JPH08162117A - Nonaqueous electrolyte secondary battery and manufacture thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacture thereof

Info

Publication number
JPH08162117A
JPH08162117A JP6303370A JP30337094A JPH08162117A JP H08162117 A JPH08162117 A JP H08162117A JP 6303370 A JP6303370 A JP 6303370A JP 30337094 A JP30337094 A JP 30337094A JP H08162117 A JPH08162117 A JP H08162117A
Authority
JP
Japan
Prior art keywords
core material
aqueous electrolyte
secondary battery
aluminum
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6303370A
Other languages
Japanese (ja)
Inventor
Masayuki Ishii
正之 石井
Keizo Harada
敬三 原田
Seisaku Yamanaka
正策 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6303370A priority Critical patent/JPH08162117A/en
Publication of JPH08162117A publication Critical patent/JPH08162117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To elongate a service life of a positive electrode base plate in a chargeable nonaqueous electrolyte secondary battery. CONSTITUTION: A skin film, having an uneven surface is formed of a core material having three dimensional mesh-like communication pores and using a strong metal such as Ni and flame coated aluminum thereon, is formed on a positive electrode base plate. Accordingly, strength is excellent, high potential errosion resistance utilizing an aluminum characteristic is maintained, and retentivity of active substance is remarkably improved. A sufficiently long service life can be maintained even when discharging and charging are repeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は充電可能なリチウムイオ
ンを含む非水電解液を備える電池及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery having a non-aqueous electrolyte containing rechargeable lithium ions and a method for manufacturing the battery.

【0002】[0002]

【従来の技術】携帯電話やビデオカメラ、ブック型パソ
コンといった可搬型電子機器用をはじめ電気自動車や電
力貯蔵用まで高容量電池として、アルカリ蓄電池ととも
にリチウム二次電池が注目され、小型のものを中心に実
用化段階に入った。
2. Description of the Related Art Lithium secondary batteries have attracted attention as alkaline batteries and high-capacity batteries for portable electronic devices such as mobile phones, video cameras, and book-type personal computers, as well as for electric vehicles and power storage. It entered the practical stage.

【0003】特に安全性の観点から酸化物正極と炭素材
料からなる負極とリチウムイオンを含む非水電解液を備
えたリチウムイオン二次電池が実用になり、電極材料、
セパレータ、製法、安全確保のための構造等に関して開
発が進められている。さらに、まだ研究段階であるが、
酸化物を正極に負極にリチウム金属あるいはリチウム合
金を使用したリチウム二次電池もある。
Particularly from the viewpoint of safety, a lithium ion secondary battery provided with an oxide positive electrode, a negative electrode made of a carbon material and a non-aqueous electrolyte containing lithium ions has been put into practical use, and an electrode material,
Development is progressing with regard to separators, manufacturing methods, and structures for ensuring safety. Furthermore, although still in the research stage,
There is also a lithium secondary battery in which an oxide is used as a positive electrode and lithium metal or a lithium alloy is used as a negative electrode.

【0004】ところで、リチウム電池は一次電池を含め
て非水電解液は電気抵抗が水溶液系よりはるかに大きい
ので、最近の用途の大部分を占める高出力に対応するた
めの努力が払われている。その手段として、非水電解液
の電気抵抗を下げるための材料や組成の研究があり、他
の一つが電極を薄くして反応の見かけの面積を増して充
放電の電流密度を下げることである。つまり高出力用と
してまず実用化したカメラ用の一次電池ではアルカリ電
池用などの電極の半分以下の厚さの電極とし、薄型セパ
レータとともに多重に捲回した構造にしている。
By the way, since the electric resistance of the non-aqueous electrolyte including the primary battery of the lithium battery is much higher than that of the aqueous solution type, efforts have been made to cope with the high output which accounts for most of the recent applications. . As a means for this, research on materials and compositions for lowering the electrical resistance of the non-aqueous electrolyte has been conducted, and the other is to thin the electrode to increase the apparent area of the reaction and reduce the current density of charge / discharge. . In other words, the primary battery for cameras, which was first put into practical use for high output, has an electrode with a thickness less than half that of electrodes for alkaline batteries, etc., and has a structure in which it is wound in multiple layers together with a thin separator.

【0005】リチウムイオン二次電池の場合もまったく
同じ考え方が継承されている。二次電池の場合は正極の
電位が3Vを超えるので耐酸化性、耐電解液性を考慮し
て例えばアルミニウム箔が、負極用には銅箔等が用いら
れ、これを芯材にして正極にはLiCoO2や LiN
iO2,LiMn24のような複合酸化物が、負極用に
は炭素材料が結着剤とともに塗着された電極が用いられ
ている。(特開昭60−253157等)
In the case of a lithium ion secondary battery, exactly the same idea is inherited. In the case of a secondary battery, since the potential of the positive electrode exceeds 3 V, for example, aluminum foil is used in consideration of oxidation resistance and electrolytic solution resistance, and copper foil or the like is used for the negative electrode. Is LiCoO 2 or LiN
An electrode in which a complex oxide such as iO 2 or LiMn 2 O 4 is coated with a carbon material together with a binder is used for the negative electrode. (JP-A-60-253157, etc.)

【0006】[0006]

【発明が解決しようとする課題】しかし、現在用いられ
ているアルミニウム箔等を芯材として電極層を形成する
場合、一応の目的は達成しているものの、さらに、充放
電の繰り返しで出力特性や容量が低下しない、機械的強
度が大きく、電極物質との密着性が良い芯材材料が望ま
れている。即ち、多数回充放電を繰り返すと、正極が全
体として徐々に膨張し、芯材と電極活物質層との界面の
接触が悪くなり、その結果、電極自体の伝導性が悪くな
り、高電流密度が得られず、充放電サイクル寿命が短く
なる、芯材から脱落した微粉が短絡の原因となる等の問
題があった。
However, when the electrode layer is formed by using the currently used aluminum foil or the like as the core material, the output characteristics and There is a demand for a core material that does not decrease in capacity, has high mechanical strength, and has good adhesion to an electrode substance. That is, when charging and discharging are repeated a number of times, the positive electrode gradually expands as a whole, and the contact between the interface between the core material and the electrode active material layer deteriorates, resulting in poor conductivity of the electrode itself and high current density. However, there are problems that the charge and discharge cycle life is shortened, and the fine powder that has fallen off the core material causes a short circuit.

【0007】これらの原因の一つとして、充放電反応時
にリチウムイオンが結晶格子中に侵入する反応が生じ、
この為、リチウムイオンのドープ、脱ドープによる活物
質の結晶格子が膨張・収縮により、電極活物質層と集電
体界面、活物質と芯材との界面、活物質とバインダ樹脂
の界面などの欠陥の発生が考えられた。活物質の電極金
属箔からの剥離、それに伴う電池性能の低下を防止する
為に、連通した穴を開けた金属集電体の提案もある。
(三洋テクニカルレビュー Vol.20 No.2
Aug.1988,P60)
As one of the causes of these, a reaction occurs in which lithium ions penetrate into the crystal lattice during the charge / discharge reaction,
Therefore, due to the expansion and contraction of the crystal lattice of the active material due to lithium ion doping and dedoping, the interface between the electrode active material layer and the current collector, the interface between the active material and the core material, the interface between the active material and the binder resin, etc. The occurrence of defects was considered. There is also a proposal of a metal current collector having a hole that communicates with it in order to prevent the peeling of the active material from the electrode metal foil and the accompanying reduction in battery performance.
(Sanyo Technical Review Vol.20 No.2
Aug. (1988, P60)

【0008】さらに、正極からの活物質の脱落、剥離を
抑え、非水系電解液二次電池の充放電サイクル特性の向
上を図るため、集電体として金属発泡体から構成する提
案もある(特開平4−28163)。この特許では、リ
チウム或いはリチウム合金を負極活物質に使用してお
り、正極集電体を発泡体構造にすることで、充放電サイ
クルを繰り返すことによる放電容量の劣化が生じにくい
ことが記載されている。但し、平均的な孔径についての
記載しかなく、具体的な製造法については不明である。
いずれの方法も完全な解決策にはならず、実用化に十分
なサイクル寿命維持につながっているとは言い難い。
Further, in order to prevent the active material from falling off and peeling from the positive electrode and to improve the charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery, there is a proposal that the current collector is made of a metal foam (special feature). Kaihei 4-28163). In this patent, lithium or a lithium alloy is used for the negative electrode active material, and by making the positive electrode current collector have a foam structure, it is described that the deterioration of the discharge capacity due to repeated charge and discharge cycles does not easily occur. There is. However, only the average pore size is described, and the specific manufacturing method is unknown.
Neither method is a complete solution, and it is hard to say that the cycle life is maintained for practical use.

【0009】[0009]

【発明を解決するための手段】本発明はこのような知見
に基づいてなされたもので、主たる目的は、組立工程に
おける正極材料の脱落が防げ、また充放電サイクルを繰
り返した時の活物質脱落等による容量低下の少ない非水
電解液二次電池及びその製造方法を提供するものであ
る。本発明の他の目的は、充放電サイクルに伴う電極基
板芯材の溶解を防止し、さらに、活物質保持性向上によ
り、安定かつ高容量の充放電特性を有する非水電解液二
次電池及びその製造方法を提供するものである。
The present invention has been made on the basis of such findings, and its main purpose is to prevent the positive electrode material from falling off during the assembly process and to remove the active material during repeated charge / discharge cycles. The present invention provides a non-aqueous electrolyte secondary battery in which the capacity is less likely to decrease due to factors such as the above, and a method for manufacturing the same. Another object of the present invention is to prevent the dissolution of the electrode substrate core material accompanying a charge / discharge cycle, and further improve the retention of the active material, thereby providing a non-aqueous electrolyte secondary battery having stable and high capacity charge / discharge characteristics, and The manufacturing method is provided.

【0010】すなわち、充電可能なリチウムイオンを含
む非水電解液とを備える非水電解液二次電池において、
ニッケル製の三次元網状連通空孔を有する連続した金属
多孔体を芯材として、アルミニウムを溶射により被覆し
た金属多孔体を正極電極基板に用いることにより達成で
きる。
That is, in a non-aqueous electrolyte secondary battery including a non-aqueous electrolyte containing rechargeable lithium ions,
This can be achieved by using, as a core material, a continuous metal porous body having three-dimensional net-like communicating pores made of nickel as a core material, and using a metal porous body coated with aluminum by thermal spraying as a positive electrode substrate.

【0011】さらには、本発明は、アルミニウムを溶射
した後、非酸化性雰囲気中で加熱処理することにより達
成できる。アルミニウム膜を形成するには、他の手段と
して真空蒸着法やメッキ法も考えられるが、真空装置や
メッキ液の廃液処理設備コストが高い、膜形成速度が遅
い等の欠点があり、実用的ではない。本発明で使用する
溶射法では大気中での処理が可能であり、膜形成速度も
大きい為、工業的である。アルミニウム金属溶射法のな
かでも、アルミニウム膜の酸化を抑制可能な雰囲気中で
膜形成できるアルミニウムロッドを用いたアセチレン・
酸素炎を用いたガス式溶射が好適である。
Further, the present invention can be achieved by spraying aluminum and then heat-treating it in a non-oxidizing atmosphere. As another means for forming an aluminum film, a vacuum vapor deposition method or a plating method can be considered, but there are drawbacks such as a high cost of a vacuum device and a waste liquid treatment facility of a plating solution, and a slow film forming speed, which are not practical. Absent. The thermal spraying method used in the present invention is industrial because it can be processed in the atmosphere and has a high film formation rate. Among the aluminum metal spraying methods, acetylene using an aluminum rod that can form a film in an atmosphere that can suppress the oxidation of the aluminum film.
Gas spraying with an oxygen flame is preferred.

【0012】ニッケルとアルミニウムは結合しやすく、
過度な熱処理は加工性を低下させる脆い金属間化合物を
骨格内部まで形成しやすいため、熱処理条件を最適化す
る必要がある。条件は特に限定するものではないが、不
活性雰囲気中、あるいは還元雰囲気中等の非酸化性雰囲
気中での短時間処理により、ニッケル骨格表面のアルミ
ニウムが芯材骨格表面下に拡散し、芯材とアルミニウム
層との間に化合物がわずかに形成する程度の熱処理条件
であれば良い。
Nickel and aluminum are easy to combine,
Excessive heat treatment easily forms a brittle intermetallic compound that deteriorates workability even inside the skeleton, and therefore it is necessary to optimize heat treatment conditions. The conditions are not particularly limited, but by a short time treatment in an inert atmosphere or in a non-oxidizing atmosphere such as a reducing atmosphere, aluminum on the surface of the nickel skeleton diffuses below the surface of the core skeleton, and The heat treatment conditions may be such that a compound is slightly formed between the aluminum layer and the aluminum layer.

【0013】なお、これらの効果を発揮させる溶射アル
ミニウム層の厚みに関しては特に限定はないが、薄すぎ
るとピンホールが生じるので、平均厚みで1μm程度以
上がよい。また、厚すぎると芯材の金属多孔体骨格が太
くなり、孔径が狭まり、最終的に空間容積が減少するこ
とにより充填できる活物質量が減少する為、平均厚みで
50μm以下が望ましい。
The thickness of the sprayed aluminum layer that exerts these effects is not particularly limited, but pinholes occur if it is too thin, so the average thickness is preferably about 1 μm or more. On the other hand, if the thickness is too large, the porous metal skeleton of the core material becomes thicker, the pore diameter becomes narrower, and finally the space volume decreases, so that the amount of the active material that can be filled decreases, so that the average thickness is preferably 50 μm or less.

【0014】三次元網状連通空孔を有する連続した金属
多孔体は、空孔率が90%以上で、均一な孔径を有し、
三次元連通空間に活物質を充填出来る特徴を活かし、ア
ルカリ蓄電池の電極に使用され、電池の高容量化に貢献
している。本発明はアルカリ蓄電池で既に実績のあるこ
の三次元網状連通空孔を有する連続した金属多孔体を非
水電解液電池の電極基板へ応用するものである。
A continuous metal porous body having three-dimensional mesh-like communicating pores has a porosity of 90% or more and a uniform pore diameter.
Utilizing the feature that the active material can be filled in the three-dimensional communication space, it is used for the electrodes of alkaline storage batteries and contributes to higher capacity of the batteries. INDUSTRIAL APPLICABILITY The present invention is to apply this continuous metal porous body having three-dimensional mesh-like communicating pores, which has already been proven in alkaline storage batteries, to an electrode substrate of a non-aqueous electrolyte battery.

【0015】本発明で使用する三次元網状連通空孔を有
する連続した金属多孔体は、三次元連通空孔を持つ空孔
率90%以上の樹脂芯材を用い、例えばウレタン発泡樹
脂を芯材としたり、あるいはエポキシ系樹脂を結合剤と
して有機繊維集合体を一体に接着した不織布を芯体と
し、樹脂の骨格をニッケル無電解めっき、炭素コーティ
ングあるいはスパッタリングや真空蒸着によるニッケル
等の導電処理後、電気メッキを施し、樹脂の分解と焼鈍
の為に還元雰囲気中で加熱して得られる金属多孔体(特
公昭47−10524,特開昭61−76686,特開
平4−284360)、あるいは発泡樹脂ウレタンにニ
ッケル金属粉末と結着剤とを主成分としたペーストを被
覆し、還元雰囲気中で焼結したもの(特公昭38−17
554)でも良く、限定するものではない。
The continuous metal porous body having the three-dimensional network pores used in the present invention is a resin core material having three-dimensional pores and having a porosity of 90% or more. For example, urethane foam resin is used as the core material. Or, or a non-woven fabric core integrally bonded to an organic fiber aggregate with an epoxy resin as a binder, the electroless plating of the resin skeleton, carbon coating or conductive treatment of nickel or the like by sputtering or vacuum deposition, Porous metal obtained by electroplating and heating in a reducing atmosphere for decomposition and annealing of resin (Japanese Patent Publication No. 47-10524, Japanese Patent Publication No. 61-76686, Japanese Patent Publication No. 4-284360), or urethane foam resin. A paste containing nickel metal powder and a binder as main components, and sintered in a reducing atmosphere (Japanese Patent Publication No. 38-17).
554), without limitation.

【0016】かかる三次元網状連通空孔を有する連続し
た金属多孔体の具体例の一つとしては、本出願人の製造
に係わる商品名「セルメット」が挙げられる。この場
合、発泡ウレタン樹脂にグラファイトをスラリー状で塗
布し、余分なスラリーを除去した後、ニッケルを電気メ
ッキする。その後、樹脂の分解除去と水素還元雰囲気中
での加熱焼鈍により得られる。三次元網状連通空孔を有
する金属多孔体の空間に活物質を充填出来る為、金属箔
のように薄くする必要はなく、金属多孔体の厚さは0.
3mmから2mmの範囲であればよく、特に限定するも
のではない。
As one specific example of such a continuous metal porous body having three-dimensional mesh-like communicating pores, the trade name "Celmet" relating to the manufacture of the present applicant can be mentioned. In this case, graphite is applied to urethane foam resin in the form of slurry, excess slurry is removed, and then nickel is electroplated. Then, it is obtained by decomposing and removing the resin and annealing by heating in a hydrogen reducing atmosphere. Since the space of the metal porous body having the three-dimensional network pores can be filled with the active material, it is not necessary to make it thin like a metal foil, and the thickness of the metal porous body is 0.
There is no particular limitation as long as it is in the range of 3 mm to 2 mm.

【0017】[0017]

【作用】ニッケル製三次元網状連通空孔を有する連続し
た金属多孔体を非水電気液二次電池の正極電極芯材に使
用すると、三次元連続空孔の空孔率が90%以上有るた
めに、その空間へ活物質を充填できると共に、袋状の空
間での活物質保持性が良好な利点がある。しかしなが
ら、正極活物質に使用する充電可能な酸化物の充電電位
が3Vを越す高電位では溶解するため、そのままでは使
用出来ない。本発明では、ニッケル製の金属多孔体骨格
表面を、溶射により貴な電位を持つアルミニウム層で被
覆しているため、充電電位が3Vを越しても溶解するこ
とはなく、充放電サイクル寿命を向上させることができ
る。
[Function] When a continuous metal porous body having nickel three-dimensional continuous pores is used as the positive electrode core material of a non-aqueous liquid electrolyte secondary battery, the porosity of the three-dimensional continuous pores is 90% or more. In addition, there is an advantage that the space can be filled with the active material and the active material retention property in the bag-shaped space is good. However, it cannot be used as it is because the chargeable oxide used for the positive electrode active material dissolves at a high potential exceeding 3 V. In the present invention, since the surface of the nickel porous metal skeleton is coated with the aluminum layer having a noble potential by thermal spraying, it does not dissolve even when the charge potential exceeds 3 V, and the charge / discharge cycle life is improved. Can be made.

【0018】さらに本発明によると、溶射アルミニウム
層が数百nm(ナノメータ)から数十μmオーダーの凹
凸をもって好ましくは1μm〜50μmの厚みで金属多
孔体骨格表面に形成される為、これが活物質材料との接
触面積増加と密着性を向上させることができ、活物質の
充放電サイクルによる芯材からの脱離が抑制できる。
Further, according to the present invention, since the sprayed aluminum layer is formed on the surface of the porous metal skeleton with a thickness of preferably 1 μm to 50 μm with unevenness of the order of several hundred nm (nanometer) to several tens μm, this is the active material. It is possible to increase the contact area with and improve the adhesion, and to suppress the detachment of the active material from the core material due to the charge / discharge cycle.

【0019】いずれの製法で得られた従来の金属多孔体
も、通常は最終工程での十分な還元雰囲気中での熱処理
を施し、活物質充填時に必要な機械的強度を向上させる
為、骨格表面が平滑な三次元骨格を有している。このよ
うな金属多孔体骨格表面に溶射膜を被覆処理することに
より、表面性状を凹凸化させることが出来るため、平滑
な面を持つ金属多孔体よりも、活物質や導電材との一層
の密着性向上が可能となる。
The conventional porous metal body obtained by any of the manufacturing methods is usually subjected to a heat treatment in a sufficient reducing atmosphere in the final step to improve the mechanical strength required for filling the active material. Has a smooth three-dimensional skeleton. By coating the surface of such a metal porous body skeleton with a sprayed film, the surface texture can be made uneven, so that it is more closely attached to the active material and the conductive material than the metal porous body having a smooth surface. It is possible to improve the property.

【0020】こうする事で、充放電サイクルを繰り返し
た時に活物質や導電材等の芯材表面からの脱落が防止で
きる為、出力特性や容量低下が抑えられ、充放電サイク
ル寿命を大幅に向上できる。さらに、アルミニウムを芯
材に溶射後、非酸化性雰囲気下で熱処理することによる
アルミニウムの拡散により、溶射アルミニウム層と基材
との界面付近で一体化が行われ、拡散層が形成されるた
め溶射皮膜と芯材との密着性を増し、電極形成加工時の
膜剥がれの心配がない極板が得られる。さらに、表面部
に存在するアルミニウム膜により充電電位が向上し、芯
材の溶解防止を一層確実にする。
By doing so, it is possible to prevent the active material, the conductive material, and the like from falling off the surface of the core material when the charge / discharge cycle is repeated, so that the output characteristics and the capacity decrease are suppressed, and the charge / discharge cycle life is greatly improved. it can. Further, after the aluminum is sprayed onto the core material, the aluminum is diffused by heat treatment in a non-oxidizing atmosphere, whereby the sprayed aluminum layer and the base material are integrated near the interface to form a diffusion layer, thus forming the sprayed layer. It is possible to obtain an electrode plate in which the adhesion between the film and the core material is increased and there is no fear of film peeling during electrode formation processing. Furthermore, the charging potential is improved by the aluminum film present on the surface, and the dissolution of the core material is prevented more reliably.

【0021】[0021]

【実施例】【Example】

(実施例1) 〈正極の作製〉 市販されているニッケ
ル製三次元網状連通空孔を有する連続金属多孔体(住友
電気工業製 商品名「セルメット」)を用いて正極を作
製した。厚み1.0mm、連通空孔の平均孔径300μ
m、ニッケル重量350g/m2 のニッケルセルメット
を芯材とし、酸処理による洗浄処理をした後、アルミニ
ウム溶射を施した。純度99.8%のアルミニウムロッ
ドを用いたアセチレン・酸素炎を用い、アルゴンガスの
保護雰囲気下で金属多孔体を構成する3次元連続金属骨
格への溶射皮膜層の平均厚みが10μmとなるように調
整した。正極にはLiCoO2 を用いた。これに導電剤
としてアセチレンブラックを8重量%混合した後、結着
剤としてポリ四フッ化エチレン樹脂の水性デイスパージ
ョンを5重量%練り合わせ、ペースト状とした合剤を、
金属多孔体芯材の三次元空孔内に充填後、圧縮成形によ
り厚さ0.4mmとした。
(Example 1) <Fabrication of Positive Electrode> A positive electrode was fabricated using a commercially available continuous metal porous body having nickel three-dimensional mesh-like communicating pores (trade name "Celmet" manufactured by Sumitomo Electric Industries, Ltd.). Thickness 1.0 mm, average pore diameter of communicating pores 300μ
m, and nickel cermet having a weight of 350 g / m 2 was used as a core material, and after cleaning treatment by acid treatment, aluminum spraying was performed. Using an acetylene / oxygen flame using an aluminum rod with a purity of 99.8%, so that the average thickness of the sprayed coating layer on the three-dimensional continuous metal skeleton constituting the metal porous body is 10 μm under a protective atmosphere of argon gas. It was adjusted. LiCoO 2 was used for the positive electrode. After mixing 8% by weight of acetylene black as a conductive agent, 5% by weight of an aqueous dispersion of polytetrafluoroethylene resin was kneaded as a binder to prepare a paste-like mixture.
After filling the three-dimensional pores of the porous metal core material, the thickness was 0.4 mm by compression molding.

【0022】〈負極の作製〉 黒鉛粉末とポリエチレン
テレフタレートとの混練物を負極材として、厚さ15μ
mの銅箔両面に塗着、乾燥後、圧縮成形により厚さ0.
4mmとして負極を作製した。
<Preparation of Negative Electrode> A kneaded material of graphite powder and polyethylene terephthalate was used as a negative electrode material and had a thickness of 15 μm.
m copper foil on both sides, dried and then compression molded to a thickness of 0.
A negative electrode having a thickness of 4 mm was prepared.

【0023】〈非水系電解液の調製〉 溶媒としてのエ
チレンカーボネート(EC)に溶質としてのLiPF6
(ヘキサフルオロ燐酸リチウム)を1モル/リットル溶
かして非水系電解液を調製した。
<Preparation of Non-Aqueous Electrolyte Solution> Ethylene carbonate (EC) as a solvent and LiPF 6 as a solute
(Lithium hexafluorophosphate) was dissolved at 1 mol / liter to prepare a non-aqueous electrolyte solution.

【0024】〈非水系電解液二次電池の作製〉 以上の
正負両極及び非水系電解液を用いて円筒型の本発明電池
BA1を作製した。(電池寸法:直径14.2mm、長
さ50.0mm)。セパレータとして、三次元空孔構造
を有するポリプロピレン製の微孔性フィルム(ポリプラ
スチック社製、商品名「セルガード 3401」を用
い、これに先に述べた非水系電解液を含浸させた。
<Production of Non-Aqueous Electrolyte Secondary Battery> A cylindrical battery BA1 of the present invention was produced using the positive and negative electrodes and the non-aqueous electrolyte described above. (Battery size: diameter 14.2 mm, length 50.0 mm). As the separator, a microporous film made of polypropylene having a three-dimensional pore structure (trade name "Celgard 3401" manufactured by Polyplastics Co., Ltd.) was used and impregnated with the non-aqueous electrolyte solution described above.

【0025】図1に示す構成の電池を作製した。電極体
は正極1と負極2、これら両極板より幅の広い帯状のセ
パレータ3を介在して全体を渦巻状に捲回して構成す
る。さらに、上記電極体の上下それぞれにポリプロピレ
ン製の絶縁板6、7を配してケースに挿入し、ケース8
の上部に段部を形成させた後、電解液を注入し、封口板
9で密閉して作製した。
A battery having the structure shown in FIG. 1 was produced. The electrode body is formed by spirally winding the whole body with a positive electrode 1 and a negative electrode 2 and a strip-shaped separator 3 wider than these bipolar plates interposed. Further, polypropylene insulating plates 6 and 7 are arranged on the upper and lower sides of the electrode body, respectively, and are inserted into the case.
After forming a step on the upper part of the above, an electrolytic solution was injected and sealed with a sealing plate 9 to manufacture.

【0026】(実施例2) 実施例1と同じく、正極芯
材にニッケル製セルメットを使用し、平均厚み2μmの
溶射アルミニウム層を形成し、正極極板基板とした以外
は実施例1と同じ様にして電池BA2を構成した。
(Example 2) Similar to Example 1, the same as Example 1 except that a nickel cermet was used as the positive electrode core material and a sprayed aluminum layer having an average thickness of 2 μm was formed to form a positive electrode plate substrate. Then, a battery BA2 was constructed.

【0027】(実施例3) 実施例と同じセルメットを
芯材に用い、溶射アルミニウム被覆層の平均厚みを15
μmとし、50Torrに減圧した雰囲気中で、水素ガ
ス(露点−60℃)気流中400℃で10分間熱処理
し、正極電極基板とした以外は、実施例1と同様にし
て、電池BA3を構成した。
Example 3 The same celmet as in Example was used as the core material, and the average thickness of the sprayed aluminum coating layer was 15
A battery BA3 was formed in the same manner as in Example 1 except that the positive electrode substrate was heat-treated at 400 ° C. for 10 minutes in a hydrogen gas (dew point −60 ° C.) air flow in an atmosphere having a pressure of 50 μm and a pressure of 50 Torr. .

【0028】(比較例1) 従来の製法による正極極板
基板として、厚さ20μmのアルミニウム箔を使用した
電池BC1を作製した。正極活物質としてLiCoO2
と、導電剤としてアセチレンブラック7重量%,結着剤
としてポリ四フッ化エチレン樹脂の水性デイスパージョ
ンを5重量%練り合わせ、ペースト状とした合剤を、ア
ルミニウム箔の両面に均一に塗布し、乾燥後、ローラー
プレスによる圧縮成形により、厚さ0.3mmの正極と
した。正極以外は本発明実施例1と同じ構成とした。
Comparative Example 1 A battery BC1 using an aluminum foil having a thickness of 20 μm was manufactured as a positive electrode plate substrate by a conventional manufacturing method. LiCoO 2 as the positive electrode active material
And 7% by weight of acetylene black as a conductive agent and 5% by weight of an aqueous dispersion of a polytetrafluoroethylene resin as a binder, and a mixture in the form of a paste is evenly applied on both sides of the aluminum foil, After drying, the positive electrode having a thickness of 0.3 mm was obtained by compression molding using a roller press. Except for the positive electrode, the same structure as in Example 1 of the present invention was used.

【0029】(比較例2) 芯材としてアルミニウム溶
射膜を持たないニッケル製セルメットを使用した以外
は、実施例1と同じ構成の電池BC2を作製した。
(Comparative Example 2) A battery BC2 having the same structure as in Example 1 was prepared except that a nickel cermet having no aluminum sprayed film was used as the core material.

【0030】(比較例3) 正極芯材に実施例1と同じ
要領で溶射アルミニウム層の平均厚みを0.8μmで被
覆したニッケル製セルメットを使用した以外は、実施例
1と同じ構成にした電池BC3を作製した。電池の評価
試験は、充電電流100mAで充電終止電圧4.2Vま
で充電した後、放電電流100mAで放電終止電圧3.
0Vまで放電する工程を1サイクルとする充放電サイク
ル試験を行い、充放電サイクルを重ねた時の各電池の容
量変化を調べた。試験は各10セルについて行い、それ
らの平均値で比較した。試験結果を図2に示す。
(Comparative Example 3) A battery having the same configuration as in Example 1 except that a nickel cermet having a sprayed aluminum layer coated with an average thickness of 0.8 μm was used as the positive electrode core material in the same manner as in Example 1. BC3 was prepared. In the battery evaluation test, after charging to a charge end voltage of 4.2 V with a charge current of 100 mA, a discharge end voltage of 3.
A charge / discharge cycle test in which the process of discharging to 0 V was defined as one cycle was performed, and the change in capacity of each battery when the charge / discharge cycles were repeated was examined. The test was performed for each of 10 cells, and the average value was compared. The test results are shown in FIG.

【0031】図2は、各電池の充放電サイクル特性を、
縦軸に1サイクル目の電池容量を基準とし、サイクル数
の変化に伴う電池容量の変化を示したグラフである。同
図より、比較例1として示した従来のアルミニウム箔を
使用した電池BC1が500サイクル経過後でも、初期
の85%を維持しているものの、本発明BA1、BA
2、BA3のいずれの電池においても、500サイクル
経過後でも初期の電池容量の90%以上を維持してお
り、サイクル寿命が一層長いことが判る。また、BA2
はBA1に比べてわずかに容量低下がみられるものの、
91%を維持している。さらに、溶射後、熱処理を施し
た正極電極基板を使用したBA3は容量維持率95%
と、熱処理を施さなかったBA1の93%に比べて容量
低下が小さく、寿命アップにはアルミニウム溶射後、熱
処理を施すことが、より一層効果があることを示してい
る。
FIG. 2 shows the charge / discharge cycle characteristics of each battery.
6 is a graph showing the change in battery capacity with the change in the number of cycles, with the vertical axis as the reference on the vertical axis. From the figure, although the battery BC1 using the conventional aluminum foil shown as Comparative Example 1 maintains the initial 85% even after 500 cycles, the present invention BA1, BA
It can be seen that in both the batteries of No. 2 and BA3, 90% or more of the initial battery capacity was maintained even after 500 cycles, and the cycle life was even longer. Also, BA2
Has a slightly smaller capacity than BA1, but
It remains at 91%. Furthermore, BA3 using a positive electrode substrate that has been heat treated after thermal spraying has a capacity retention rate of 95%.
The results show that the decrease in capacity is smaller than 93% of BA1 that has not been heat-treated, and that heat treatment after aluminum spraying is more effective for increasing the life.

【0032】一方、溶射皮膜を持たない比較電池BC2
あるいは平均0.8μmの溶射皮膜を持つBC3では、
サイクルを経るにつれての劣化が大きく、100サイク
ル目に於て早くも初期電池容量の60%まで低下してい
る。三次元網状構造連通空孔を有する連続した金属多孔
体を芯材に用いたBA1〜BA3の場合、充放電サイク
ル特性評価結果から、ニッケルが充放電サイクルを繰り
返すことにより、溶解する為に急激に容量低下するが、
貴な電位を持つアルミニウムを溶射したことにより、芯
材の電解液への溶解が減少したことが要因の一つと思わ
れる。
On the other hand, comparative battery BC2 having no thermal spray coating
Or in BC3 which has a spray coating of 0.8 μm on average,
Deterioration is large with the passage of cycles, and even at the 100th cycle, it is as low as 60% of the initial battery capacity. In the case of BA1 to BA3 using a continuous metal porous body having continuous pores with a three-dimensional network structure as the core material, from the charge / discharge cycle characteristic evaluation results, nickel rapidly melts due to repeated charge / discharge cycles. Capacity will decrease,
It seems that one of the factors is that the thermal spraying of aluminum having a noble potential reduced the dissolution of the core material in the electrolytic solution.

【0033】また、充放電サイクルに伴う芯材からの活
物質の剥離、脱落も軽減され、寿命が伸びたものと思わ
れる。この理由として、溶射膜の表面は平均数百nmか
ら数十μmオーダーの凹凸が存在する為、平滑な基材に
比べてアンカー効果により正極活物質との密着性がよか
ったものと思われる。この為、充放電サイクルに伴う活
物質の膨張収縮による芯材からの剥離が防止でき、長寿
命化が図れ、充放電サイクル寿命が向上したものと考え
られる。
Further, it is considered that the peeling and dropping of the active material from the core material due to the charge / discharge cycle were alleviated and the life was extended. The reason for this is that the surface of the sprayed film has irregularities on the order of several hundred nm to several tens of μm on average, and therefore it is considered that the adhesion to the positive electrode active material was better due to the anchor effect than the smooth base material. Therefore, it is considered that peeling from the core material due to expansion and contraction of the active material accompanying the charge / discharge cycle can be prevented, the life can be extended, and the charge / discharge cycle life can be improved.

【0034】以上の実施例では、正極LiCoO2 、負
極黒鉛、電解液に六フッ化燐酸リチウムを1モル/リッ
トル溶解したエチレンカーボネート溶液を用いたが、本
発明の非水電解液二次電池は、正極と負極と電解液とを
実施例のものに限定するものではない。正極にはLiC
oO2とLiMn24あるいはLiNiO2等も含むもの
が使用でき、負極には、リチウム金属、リチウム合金、
リチウムイオンをドープ・脱ドープできる炭素材料の何
れかを含むものが使用できる。
In the above examples, the positive electrode LiCoO 2 , the negative electrode graphite, and the ethylene carbonate solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved were used as the electrolytic solution, but the non-aqueous electrolytic solution secondary battery of the present invention was used. The positive electrode, the negative electrode, and the electrolytic solution are not limited to those in the examples. LiC for the positive electrode
Those containing oO 2 and LiMn 2 O 4 or LiNiO 2 can be used, and the negative electrode can be made of lithium metal, lithium alloy,
It is possible to use a material containing any of carbon materials that can be doped or dedoped with lithium ions.

【0035】また、実施例ではニッケル製三次元網状連
通空孔を有する連続した金属多孔体(商品名 セルメッ
ト)を使用した場合について示したが、素材にはFe,
Fe−Cr,Fe−Cr−Ni等の金属でも可能であ
る。さらに、実施例では本発明を円筒型の非水系電解液
二次電池に適用する場合の具体例について説明したが、
電池の形状に特に制限はなく、本発明は、扁平型、角型
など、種々の形状の非水系電解液二次電池に適用するこ
とができる。
In the example, the case where a continuous metal porous body (trade name: Celmet) having nickel three-dimensional reticulated pores was used was used.
Metals such as Fe-Cr and Fe-Cr-Ni are also possible. Furthermore, in the embodiment, the specific example of the case where the present invention is applied to the cylindrical non-aqueous electrolyte secondary battery has been described.
The shape of the battery is not particularly limited, and the present invention can be applied to non-aqueous electrolyte secondary batteries of various shapes such as flat type and rectangular type.

【0036】[0036]

【発明の効果】本発明電池においては、正極にLiCo
2やLiNiO2やLiMn24等を含む正極活物質、
正極芯材としてアルミニウムを溶射した芯材が使用され
ているため、この構造の電池では過充電して充電電圧が
高くなっても、電解液に接触するアルミニウムイオンが
イオンとなって溶解することがない。アルミニウムの溶
解電圧が高いことが理由である。
In the battery of the present invention, the positive electrode is LiCo
A positive electrode active material containing O 2 , LiNiO 2 , LiMn 2 O 4, etc.,
Since the core material sprayed with aluminum is used as the positive electrode core material, in the battery of this structure, even if the charging voltage becomes high due to overcharging, the aluminum ions contacting the electrolytic solution may dissolve as ions. Absent. The reason is that the melting voltage of aluminum is high.

【0037】アルミニウムを溶射した層を持つ三次元網
状連通空孔を有する金属多孔体を使用することにより、
三次元袋状構造で有る事から来る活物質保持性と、貴な
電位を持つアルミニウム膜による高電位での耐食性が両
立する相乗効果により、長寿命化が図れる。
By using a metal porous body having three-dimensional mesh-like communicating pores having a layer sprayed with aluminum,
A long life can be achieved by the synergistic effect of retaining the active material, which has a three-dimensional bag-like structure, and the corrosion resistance at a high potential due to the aluminum film having a noble potential.

【0038】溶射膜の表面は、平均数百nmから数十μ
mオーダーの凹凸が存在する為、平滑な芯材に比べてア
ンカー効果により正極活物質との密着性がよく、充放電
サイクルに伴う活物質の膨張収縮による芯材からの剥離
が防止でき、長寿命化が図れる。さらに、アルミニウム
膜を使用することにより、正極活物質と正極芯材との接
触抵抗が小さく、充放電サイクルに優れる等、本発明は
優れた特有の効果を持つ。
The surface of the sprayed film has an average of several hundred nm to several tens μ.
Due to the presence of m-order irregularities, it has better adhesion to the positive electrode active material due to the anchor effect than a smooth core material, and can prevent peeling from the core material due to expansion and contraction of the active material during charge / discharge cycles. Life can be extended. Furthermore, by using an aluminum film, the present invention has excellent unique effects such as a low contact resistance between the positive electrode active material and the positive electrode core material and an excellent charge / discharge cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】円筒型の本発明電池の断面図である。FIG. 1 is a cross-sectional view of a cylindrical battery of the present invention.

【図2】本発明電池及び比較電池の充放電サイクル特性
図である。
FIG. 2 is a charge / discharge cycle characteristic diagram of the present invention battery and a comparative battery.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:セパレータ 4:負極リード板 5:正極リード板 6:絶縁板 7:絶縁板 8:ケース 9:封口板 1: Positive electrode 2: Negative electrode 3: Separator 4: Negative electrode lead plate 5: Positive electrode lead plate 6: Insulating plate 7: Insulating plate 8: Case 9: Sealing plate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 充電可能なリチウムイオンを含む非水電
解液を備える電池において、正極電極基板が三次元網状
連通空孔を有する連続した金属多孔体芯材とその上に溶
射により形成されたアルミニウム層が存在することを特
徴とする非水電解液二次電池。
1. A battery provided with a non-aqueous electrolyte containing rechargeable lithium ions, wherein the positive electrode substrate is a continuous metal porous core material having three-dimensional mesh-like communicating pores, and aluminum formed by thermal spraying on the core material. A non-aqueous electrolyte secondary battery having a layer.
【請求項2】 前記芯材とその上に形成されたアルミニ
ウム層の間に拡散層が存在することを特徴とする請求項
1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein a diffusion layer is present between the core material and an aluminum layer formed thereon.
【請求項3】 前記芯材がNiと不可避不純物から成る
請求項1及び2記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the core material comprises Ni and inevitable impurities.
【請求項4】 前記芯材の連通空孔率が90%以上であ
る請求項1、2及び3記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the core material has a communicating porosity of 90% or more.
【請求項5】 前記アルミニウム層が平均厚みで1〜5
0μmであることを特徴とする請求項1、2、3及び4
記載の非水電解液二次電池。
5. The aluminum layer has an average thickness of 1 to 5
The thickness is 0 μm.
The non-aqueous electrolyte secondary battery described.
【請求項6】 充電可能なリチウムイオンを含む非水電
解液を備える電池において、三次元網状連通空孔を有す
る金属多孔体芯材に溶射によりアルミニウム層を形成し
た正極電極基板を用いることを特徴とする非水電解液二
次電池の製造方法。
6. A battery provided with a non-aqueous electrolyte solution containing rechargeable lithium ions, wherein a positive electrode substrate having an aluminum layer formed by thermal spraying on a metal porous core material having three-dimensional mesh-like communicating pores is used. And a method for manufacturing a non-aqueous electrolyte secondary battery.
【請求項7】 前記金属多孔体芯材にアルミニウム溶射
後、非酸化性雰囲気中で加熱処理を施し、芯材とその上
に形成されたアルミニウム層の間に拡散層を設けること
を特徴とする請求項6に記載の非水電解液二次電池の製
造方法。
7. The porous metal core material is thermally sprayed with aluminum and then heat-treated in a non-oxidizing atmosphere to provide a diffusion layer between the core material and the aluminum layer formed thereon. The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 6.
JP6303370A 1994-12-07 1994-12-07 Nonaqueous electrolyte secondary battery and manufacture thereof Pending JPH08162117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6303370A JPH08162117A (en) 1994-12-07 1994-12-07 Nonaqueous electrolyte secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6303370A JPH08162117A (en) 1994-12-07 1994-12-07 Nonaqueous electrolyte secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08162117A true JPH08162117A (en) 1996-06-21

Family

ID=17920185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6303370A Pending JPH08162117A (en) 1994-12-07 1994-12-07 Nonaqueous electrolyte secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08162117A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137381A1 (en) * 2009-05-27 2010-12-02 住友電気工業株式会社 Positive electrode and process for producing same
JP2011009608A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
WO2012017851A1 (en) * 2010-08-02 2012-02-09 住友電気工業株式会社 Porous metal body, process for producing same, and battery using same
WO2012111736A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Method of manufacturing electrode for electrochemical element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137381A1 (en) * 2009-05-27 2010-12-02 住友電気工業株式会社 Positive electrode and process for producing same
JPWO2010137381A1 (en) * 2009-05-27 2012-11-12 住友電気工業株式会社 Positive electrode body and method for producing the same
JP2011009608A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011009609A (en) * 2009-06-29 2011-01-13 Sumitomo Electric Ind Ltd Nickel aluminum porous collector and electrode using the same, and capacitor
JP2011096444A (en) * 2009-10-28 2011-05-12 Mitsubishi Materials Corp Positive electrode for nonaqueous electrolyte secondary battery
WO2012017851A1 (en) * 2010-08-02 2012-02-09 住友電気工業株式会社 Porous metal body, process for producing same, and battery using same
CN103098293A (en) * 2010-08-02 2013-05-08 住友电气工业株式会社 Porous metal body, process for producing same, and battery using same
WO2012111736A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Method of manufacturing electrode for electrochemical element
CN103339782A (en) * 2011-02-18 2013-10-02 住友电气工业株式会社 Method of manufacturing electrode for electrochemical element

Similar Documents

Publication Publication Date Title
JP3568052B2 (en) Porous metal body, method for producing the same, and battery electrode plate using the same
US6495289B1 (en) Lithium secondary cell with an alloyed metallic powder containing electrode
US6800397B2 (en) Non-aqueous electrolyte secondary battery and process for the preparation thereof
US7252907B2 (en) Nonaqueous electrolyte secondary battery
JP5219339B2 (en) Lithium secondary battery
JP4442235B2 (en) Negative electrode for secondary battery, secondary battery, and production method thereof
US20160133941A1 (en) Anode and battery
US20100323098A1 (en) Electrode material for rechargeable lithium battery, electrode structural body comprising said electrode material, rechargeable lithium battery having said electrode structural body, process for the production of said electrode structural body, and process for the production of said rechargeable lithium battery
JP5289735B2 (en) Lithium secondary battery
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP2003203637A (en) Lithium secondary battery negative electrode and lithium secondary battery
WO2006080265A1 (en) Negative electrode for lithium secondary battery, lithium secondary battery using same, and methods for manufacturing those
WO2009002426A1 (en) Lithium alloy/sulfur batteries
JP2009099495A (en) Lithium secondary battery
JP2002237293A (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP2010009905A (en) Collector of positive electrode for lithium based secondary battery, and positive electrode and battery equipped with it
JP2011216297A (en) Wound electrode group, battery including the same, and method of manufacturing battery
JP3243239B2 (en) Method for producing positive electrode for non-aqueous secondary battery
JPH07335263A (en) Lithium secondary battery
JPH06196169A (en) Nonaqueous electrolyte secondary battery
JP2005294013A (en) Precursor battery and nonaqueous electrolyte secondary battery
JP2005085632A (en) Battery
JPH08162117A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3968772B2 (en) Non-aqueous electrolyte battery
JP2008060028A (en) Power storage device