcohol, mix with an agate vessel and ball using a planetary ball mill, dry the resulting mixture at 80 ° C, alloy-graphite-coal Tar pitch composite powder was obtained.

(2)負極の作製
上記(1)で得られた、合金−黒鉛−コールタールピッチ複合粉末、ポリアミドイミドのN−メチル−2−ピロリドン溶液の固形分が、重量比で89:11になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加して、混練しスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、200℃で減圧乾燥して、平均厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。
(2) Production of Negative Electrode The solid content of the N-methyl-2-pyrrolidone solution of alloy-graphite-coal tar pitch composite powder and polyamideimide obtained in (1) above is 89:11 by weight ratio. Then, N-methyl-2-pyrrolidone is added as a solvent, kneaded to prepare a slurry, and the obtained slurry is made into a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm. The coater was used for coating. Subsequently, it heat-processed for 30 minutes at 150 degreeC, and it dried under reduced pressure at 200 degreeC, and produced the electrode structure for negative electrodes with a density of 1.3 g / cm < 3 > of 20 micrometers of average thickness negative electrode layers.

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。
以下は、参考例2と同様にして、評価用の電池を作製した。
The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.
A battery for evaluation was produced in the same manner as in Reference Example 2 below.

実施例18
(1)負極電極層の主材の調製
前記参考例2の(1)で得られたSi−Sn−Cu合金−炭素複合化粉末、平均粒径27μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、(軟化温度350℃、固定炭素88%、重量減開始温度が420℃、1000℃重量減16%の)JFEケミカル(株)製コールタールピッチMCP−350、をそれぞれ、重量比で74:10:5:10の比率で混合し、イソプロピルアルコールを添加し、メノウ製容器とボールを用い、遊星型ボールミル装置で混合し、得られた混合物を80℃で乾燥して、合金−コールタールピッチ−黒鉛の複合粉末を得た。得られた複合粉末をN2ガスフロー下で、550℃、1時間熱処理を施しコールタールピッチを炭化して非晶質カーボンにして、合金−炭化コールタールピッチ−黒鉛の複合化粉末を得た。
Example 18
(1) Preparation of main material of negative electrode layer Si-Sn-Cu alloy-carbon composite powder obtained in (1) of Reference Example 2, pseudo-spherical artificial graphite powder having an average particle size of 27 μm, conductive auxiliary material A graphite powder having an average particle size of 5 μm, a coal tar pitch MCP-350 manufactured by JFE Chemical Co., Ltd. (softening temperature 350 ° C., fixed carbon 88%, weight loss starting temperature 420 ° C., 1000 ° C. weight loss 16%) Each is mixed at a weight ratio of 74: 10: 5: 10, isopropyl alcohol is added, mixed with an agate vessel and ball using a planetary ball mill, and the resulting mixture is dried at 80 ° C. Thus, an alloy-coal tar pitch-graphite composite powder was obtained. The obtained composite powder was subjected to heat treatment at 550 ° C. for 1 hour under N 2 gas flow to carbonize the coal tar pitch to amorphous carbon to obtain an alloy-carbonized carbon tar pitch-graphite composite powder.

(2)負極の作製
上記(1)で得られた、合金−炭化コールタールピッチ−黒鉛の複合化粉末、ポリアミドイミドのN−メチル−2−ピロリドン溶液の固形分が、重量比で89:11になるように混合した後、溶剤としてN−メチル−2−ピロリドンを添加して、混練しスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、200℃で減圧乾燥して、平均厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。
(2) Production of Negative Electrode The alloy-coal tartar pitch-graphite composite powder obtained in (1) above and the solid content of the N-methyl-2-pyrrolidone solution of polyamideimide were 89:11 in weight ratio. Then, N-methyl-2-pyrrolidone is added as a solvent, kneaded to prepare a slurry, and the obtained slurry is a 10-point average height Rz = 0.6 μm and a thickness of 15 μm copper. The foil was coated with a coater device. Subsequently, it heat-processed for 30 minutes at 150 degreeC, and it dried under reduced pressure at 200 degreeC, and produced the electrode structure for negative electrodes with a density of 1.3 g / cm < 3 > of 20 micrometers of average thickness negative electrode layers.

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。
以下は、参考例2と同様にして、評価用の電池を作製した。
The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.
A battery for evaluation was produced in the same manner as in Reference Example 2 below.

実施例19
(1)負極電極層の主材の調製
前記参考例2の(1)で得られたSi−Sn−Cu合金−炭素複合化粉末、(軟化温度350℃、固定炭素88%、重量減開始温度が420℃、1000℃重量減16%の)JFEケミカル(株)製コールタールピッチMCP−350、3M社製フッ素系脂肪族系ポリマーエステルである界面活性剤Novec FC−4430をそれぞれ、重量比で95:5:0.5の比率で混合し、アセトンを添加し、メノウ製容器とボールを用いた遊星型ボールミル装置で混合し、得られた混合物を50℃で乾燥して、コールタールピッチ被覆の合金−炭素複合粉末を得た。得られた合金粉末をArガスフロー下で、700℃で1時間熱処理を施しコールタールピッチを炭化して非晶質カーボン被覆の合金−炭素複合粉末を得た。
Example 19
(1) Preparation of main material of negative electrode layer Si—Sn—Cu alloy-carbon composite powder obtained in (1) of Reference Example 2 (softening temperature 350 ° C., fixed carbon 88%, weight loss starting temperature Is a coal tar pitch MCP-350 manufactured by JFE Chemical Co., Ltd. and 3M fluorine-based aliphatic polymer ester surfactant Novec FC-4430, respectively. Mix at a ratio of 95: 5: 0.5, add acetone, mix in an agate vessel and a planetary ball mill using a ball, dry the resulting mixture at 50 ° C., and coat with coal tar pitch An alloy-carbon composite powder was obtained. The obtained alloy powder was heat-treated at 700 ° C. for 1 hour under an Ar gas flow to carbonize the coal tar pitch to obtain an amorphous carbon-coated alloy-carbon composite powder.

(2)負極の作製
上記(1)で得られた、非晶質カーボン被覆の合金−炭素複合粉末、平均粒径27μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、3M社製フッ素系脂肪族系ポリマーエステルである界面活性剤Novec FC−4430を、それぞれ重量比で74:10:5:0.1になるように混合し、溶剤としてN−メチル−2−ピロリドンを添加してさらに混合した。ついで、ポリアミドイミドのN−メチル−2−ピロリドン溶液の固形分が、重量比で先の非晶質カーボン被覆の合金−炭素複合粉末74に対して11になるように添加し、混練してスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、200℃で減圧乾燥して、平均厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。
(2) Production of negative electrode Amorphous carbon-coated alloy-carbon composite powder, pseudo-spherical artificial graphite powder having an average particle size of 27 μm, and graphite powder having an average particle size of 5 μm of conductive auxiliary material obtained in (1) above Surfactant Novec FC-4430, a fluorine-based aliphatic polymer ester manufactured by 3M, was mixed in a weight ratio of 74: 10: 5: 0.1, respectively, and N-methyl-2- Pyrrolidone was added and further mixed. Next, the solid content of the polyamide-imide N-methyl-2-pyrrolidone solution was added to the amorphous carbon-coated alloy-carbon composite powder 74 in a weight ratio of 11, and kneaded to obtain a slurry. The slurry obtained was coated on a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm using a coater device. Subsequently, it heat-processed for 30 minutes at 150 degreeC, and it dried under reduced pressure at 200 degreeC, and produced the electrode structure for negative electrodes with a density of 1.3 g / cm < 3 > of 20 micrometers of average thickness negative electrode layers.

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。
以下は、参考例2と同様にして、評価用の電池を作製した。
The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.
A battery for evaluation was produced in the same manner as in Reference Example 2 below.

実施例20
上記参考例2の(2)の負極の作製において、
上記(1)で得られた、Si−Sn−Cu合金−炭素複合化粉末、平均粒径27μmの擬似球形の人造黒鉛粉末、導電補助材の平均粒径5μmの黒鉛粉末、3M社製フッ素系脂肪族系ポリマーエステルである界面活性剤Novec FC−4430を、それぞれ重量比で74:10:5:0.1になるように混合し、溶剤としてN−メチル−2−ピロリドンを添加してさらに混合した。ついで、ポリアミドイミドのN−メチル−2−ピロリドン溶液の固形分が、重量比で先のSi−Sn−Cu合金−炭素複合化粉末74に対して11になるように添加し、混練してスラリーを調製し、得られたスラリーを、十点平均高さRz=0.6μmで厚み15μmの銅箔に、コーター装置で塗工した。次いで、150℃で30分間熱処理し、200℃で減圧乾燥して、平均厚さ20μm負極層の密度1.3g/cm3の負極用電極構造体を作製した。
Example 20
In the preparation of the negative electrode of (2) in Reference Example 2 above,
Si-Sn-Cu alloy-carbon composite powder obtained in (1) above, pseudo-spherical artificial graphite powder having an average particle diameter of 27 μm, graphite powder having an average particle diameter of 5 μm of conductive auxiliary material, fluorine system manufactured by 3M Company Surfactant Novec FC-4430, which is an aliphatic polymer ester, was mixed in a weight ratio of 74: 10: 5: 0.1, and N-methyl-2-pyrrolidone was added as a solvent. Mixed. Then, the solid content of the polyamide-imide N-methyl-2-pyrrolidone solution was added to the Si-Sn-Cu alloy-carbon composite powder 74 in a weight ratio of 11, and kneaded to prepare a slurry. The slurry obtained was coated on a copper foil having a 10-point average height Rz = 0.6 μm and a thickness of 15 μm using a coater device. Subsequently, it heat-processed for 30 minutes at 150 degreeC, and it dried under reduced pressure at 200 degreeC, and produced the electrode structure for negative electrodes with a density of 1.3 g / cm < 3 > of 20 micrometers of average thickness negative electrode layers.

得られた電極構造体を所定の大きさに切断し、ニッケルリボンのリードをスポット溶接で上記電極に接続し、負極を得た。
その他は、参考例1と同様にして、評価用の電池を作製した。
The obtained electrode structure was cut into a predetermined size, and a nickel ribbon lead was connected to the electrode by spot welding to obtain a negative electrode.
Others were the same as in Reference Example 1, and a battery for evaluation was produced.

〔電池の評価〕
正極の容量を基準に、1Cレートの定電流で4.2Vまで充電し、電池電圧が4.2V到達した時点で、4.2Vの定電圧充電に切り替え充電する定電流−定電圧で充電し、1Cレートの定電流で電池電圧2.5Vまで放電する試験を100回繰り返し行なった。なお、充電から放電、放電から充電に移る間には30分の休止時間を設けた。1回目の放電量に対する100回目の放電量を容量維持率として評価し、参考例2の容量維持率の値を1.0として規格化して評価した。評価結果を表3にまとめて示した。
[Battery evaluation]
Based on the capacity of the positive electrode, charge to 4.2V at a constant current of 1C rate, and when the battery voltage reaches 4.2V, switch to 4.2V constant voltage charging and charge at constant current-constant voltage The test of discharging to a battery voltage of 2.5 V at a constant current of 1 C rate was repeated 100 times. In addition, a pause of 30 minutes was provided during the transition from charging to discharging and from discharging to charging. The 100th discharge amount with respect to the first discharge amount was evaluated as a capacity maintenance rate, and the capacity maintenance rate value of Reference Example 2 was normalized as 1.0 and evaluated. The evaluation results are summarized in Table 3.

Figure 2007165061
Figure 2007165061

以上説明してきたように、本発明によれば、高容量、高エネルギー密度の、繰り返し寿命もあるリチウム二次電池を提供できる。   As described above, according to the present invention, it is possible to provide a lithium secondary battery having a high capacity, a high energy density, and a repeated life.

本発明の電極構造体の一例の模式断面図と充電時の状態を説明する説明図である。It is the schematic cross section of an example of the electrode structure of this invention, and explanatory drawing explaining the state at the time of charge. 本発明の電極構造体の一例の模式断面図である。It is a schematic cross section of an example of the electrode structure of the present invention. 本発明の電極構造体の一例の模式断面図である。It is a schematic cross section of an example of the electrode structure of the present invention. 本発明の電極構造体の一例の模式断面図である。It is a schematic cross section of an example of the electrode structure of the present invention. 扁平な黒鉛を複合化した電極構造体の一例の模式断面図と充電時の状態を説明する説明図である。It is the schematic cross section of an example of the electrode structure which compounded flat graphite, and the explanatory view explaining the state at the time of charge. 本発明の二次電池(リチウム二次電池)の一実施態様の断面を模式的に示す概念図である。It is a conceptual diagram which shows typically the cross section of one embodiment of the secondary battery (lithium secondary battery) of this invention. 単層式扁平形(コイン形)電池の断面図である。It is sectional drawing of a single layer type flat (coin type) battery. スパイラル式円筒型電池の断面図である。It is sectional drawing of a spiral type cylindrical battery. 本発明の電極構造体の金属粉末粒子とカーボン粒子がつなぎ材で接続されている一例の模式のイメージ図である。It is a schematic image figure of an example by which the metal powder particle and carbon particle of the electrode structure of this invention are connected by the connection material.

符号の説明Explanation of symbols

100,200,300,400,500 集電体
101,201,301,401,501 Si,Snもしくはそれらの合金粒子
101’,501’ Liとの合金化で膨張したSi,Snもしくはそれらの合金粒子
102,202,302,402,503 導電補助材粒子
103,203,207,303,307,403,407,410,504 結着剤
104,204,304,404 支持材粒子
105,205,305,405,505 主活物質層
106,209,309,412,506 電極構造体
206,406 電子電導性粒子
208,408 緩衝層
306,409 イオン伝導・電子電導性粒子
308,411 被覆層
413 表面粗化集電体
502 扁平な導電補助材粒子
601,701,803 負極
602,703,806 正極
603,702,807 イオン伝導体
604 負極端子
605 正極端子
606 電槽(電池ハウジング)
704 負極キャップ
705 正極缶
706,810 ガスケット
801 負極集電体
802 負極活物質層
804 正極集電体
805 正極活物質層
808 負極缶(負極端子)
811 絶縁板
812 負極リード
813 正極リード
814 安全弁
901 金属粉末粒子
902 カーボン粒子
903 つなぎ材
100, 200, 300, 400, 500 Current collector 101, 201, 301, 401, 501 Si, Sn or their alloy particles 101 ′, 501 ′ Si, Sn or their alloy particles expanded by alloying with Li 102, 202, 302, 402, 503 Conductive auxiliary material particles 103, 203, 207, 303, 307, 403, 407, 410, 504 Binder 104, 204, 304, 404 Support material particles 105, 205, 305, 405 , 505 Main active material layer 106, 209, 309, 412, 506 Electrode structure 206, 406 Electroconductive particle 208, 408 Buffer layer 306, 409 Ion conductive / electroconductive particle 308, 411 Cover layer 413 Surface roughening Electric conductor 502 Flat conductive auxiliary material particles 601, 701, 803 Negative electrode 602, 70 , 606 battery jar 806 positive 603,702,807 ion conductor 604 negative terminal 605 positive terminal (cell housing)
704 Negative electrode cap 705 Positive electrode can 706, 810 Gasket 801 Negative electrode current collector 802 Negative electrode active material layer 804 Positive electrode current collector 805 Positive electrode active material layer 808 Negative electrode can (negative electrode terminal)
811 Insulating plate 812 Negative electrode lead 813 Positive electrode lead 814 Safety valve 901 Metal powder particle 902 Carbon particle 903 Binder

Claims (34)

シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の平均厚みの0.3〜1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であることを特徴とするリチウム二次電池用の電極構造体。
Main active material layer and current collector comprising metal powder selected from silicon, tin, or an alloy containing any of these elements and capable of storing and releasing lithium by an electrochemical reaction and an organic polymer binder In an electrode structure composed of a body,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the average thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and One or more selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys electrochemically An electrode structure for a lithium secondary battery, characterized by being a material.
シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の厚みの0.3から1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であり、
(b)前記電極構造体の集電体と主活物質層の間に、電子伝導性の緩衝層が設けられ、該緩衝層が、少なくとも有機高分子の結着剤と、導電性高分子、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から構成され、該材料粒子の平均粒径が0.5μm〜10μmであることを特徴とするリチウム二次電池用の電極構造体。
Main active material layer and current collector comprising metal powder selected from silicon, tin, or an alloy containing any of these elements and capable of storing and releasing lithium by an electrochemical reaction and an organic polymer binder In an electrode structure composed of a body,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and electricity One or more materials selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys chemically And
(B) An electron conductive buffer layer is provided between the current collector and the main active material layer of the electrode structure, and the buffer layer includes at least an organic polymer binder, a conductive polymer, Graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and a metal that does not form an alloy with Li selected from the group of these alloys, TiO 2 , MoO 3 , composed of particles of one or more materials selected from the group consisting of transition metal oxides selected from WO 3 , wherein the material particles have an average particle size of 0.5 μm to 10 μm An electrode structure for a lithium secondary battery.
シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の厚みの0.3から1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であり、
(c)前記電極構造体の主活物質層の表面に表面被覆層が設けられ、該表面被覆層が、電子伝導性とイオン透過性もしくはイオン伝導性を有し、前記表面被覆層が、少なくとも有機高分子の結着剤と、導電性高分子、非晶質カーボン、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から成り、該粒子の二次粒子の平均粒子サイズが0.5μm〜10μmであることを特徴とするリチウム二次電池用の電極構造体。
Main active material layer and current collector comprising metal powder selected from silicon, tin, or an alloy containing any of these elements and capable of storing and releasing lithium by an electrochemical reaction and an organic polymer binder In an electrode structure composed of a body,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and electricity One or more materials selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys chemically And
(C) A surface coating layer is provided on the surface of the main active material layer of the electrode structure, the surface coating layer has electron conductivity and ion permeability or ion conductivity, and the surface coating layer is at least From the group of organic polymer binders and conductive polymers, amorphous carbon, graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and alloys thereof A particle composed of one or more materials selected from the group consisting of transition metal oxides selected from metals selected from Li, TiO 2 , MoO 3 , and WO 3 that do not electrochemically form an alloy with Li. An electrode structure for a lithium secondary battery, wherein the secondary particles have an average particle size of 0.5 μm to 10 μm.
シリコン、スズ、あるいはこれらのいずれかの元素を含む合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、
(a)前記主活物質層が、前記金属粉末に加え、前記主活物質層の電子伝導を支持する支持材料粉末から少なくとも構成され、該支持材料の粉末の形状が球状もしくは擬似球状または柱状で平均粒子サイズが前記主活物質層の厚みの0.3から1.35倍であり、前記支持材料が、黒鉛、TiO2,MoO3,WO3から選択される遷移金属酸化物、Liと電気化学的に合金を形成しないCu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金から選択される金属から成る群から選択された1種類以上の材料であり、
(b)前記電極構造体の集電体と主活物質層の間に、電子伝導性の緩衝層が設けられ、該緩衝層が、少なくとも有機高分子の結着剤と、導電性高分子、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から構成され、該材料粒子の平均粒径が0.5μm〜10μmであり、
(c)前記電極構造体の主活物質層の表面に表面被覆層が設けられ、該表面被覆層が、電子伝導性とイオン透過性もしくはイオン伝導性を有し、前記表面被覆層が、少なくとも有機高分子の結着剤と、導電性高分子、非晶質カーボン、黒鉛、Cu,Ni,Co,Ti,Fe,Cr,Mo,W,Pd,Pt,Au、及びこれらの合金の群から選択されるLiと電気化学的に合金を形成しない金属、TiO2,MoO3,WO3から選択される遷移金属酸化物から成る群から選択された1種類以上の材料の粒子から成り、該粒子の二次粒子の平均粒子サイズが0.5μm〜10μmであることを特徴とするリチウム二次電池用の電極構造体。
Main active material layer and current collector comprising metal powder selected from silicon, tin, or an alloy containing any of these elements and capable of storing and releasing lithium by an electrochemical reaction and an organic polymer binder In an electrode structure composed of a body,
(A) In addition to the metal powder, the main active material layer includes at least a support material powder that supports electronic conduction of the main active material layer, and the shape of the powder of the support material is spherical, pseudo-spherical, or columnar. The average particle size is 0.3 to 1.35 times the thickness of the main active material layer, and the support material is a transition metal oxide selected from graphite, TiO 2 , MoO 3 , and WO 3 , Li and electricity One or more materials selected from the group consisting of Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and metals selected from these alloys that do not form alloys chemically And
(B) An electron conductive buffer layer is provided between the current collector and the main active material layer of the electrode structure, and the buffer layer includes at least an organic polymer binder, a conductive polymer, Graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and a metal that does not form an alloy with Li selected from the group of these alloys, TiO 2 , MoO 3, WO 3 is composed of particles of one or more materials selected from the group consisting of transition metal oxide selected from the mean particle size of the material particles is 0.5 ~ 10 m,
(C) A surface coating layer is provided on the surface of the main active material layer of the electrode structure, the surface coating layer has electron conductivity and ion permeability or ion conductivity, and the surface coating layer is at least From the group of organic polymer binders and conductive polymers, amorphous carbon, graphite, Cu, Ni, Co, Ti, Fe, Cr, Mo, W, Pd, Pt, Au, and alloys thereof A particle composed of one or more materials selected from the group consisting of transition metal oxides selected from metals selected from Li, TiO 2 , MoO 3 , and WO 3 that do not electrochemically form an alloy with Li. An electrode structure for a lithium secondary battery, wherein the secondary particles have an average particle size of 0.5 μm to 10 μm.
前記支持材料が、黒鉛であることを特徴とする請求項1乃至4のいずれかの項に記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to any one of claims 1 to 4, wherein the support material is graphite. 前記表面被覆層が、少なくとも有機高分子の結着剤と黒鉛粒子から形成されている請求項3または4記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 3 or 4, wherein the surface coating layer is formed of at least an organic polymer binder and graphite particles. 前記主活物質層と前記緩衝層の結着剤が同一材料であることを特徴とする請求項2または4記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 2 or 4, wherein the binder of the main active material layer and the buffer layer is the same material. 前記主活物質層と前記表面被覆層の結着剤が同一材料であることを特徴とする請求項3または4記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 3 or 4, wherein the binder of the main active material layer and the surface coating layer is the same material. 前記主活物質層と前記緩衝層と前記表面被覆層の結着剤が同一材料であることを特徴とする請求項4記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 4, wherein the binder of the main active material layer, the buffer layer, and the surface coating layer is the same material. 前記結着剤に導電性有機高分子が分散されている請求項1乃至9のいずれかの項に記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to any one of claims 1 to 9, wherein a conductive organic polymer is dispersed in the binder. 前記主活物質層の金属粉末粒子を形成する一次粒子の平均粒径が0.05μm〜5μmである請求項1乃至10のいずれかの項に記載のリチウム二次電池用の電極構造体。   11. The electrode structure for a lithium secondary battery according to claim 1, wherein an average particle diameter of primary particles forming the metal powder particles of the main active material layer is 0.05 μm to 5 μm. 前記主活物質層の金属粉末粒子表面がコールタールピッチの炭化物で被覆されていることを特徴とする請求項1乃至11のいずれかの項に記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to any one of claims 1 to 11, wherein the surface of the metal powder particles of the main active material layer is coated with a carbide of coal tar pitch. 前記集電体の表面粗さの十点平均高さRzが0.7μm〜3μmである請求項1乃至12のいずれかの項に記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to any one of claims 1 to 12, wherein a ten-point average height Rz of the surface roughness of the current collector is 0.7 µm to 3 µm. 前記金属粉末と支持材料粉末との化学結合もしくは電子伝導を担うつなぎとしての機能を有するつなぎ材料によって、前記金属粉末と支持材料粉末とが複合化されていることを特徴とする請求項1に記載のリチウム二次電池用の電極構造体。 2. The metal powder and the support material powder are combined by a binder material having a function as a linkage for carrying out chemical bonding or electronic conduction between the metal powder and the support material powder. Electrode structure for lithium secondary battery. 請求項1乃至14のいずれか1項に記載の電極構造体を用いた負極、リチウムイオン伝導体及び正極を具備し、リチウムの酸化反応及びリチウムイオンの還元反応を利用した二次電池。   A secondary battery comprising a negative electrode using the electrode structure according to any one of claims 1 to 14, a lithium ion conductor, and a positive electrode, and utilizing a lithium oxidation reaction and a lithium ion reduction reaction. 前記負極前記主活物質層内の支持材料粉末の、充電の後の、対向する正極方向への膨張率が1.5倍以下であるのことを特徴とする請求項15記載の二次電池。   The secondary battery according to claim 15, wherein the support material powder in the main active material layer of the negative electrode has an expansion coefficient in the direction of the positive electrode facing after charging of 1.5 times or less. 前記正極を構成する正極材料がリチウム遷移金属酸化物から成り、該リチウム遷移金属酸化物がコールタールピッチの炭化物で被覆されていることを特徴とする請求項15記載の二次電池。   The secondary battery according to claim 15, wherein the positive electrode material constituting the positive electrode is made of a lithium transition metal oxide, and the lithium transition metal oxide is coated with a carbide of coal tar pitch. 前記リチウムイオン伝導体がリチウム塩を溶媒に溶解して調製された電解液から成り、二次電池組み立て時、該電解液にビニル化合物モノマーが含有されていることを特徴とする請求項15記載の二次電池。   The lithium ion conductor comprises an electrolytic solution prepared by dissolving a lithium salt in a solvent, and a vinyl compound monomer is contained in the electrolytic solution when the secondary battery is assembled. Secondary battery. シリコン,スズ,それらの合金から選択される、電気化学反応でリチウムを貯蔵・放出可能な金属粉末と、ハードカーボン粉末または黒鉛のカーボン粉末と、有機高分子の結着剤とから成る主活物質層及び集電体から構成される電極構造体において、前記金属粉末とカーボン粉末との化学結合もしくは電子伝導を担うつなぎとしての機能を有するつなぎ材料によって、前記金属粉末とカーボン粉末とが複合化されていることを特徴とするリチウム二次電池用の電極構造体。   Main active material consisting of metal powder capable of storing and releasing lithium by electrochemical reaction, hard carbon powder or graphite carbon powder, and organic polymer binder selected from silicon, tin, and their alloys In the electrode structure composed of a layer and a current collector, the metal powder and the carbon powder are combined by a binder material having a function as a binder for carrying out chemical bonding or electronic conduction between the metal powder and the carbon powder. An electrode structure for a lithium secondary battery. 前記つなぎ材料がコールタールピッチであることを特徴とする請求項19記載のリチウム二次電池用の電極構造体。   20. The electrode structure for a lithium secondary battery according to claim 19, wherein the connecting material is coal tar pitch. 前記主活物質層中に前記コールタールピッチを0.1〜3重量%含有することを特徴とする請求項20記載のリチウム二次電池用の電極構造体。   21. The electrode structure for a lithium secondary battery according to claim 20, wherein the coal tar pitch is contained in the main active material layer in an amount of 0.1 to 3% by weight. 前記つなぎ材料が非晶質カーボンであることを特徴とする請求項19記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 19, wherein the connecting material is amorphous carbon. 前記非晶質カーボンがコールタールピッチの炭化物である請求項22記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 22, wherein the amorphous carbon is a carbide of coal tar pitch. 前記主活物質層中に前記非晶質カーボンを1〜10重量%含有する請求項23記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 23, wherein the main active material layer contains 1 to 10% by weight of the amorphous carbon. 前記つなぎ材料が、エーテル結合あるいはエステル結合を有するノニオン系フッ素系界面活性剤であること請求項19記載のリチウム二次電池用の電極構造体。   The electrode structure for a lithium secondary battery according to claim 19, wherein the connecting material is a nonionic fluorine-based surfactant having an ether bond or an ester bond. 前記主活物質層中に前記ノニオン系フッ素系界面活性剤を0.01〜0.5重量%含有する請求項25記載のリチウム二次電池用の電極構造体。   26. The electrode structure for a lithium secondary battery according to claim 25, wherein the main active material layer contains 0.01 to 0.5% by weight of the nonionic fluorine-based surfactant. 請求項19〜26に記載の電極構造体を用いた負極、リチウムイオン伝導体及び正極を具備し、リチウムの酸化反応及びリチウムイオンの還元反応を利用したリチウム二次電池。   27. A lithium secondary battery comprising a negative electrode, a lithium ion conductor, and a positive electrode using the electrode structure according to claim 19 to 26, and utilizing a lithium oxidation reaction and a lithium ion reduction reaction. 請求項20に記載の電極構造体の製造方法において、前記金属粉末とカーボン粉末に0.1〜3重量%のコールタールピッチを混合する工程と、該工程で得られた混合物粒子に前記結着剤を添加混合し、得られた混合物を板状の金属の集電体上に塗布する工程と、を少なくとも有することを特徴とするリチウム二次電池用の電極構造体の製造方法。   21. The method for manufacturing an electrode structure according to claim 20, wherein the metal powder and the carbon powder are mixed with 0.1 to 3% by weight of coal tar pitch, and the binding particles are mixed with the mixture particles obtained in the step. A method of producing an electrode structure for a lithium secondary battery, comprising at least a step of adding and mixing an agent, and applying the obtained mixture onto a plate-shaped metal current collector. 前記結着剤を添加混合し、得られた混合物を板状の金属の集電体上に塗布する工程において、前記粒子と前記結着剤とを混合する際に、前記結着剤の溶媒を添加混合することを特徴とする請求項28に記載のリチウム二次電池用の電極構造体の製造方法。   In the step of adding and mixing the binder, and applying the resulting mixture onto a plate-shaped metal current collector, the solvent of the binder is mixed when the particles and the binder are mixed. The method for producing an electrode structure for a lithium secondary battery according to claim 28, wherein addition and mixing are performed. 請求項23に記載の電極構造体の製造方法において、少なくとも前記金属とカーボン粉末に1〜10重量%のコールタールピッチを混合し、不活性ガス下で400〜700℃の熱処理を施して前記金属粉末とカーボン粉末が複合された粒子を得る工程と、前記粒子と前記結着剤とを混合し、得られた混合物を板状の金属の集電体上に塗布する工程と、を少なくとも有することを特徴とするリチウム二次電池用電極構造体の製造方法。   24. The method of manufacturing an electrode structure according to claim 23, wherein at least the metal and carbon powder are mixed with 1 to 10% by weight of coal tar pitch and subjected to heat treatment at 400 to 700 ° C. under an inert gas. At least a step of obtaining particles in which powder and carbon powder are combined, and a step of mixing the particles and the binder and applying the obtained mixture onto a plate-shaped metal current collector. A method for producing an electrode structure for a lithium secondary battery. 前記粒子と前記結着剤とを混合し、得られた混合物を板状の金属の集電体上に塗布する工程において、前記粒子と前記結着剤とを混合する際に、前記結着剤の溶媒を添加混合することを特徴とする請求項30に記載のリチウム二次電池用の電極構造体の製造方法。   In the step of mixing the particles and the binder and applying the obtained mixture onto a plate-shaped metal current collector, the binder and the binder are mixed when the particles and the binder are mixed. 31. The method for producing an electrode structure for a lithium secondary battery according to claim 30, wherein the solvent is added and mixed. 請求項25に記載の電極構造体の製造方法において、前記金属粉末とカーボン粉末に0.1〜0.5重量%の前記フッ素系界面活性剤を混合し、該工程で得られた物に前記結着剤を添加混合し、得られた混合物粒子を板状の金属の集電体上に塗布する工程を少なくとも有することを特徴とするリチウム二次電池用電極構造体の製造方法。   The method for producing an electrode structure according to claim 25, wherein 0.1 to 0.5% by weight of the fluorosurfactant is mixed into the metal powder and carbon powder, and the product obtained in the step is mixed with the product. A method for producing an electrode structure for a lithium secondary battery, comprising at least a step of adding and mixing a binder and applying the obtained mixture particles on a plate-shaped metal current collector. 前記結着剤を添加混合し、得られた混合物粒子を板状の金属の集電体上に塗布する工程において、前記粒子と前記結着剤とを混合する際に、前記結着剤の溶媒を添加混合することを特徴とする請求項32に記載のリチウム二次電池用の電極構造体の製造方法。   In the step of adding and mixing the binder, and applying the obtained mixture particles on a plate-shaped metal current collector, the solvent of the binder is mixed when the particles and the binder are mixed. The method for producing an electrode structure for a lithium secondary battery according to claim 32, wherein: 請求項28〜33のいずれか1項に記載の製造方法にて得られる電極構造体を用いた負極と正極の間にリチウムイオン伝導体を少なくともはさみ作成されることを特徴とするリチウム二次電池の製造方法。   34. A lithium secondary battery, wherein at least a lithium ion conductor is formed between a negative electrode and a positive electrode using the electrode structure obtained by the manufacturing method according to any one of claims 28 to 33. Manufacturing method.
JP2005358197A 2004-12-10 2005-12-12 ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE Expired - Fee Related JP5094013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005358197A JP5094013B2 (en) 2004-12-10 2005-12-12 ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2004358458 2004-12-10
JP2004358458 2004-12-10
JP2005029843 2005-02-04
JP2005029843 2005-02-04
JP2005330663 2005-11-15
JP2005330663 2005-11-15
JP2005358197A JP5094013B2 (en) 2004-12-10 2005-12-12 ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE

Publications (2)

Publication Number Publication Date
JP2007165061A true JP2007165061A (en) 2007-06-28
JP5094013B2 JP5094013B2 (en) 2012-12-12

Family

ID=38247758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005358197A Expired - Fee Related JP5094013B2 (en) 2004-12-10 2005-12-12 ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE

Country Status (1)

Country Link
JP (1) JP5094013B2 (en)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057271A1 (en) * 2007-10-30 2009-05-07 Panasonic Corporation Battery current collector, its manufacturing method, and nonaqueous secondary battery
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
JP2010123494A (en) * 2008-11-21 2010-06-03 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery, and method of manufacturing negative electrode for lithium secondary battery
JP2010218954A (en) * 2009-03-18 2010-09-30 Akita Univ Tin-containing paste and method of manufacturing the same, and electrode for lithium ion secondary battery
JP2010287505A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Method of manufacturing negative electrode for secondary cell and electrode structure
JP2011181355A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
WO2012002380A1 (en) 2010-06-28 2012-01-05 古河電気工業株式会社 Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
JP2012059467A (en) * 2010-09-07 2012-03-22 Toshiba Corp Electrode for battery and manufacturing method thereof, nonaqueous electrolyte battery, battery pack and active material
WO2012081327A1 (en) * 2010-12-13 2012-06-21 日本電気株式会社 Lithium ion secondary cell and manufacturing method thereof
JP2012178287A (en) * 2011-02-28 2012-09-13 Hitachi Ltd Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2012186134A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Three-dimensional net-like aluminum porous body for current collector and method of manufacturing the same
JP2012204181A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Electrode and method for forming electrode
JP2012527740A (en) * 2010-06-07 2012-11-08 ネグゼオン・リミテッド Additives for lithium ion rechargeable battery cells
JP2012216322A (en) * 2011-03-31 2012-11-08 Sharp Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2012527518A (en) * 2009-05-18 2012-11-08 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Conductive polymer binder for lithium ion battery electrodes
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
US8404385B2 (en) * 2009-03-30 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Mixed carbon material including graphite powder cores and surface carbon material on a surface thereof and negative electrode for nonaqueous secondary battery
JP2013517615A (en) * 2010-01-18 2013-05-16 エネヴェート・コーポレーション Composite materials for electrochemical storage
JP2013522820A (en) * 2010-03-11 2013-06-13 エルジー ケム. エルティーディ. Organic polymer-silicon composite particles, method for producing the same, negative electrode including the same, and lithium secondary battery
CN103210531A (en) * 2011-02-17 2013-07-17 株式会社东芝 Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
WO2013121624A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Negative electrode for lithium secondary battery and method for manufacturing same
JP2014082116A (en) * 2012-10-17 2014-05-08 Toyota Motor Corp Secondary battery
WO2014080632A1 (en) 2012-11-21 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
WO2014080629A1 (en) 2012-11-20 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
KR20140117205A (en) * 2013-03-26 2014-10-07 삼성전자주식회사 Anode, lithium battery comprising anode, and preparation method thereof
JPWO2013001739A1 (en) * 2011-06-30 2015-02-23 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode
JP2015060642A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Silicon oxide-graphite composite particle and method for producing the same
JP2015060640A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Alloy-graphite composite particle and method for producing the same
JP2015060641A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Silicon oxide-graphite composite particle and method for producing the same
JP2015097199A (en) * 2013-09-26 2015-05-21 株式会社半導体エネルギー研究所 Secondary battery
JP2015109270A (en) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Electrode, secondary battery, and manufacturing method for the same
KR20150070861A (en) * 2013-12-17 2015-06-25 삼성전자주식회사 Polymeric binder for lithium battery, electrode for lithium battery including the same, and lithium battery including the electrode
JP2015170586A (en) * 2014-03-11 2015-09-28 大阪瓦斯株式会社 Negative electrode material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
US9281523B2 (en) 2011-04-27 2016-03-08 Hitachi, Ltd. Non-aqueous electrolyte secondary battery
JP2016066418A (en) * 2014-09-22 2016-04-28 新日鐵住金株式会社 Electrode active material, electrode, battery, manufacturing method of electrode active material
WO2016098209A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Negative electrode active material for electrical device, and electrical device using same
CN106030866A (en) * 2014-02-25 2016-10-12 新日铁住金株式会社 Negative electrode active substance material, negative electrode, and cell
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
EP3113260A4 (en) * 2014-02-25 2017-07-26 Nippon Steel & Sumitomo Metal Corporation Negative electrode active substance material, negative electrode, and cell
WO2017126918A1 (en) * 2016-01-19 2017-07-27 주식회사 엘지화학 Electrode assembly and method for manufacturing same
US9761876B2 (en) 2012-12-04 2017-09-12 Gs Yuasa International Ltd. Energy storage device and energy storage unit
US9806329B2 (en) 2015-03-13 2017-10-31 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of manufacturing same, and rechargeable lithium battery including same
JPWO2016098210A1 (en) * 2014-12-17 2017-11-02 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
US20190173094A1 (en) * 2017-12-04 2019-06-06 Apaq Technology Co., Ltd. Lithium battery and cathode foil thereof
JPWO2018030477A1 (en) * 2016-08-09 2019-06-13 株式会社東芝 Power storage system, vehicle, and machinery
CN110291666A (en) * 2016-12-23 2019-09-27 株式会社Posco Lithium an- ode, its preparation method and the lithium secondary battery comprising it
CN110323450A (en) * 2018-03-29 2019-10-11 太阳诱电株式会社 All-solid-state battery and its manufacturing method
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
CN110590364A (en) * 2019-10-15 2019-12-20 湖南中科星城石墨有限公司 Novel secondary granulation process of multiphase powder
CN110635137A (en) * 2019-09-25 2019-12-31 上海大学(浙江·嘉兴)新兴产业研究院 Conductive polymer binder and preparation method thereof, silicon-based negative plate and application thereof
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
WO2021039217A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Negative electrode for secondary battery and non-aqueous electrolyte secondary battery
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
CN112968150A (en) * 2019-12-12 2021-06-15 比亚迪股份有限公司 Positive electrode material and preparation method thereof
CN113066951A (en) * 2021-03-12 2021-07-02 常州大学 Preparation method and application of flexible self-supporting silicon/carbon nanotube film composite electrode
CN113285062A (en) * 2021-05-14 2021-08-20 傲普(上海)新能源有限公司 Thick electrode material, preparation method thereof and lithium ion battery
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
CN113991059A (en) * 2021-11-09 2022-01-28 河南电池研究院有限公司 Lithium ion battery negative pole piece and preparation method thereof
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
CN115004411A (en) * 2020-01-21 2022-09-02 宁德新能源科技有限公司 Positive electrode material, method for preparing same, and electrochemical device comprising same
WO2023189818A1 (en) * 2022-03-31 2023-10-05 マクセル株式会社 Electrode for all-solid-state battery and all-solid-state battery
US11955623B2 (en) 2022-02-23 2024-04-09 Enevate Corporation Silicon particles for battery electrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4283710A1 (en) 2021-01-21 2023-11-29 Panasonic Energy Co., Ltd. Negative electrode active material composite particle, method for manufacturing negative electrode active material composite particle, and nonaqueous electrolyte secondary battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture
JP2000067918A (en) * 1998-08-20 2000-03-03 Ngk Insulators Ltd Lithium secondary battery
JP2000149927A (en) * 1998-09-10 2000-05-30 Mitsubishi Chemicals Corp Electric energy storage device
JP2001357855A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2002025542A (en) * 2000-07-12 2002-01-25 Mitsubishi Heavy Ind Ltd Manufacturing method of electrode for lithium secondary battery and electrode for lithium secondary battery as well as lithium secondary battery
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2003109596A (en) * 2001-09-26 2003-04-11 Samsung Sdi Co Ltd Electrode material and manufacturing method of the same, electrode and battery
JP2004200001A (en) * 2002-12-18 2004-07-15 Kashima Oil Co Ltd Composit carbon material for lithium-ion secondary battery negative electrode, and its manufacturing method
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP2004303638A (en) * 2003-03-31 2004-10-28 Canon Inc Lithium secondary battery
JP2004311428A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure with the electrode material and secondary battery with the electrode structure
JP2004349164A (en) * 2003-05-23 2004-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JPH10330983A (en) * 1997-05-30 1998-12-15 Fukuda Metal Foil & Powder Co Ltd Electrolytic copper foil and its production
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture
JP2000067918A (en) * 1998-08-20 2000-03-03 Ngk Insulators Ltd Lithium secondary battery
JP2000149927A (en) * 1998-09-10 2000-05-30 Mitsubishi Chemicals Corp Electric energy storage device
JP2001357855A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2002025542A (en) * 2000-07-12 2002-01-25 Mitsubishi Heavy Ind Ltd Manufacturing method of electrode for lithium secondary battery and electrode for lithium secondary battery as well as lithium secondary battery
JP2002260637A (en) * 2000-09-01 2002-09-13 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2003109596A (en) * 2001-09-26 2003-04-11 Samsung Sdi Co Ltd Electrode material and manufacturing method of the same, electrode and battery
JP2004200001A (en) * 2002-12-18 2004-07-15 Kashima Oil Co Ltd Composit carbon material for lithium-ion secondary battery negative electrode, and its manufacturing method
JP2004296412A (en) * 2003-02-07 2004-10-21 Mitsui Mining & Smelting Co Ltd Method of manufacturing negative electrode active material for non-aqueous electrolyte secondary battery
JP2004259475A (en) * 2003-02-24 2004-09-16 Osaka Gas Co Ltd Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2004311428A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure with the electrode material and secondary battery with the electrode structure
JP2004303638A (en) * 2003-03-31 2004-10-28 Canon Inc Lithium secondary battery
JP2004349164A (en) * 2003-05-23 2004-12-09 Nec Corp Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057271A1 (en) * 2007-10-30 2009-05-07 Panasonic Corporation Battery current collector, its manufacturing method, and nonaqueous secondary battery
KR101141820B1 (en) 2007-10-30 2012-05-07 파나소닉 주식회사 Battery current collector, method for producing the same, and nonaqueous secondary battery
JP2009245762A (en) * 2008-03-31 2009-10-22 Mitsui Eng & Shipbuild Co Ltd Carbon coating method of particle used for electrode material and secondary battery
JP2010123494A (en) * 2008-11-21 2010-06-03 Toyota Central R&D Labs Inc Negative electrode for lithium secondary battery, lithium secondary battery, and method of manufacturing negative electrode for lithium secondary battery
JP2010218954A (en) * 2009-03-18 2010-09-30 Akita Univ Tin-containing paste and method of manufacturing the same, and electrode for lithium ion secondary battery
US8404385B2 (en) * 2009-03-30 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Mixed carbon material including graphite powder cores and surface carbon material on a surface thereof and negative electrode for nonaqueous secondary battery
US8852461B2 (en) 2009-05-18 2014-10-07 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
US9653734B2 (en) 2009-05-18 2017-05-16 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
JP2012527518A (en) * 2009-05-18 2012-11-08 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Conductive polymer binder for lithium ion battery electrodes
JP2010287505A (en) * 2009-06-12 2010-12-24 Toyota Motor Corp Method of manufacturing negative electrode for secondary cell and electrode structure
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
JP2015144141A (en) * 2010-01-18 2015-08-06 エネヴェート・コーポレーション composite materials for electrochemical storage
US9941509B2 (en) 2010-01-18 2018-04-10 Enevate Corporation Silicon particles for battery electrodes
US10103378B2 (en) 2010-01-18 2018-10-16 Enevate Corporation Methods of forming composite material films
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US11728476B2 (en) 2010-01-18 2023-08-15 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US11196037B2 (en) 2010-01-18 2021-12-07 Enevate Corporation Silicon particles for battery electrodes
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US10622620B2 (en) 2010-01-18 2020-04-14 Enevate Corporation Methods of forming composite material films
JP2013517615A (en) * 2010-01-18 2013-05-16 エネヴェート・コーポレーション Composite materials for electrochemical storage
US11183712B2 (en) 2010-01-18 2021-11-23 Enevate Corporation Electrolyte compositions for batteries
JP2011181355A (en) * 2010-03-02 2011-09-15 Sony Corp Nonaqueous electrolyte battery
JP2013522820A (en) * 2010-03-11 2013-06-13 エルジー ケム. エルティーディ. Organic polymer-silicon composite particles, method for producing the same, negative electrode including the same, and lithium secondary battery
US9142859B2 (en) 2010-03-11 2015-09-22 Lg Chem, Ltd. Polymer-silicon composite particles, method of making the same, and anode and lithium secondary battery including the same
JP2012527740A (en) * 2010-06-07 2012-11-08 ネグゼオン・リミテッド Additives for lithium ion rechargeable battery cells
WO2012002380A1 (en) 2010-06-28 2012-01-05 古河電気工業株式会社 Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
KR20160119269A (en) 2010-06-28 2016-10-12 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, electrolytic copper foil for lithium ion secondary battery, electrode for lithium ion secondary battery using the electrolytic copper foil, and lithium ion secondary battery using the electrode
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
US9293768B2 (en) 2010-09-07 2016-03-22 Kabushiki Kaisha Toshiba Battery electrode, method of producing the same, nonaqueous electrolyte battery, battery pack, and active material
JP2012059467A (en) * 2010-09-07 2012-03-22 Toshiba Corp Electrode for battery and manufacturing method thereof, nonaqueous electrolyte battery, battery pack and active material
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP6094221B2 (en) * 2010-12-13 2017-03-15 日本電気株式会社 Method for producing lithium ion secondary battery
WO2012081327A1 (en) * 2010-12-13 2012-06-21 日本電気株式会社 Lithium ion secondary cell and manufacturing method thereof
JPWO2012081327A1 (en) * 2010-12-13 2014-05-22 日本電気株式会社 Lithium ion secondary battery and manufacturing method thereof
US11837710B2 (en) 2010-12-22 2023-12-05 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
US10985361B2 (en) 2010-12-22 2021-04-20 Enevate Corporation Electrodes configured to reduce occurrences of short circuits and/or lithium plating in batteries
US11177467B2 (en) 2010-12-22 2021-11-16 Enevate Corporation Electrodes, electrochemical cells, and methods of forming electrodes and electrochemical cells
US11784298B2 (en) 2010-12-22 2023-10-10 Enevate Corporation Methods of reducing occurrences of short circuits and/or lithium plating in batteries
EP2677574A4 (en) * 2011-02-17 2014-10-22 Toshiba Kk Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
EP2677574A1 (en) * 2011-02-17 2013-12-25 Kabushiki Kaisha Toshiba Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
US9698411B2 (en) 2011-02-17 2017-07-04 Kabushiki Kaisha Toshiba Electrode for battery and production method thereof, nonaqueous electrolyte battery, battery pack, and active material
CN103210531A (en) * 2011-02-17 2013-07-17 株式会社东芝 Battery electrode and manufacturing method thereof, non-aqueous electrolyte battery, battery pack, and active material
JP2012186134A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Three-dimensional net-like aluminum porous body for current collector and method of manufacturing the same
JP2012178287A (en) * 2011-02-28 2012-09-13 Hitachi Ltd Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
US8911901B2 (en) 2011-02-28 2014-12-16 Hitachi, Ltd. Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP2012204181A (en) * 2011-03-25 2012-10-22 National Institute Of Advanced Industrial & Technology Electrode and method for forming electrode
US8968930B2 (en) 2011-03-31 2015-03-03 Sharp Kabushiki Kaisha Electrode for a nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of manufacture of electrode for a nonaqueous electrolyte secondary battery
JP2012216322A (en) * 2011-03-31 2012-11-08 Sharp Corp Nonaqueous electrolyte secondary battery and method for manufacturing the same
US9281523B2 (en) 2011-04-27 2016-03-08 Hitachi, Ltd. Non-aqueous electrolyte secondary battery
JPWO2013001739A1 (en) * 2011-06-30 2015-02-23 株式会社豊田自動織機 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the negative electrode
JPWO2013121624A1 (en) * 2012-02-13 2015-05-11 日本電気株式会社 Negative electrode for lithium secondary battery and method for producing the same
WO2013121624A1 (en) * 2012-02-13 2013-08-22 日本電気株式会社 Negative electrode for lithium secondary battery and method for manufacturing same
JP2014519135A (en) * 2012-05-02 2014-08-07 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
JP2014082116A (en) * 2012-10-17 2014-05-08 Toyota Motor Corp Secondary battery
WO2014080629A1 (en) 2012-11-20 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
KR20150084795A (en) 2012-11-21 2015-07-22 쇼와 덴코 가부시키가이샤 Method for producing negative electrode material for lithium ion batteries
US9583760B2 (en) 2012-11-21 2017-02-28 Showa Denko K.K. Method for producing negative electrode material for lithium ion batteries
WO2014080632A1 (en) 2012-11-21 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
US9761876B2 (en) 2012-12-04 2017-09-12 Gs Yuasa International Ltd. Energy storage device and energy storage unit
KR102038620B1 (en) * 2013-03-26 2019-10-30 삼성전자주식회사 Anode, lithium battery comprising anode, and preparation method thereof
KR20140117205A (en) * 2013-03-26 2014-10-07 삼성전자주식회사 Anode, lithium battery comprising anode, and preparation method thereof
JP2015060641A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Silicon oxide-graphite composite particle and method for producing the same
JP2015060642A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Silicon oxide-graphite composite particle and method for producing the same
JP2015060640A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Alloy-graphite composite particle and method for producing the same
US11489148B2 (en) 2013-09-26 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
US10553854B2 (en) 2013-09-26 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Secondary battery
JP2015097199A (en) * 2013-09-26 2015-05-21 株式会社半導体エネルギー研究所 Secondary battery
JP2015109270A (en) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Electrode, secondary battery, and manufacturing method for the same
KR20150070861A (en) * 2013-12-17 2015-06-25 삼성전자주식회사 Polymeric binder for lithium battery, electrode for lithium battery including the same, and lithium battery including the electrode
KR102216539B1 (en) 2013-12-17 2021-02-17 삼성전자주식회사 Polymeric binder for lithium battery, electrode for lithium battery including the same, and lithium battery including the electrode
CN106030866A (en) * 2014-02-25 2016-10-12 新日铁住金株式会社 Negative electrode active substance material, negative electrode, and cell
JP2018200876A (en) * 2014-02-25 2018-12-20 新日鐵住金株式会社 Negative electrode active material, negative electrode and battery
US10128493B2 (en) 2014-02-25 2018-11-13 Nippon Steel & Sumitomo Metal Corporation Negative electrode active material, negative electrode and battery
EP3113260A4 (en) * 2014-02-25 2017-07-26 Nippon Steel & Sumitomo Metal Corporation Negative electrode active substance material, negative electrode, and cell
EP3113258A4 (en) * 2014-02-25 2017-07-19 Nippon Steel & Sumitomo Metal Corporation Negative electrode active substance material, negative electrode, and cell
JP2015170586A (en) * 2014-03-11 2015-09-28 大阪瓦斯株式会社 Negative electrode material for lithium secondary battery, manufacturing method of the same, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2016066418A (en) * 2014-09-22 2016-04-28 新日鐵住金株式会社 Electrode active material, electrode, battery, manufacturing method of electrode active material
CN107112513A (en) * 2014-12-17 2017-08-29 日产自动车株式会社 Negative electrode active material for electrical and use its electrical equipment
CN107112513B (en) * 2014-12-17 2019-07-09 日产自动车株式会社 Negative electrode active material for electrical and the electrical equipment for using it
WO2016098209A1 (en) * 2014-12-17 2016-06-23 日産自動車株式会社 Negative electrode active material for electrical device, and electrical device using same
JPWO2016098209A1 (en) * 2014-12-17 2017-09-28 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
JPWO2016098210A1 (en) * 2014-12-17 2017-11-02 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
US10297360B2 (en) 2014-12-17 2019-05-21 Nissan Motor Co., Ltd. Negative electrode active material for electric device and electric device using the same
US9806329B2 (en) 2015-03-13 2017-10-31 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, method of manufacturing same, and rechargeable lithium battery including same
US10541412B2 (en) 2015-08-07 2020-01-21 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US10665864B2 (en) 2016-01-19 2020-05-26 Lg Chem, Ltd. Electrode assembly and method for manufacturing same
WO2017126918A1 (en) * 2016-01-19 2017-07-27 주식회사 엘지화학 Electrode assembly and method for manufacturing same
JP2018535516A (en) * 2016-01-19 2018-11-29 エルジー・ケム・リミテッド Electrode assembly and manufacturing method thereof
JP7123797B2 (en) 2016-08-09 2022-08-23 株式会社東芝 Energy storage systems, vehicles, and mechanical equipment
JPWO2018030477A1 (en) * 2016-08-09 2019-06-13 株式会社東芝 Power storage system, vehicle, and machinery
CN110291666A (en) * 2016-12-23 2019-09-27 株式会社Posco Lithium an- ode, its preparation method and the lithium secondary battery comprising it
CN110291666B (en) * 2016-12-23 2022-08-16 株式会社Posco Lithium metal negative electrode, method of preparing the same, and lithium secondary battery comprising the same
US20190173094A1 (en) * 2017-12-04 2019-06-06 Apaq Technology Co., Ltd. Lithium battery and cathode foil thereof
US10637065B2 (en) * 2017-12-04 2020-04-28 Apaq Technology Co., Ltd. Lithium battery and cathode foil thereof
US11916228B2 (en) 2017-12-07 2024-02-27 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11133498B2 (en) 2017-12-07 2021-09-28 Enevate Corporation Binding agents for electrochemically active materials and methods of forming the same
US11777077B2 (en) 2017-12-07 2023-10-03 Enevate Corporation Silicon particles for battery electrodes
US11901500B2 (en) 2017-12-07 2024-02-13 Enevate Corporation Sandwich electrodes
US11309536B2 (en) 2017-12-07 2022-04-19 Enevate Corporation Silicon particles for battery electrodes
US11539041B2 (en) 2017-12-07 2022-12-27 Enevate Corporation Silicon particles for battery electrodes
US10707478B2 (en) 2017-12-07 2020-07-07 Enevate Corporation Silicon particles for battery electrodes
US10686214B2 (en) 2017-12-07 2020-06-16 Enevate Corporation Sandwich electrodes and methods of making the same
CN110323450A (en) * 2018-03-29 2019-10-11 太阳诱电株式会社 All-solid-state battery and its manufacturing method
CN110323450B (en) * 2018-03-29 2023-08-25 太阳诱电株式会社 All-solid battery and manufacturing method thereof
JP7237296B2 (en) 2018-07-03 2023-03-13 川上 総一郎 storage device
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device
WO2021039217A1 (en) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 Negative electrode for secondary battery and non-aqueous electrolyte secondary battery
CN114342110A (en) * 2019-08-30 2022-04-12 松下知识产权经营株式会社 Negative electrode for secondary battery and nonaqueous electrolyte secondary battery
CN110635137A (en) * 2019-09-25 2019-12-31 上海大学(浙江·嘉兴)新兴产业研究院 Conductive polymer binder and preparation method thereof, silicon-based negative plate and application thereof
CN110635137B (en) * 2019-09-25 2022-08-30 上海大学(浙江·嘉兴)新兴产业研究院 Conductive polymer binder and preparation method thereof, silicon-based negative plate and application thereof
CN110590364A (en) * 2019-10-15 2019-12-20 湖南中科星城石墨有限公司 Novel secondary granulation process of multiphase powder
CN112968150B (en) * 2019-12-12 2023-02-10 比亚迪股份有限公司 Positive electrode material and preparation method thereof
CN112968150A (en) * 2019-12-12 2021-06-15 比亚迪股份有限公司 Positive electrode material and preparation method thereof
CN115004411A (en) * 2020-01-21 2022-09-02 宁德新能源科技有限公司 Positive electrode material, method for preparing same, and electrochemical device comprising same
CN113066951B (en) * 2021-03-12 2022-05-31 常州大学 Preparation method and application of flexible self-supporting silicon/carbon nanotube film composite electrode
CN113066951A (en) * 2021-03-12 2021-07-02 常州大学 Preparation method and application of flexible self-supporting silicon/carbon nanotube film composite electrode
CN113285062A (en) * 2021-05-14 2021-08-20 傲普(上海)新能源有限公司 Thick electrode material, preparation method thereof and lithium ion battery
CN113991059A (en) * 2021-11-09 2022-01-28 河南电池研究院有限公司 Lithium ion battery negative pole piece and preparation method thereof
US11387443B1 (en) 2021-11-22 2022-07-12 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
US11955623B2 (en) 2022-02-23 2024-04-09 Enevate Corporation Silicon particles for battery electrodes
WO2023189818A1 (en) * 2022-03-31 2023-10-05 マクセル株式会社 Electrode for all-solid-state battery and all-solid-state battery

Also Published As

Publication number Publication date
JP5094013B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5094013B2 (en) ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE
US7615314B2 (en) Electrode structure for lithium secondary battery and secondary battery having such electrode structure
JP3987853B2 (en) Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP4790402B2 (en) Cathode active material, method for producing the same, and cathode and lithium battery using the same
JP3897709B2 (en) Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR100489881B1 (en) Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body, and process for the production of said rechargeable lithium battery
JP4756869B2 (en) Lithium secondary battery and manufacturing method thereof
WO2010150513A1 (en) Electrode structure and electricity storage device
JP3755502B2 (en) Non-aqueous electrolyte battery
EP1519431A1 (en) Electrode and cell comprising the same
JP2005123175A (en) Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP4595145B2 (en) Non-aqueous electrolyte battery
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
JP2004103475A (en) Battery
JP3868231B2 (en) Carbon material, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2004362895A (en) Negative electrode material, and battery using it
JP4988169B2 (en) Lithium secondary battery
JP2007048717A (en) Battery
JP3985143B2 (en) Electrode material and lithium battery using the same
JP4150202B2 (en) battery
JP2004319186A (en) Nonaqueous electrolyte battery
JP2002279956A (en) Nonaqueous electrolyte battery
JP2006059704A (en) Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2002073731A1 (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees