JP3482605B2 - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JP3482605B2
JP3482605B2 JP22795993A JP22795993A JP3482605B2 JP 3482605 B2 JP3482605 B2 JP 3482605B2 JP 22795993 A JP22795993 A JP 22795993A JP 22795993 A JP22795993 A JP 22795993A JP 3482605 B2 JP3482605 B2 JP 3482605B2
Authority
JP
Japan
Prior art keywords
lead
pbo
titanium
positive electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22795993A
Other languages
Japanese (ja)
Other versions
JPH0765821A (en
Inventor
孝夫 大前
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP22795993A priority Critical patent/JP3482605B2/en
Publication of JPH0765821A publication Critical patent/JPH0765821A/en
Application granted granted Critical
Publication of JP3482605B2 publication Critical patent/JP3482605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、鉛蓄電池の改良に関
し、更に詳述すれば軽量かつ長寿命の鉛蓄電池を提案す
るものである。 【0002】 【従来の技術】現在、鉛蓄電池は自動車用、産業用、コ
ンシューマー用など広く用いられており、最近では電気
自動車用の電池としても注目されている。 【0003】一般的な鉛蓄電池では、正、負極集電体に
鉛−カルシウム系合金や鉛−アンチモン系合金などが用
いられている。鉛合金の比重は約11g/cm3 と大き
いために電池重量が重くなってしまうという欠点があ
る。さらに鉛合金は正極電位におかれた場合、徐々に鉛
が二酸化鉛となる反応が起こり腐食される。実用化され
ている長寿命型の鉛蓄電池は、この腐食分をみこしてあ
らかじめ正極集電体を大きくしている。従って、長寿命
型の鉛蓄電池では重量が重くなり、軽量化を図った鉛蓄
電池は短寿命であるという問題点がある。 【0004】このため、集電体に鉛合金以外のものを用
いることが検討されている。例えば、負極集電体として
は銅が使用可能である。これは鉛蓄電池の負極電位が、
銅の溶出電位よりも卑であるためである。銅は電気抵抗
が鉛より小さく、比重も小さいことから、高率放電性能
の向上や軽量化のために、特殊用途の鉛蓄電池に既に使
用されている。 【0005】正極集電体についても、導電性高分子や導
電性酸化物をはじめ種々の材料が検討されている。しか
し、これらは耐食性が悪かったり、電気抵抗が大きかっ
たりと実用化されているものは皆無である。負極集電体
には使用可能な銅も、正極では溶出してしまうので使う
ことができない。 【0006】そこでチタンの正極集電体への適用を検討
した。表1に鉛とチタンの物性を示す。 【0007】 【表1】 【0008】チタンの比重は4.5と鉛の11.3に比
べ約0.4倍となり、大幅な正極集電体の軽量化が図れ
る。チタンのビッカース硬度は、鉛3に対して120と
約40倍であることから強度的に優れた集電体が得られ
る。また、鉛電池正極電位におかれた場合、鉛は徐々に
酸化され腐食が発生するが、チタンは金属表面に不働態
被膜が生成するため、ほとんど腐食しない。すなわちチ
タンを鉛蓄電池正極集電体に用いることで上述した鉛蓄
電池の問題点が解消される。しかし、電極として使用す
る場合、不働態被膜があると抵抗が大きくなり通電でき
なくなるという問題がででくるため、チタン表面に不働
態被膜の代わりに導電性のある被膜を何層か形成させる
処理が必要となる。 【0009】チタンが優れた特徴を有していることか
ら、工業電解用のチタン電極については、昔から数多く
の研究がなされている。例えば特開昭52−8268
0、特開昭58−30957、特開昭58−3139
6、特開昭59−34235、特開昭63−57792
などである。これらは、いずれもチタン表面に導電性の
被膜を形成し、その上に二酸化鉛(PbO2 )を形成す
るというものである。 【0010】しかし、これらの電極をそのまま鉛蓄電池
正極集電体に用いた場合、早期に電極が破壊されてしま
うという欠点があった。この理由を説明する。工業電解
用と鉛蓄電池との最も大きな違いは、工業電解では電流
の向きが一方向であるのに対して、鉛蓄電池では充電時
と放電時で電流の向きが逆になるという点である。鉛蓄
電池正極の充放電は次式で示される。 【0011】放電反応 PbO2 +4H+ +SO4 2-
2e → PbSO4 +2H2 O 充電反応 PbO2 +4H+ +SO4 2-+2e ← P
bSO4 +2H2 O チタン電極表面に形成したPbO2 は、電子を伝導する
のみで電気化学的には反応しないというのが理想である
が、実際には放電反応がおこり硫酸鉛(PbSO4 )へ
と変化してしまう。PbSO4 の分子容はPbO2 の約
1.3倍と大きいことから、この変化がおこるとチタン
電極上のPbO2 被膜にひびわれ等がおこり、ここから
金属チタン表面に電解液である硫酸が浸入し、チタン表
面に不働態被膜が形成される。 【0012】チタン表面に形成させた導電性の被膜は、
不働態被膜の形成を防止する機能を有しているが、直接
硫酸に接しなおかつ鉛蓄電池正極電位におかれた場合に
は、被膜内部に不働態被膜が形成してしまう。不働態被
膜が形成すると電極としての機能が全く損なわれ、集電
体として使用できなくなる。従って、チタン電極を鉛蓄
電池正極に適用するためには、PbO2 被膜の破壊を防
ぐことが第一条件になる。 【0013】以上の理由から、鉛蓄電池の正極集電体に
は現在でも鉛合金が用いられている。 【0014】 【発明が解決しようとする課題】上述したように、鉛蓄
電池の正極集電体に鉛合金を用いた場合には鉛が二酸化
鉛へと酸化されて腐食がおこり、正極集電体の腐食は、
鉛蓄電池の大きな寿命原因の一つとなっている。鉛合金
以外では、チタンが考えられるが、工業用のチタン電極
では集電体としての使用が困難である。従って長寿命の
電池を得るためには、鉛合金を用いてなおかつ集電体を
大きくせねばならず、軽量で長寿命な鉛蓄電池を作製す
るのは困難であった。 【0015】 【課題を解決するための手段】本発明は、上述した問題
点、すなわち正極電位におかれた場合でも腐食せず、軽
量な正極集電体を得るもので、その方法は、チタン叉は
チタン合金からなる基体上に、導電性酸化物層、緻密な
PbO2 層および正極活物質層を設けた正極板を用いる
ことにより、軽量で長寿命な鉛蓄電池を提供するもので
ある。 【0016】鉛合金を正極集電体に用いた時の問題点、
すなわち重いということおよび腐食されるという点を解
消するために、鉛合金の代わりにチタンの正極集電体へ
の適用を検討した。 【0017】チタンを用いた正極板の構造は、チタン叉
はチタン合金からなる基体上に、導電性酸化物層、緻密
なPbO2 層および正極活物質層を設けたものである。
この作製方法を順を追って説明する。 【0018】チタン基体の表面には、空気中で不働態被
膜が形成しているために、前処理として不働態被膜を除
去する必要がある。除去の方法として例えば、ワイヤー
ブラシ等で基体表面を研磨し、次に沸騰塩酸中でエッチ
ング処理を行う方法がある。こうすることでチタン表面
の不働態被膜はほとんど除去できる。 【0019】ついで不働態被膜を取り除いたチタン表面
上に、導電性酸化物層を形成する。チタンの耐食性の高
さは、表面に生成する不働態被膜に起因しているため、
集電体として使用するためには、不働態被膜にかわる被
膜をチタン表面に形成する必要がある。この被膜の役割
は、チタン基体とPbO2 層との電気的接続、およびP
bO2 の酸化作用によるチタン表面への不働態被膜形成
の防止である。 【0020】スズ、アンチモン、チタン、タンタル、パ
ラジウム、白金などの酸化物は、導電性を有しているこ
とから、この被膜として適している。酸化物被膜の種類
は単独でもかまわないが、他種の金属酸化物をドープし
たり、異なる種類の酸化物を重ね合わせたりすること
で、導電性をあげることができる。例えば、アンチモン
をドープしたスズ酸化物、タンタルとチタンとの複合酸
化物、スズ酸化物層とパラジウム酸化物層とをかさねた
ものなどが使用できる。 【0021】酸化物被膜の厚みは0.1から10μm程
度、好ましくは1μm程度が適当である。厚みが薄すぎ
ると不働態被膜が生成し易くなり、厚すぎると導電性が
低下するためである。 【0022】酸化物被膜は、熱分解法などにより作製で
きる。例えば、四塩化スズと三塩化アンチモンを所定量
だけプロパノール等の溶媒に溶かした溶液をチタン基体
に塗布し、500℃程度で焼成することで、チタン表面
にアンチモンをドープしたスズ酸化物(SnO2 −Sb
2 3 )が形成される。酸化物層の厚みは、溶液塗布・
焼成の回数によって制御できる。 【0023】つぎに、導電性酸化物層の上にPbO2
を形成する。PbO2 層の形成は、PbO2 粉末とバイ
ンダーとを混合したものをプレスして形成する方法や電
着により形成する方法等があるが、電着で行う方が一般
的である。PbO2 の結晶構造にはα型とβ型がある。
α型は、β型に比べて劣化し易いが電着歪が少ないとい
う特徴をもつ。一方β型は、劣化しにくいが電着歪が大
きいという特徴をもつ。電着歪があると電着層にクラッ
クが入りやすくなり、電極が劣化しやすくなる。 【0024】α−PbO2 の電着は、鉛イオンを含んだ
アルカリ浴中で通電することによって行うことができ
る。β−PbO2 の電着は、例えば硝酸鉛浴中で通電す
ることによって行うことができる。 【0025】PbO2 層に求められる機能としては、電
子伝導性を有しかつ電気化学的に不活性であることであ
る。つまり鉛蓄電池正極において、活物質が放電した場
合でも電着PbO2 層は放電されないことが要求され
る。電着PbO2 層が放電すると前述したように電極の
破壊がおこる。 【0026】PbO2 層の反応性は、PbO2 の結晶化
度や多孔度に影響される。結晶化度は電着により作製し
た場合にはほぼ一定であると考えられる。そこで、多孔
度と反応性との関係を調査した。電着時の電流密度、溶
液濃度、温度等を変えることで各種多孔度のα,β−P
bO2 をスズ酸化物被膜を形成したチタン基体上に作製
し電極とした。一般に電流密度を大きくしたり、溶液濃
度を薄くしたり、温度を下げたりすることで、電析のし
かたが不均一になり多孔度は大きくなる。それぞれのP
bO2 層の厚みは約100μmとした。 【0027】これらの電極について、電位走査を繰り返
し、反応性を調べた。電位走査の範囲は、鉛蓄電池正極
が充放電時に示す電位と同じになるようにしているた
め、鉛蓄電池の充放電サイクル試験をシミュレートした
ものとみなすことができる。反応性の評価は、500サ
イクル目の還元側の電気量の大きさにより行った。還元
電気量が大きいほど、PbO2 がPbSO4 へと変化す
る反応が多い、すなわち放電されやすいといえる。試験
条件を次に示した。 【0028】試験極 :チタン電極 対極 :純鉛板 参照極 :Hg/Hg2 SO4 走査範囲:0.6−1.8V 走査速度:1V/分 電解液 :比重1.30H2 SO4 温度 :25℃ 縦軸に反応性を示す指標として500サイクル目の還元
電気量を、横軸に多孔度をとったものを図1に示す。多
孔度は、その体積に占める直径10μm以下の細孔の割
合を示している。α,β−PbO2 ともに多孔度が10
%以上になると反応性が急激に大きくなり、α−PbO
2 では20%以上、β−PbO2 では25%以上で増加
の割合がほぼ一定となった。また、α,β−PbO2
もに10%以下では反応性が小さくその差は小さかった
が、10%以上ではα−PbO2の方が反応性が高くな
った。PbO2 の反応は、硫酸イオンが関与しているこ
とから硫酸イオンの拡散が起こり易いもの、つまり多孔
度の高いものほど反応性が高くなったものと思われる。
これらの結果から、α,β−PbO2 いずれも多孔度を
10%以下とすれば、反応性が低く、鉛蓄電池正極に用
いても破壊されにくいPbO2 層が得られることがわか
った。 【0029】PbO2 層については、多孔度を10%以
下にすればα,β−PbO2 のいずれを用いてもかまわ
ないが、全体としての電着歪を低減させるために、α−
PbO2 層とβ−PbO2 とを交互に積層するのが好ま
しい。PbO2 層の厚みは、薄すぎると電極の破壊が起
こり易くなり、厚すぎると電気抵抗や内部歪が増大する
ので、α−PbO2 層の厚みは5−100μm程度、β
−PbO2 層の厚みは10−500μm程度が適当であ
る。 【0030】次に、チタン基体上に導電性酸化物層、緻
密なPbO2 層を形成した集電体上に鉛蓄電用正極活物
質を形成して正極板とする。正極活物質は、ペースト式
鉛蓄電池で通常用いられている方法、すなわち鉛粉と硫
酸とを練膏してペースト状としたものを、集電体上に充
填し、通電し化成するという方法で形成することができ
る。このようにして作製したペースト式正極板の一例の
断面構造を図2に示した。またクラッド式鉛蓄電池で通
常用いられている方法、すなわち集電体の周囲にガラス
繊維からなるチューブを取り付け、集電体とチューブと
の間に鉛粉を充填し、通電・化成するという方法によっ
ても正極板を作製できる。クラッド式正極板の断面構造
を図3に示した。 【0031】 【実施例】以下本発明を、自動車用密閉式鉛蓄電池を作
製した実施例を用いて説明する。作製した電池は、36
B20(12V,28Ah/5hR)である。 【0032】正極板に用いるチタン基体は次のようにし
て作製した。材質がJIS2種である0.5mm厚のシ
ートをエキスパンド加工し、メッシュ部分が100mm
×100mmの大きさの格子とした。この格子をワイヤ
ーブラシで金属光沢がでるまで磨いた後、25%沸騰塩
酸中に1時間浸せきしてエッチングを行った。 【0033】チタン基体上への酸化物層の形成は、それ
ぞれ四塩化スズ、三塩化アンチモン、四塩化チタン、五
塩化タンタル、塩化パラジウム、塩化白金酸などの溶液
を、単独あるいは混合してチタン基体上に塗布後、焼成
して行った。また、重ね塗りも行った。 【0034】アンチモンをドープしたスズ酸化物を形成
するために、四塩化スズ0.1モル、三塩化アンチモン
0.03モルおよび少量の塩酸をプロパノールに溶かし
た溶液を用いている。チタン・タンタルの複合酸化物を
形成するためには、それぞれ0.1Mの四塩化チタンと
五塩化タンタルおよび少量の塩酸をプロパノールに溶か
した溶液を用いている。パラジウムや白金の酸化物を形
成するためには、濃度0.1Mで少量の塩酸が入ったプ
ロパノール溶液を用いた。 【0035】チタン基体をそれぞれの溶液に浸漬後、基
体を約200rpmで回転させた。こうすることで余分
な液が飛び散って、薄く均一に基体上に溶液を塗布する
ことができた。その後予備乾燥として、50℃で約1時
間放置した。 【0036】焼成は次のように行った。溶液の塗布・乾
燥が終わった基体を酸化雰囲気の電気炉に入れ、140
℃で10分おいたのち500℃まで昇温し、500℃で
30分おき、その後徐冷した。140℃では水分の除
去、500℃では酸化物の生成がおこっている。酸化物
層の厚みが約1μmとなるまで、溶液塗布・焼成を数回
繰り返した。 【0037】次に、酸化物層を形成したチタン基体上に
PbO2 層を形成した。α−PbO2 の電着は、水酸化
鉛を飽和させた4〜5Nの水酸化ナトリウム溶液中で、
温度40〜50℃、電流密度5〜10mA/cm2 で通
電して行った。β−PbO2の電着は、pHを4付近に
保った30〜40重量%の硝酸鉛溶液中で、温度70〜
80℃、電流密度50〜100mA/cm2 で通電する
ことで行った。これらの条件で形成したαおよびβ−P
bO2 は、その多孔度が10%以下となった。今回は、
αおよびβ−PbO2 層の厚みは約50μmとした。 【0038】その後、PbO2 まで形成したチタン基体
上に、鉛蓄電池用正極ペーストを所定量充填した。そし
て鉛蓄電池で通常用いられている、微細なガラス繊維よ
りなるセパレータ、および鉛合金からなる集電体に負極
用ペーストを充填した負極板とを組み合わせて電池を組
み立てた。 【0039】同一セル内の極板耳同士の接続および隣接
セルとのセル間接続は次のように行った。電池の断面図
を図4に示した。銅製のセル間接続用金属板15を、チ
タン製の正極板7の極板耳18と電気抵抗溶接により接
続し、隣接セルの負極板9の極板耳とセル間接続用金属
板とをはんだ付けにより接続した。その後、セル間接続
用金属板を耐酸性樹脂により封口した。 【0040】こうして作製した電池に、硫酸を注入し通
常の電槽化成を行った後、各種容量試験や寿命試験を行
った。電池内容を表2〜4に示した。 【0041】 【表2】【0042】 【表3】 【0043】 【表4】【0044】酸化物層を形成しなかったチタン基体(N
o.1)には、PbO2 の電着ができなかった。これ
は、チタン表面に高抵抗の不働態被膜が形成したためと
思われる。 【0045】また、酸化物被膜のみを形成しPbO2
を形成しなかった正極板を用いた電池は(No.11,
21,31,41,51)、電槽化成のために定電流通
電を行うと電圧が異常に上昇して、化成を行うことがで
きなかった。これも、チタン表面への不働態被膜の形成
が原因と思われる。酸化物被膜のみでは、鉛蓄電池正極
での不働態被膜生成防止には不十分であるといえる。 【0046】酸化物被膜およびPbO2 層を形成した正
極板を用いた電池(No.12〜15,22〜25,3
2〜35,42〜45,52〜55)は、従来品の鉛合
金を正極に用いた電池(No.61)と同様に異常無く
電槽化成を行うことができた。 【0047】初期容量試験として、25℃,0.2CA
放電および−15℃・5CA放電を行った。それぞれの
放電持続時間および5CA放電時の5秒目電圧を、N
o.61(従来品)を100として比較した結果を表5
に示す。 【0048】 【表5】 【0049】本発明電池(No.12〜15,22〜2
5,32〜35,42〜45,52〜55)の25℃・
0.2CA放電容量は、鉛合金を用いた従来電池(N
o.61)とほぼ同じであった。しかし、−15℃・5
CA放電容量は3〜8%少なく、5秒目電圧も5〜10
%小さくなった。本発明電池の5CA放電性能が、従来
電池よりも劣るのは、チタンの電気抵抗が鉛に比べて約
2倍と大きいためと思われる。 【0050】今回は、鉛合金正極板との比較のため、同
一極板枚数、同一構成で電池を作製したが、チタン正極
板は鉛合金正極板よりも薄型化が可能なため、極板を薄
くして極板枚数を増やすことで極板表面積を増やすこと
ができ、そうすることで5CA放電性能も同等以上の電
池を作製することが可能と思われる。 【0051】次にこれらの電池を、JISD5301重
負荷寿命試験に供した。寿命サイクル数を従来品を10
0として比較した結果を表6に示す。 【0052】 【表6】 【0053】α−PbO2 層のみを形成したチタン正極
板を用いた電池(No.22,32,42,52)の寿
命回数は従来品と比べ1.5〜1.85倍、β−PbO
2 層のみを形成したチタン正極板を用いた電池(No.
23,33,43,53)では、1.35〜1.5倍、
α−PbO2 層とβ−PbO2 層を重ねたチタン正極板
を用いた電池(No.24,34,44,54で)は、
3〜3.4倍、α−PbO2 層、β−PbO2 層、α−
PbO2 層と重ねたチタン正極板を用いた電池(No.
25,35,45,55)では、3.3〜3.45倍と
大幅に寿命性能が向上した。 【0054】鉛合金を用いている従来品では、正極集電
体の腐食により寿命となったのに対し、本発明品では正
極集電体の腐食は全くみられなかった。本発明品の寿命
原因は、PbO2 層の破壊によるチタン表面の不働態化
であった。酸化物被膜の種類よりはむしろPbO2 層の
状態の方が、寿命性能に与える影響は大きかった。 【0055】今回は、自動車用鉛蓄電池についてのみ試
験を行ったが、他の用途の鉛蓄電池にももちろん適用可
能である。例えば据置用鉛蓄電池などに本発明を適用し
た場合、これらの電池では放電されることが少ないため
にPbO2 層の破壊がおこりにくく、非常に寿命の長い
電池が得られるものと思われる。 【0056】 【発明の効果】以上詳述したように、チタン叉はチタン
合金からなる基体上に、導電性酸化物層、緻密なPbO
2 層および正極活物質層を設けた正極板を用いることに
より、軽量で長寿命な鉛蓄電池を得ることができるた
め、本発明は工業的価値が大なるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a lead-acid battery, and more particularly, to a lightweight and long-life lead-acid battery. 2. Description of the Related Art At present, lead-acid batteries are widely used for automobiles, industries, consumers, and the like, and have recently attracted attention as batteries for electric vehicles. In a general lead-acid battery, a lead-calcium alloy, a lead-antimony alloy, or the like is used for the positive and negative electrode current collectors. Since the specific gravity of the lead alloy is as large as about 11 g / cm 3 , there is a disadvantage that the battery weight is increased. Further, when a lead alloy is placed at the positive electrode potential, a reaction in which lead becomes lead dioxide gradually occurs and is corroded. In a long-life type lead-acid battery that has been put into practical use, the size of the positive electrode current collector is increased in advance by taking into account the corrosion. Therefore, there is a problem that a long-life type lead-acid battery is heavy and a light-weight lead-acid battery has a short life. For this reason, the use of a material other than a lead alloy as a current collector has been studied. For example, copper can be used as the negative electrode current collector. This is because the negative electrode potential of the lead-acid battery
This is because it is lower than the elution potential of copper. Since copper has lower electric resistance and lower specific gravity than lead, copper has already been used in lead-acid batteries for special purposes to improve high-rate discharge performance and reduce weight. For the positive electrode current collector, various materials including a conductive polymer and a conductive oxide have been studied. However, none of these have been put to practical use because of their poor corrosion resistance and high electrical resistance. Copper that can be used for the negative electrode current collector cannot be used because it is eluted at the positive electrode. Therefore, application of titanium to a positive electrode current collector was studied. Table 1 shows the physical properties of lead and titanium. [Table 1] The specific gravity of titanium is 4.5, which is about 0.4 times as large as 11.3 of lead, and the weight of the positive electrode current collector can be significantly reduced. Since the Vickers hardness of titanium is 120, which is about 40 times that of lead 3, a current collector excellent in strength can be obtained. Further, when the electrode is placed at the positive electrode potential of a lead battery, lead is gradually oxidized and corrosion occurs, but titanium hardly corrodes because a passive film is formed on the metal surface. That is, by using titanium as the lead current collector of the lead storage battery, the above-described problem of the lead storage battery is solved. However, when used as an electrode, there is a problem that the presence of a passive film increases the resistance and makes it impossible to conduct electricity.Therefore, a process of forming several conductive films on the titanium surface instead of the passive film. Is required. Since titanium has excellent characteristics, many studies have been made on titanium electrodes for industrial electrolysis since long ago. For example, Japanese Patent Laid-Open No. 52-8268
0, JP-A-58-30957, JP-A-58-3139
6, JP-A-59-34235, JP-A-63-57792
And so on. In each of these methods, a conductive film is formed on the surface of titanium, and lead dioxide (PbO 2 ) is formed thereon. However, when these electrodes are used as they are for a positive electrode current collector of a lead storage battery, there is a disadvantage that the electrodes are destroyed at an early stage. The reason will be described. The biggest difference between the industrial electrolysis and the lead storage battery is that the current direction in the industrial electrolysis is one-way, whereas the current direction in the lead storage battery is opposite during charging and discharging. The charge / discharge of the positive electrode of the lead storage battery is expressed by the following equation. Discharge reaction PbO 2 + 4H + + SO 4 2- +
2e → PbSO 4 + 2H 2 O Charge reaction PbO 2 + 4H + + SO 4 2− + 2e ← P
Ideally, PbO 2 formed on the surface of the bSO 4 + 2H 2 O titanium electrode only conducts electrons and does not react electrochemically, but actually, a discharge reaction occurs to lead sulfate (PbSO 4 ). Will change. Since the molecular volume of PbSO 4 is about 1.3 times as large as that of PbO 2 , when this change occurs, cracks or the like occur in the PbO 2 coating on the titanium electrode, and sulfuric acid, which is an electrolytic solution, infiltrates the titanium metal surface. As a result, a passive film is formed on the titanium surface. The conductive film formed on the titanium surface is
Although it has a function of preventing the formation of a passive film, when it is directly in contact with sulfuric acid and placed at the positive electrode potential of a lead-acid battery, a passive film is formed inside the film. When a passive film is formed, the function as an electrode is impaired at all and cannot be used as a current collector. Therefore, in order to apply the titanium electrode to the lead-acid battery positive electrode, the first condition is to prevent the PbO 2 coating from being destroyed. For the above reasons, lead alloys are still used for the positive electrode current collector of lead storage batteries. As described above, when a lead alloy is used for the positive electrode current collector of a lead-acid battery, lead is oxidized to lead dioxide, causing corrosion, and The corrosion of
This is one of the major causes of the life of lead-acid batteries. Titanium is conceivable other than lead alloys, but it is difficult to use it as a current collector with an industrial titanium electrode. Therefore, in order to obtain a long-life battery, it is necessary to use a lead alloy and make the current collector large, and it has been difficult to produce a light-weight, long-life lead-acid battery. SUMMARY OF THE INVENTION The present invention provides a light-weight positive electrode current collector which does not corrode even when exposed to the positive electrode potential. Alternatively, a lightweight and long-life lead-acid battery is provided by using a positive electrode plate provided with a conductive oxide layer, a dense PbO 2 layer, and a positive electrode active material layer on a base made of a titanium alloy. Problems when a lead alloy is used for a positive electrode current collector,
That is, in order to solve the problem of being heavy and being corroded, application of titanium to the positive electrode current collector instead of the lead alloy was examined. The structure of a positive electrode plate using titanium is such that a conductive oxide layer, a dense PbO 2 layer, and a positive electrode active material layer are provided on a base made of titanium or a titanium alloy.
This manufacturing method will be described step by step. Since a passive film is formed on the surface of the titanium substrate in the air, it is necessary to remove the passive film as a pretreatment. As a removal method, for example, there is a method in which a substrate surface is polished with a wire brush or the like, and then an etching treatment is performed in boiling hydrochloric acid. By doing so, the passive film on the titanium surface can be almost completely removed. Next, a conductive oxide layer is formed on the titanium surface from which the passivation film has been removed. Since the high corrosion resistance of titanium is due to the passive film formed on the surface,
In order to use it as a current collector, it is necessary to form a film instead of a passive film on the titanium surface. The role of this coating is to provide electrical connection between the titanium substrate and the PbO 2 layer,
This is to prevent the formation of a passive film on the titanium surface due to the oxidizing action of bO 2 . Oxides such as tin, antimony, titanium, tantalum, palladium, and platinum are suitable for this coating because they have conductivity. The type of oxide film may be used alone, but conductivity can be increased by doping another type of metal oxide or overlapping different types of oxides. For example, an antimony-doped tin oxide, a composite oxide of tantalum and titanium, or a mixture of a tin oxide layer and a palladium oxide layer can be used. The thickness of the oxide film is about 0.1 to 10 μm, preferably about 1 μm. If the thickness is too small, a passive film is easily formed, and if the thickness is too large, the conductivity is reduced. The oxide film can be formed by a thermal decomposition method or the like. For example, a solution in which tin tetrachloride and antimony trichloride are dissolved in a predetermined amount in a solvent such as propanol is applied to a titanium substrate, and baked at about 500 ° C., so that tin oxide doped with antimony on the titanium surface (SnO 2 -Sb
2 O 3 ) is formed. The thickness of the oxide layer can be adjusted by applying a solution
It can be controlled by the number of firings. Next, a PbO 2 layer is formed on the conductive oxide layer. The PbO 2 layer may be formed by pressing a mixture of PbO 2 powder and a binder or by electrodeposition, but is generally formed by electrodeposition. There are α-type and β-type in the crystal structure of PbO 2 .
The α type has a characteristic that it is easily deteriorated as compared with the β type, but has less electrodeposition distortion. On the other hand, the β type has a feature that it is hardly deteriorated but has a large electrodeposition strain. If there is an electrodeposition distortion, cracks tend to occur in the electrodeposition layer, and the electrode tends to deteriorate. The electrodeposition of α-PbO 2 can be carried out by energizing in an alkaline bath containing lead ions. Electrodeposition of β-PbO 2 can be carried out, for example, by energizing in a lead nitrate bath. The function required for the PbO 2 layer is to have electron conductivity and to be electrochemically inert. That is, in the positive electrode of the lead storage battery, it is required that the electrodeposited PbO 2 layer is not discharged even when the active material is discharged. When the electrodeposited PbO 2 layer discharges, the electrodes are destroyed as described above. The reactivity of the PbO 2 layer is affected by the crystallinity and porosity of PbO 2 . It is considered that the crystallinity is almost constant when produced by electrodeposition. Thus, the relationship between porosity and reactivity was investigated. Α, β-P of various porosity by changing current density, solution concentration, temperature, etc. during electrodeposition
bO 2 was produced on a titanium substrate on which a tin oxide film was formed, and used as an electrode. Generally, by increasing the current density, decreasing the solution concentration, or decreasing the temperature, the method of electrodeposition becomes non-uniform and the porosity increases. Each P
The thickness of the bO 2 layer was about 100 μm. With respect to these electrodes, the potential scanning was repeated to examine the reactivity. Since the range of the potential scan is set to be the same as the potential of the positive electrode of the lead storage battery at the time of charge and discharge, it can be regarded as a simulation of the charge and discharge cycle test of the lead storage battery. The reactivity was evaluated based on the amount of electricity on the reduction side at the 500th cycle. It can be said that the larger the amount of reduction electricity is, the more the reaction in which PbO 2 changes to PbSO 4 , that is, the easier the discharge is. The test conditions are shown below. Test electrode: Titanium electrode Counter electrode: Pure lead plate Reference electrode: Hg / Hg 2 SO 4 Scanning range: 0.6-1.8 V Scanning speed: 1 V / min Electrolyte: Specific gravity 1.30 H 2 SO 4 Temperature: FIG. 1 shows the amount of reduction electricity at the 500th cycle as the index indicating the reactivity on the ordinate and the porosity on the abscissa. The porosity indicates the ratio of pores having a diameter of 10 μm or less to the volume. The porosity of both α and β-PbO 2 is 10
% Or more, the reactivity sharply increases and α-PbO
2 at 20% or more, the rate of increase in beta-PbO 2, more than 25% was substantially constant. When both α and β-PbO 2 were less than 10%, the reactivity was small and the difference was small. However, when the content was more than 10%, α-PbO 2 became more reactive. Since the reaction of PbO 2 involves sulfate ions, it is considered that the diffusion of sulfate ions easily occurs, that is, the higher the porosity, the higher the reactivity.
From these results, it was found that when the porosity of each of α and β-PbO 2 was set to 10% or less, a PbO 2 layer having low reactivity and hardly broken even when used as a lead storage battery positive electrode was obtained. As for the PbO 2 layer, any of α and β-PbO 2 may be used as long as the porosity is 10% or less.
It is preferable that PbO 2 layers and β-PbO 2 are alternately stacked. If the thickness of the PbO 2 layer is too small, the electrode is likely to be destroyed, and if the thickness is too large, the electric resistance and internal strain increase. Therefore, the thickness of the α-PbO 2 layer is about 5-100 μm, β
The thickness of -PbO 2 layer is suitably about 10-500. Next, a positive electrode active material for lead storage is formed on a current collector in which a conductive oxide layer and a dense PbO 2 layer are formed on a titanium substrate to form a positive electrode plate. The positive electrode active material is a method commonly used in a paste-type lead storage battery, that is, a method in which lead powder and sulfuric acid are converted into a paste to form a paste, filled on a current collector, and energized to form a chemical. Can be formed. FIG. 2 shows a cross-sectional structure of an example of the paste-type positive electrode plate manufactured as described above. In addition, a method commonly used in clad-type lead-acid batteries, that is, a method of attaching a tube made of glass fiber around the current collector, filling lead powder between the current collector and the tube, and energizing and forming. Can also produce a positive electrode plate. FIG. 3 shows a cross-sectional structure of the clad type positive electrode plate. The present invention will be described below with reference to an embodiment in which a sealed lead-acid battery for an automobile is manufactured. The fabricated battery has 36
B20 (12 V, 28 Ah / 5 hR). The titanium substrate used for the positive electrode plate was manufactured as follows. Expanded 0.5mm thick sheet of JIS2 material, mesh part is 100mm
A grid having a size of × 100 mm was used. After the grid was polished with a wire brush until a metallic luster was obtained, the grid was immersed in 25% boiling hydrochloric acid for 1 hour to perform etching. The oxide layer is formed on the titanium substrate by using a solution of tin tetrachloride, antimony trichloride, titanium tetrachloride, tantalum pentachloride, palladium chloride, chloroplatinic acid or the like alone or in combination. After coating on top, baking was performed. In addition, recoating was also performed. In order to form antimony-doped tin oxide, a solution prepared by dissolving 0.1 mol of tin tetrachloride, 0.03 mol of antimony trichloride and a small amount of hydrochloric acid in propanol is used. In order to form a composite oxide of titanium and tantalum, a solution prepared by dissolving 0.1 M of titanium tetrachloride and tantalum pentachloride and a small amount of hydrochloric acid in propanol is used. In order to form an oxide of palladium or platinum, a propanol solution containing a small amount of hydrochloric acid at a concentration of 0.1 M was used. After the titanium substrates were immersed in the respective solutions, the substrates were rotated at about 200 rpm. By doing so, the excess liquid was scattered, and the solution could be thinly and uniformly applied on the substrate. Then, it was left at 50 ° C. for about 1 hour as preliminary drying. The firing was performed as follows. The substrate after application and drying of the solution is placed in an electric furnace in an oxidizing atmosphere,
After 10 minutes at 500C, the temperature was raised to 500C, and at 500C for 30 minutes, and then gradually cooled. At 140 ° C., water is removed, and at 500 ° C., oxide is generated. Solution coating and baking were repeated several times until the thickness of the oxide layer became about 1 μm. Next, a PbO 2 layer was formed on the titanium substrate on which the oxide layer was formed. The electrodeposition of α-PbO 2 is carried out in a 4 to 5 N sodium hydroxide solution saturated with lead hydroxide.
The current was passed at a temperature of 40 to 50 ° C. and a current density of 5 to 10 mA / cm 2 . The electrodeposition of β-PbO 2 was carried out in a 30 to 40% by weight lead nitrate solution having a pH of about 4 and a temperature of 70 to 40% by weight.
The test was performed by applying a current at 80 ° C. and a current density of 50 to 100 mA / cm 2 . Α and β-P formed under these conditions
bO 2 had a porosity of 10% or less. This time,
The thickness of the α and β-PbO 2 layers was about 50 μm. Thereafter, a predetermined amount of a positive electrode paste for a lead storage battery was filled on a titanium substrate formed up to PbO 2 . Then, a battery was assembled by combining a separator made of fine glass fiber and a negative electrode plate filled with a negative electrode paste in a current collector made of a lead alloy, which are usually used in a lead storage battery. The connection between the electrode lugs in the same cell and the connection between cells with adjacent cells were performed as follows. FIG. 4 shows a cross-sectional view of the battery. The metal plate 15 for connection between cells made of copper is connected to the electrode lug 18 of the positive electrode plate 7 made of titanium by electric resistance welding, and the electrode lug of the negative electrode plate 9 of the adjacent cell and the metal plate for cell connection are soldered. It was connected by attaching. Thereafter, the inter-cell connection metal plate was sealed with an acid-resistant resin. After injecting sulfuric acid into the battery thus prepared and subjecting the battery to ordinary battery case formation, various capacity tests and life tests were performed. The contents of the battery are shown in Tables 2 to 4. [Table 2] [Table 3] [Table 4] A titanium substrate on which no oxide layer was formed (N
o. In 1), electrodeposition of PbO 2 could not be performed. This is presumably because a high-resistance passive film was formed on the titanium surface. A battery using a positive electrode plate in which only an oxide film was formed and no PbO 2 layer was formed (No. 11,
21, 31, 41, 51), when a constant current was applied to form a battery case, the voltage increased abnormally, and the formation could not be performed. This is also thought to be due to the formation of a passive film on the titanium surface. It can be said that the oxide film alone is insufficient to prevent the formation of a passive film on the positive electrode of the lead storage battery. Batteries using a positive electrode plate having an oxide film and a PbO 2 layer (Nos. 12 to 15, 22 to 25, 3
2 to 35, 42 to 45, and 52 to 55) were able to perform battery case formation without any abnormality similarly to the battery (No. 61) using a conventional lead alloy for the positive electrode. As an initial capacity test, 25 ° C., 0.2 CA
Discharge and -15 ° C / 5CA discharge were performed. The respective discharge duration and the voltage at the 5th second at the time of the 5CA discharge are represented by N
o. Table 5 shows the results of comparisons with 61 (conventional product) as 100.
Shown in [Table 5] The batteries of the present invention (Nos. 12 to 15, 22 to 2)
5,32-35,42-45,52-55) at 25 ° C.
The 0.2 CA discharge capacity is equivalent to that of a conventional battery (N
o. 61) was almost the same. However, -15 ℃ ・ 5
The CA discharge capacity is 3 to 8% lower, and the voltage at the 5th second is also 5 to 10
% Smaller. The reason why the 5CA discharge performance of the battery of the present invention is inferior to that of the conventional battery is considered to be that the electric resistance of titanium is about twice as large as that of lead. In this case, for comparison with a lead alloy positive electrode plate, a battery was manufactured with the same number of electrodes and the same configuration. However, a titanium positive electrode plate can be made thinner than a lead alloy positive electrode plate. It is thought that the electrode surface area can be increased by making the electrode thinner and increasing the number of electrode plates, and by doing so, it is thought that a battery having 5CA discharge performance equal to or more than that can be produced. Next, these batteries were subjected to a JISD5301 heavy load life test. The life cycle number of the conventional product is 10
Table 6 shows the results of comparison with 0. [Table 6] The battery (No. 22, 32, 42, 52) using the titanium positive electrode plate having only the α-PbO 2 layer has a life of 1.5 to 1.85 times that of the conventional battery, and β-PbO 2
A battery using a titanium positive plate having only two layers (No.
23, 33, 43, 53), 1.35 to 1.5 times,
Batteries (in Nos. 24, 34, 44, 54) using a titanium positive electrode plate in which an α-PbO 2 layer and a β-PbO 2 layer are superimposed,
3 to 3.4 times, α-PbO 2 layer, β-PbO 2 layer, α-
A battery using a titanium positive electrode plate overlaid with a PbO 2 layer (No.
25, 35, 45, 55), the life performance was greatly improved, ie, 3.3 to 3.45 times. In the conventional product using a lead alloy, the life was extended due to the corrosion of the positive electrode current collector, whereas in the product of the present invention, the corrosion of the positive electrode current collector was not observed at all. The cause of the life of the product of the present invention was passivation of the titanium surface due to the destruction of the PbO 2 layer. The state of the PbO 2 layer, rather than the type of the oxide film, had a greater effect on the life performance. This time, the test was performed only for a lead storage battery for an automobile, but the present invention can be applied to a lead storage battery for other uses. For example, when the present invention is applied to a stationary lead storage battery or the like, it is considered that the PbO 2 layer hardly breaks because these batteries are hardly discharged, and a battery with a very long life can be obtained. As described in detail above, a conductive oxide layer and a dense PbO layer are formed on a substrate made of titanium or a titanium alloy.
By using a positive electrode plate provided with two layers and a positive electrode active material layer, a light-weight and long-life lead-acid battery can be obtained, and thus the present invention has great industrial value.

【図面の簡単な説明】 【図1】PbO2 層の多孔度と反応性との関係を示した
図 【図2】本発明鉛蓄電池用ペースト式正極板の一例を示
す断面構造図 【図3】本発明鉛蓄電池用クラッド式正極板の一例を示
す断面構造図 【図4】本発明鉛蓄電池の一例をしめす断面図 【符号の説明】 1 チタン基体 2 酸化物層 3 α−PbO2 層 4 β−PbO2 層 5 正極活物質 6 チューブ 7 正極板 8 セパレータ 9 負極板 10 電槽 11 ふた 12 弁 13 端子 14 セル間隔壁 15 セル間接続用金属板 16 溶接部 17 樹脂 18 極板耳
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a relationship between porosity and reactivity of a PbO 2 layer. FIG. 2 is a cross-sectional structure diagram showing an example of a paste-type positive electrode plate for a lead-acid battery of the present invention. sectional view showing an example of the present invention lead storage battery clad type positive plate [4] the present invention sectional view showing an example of a lead storage battery [eXPLANATION oF sYMBOLS] 1 titanium substrate 2 oxide layer 3 alpha-PbO 2 layer 4 β-PbO 2 layer 5 Positive electrode active material 6 Tube 7 Positive electrode plate 8 Separator 9 Negative electrode plate 10 Battery case 11 Lid 12 Valve 13 Terminal 14 Cell spacing wall 15 Cell-to-cell connection metal plate 16 Welded part 17 Resin 18 Electrode plate

Claims (1)

(57)【特許請求の範囲】 【請求項1】 チタン叉はチタン合金からなる基体上
に、導電性酸化物層PbO 2 層および正極活物質層
を設けた正極板を用いた鉛蓄電池において、前記PbO
2 層は、その体積に占める直径10μm以下の細孔の
割合が10%以下であることを特徴とする鉛蓄電池。
(1) A lead-acid battery using a positive electrode plate provided with a conductive oxide layer , a PbO 2 layer and a positive electrode active material layer on a substrate made of titanium or a titanium alloy . , The PbO
The two layers consist of pores with a diameter of 10 μm or less
A lead-acid battery having a ratio of 10% or less .
JP22795993A 1993-08-20 1993-08-20 Lead storage battery Expired - Fee Related JP3482605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22795993A JP3482605B2 (en) 1993-08-20 1993-08-20 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22795993A JP3482605B2 (en) 1993-08-20 1993-08-20 Lead storage battery

Publications (2)

Publication Number Publication Date
JPH0765821A JPH0765821A (en) 1995-03-10
JP3482605B2 true JP3482605B2 (en) 2003-12-22

Family

ID=16868944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22795993A Expired - Fee Related JP3482605B2 (en) 1993-08-20 1993-08-20 Lead storage battery

Country Status (1)

Country Link
JP (1) JP3482605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018183A1 (en) * 2005-08-08 2007-02-15 Gs Yuasa Corporation Positive electrode collector for lead acid storage battery and method for producing same
JP5168904B2 (en) * 2005-09-29 2013-03-27 株式会社Gsユアサ Positive electrode current collector for lead acid battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005038064A1 (en) * 2005-08-10 2007-02-15 Deutsche Exide Gmbh electrode grid
JP5115112B2 (en) * 2006-09-14 2013-01-09 株式会社Gsユアサ Positive electrode current collector, method for producing positive electrode current collector, and lead-acid battery using this positive electrode current collector
US20100015517A1 (en) 2007-03-15 2010-01-21 Kohei Fujita Lead-acid battery and assembled battery
WO2015181508A1 (en) * 2014-05-30 2015-12-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Lead-acid battery and method for producing such an battery
FR3021812B1 (en) * 2014-05-30 2016-07-01 Commissariat Energie Atomique LEAD-ACID BATTERY, METHOD OF MANUFACTURING SUCH ACCUMULATOR, AND METHOD OF MANUFACTURING ELECTRODE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018183A1 (en) * 2005-08-08 2007-02-15 Gs Yuasa Corporation Positive electrode collector for lead acid storage battery and method for producing same
JP5303837B2 (en) * 2005-08-08 2013-10-02 株式会社Gsユアサ Positive electrode current collector for lead acid battery and method for producing the same
US9059468B2 (en) 2005-08-08 2015-06-16 Gs Yuasa International Positive electrode collector for lead acid storage battery and method for producing the same
JP5168904B2 (en) * 2005-09-29 2013-03-27 株式会社Gsユアサ Positive electrode current collector for lead acid battery

Also Published As

Publication number Publication date
JPH0765821A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US5952123A (en) Electrode plates for lead-acid battery and their manufacturing method
JP4444373B2 (en) Lead-acid battery paste having a tin compound and its production and use
WO2000055932A1 (en) Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same
EP0352115B1 (en) Lead-acid battery
EP1261049B1 (en) Electrode grid for lead acid batteries coated with a conductive polymeric matrix and method of manufacture
JPH08269791A (en) Method for forming battery with partially titanium oxide-coated current collector
JP3482605B2 (en) Lead storage battery
JPH0773871A (en) Bipolar plate for lead-acid battery
US3536531A (en) Lead storage battery and a method of producing the electrodes thereof
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
EP1009047B1 (en) Battery plate and battery
JP3412451B2 (en) Nickel sintered substrate for positive electrode of alkaline storage battery, method for producing the same, and alkaline storage battery
JP4107004B2 (en) Negative electrode current collector for lithium ion secondary battery and method for producing negative electrode current collector for lithium ion secondary battery
JP2000030713A (en) Electrode for alkaline storage battery and its manufacture, and alkaline storage battery
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP2913482B2 (en) Lead storage battery
JPS62274568A (en) Rechargeable electro chemical device
RU2121728C1 (en) Electrochemical energy storage
JP3516312B2 (en) Method for producing hydrogen storage alloy electrode
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JP4145061B2 (en) Method for producing electrode for lithium secondary battery
US20190319311A1 (en) Lead acid battery with titanium core grids having titanium suboxide coating
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JP3344152B2 (en) Manufacturing method of electrode plate for lead-acid battery
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees