JP4107004B2 - Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery - Google Patents

Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery Download PDF

Info

Publication number
JP4107004B2
JP4107004B2 JP2002221886A JP2002221886A JP4107004B2 JP 4107004 B2 JP4107004 B2 JP 4107004B2 JP 2002221886 A JP2002221886 A JP 2002221886A JP 2002221886 A JP2002221886 A JP 2002221886A JP 4107004 B2 JP4107004 B2 JP 4107004B2
Authority
JP
Japan
Prior art keywords
negative electrode
current collector
lithium ion
ion secondary
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002221886A
Other languages
Japanese (ja)
Other versions
JP2004063344A (en
Inventor
宗男 小平
敏範 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002221886A priority Critical patent/JP4107004B2/en
Publication of JP2004063344A publication Critical patent/JP2004063344A/en
Application granted granted Critical
Publication of JP4107004B2 publication Critical patent/JP4107004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用負極集電体に関し、特に、過放電時における銅の溶出を効果的に防ぐことができ、しかも、コスト増等の問題のないリチウムイオン二次電池用負極集電体に関する。
【0002】
【従来の技術】
携帯電話あるいはノート型パソコンのようなポータブル機器の普及に伴い、小型で高容量の二次電池の需要が増えている。なかでも、リチウムイオン二次電池は、軽量で単位重量当たりのエネルギー密度が高いことから、ポータブル機器の電源として最適であり、一層の需要の伸びが見込まれている。
【0003】
図1は、円筒型リチウムイオン二次電池の一般的な構成を示したもので、1はアルミニウム箔構成の正極集電体上にコバルト酸リチウム等の正極活物質層を形成した正極板、2は銅箔構成の負極集電体上にカーボン等の負極活物質層を形成した負極板、3は極板1および2間に介在させられたセパレータを示し、これら3部材は、所定数巻き回されることによってジェリーロール型電極体4を構成している。
【0004】
5は正極および負極集電体のうちの一方の集電体と電気的に接続されて電極体4と電解液を内部に収容した電池容器、6は容器5の上方に配置され、正極および負極集電体のうちの他方の集電体と電気的に接続された端子を示す。
【0005】
以上の構成において、負極集電体を構成する銅箔としては、鋳造した銅塊を所望の厚さに圧延することによって製造される圧延銅箔と、主として硫酸銅水溶液よりの電解ドラム上への電着析出によって製造される電解銅箔とが使用されている。
【0006】
これらのうち、電解銅箔は、その特質として変色を起しやすい性質を有しているため、表面にクロメート処理が施されるのが普通であり、一方、圧延銅箔は、表面に安定した酸化膜が存在しているため、特別な耐変色性付与時に施されるベンゾトリアゾール処理を除いて、表面処理をされないまま使用されるのが通例とされている。
【0007】
ところで、圧延銅箔をリチウムイオン二次電池の負極集電体に適用したとき、電解液中への銅箔の溶出を原因とした以下に示すような電池特性の低下が発生する。即ち、銅箔断面積減少による電気抵抗増を原因とした集電能力の低下、電気的に孤立した負極活物質の発生による電池容量の低下、充電時における電解液中銅イオンの負極上へのデンドライト状析出を原因とした正極との短絡、および充電の際に銅の析出がリチウムイオンのインターカーレーションより先行したときに生ずる充電効率の低下等、電池特性の低下をもたらす種々の現象が発生する。
【0008】
一方、これらの原因となる銅箔の溶出現象としては、次の2つが考えられる。即ち、電池使用中に過放電状態となったとき、正極電位低下と負極電位上昇によって電池電圧の最終ゼロ位と正負極間の等電位化が発生し、このときの負極集電体の電位が銅の酸化還元電位と近似あるいは低電位となることによって生ずる電気化学的な溶出がその一つであり、他の一つは、製造直後のリチウムイオン二次電池を充電することなく放置したときの、同じメカニズムによる電気化学的な溶出である。
【0009】
従来、これらの現象に対しては、以下の策が採られている。まず、前者の現象に対しては、電池パックに過放電防止回路を形成することによって電池状態を常に監視する対策が採られており、一方、後者の現象に対しては、電池完成後に速やかに充電する策が採られている。また、これらの他に、銅箔表面に貴金属層を形成する対策(特開2001−313036号)、あるいは銅箔表面に化合物の形態を含むニッケル層を設ける対策(特開2001−313037号)等も提案されている。
【0010】
【発明が解決しようとする課題】
しかし、従来のこれらの負極集電体によると、まず、過放電防止回路を設ける策は、電池使用中(充電中)の溶出は防げるものの、非使用のままでの長期放置による溶出は防げず、また、電池完成後における速やかな充電も、これを完全に実施することは事実上不可能といえる。
【0011】
さらに、銅箔表面に貴金属層を形成する策は、明らかなコスト増を招くために好ましくなく、また、ニッケル層を形成する策も、負極板の巻き回し時にクラックを生じさせてクラック個所からの溶出を招くために好ましくない。
【0012】
従って、本発明の目的は、過放電時における銅の溶出を効果的に防ぐことができ、しかも、コスト増等の問題のないリチウムイオン二次電池用負極集電体を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、上記の目的を達成するため、圧延銅箔を構成材とするリチウムイオン二次電池用負極集電体において、前記圧延銅箔の表面に1nm以上1000nm未満の厚さを有するクロメート皮膜を備えることを特徴とするリチウムイオン二次電池用負極集電体、及び前記圧延銅箔の表面に1nm以上1000nm未満の厚さを有するクロメート皮膜を形成し、前記皮膜を表面に有した状態の前記圧延銅箔に、非還元性又は酸化性雰囲気において80℃以上250℃未満の熱処理を10秒以上施すことを特徴とするリチウムイオン二次電池用負極集電体の製造方法を提供するものである。
【0014】
本発明は、通常において行われることのない圧延銅箔上へのクロム系皮膜の形成と、この圧延銅箔を負極集電体に適用することに特異性をおくもので、少なくとも、これまでのリチウムイオン二次電池の負極集電体において、以上の構成はない。その有効性については、後述する実施の形態において実証される。
【0015】
クロム系皮膜の厚さとしては、1nm以上1000nm未満であることが好ましく、これを下廻る場合には、銅箔の露出部が多くなって耐溶出性に充分なものが得られず、逆に、これを上廻る場合には、電極体構成のために巻き回すときに、皮膜にクラックが入りやすくなってクラック部分からの溶出が懸念されるようになる。
【0016】
また、皮膜形成の効果を高めるためには、形成されたクロム系皮膜に熱処理を施すことが好ましく、このようにするときには、クロム系皮膜の緻密化による、より高度の耐溶出性を確保することができる。なお、この場合の熱処理は、非還元性あるいは酸化性雰囲気内で行うことが好ましく、また、熱処理温度は、下限においては、高度の熱処理効果を得るため、そして、上限においては、銅箔の軟化による強度低下を防ぐため、80℃以上250℃未満に設定することが好ましい。熱処理時間は、熱処理の効果を充分なものとするため、10秒以上の設定が好ましい。
【0017】
クロム系の皮膜としては、純クロム、合金、あるいはクロム化合物のいずれの形態でもよく、その形成手段としては、めっき処理、電解クロメート処理、塗布型クロメート処理、あるいは反応型クロメート処理等が適用される。また、これらのクロメート処理により皮膜を形成する場合、多くのクロメート処理において行われるように、拡散バリア層としてのニッケルめっき薄膜、およびクロム析出反応を促進させる亜鉛めっき薄膜を順に形成し、その上に、クロメート皮膜を形成することは可能である。
【0018】
なお、クロメート皮膜は、組織が極めて緻密であるとともに、自己修復性を備えているため、銅箔単体のときだけでなく、電池への組み立て後、あるいは電池使用中においても下地銅箔を完全に覆う特質を備えている。従って、このことと、過放電状態下における銅の溶出挙動が上層皮膜の性質を反映する事実とを考慮するとき、本発明におけるクロム系皮膜としては、クロメート皮膜の適用が特に好ましいものといえる。
【0019】
【発明の実施の形態】
次に、本発明によるリチウムイオン二次電池用負極集電体の実施の形態を説明する。
【実施例1〜6】
電解脱脂および酸洗浄により表面を清浄化した10μm厚さのタフピッチ銅の圧延銅箔を準備し、これに、表1の条件による電解クロメート処理を施した後、窒素雰囲気内での熱処理を施すことによって、あるいは施さずして、それぞれ所定のクロメート皮膜を有する負極集電体用圧延銅箔を製造した。
【0020】
これらの圧延銅箔を対象として、表2に示される電解液中でのアノード分極による過放電試験を実施したときの銅箔表面の耐溶出性と、銅箔を90°に折り曲げたときのクロメート皮膜へのクラック発生の有無と、銅箔の軟化の有無とを従来例および比較例との対比において表3に示す。
【0021】
【表1】

Figure 0004107004
【0022】
【表2】
Figure 0004107004
【0023】
【表3】
Figure 0004107004
【0024】
表3によれば、表面に電解クロメート皮膜を形成した実施例1〜6の圧延銅箔が、いずれも銅の耐溶出性において良好な結果を示しているのに比べ、クロメート皮膜のない従来例1の場合には、明らかな溶出を招いており、両者の間には明確な差が認められる。
【0025】
また、熱処理のない実施例1と実施例2,3の対比、および皮膜厚さを1nmに固定した実施例4と実施例5,6の対比によれば、前者が、クロメート皮膜の厚さが増すにつれて良好な耐溶出性を示す一方、後者は、熱処理温度の上昇に伴い耐溶出性を向上させていることが認められる。従って、ここには、一定以上の皮膜厚さを確保することと、熱処理を行うことが、有利な結果を生むための条件となることが示されている。
【0026】
但し、過大な皮膜厚さと過剰な熱処理条件の設定は避けるべきであり、これらへの配慮を欠く場合には、比較例1および2に見られるように、クロム含有皮膜へのクラックの発生と銅箔の軟化を招くようになる。
【0027】
なお、以上の実施例による負極集電体がコスト増を招くことなく調達可能であることは、皮膜構成材がクロム系であることから自明であり、また、クラック発生を容易に防ぎ得ることも、以上に述べた皮膜厚さとクラック発生の関係解明の事実より明白である。
【0028】
【実施例7〜9】
実施例1〜3において、表4の条件によるニッケルめっき拡散バリア薄膜と亜鉛めっき薄膜を順に形成した圧延銅箔を使用するとともに、他を同一条件に設定することにより、それぞれ所定のクロメート皮膜を有する負極集電体用圧延銅箔を製造した。
【0029】
【表4】
Figure 0004107004
【0030】
表5は、以上により得られた皮膜付圧延銅箔の実施例1〜6と同じ試験における評価結果を、従来例および比較例との対比において示したものである。この表によれば、ニッケルめっき薄膜と亜鉛めっき薄膜を形成した場合でも、従来例および比較例との対比において、実施例1〜3と同じ結果となることが示されている。
【0031】
【表5】
Figure 0004107004
【0032】
【発明の効果】
以上説明したように、本発明によるリチウムイオン二次電池用負極集電体によれば、表面にクロム系の皮膜を形成した圧延銅箔によって負極集電体を構成しているため、電池の過放電時における銅箔溶出を効果的に防ぐことができ、しかも、コスト増等の問題のない有用性の高い負極集電体を提供することができる。
【図面の簡単な説明】
【図1】リチウムイオン二次電池の一般的な構成を示す説明図。
【符号の説明】
1 正極板
2 負極板
3 セパレータ
4 ジェリーロール型電極体
5 電池容器
6 端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode current collector for a lithium ion secondary battery, and in particular, can effectively prevent elution of copper at the time of overdischarge, and further has no problem such as cost increase. It relates to the current collector.
[0002]
[Prior art]
With the widespread use of portable devices such as mobile phones or laptop computers, the demand for small, high-capacity secondary batteries is increasing. Among these, lithium ion secondary batteries are lightweight and have a high energy density per unit weight, so they are optimal as power sources for portable devices, and further demand growth is expected.
[0003]
FIG. 1 shows a general configuration of a cylindrical lithium ion secondary battery. 1 is a positive electrode plate in which a positive electrode active material layer such as lithium cobalt oxide is formed on a positive electrode current collector having an aluminum foil configuration. Is a negative electrode plate in which a negative electrode active material layer such as carbon is formed on a negative electrode current collector having a copper foil structure, 3 is a separator interposed between the electrode plates 1 and 2, and these three members are wound a predetermined number of times. As a result, the jellyroll type electrode body 4 is constituted.
[0004]
Reference numeral 5 denotes a battery container that is electrically connected to one of the positive electrode and negative electrode current collectors and accommodates the electrode body 4 and the electrolytic solution therein. The terminal electrically connected with the other collector of the collectors is shown.
[0005]
In the above configuration, as the copper foil constituting the negative electrode current collector, a rolled copper foil produced by rolling a cast copper lump to a desired thickness, and mainly on an electrolytic drum from an aqueous copper sulfate solution An electrolytic copper foil produced by electrodeposition deposition is used.
[0006]
Among these, the electrolytic copper foil has the property of easily causing discoloration as its characteristic, and therefore, the surface is usually subjected to chromate treatment, while the rolled copper foil is stable on the surface. Due to the presence of an oxide film, it is customary to use it without being subjected to surface treatment except for the benzotriazole treatment that is applied when imparting special discoloration resistance.
[0007]
By the way, when the rolled copper foil is applied to the negative electrode current collector of the lithium ion secondary battery, the battery characteristics as described below are deteriorated due to the elution of the copper foil into the electrolytic solution. That is, a decrease in current collection capacity due to an increase in electrical resistance due to a decrease in the cross-sectional area of the copper foil, a decrease in battery capacity due to the generation of an electrically isolated negative electrode active material, a copper ion in the electrolyte during charging onto the negative electrode Various phenomena that cause deterioration of battery characteristics such as short-circuit with positive electrode due to dendritic precipitation and reduction of charging efficiency that occurs when copper deposition precedes lithium ion intercalation during charging occur To do.
[0008]
On the other hand, there are two possible elution phenomena of the copper foil that cause these problems. That is, when an overdischarged state occurs while the battery is in use, an equal potential between the final zero position of the battery voltage and the positive and negative electrodes is generated due to a decrease in the positive electrode potential and an increase in the negative electrode potential. One of them is the electrochemical elution that occurs when it is close to or lower than the oxidation-reduction potential of copper, and the other is when the lithium ion secondary battery immediately after production is left without being charged. Electrolytic elution by the same mechanism.
[0009]
Conventionally, the following measures have been taken against these phenomena. First, for the former phenomenon, measures are taken to constantly monitor the battery state by forming an overdischarge prevention circuit in the battery pack. Measures to charge are taken. In addition to these, measures for forming a noble metal layer on the copper foil surface (Japanese Patent Laid-Open No. 2001-313036), measures for providing a nickel layer containing a compound form on the copper foil surface (Japanese Patent Laid-Open No. 2001-313037), etc. Has also been proposed.
[0010]
[Problems to be solved by the invention]
However, according to these conventional negative electrode current collectors, first, the measure to provide an overdischarge prevention circuit can prevent elution while the battery is in use (during charging), but it cannot prevent elution due to leaving it unused for a long time. In addition, it can be said that it is practically impossible to fully charge the battery immediately after the battery is completed.
[0011]
Furthermore, a measure for forming a noble metal layer on the surface of the copper foil is not preferable because it causes an obvious increase in cost, and a measure for forming the nickel layer also causes a crack when winding the negative electrode plate, thereby causing a crack from the crack location. This is not preferable because it causes elution.
[0012]
Accordingly, an object of the present invention is to provide a negative electrode current collector for a lithium ion secondary battery that can effectively prevent elution of copper at the time of overdischarge and that is free from problems such as an increase in cost.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a negative current collector for a lithium ion secondary battery comprising a rolled copper foil as a constituent material, and a chromate film having a thickness of 1 nm or more and less than 1000 nm on the surface of the rolled copper foil. negative electrode current collector for lithium-ion secondary battery characterized by comprising, and said to form a chromate film having less than 1000nm than 1nm thickness on the surface of the rolled copper foil, a state of having the film on the surface Provided is a method for producing a negative electrode current collector for a lithium ion secondary battery, wherein the rolled copper foil is subjected to heat treatment at 80 ° C. or higher and lower than 250 ° C. for 10 seconds or longer in a non-reducing or oxidizing atmosphere. is there.
[0014]
The present invention places particularity on the formation of a chromium-based film on a rolled copper foil that is not normally performed and the application of this rolled copper foil to a negative electrode current collector. The negative electrode current collector of the lithium ion secondary battery does not have the above configuration. Its effectiveness is demonstrated in the embodiments described later.
[0015]
The thickness of the chromium-based film is preferably 1 nm or more and less than 1000 nm. If the thickness is less than this, the exposed portion of the copper foil increases, and a sufficient elution resistance cannot be obtained. In the case of exceeding this, when winding for the electrode body configuration, cracks are likely to occur in the film, and there is a concern about elution from the crack portion.
[0016]
In addition, in order to enhance the effect of film formation, it is preferable to heat-treat the formed chromium-based film. When doing so, it is necessary to ensure higher elution resistance by densification of the chromium-based film. Can do. The heat treatment in this case is preferably performed in a non-reducing or oxidizing atmosphere, and the heat treatment temperature is at the lower limit in order to obtain a high heat treatment effect, and at the upper limit, the copper foil is softened. In order to prevent a decrease in strength due to, it is preferable to set the temperature at 80 ° C. or higher and lower than 250 ° C. The heat treatment time is preferably set to 10 seconds or longer in order to make the heat treatment effect sufficient.
[0017]
The chromium-based film may be in any form of pure chromium, an alloy, or a chromium compound, and as a forming means, plating treatment, electrolytic chromate treatment, coating chromate treatment, reactive chromate treatment, or the like is applied. . In addition, when a film is formed by these chromate treatments, a nickel plating thin film as a diffusion barrier layer and a galvanization thin film that promotes a chromium precipitation reaction are sequentially formed on the chromate treatment. It is possible to form a chromate film.
[0018]
The chromate film has an extremely dense structure and is self-healing, so that the underlying copper foil can be completely removed not only when the copper foil is used alone, but also after assembly into the battery or during battery use. It has a covering quality. Therefore, when considering this and the fact that the elution behavior of copper in the overdischarge state reflects the properties of the upper layer film, it can be said that application of a chromate film is particularly preferable as the chromium-based film in the present invention.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a negative electrode current collector for a lithium ion secondary battery according to the present invention will be described.
Examples 1-6
Prepare a rolled copper foil of tough pitch copper with a thickness of 10 μm whose surface has been cleaned by electrolytic degreasing and acid cleaning, and then subject it to electrolytic chromate treatment under the conditions in Table 1, followed by heat treatment in a nitrogen atmosphere. With or without, a rolled copper foil for a negative electrode current collector having a predetermined chromate film was produced.
[0020]
For these rolled copper foils, the elution resistance on the surface of the copper foil when the overdischarge test by anodic polarization in the electrolyte shown in Table 2 was performed, and the chromate when the copper foil was bent at 90 ° Table 3 shows the presence or absence of cracks in the coating and the presence or absence of softening of the copper foil in comparison with the conventional example and the comparative example.
[0021]
[Table 1]
Figure 0004107004
[0022]
[Table 2]
Figure 0004107004
[0023]
[Table 3]
Figure 0004107004
[0024]
According to Table 3, the rolled copper foils of Examples 1 to 6 having an electrolytic chromate film formed on the surface showed good results in copper elution resistance, as compared with the conventional example without a chromate film. In the case of 1, clear elution is caused, and a clear difference is recognized between the two.
[0025]
Further, according to the comparison between Example 1 and Examples 2 and 3 without heat treatment, and the comparison between Example 4 and Examples 5 and 6 in which the film thickness was fixed at 1 nm, the former showed that the thickness of the chromate film was It is observed that the latter shows better dissolution resistance while the latter improves the dissolution resistance with increasing heat treatment temperature. Therefore, it is shown here that securing a film thickness of a certain level or more and performing heat treatment are the conditions for producing an advantageous result.
[0026]
However, setting of an excessive film thickness and excessive heat treatment conditions should be avoided. When consideration is not given to these, as seen in Comparative Examples 1 and 2, the occurrence of cracks in the chromium-containing film and copper It causes softening of the foil.
[0027]
It is obvious that the negative electrode current collector according to the above embodiment can be procured without incurring an increase in cost, since the film constituent material is chromium-based, and it is possible to easily prevent the occurrence of cracks. It is clear from the facts described above that the relationship between the film thickness and the occurrence of cracks is elucidated.
[0028]
Examples 7 to 9
In Examples 1-3, while using the rolled copper foil which formed the nickel plating diffusion barrier thin film and galvanized thin film in order by the conditions of Table 4, and setting others to the same conditions, it has a predetermined chromate film, respectively. A rolled copper foil for a negative electrode current collector was produced.
[0029]
[Table 4]
Figure 0004107004
[0030]
Table 5 shows the evaluation results in the same test as Examples 1 to 6 of the coated coated copper foil obtained as described above in comparison with the conventional example and the comparative example. According to this table, even when a nickel plating thin film and a zinc plating thin film are formed, it is shown that the same results as in Examples 1 to 3 are obtained in comparison with the conventional example and the comparative example.
[0031]
[Table 5]
Figure 0004107004
[0032]
【The invention's effect】
As described above, according to the negative electrode current collector for a lithium ion secondary battery according to the present invention, the negative electrode current collector is constituted by the rolled copper foil having a chromium-based film formed on the surface. It is possible to provide a highly useful negative electrode current collector that can effectively prevent elution of copper foil at the time of discharge and is free from problems such as cost increase.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a general configuration of a lithium ion secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Jerry roll type electrode body 5 Battery container 6 Terminal

Claims (3)

圧延銅箔を構成材とするリチウムイオン二次電池用負極集電体において、
前記圧延銅箔の表面に1nm以上1000nm未満の厚さを有するクロメート皮膜を備えることを特徴とするリチウムイオン二次電池用負極集電体。
In the negative electrode current collector for a lithium ion secondary battery comprising a rolled copper foil,
The rolled copper foil anode collector for a lithium ion secondary battery characterized by comprising a chromate film having a thickness of less than 1000nm than 1nm on the surface of the.
圧延銅箔を構成材とするリチウムイオン二次電池用負極集電体の製造方法において、
前記圧延銅箔表面に1nm以上1000nm未満の厚さを有するクロメート皮膜を形成し、
前記皮膜を表面に有した状態の前記圧延銅箔に、非還元性又は酸化性雰囲気において80℃以上250℃未満の熱処理を10秒以上施す
ことを特徴とするリチウムイオン二次電池用負極集電体の製造方法
In the method for producing a negative electrode current collector for a lithium ion secondary battery comprising a rolled copper foil,
Forming a chromate film having a thickness of 1 nm or more and less than 1000 nm on the surface of the rolled copper foil ;
The lithium ion secondary battery , wherein the rolled copper foil having the film on the surface is subjected to heat treatment at 80 ° C or higher and lower than 250 ° C for 10 seconds or longer in a non-reducing or oxidizing atmosphere. manufacturing method of use the negative electrode current collector.
前記皮膜は、ニッケルめっき拡散バリア薄膜及び亜鉛メッキ薄膜を順に形成した上に設けられていることを特徴とする請求項2に記載のリチウムイオン二次電池用負極集電体の製造方法3. The method for producing a negative electrode current collector for a lithium ion secondary battery according to claim 2, wherein the coating is provided after a nickel plating diffusion barrier thin film and a zinc plating thin film are formed in order.
JP2002221886A 2002-07-30 2002-07-30 Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery Expired - Lifetime JP4107004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002221886A JP4107004B2 (en) 2002-07-30 2002-07-30 Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002221886A JP4107004B2 (en) 2002-07-30 2002-07-30 Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2004063344A JP2004063344A (en) 2004-02-26
JP4107004B2 true JP4107004B2 (en) 2008-06-25

Family

ID=31942076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002221886A Expired - Lifetime JP4107004B2 (en) 2002-07-30 2002-07-30 Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4107004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526308U (en) * 1991-09-13 1993-04-06 富泰 本多 Fiberboard

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117213B2 (en) * 2008-02-08 2013-01-16 古河電気工業株式会社 Copper foil for negative electrode of lithium ion secondary battery and negative electrode for lithium ion secondary battery
JP5437155B2 (en) * 2009-05-08 2014-03-12 古河電気工業株式会社 Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
KR101346956B1 (en) * 2009-05-08 2014-01-02 후루카와 덴치 가부시키가이샤 Negative electrodes for secondary battery, copper foil for electrode, secondary battery, and processes for producing negative electrodes for secondary battery
JP6031332B2 (en) * 2012-11-13 2016-11-24 Jx金属株式会社 Surface-treated copper foil, laminate using the same, printed wiring board, electronic component, and method for producing surface-treated copper foil
TWI616122B (en) 2014-05-28 2018-02-21 Jx Nippon Mining & Metals Corp Surface-treated copper foil, copper foil with carrier, laminated body, printed wiring board, electronic device, method for producing surface-treated copper foil, and method for producing printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526308U (en) * 1991-09-13 1993-04-06 富泰 本多 Fiberboard

Also Published As

Publication number Publication date
JP2004063344A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
KR102158241B1 (en) Electrolytic Copper Foil, Current Collector Comprising The Same, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
JP3581784B2 (en) Copper foil for negative electrode current collector of non-aqueous solvent secondary battery
US9966608B2 (en) Electrolytic copper foil, method of producing electrolytic copper foil, lithium ion secondary cell using electrolytic copper foil as collector
US11211635B2 (en) Battery, battery pack, and uninterruptible power supply
JP2002289178A (en) Lithium secondary battery and electrode for it
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
JP2002319408A (en) Lithium secondary battery electrode and lithium secondary battery
JP5260058B2 (en) Method for manufacturing lead-acid battery electrode, lead-acid battery electrode and lead-acid battery
EP3404755A1 (en) Copper foil, method for manufacturing same, electrode comprising same, and secondary battery comprising same
JP2015523674A (en) Textured current collector foil
US6815003B2 (en) Method for fabricating electrode for lithium secondary battery
WO2008018204A1 (en) Non-aqueous electrolyte secondary battery
JP4107004B2 (en) Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery
Martha et al. A low-cost lead-acid battery with high specific-energy
JP4133701B2 (en) Ni-plated steel sheet for non-aqueous electrolyte battery case and battery case using this steel sheet
JP3186811B2 (en) Method of charging lithium secondary battery
JPH1021928A (en) Electrode material for secondary battery
JP6611751B2 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP3482605B2 (en) Lead storage battery
WO2013058079A1 (en) Method for operating molten salt battery
JP4460058B2 (en) Copper foil for lithium secondary battery electrode and method for producing the same, electrode for lithium secondary battery and lithium secondary battery using the copper foil
WO1999062133A1 (en) Battery plate and battery
JPH08162118A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH10302841A (en) Secondary lithium battery
JPH08162117A (en) Nonaqueous electrolyte secondary battery and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4107004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250