JP2007026913A - Stacked metal foil for lithium ion battery, and lithium ion battery using the same - Google Patents

Stacked metal foil for lithium ion battery, and lithium ion battery using the same Download PDF

Info

Publication number
JP2007026913A
JP2007026913A JP2005208082A JP2005208082A JP2007026913A JP 2007026913 A JP2007026913 A JP 2007026913A JP 2005208082 A JP2005208082 A JP 2005208082A JP 2005208082 A JP2005208082 A JP 2005208082A JP 2007026913 A JP2007026913 A JP 2007026913A
Authority
JP
Japan
Prior art keywords
lithium ion
metal foil
ion battery
active material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005208082A
Other languages
Japanese (ja)
Other versions
JP4967267B2 (en
Inventor
Keiichi Takahashi
慶一 高橋
Masaya Ugaji
正弥 宇賀治
Tatsuji Mino
辰治 美濃
Nobuaki Nagao
宣明 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005208082A priority Critical patent/JP4967267B2/en
Publication of JP2007026913A publication Critical patent/JP2007026913A/en
Application granted granted Critical
Publication of JP4967267B2 publication Critical patent/JP4967267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reliable lithium ion battery of high charge/discharge characteristics that uses expansive active material by relaxing deformation of an electrode due to voluminal expansion of the active material at charging/discharging, and suppressing degradation in cycle characteristics of the lithium ion battery which is caused by deformation or breakage of the electrode at charging/discharging. <P>SOLUTION: A collector 3 is provided by laminating roughened metal foils in two layers. A layer of high elastic modulus 10 in the collector 3 is formed from a void 4 by stacking, and resin 12. By using the stacked collector, expansion/deformation of the active material is reduced when reacted with lithium ion at charging, compared to a collector of Cu single layer. Since a stress relaxing layer is incorporated, deformation or fracture of the electrode is prevented for improved cycle characteristics of the battery itself. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、非水電解質を用いるリチウムイオン電池用積層金属箔および前記金属箔を用いたリチウムイオン電池に関する。   The present invention relates to a laminated metal foil for a lithium ion battery using a nonaqueous electrolyte and a lithium ion battery using the metal foil.

モバイル向けの電子機器の駆動用電源としては、主にリチウムイオン電池が使用されているが、その電池の負極用材料としては主に黒鉛が用いられている。この黒鉛は単位質量当りの容量が372mAh/gと小さいため、より高容量の負極の実現には、他の材料が必要とされている。   Lithium ion batteries are mainly used as power sources for driving electronic devices for mobile use, but graphite is mainly used as a negative electrode material for the batteries. Since this graphite has a small capacity per unit mass of 372 mAh / g, other materials are required to realize a higher capacity negative electrode.

黒鉛より高容量を示す材料としては、Al、Si、Ge、Snなどを含む材料を活物質として用いて、これらとLiとの間に金属間化合物を形成するように負極を構成することによりリチウムイオン電池のエネルギー密度を高密度化できることが報告されている(例えば、特許文献1参照)。   As a material having a higher capacity than graphite, a material containing Al, Si, Ge, Sn, or the like is used as an active material, and a negative electrode is formed by forming an intermetallic compound between these and Li. It has been reported that the energy density of an ion battery can be increased (see, for example, Patent Document 1).

しかし、これらの材料は、充電時にリチウムイオンを吸蔵して大きな体積膨張が起こる。例えば、黒鉛を負極に用いた場合のリチウムイオン吸蔵時の体積増加率は最大で1.2倍程度であるが、Siを活物質として負極に用いた場合には、吸蔵させた状態では、その体積増加は最大4.12倍にも達する。   However, these materials occlude lithium ions during charging and cause large volume expansion. For example, when graphite is used for the negative electrode, the volume increase rate at the time of occlusion of lithium ions is about 1.2 times at maximum, but when Si is used as the active material for the negative electrode, in the occluded state, The volume increase reaches up to 4.12 times.

活物質の体積変化が大きいと、活物質と集電体との界面での剥離や活物質自体の割れが生じるため、サイクル寿命が短くなるという問題が生じる。特に界面の剥離防止のため膨張時のストレスを緩和するように、活物質薄膜と銅からなる集電体との密着強度を強化させるためにシリコン−銅混合層を形成する方法が用いられている(例えば、特許文献2参照)。また、活物質の割れを抑制するために、粗面化した銅箔集電体の上に微結晶のSi薄膜を形成し、充放電サイクルによって発生する微結晶Si薄膜上のクラックによってその体積変化に伴う歪を緩和吸収し、活物質と集電体との剥離を防止することで、サイクル特性を改善している。   When the volume change of the active material is large, peeling at the interface between the active material and the current collector or cracking of the active material itself occurs, resulting in a problem that the cycle life is shortened. In particular, a method of forming a silicon-copper mixed layer is used to reinforce the adhesion strength between the active material thin film and the current collector made of copper so as to relieve stress during expansion in order to prevent separation at the interface. (For example, refer to Patent Document 2). In order to suppress cracking of the active material, a microcrystalline Si thin film is formed on a roughened copper foil current collector, and the volume change is caused by a crack on the microcrystalline Si thin film generated by a charge / discharge cycle. The cycle characteristics are improved by relaxing and absorbing the strain caused by the above and preventing separation of the active material and the current collector.

その他、充電時の膨張率自体をSiに比べて小さくなるように、SiO(0<x<2)を負極活物質に用いることも検討されている(例えば、特許文献3参照)。
特開平11−86854号公報 特開2002−83594号公報 特開平6−325765号公報
In addition, the use of SiO x (0 <x <2) as the negative electrode active material is also studied so that the expansion rate during charging itself is smaller than that of Si (see, for example, Patent Document 3).
Japanese Patent Application Laid-Open No. 11-86854 JP 2002-83594 A JP-A-6-325765

前述した特許文献2の負極では、粗面化した銅箔を集電体に用いるため活物質の剥離は防げるが、集電体である銅箔が非常に薄い場合、活物質の変形に抗することができず電極自体が大きくうねり、変形するという問題が生じる。さらに、集電体の強度が小さい場合には電極自体がちぎれ破断したりする場合がある。   In the negative electrode of Patent Document 2 described above, since the roughened copper foil is used as the current collector, the active material can be prevented from peeling. However, when the current collector copper foil is very thin, it resists deformation of the active material. However, the problem is that the electrode itself undulates and deforms. Furthermore, when the strength of the current collector is small, the electrode itself may tear and break.

また、リチウム吸蔵時の膨張が大きいシリコン薄膜を活物質とし、集電体である銅箔の厚みを厚くして極板自体の変形を防いだ場合には、薄膜堆積時に発生する内部応力のため、シリコン−銅箔界面付近でのシリコンの極板変形自体は防ぐことができるが、充放電に伴う膨張収縮により界面に応力が発生し、活物質であるシリコン薄膜の膜はがれが発生する。   In addition, if a thin silicon film with large expansion during occlusion of lithium is used as the active material and the thickness of the copper foil as a current collector is increased to prevent deformation of the electrode plate itself, internal stress generated during deposition of the thin film Although the silicon electrode plate deformation itself in the vicinity of the silicon-copper foil interface can be prevented, stress is generated at the interface due to expansion / contraction due to charge / discharge, and the film of the silicon thin film as the active material is peeled off.

特許文献3の負極において、活物質としてシリコンに対する酸素のモル比は0〜2としたシリコン酸化物を用い、その充放電時の体積変化をシリコンのそれよりも小さく抑えたものとしている。しかし、充放電時の膨張変形は依然大きく、極板変形や膜はがれを完全に防ぐには至っていない。さらに、この負極を正極およびセパレータと積層した電池群構成とした場合、その積層方向の充放電時の膨張収縮変形が依然大きく。その緩和が課題である。   In the negative electrode of Patent Document 3, silicon oxide having a molar ratio of oxygen to silicon of 0 to 2 is used as an active material, and the volume change during charge / discharge is suppressed to be smaller than that of silicon. However, expansion deformation at the time of charging / discharging is still large, and electrode plate deformation and film peeling have not been completely prevented. Further, when the negative electrode is laminated with a positive electrode and a separator, the expansion and contraction deformation during charging / discharging in the stacking direction is still large. That mitigation is a challenge.

本発明は、前記従来の課題を解決するもので、充電時における活物質の体積膨張を緩和して、充放電に伴う活物質の集電体からの剥離を解消するとともに、電極全体の変形や破断を防ぎ、エネルギー密度を高めながら、サイクル特性を向上できるリチウムイオン電池用金属箔と、同金属箔を負極として用いるリチウムイオン電池を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, relaxes the volume expansion of the active material during charging, eliminates the separation of the active material from the current collector due to charge and discharge, An object of the present invention is to provide a metal foil for a lithium ion battery capable of improving cycle characteristics while preventing breakage and increasing energy density, and a lithium ion battery using the metal foil as a negative electrode.

前記従来の課題を解決するために、本発明のリチウムイオン電池用積層金属箔は、第1の面と、第1の面に対向する第2の面との少なくともいずれかの面が粗面化した面である金属箔が複数積層したリチウムイオン電池用積層金属箔であって、積層した金属箔同士が当接する面は、粗面化した面であり、粗面化した面が当接する2枚の金属箔間には空隙が存在することを特徴とする。   In order to solve the conventional problem, in the laminated metal foil for a lithium ion battery of the present invention, at least one of the first surface and the second surface facing the first surface is roughened. A laminated metal foil for a lithium ion battery in which a plurality of metal foils are laminated, the surfaces where the laminated metal foils are in contact with each other are roughened surfaces, and the two surfaces with which the roughened surfaces are in contact A gap exists between the metal foils.

本構成によって、積層した金属箔上にシリコンのようなリチウムイオンを吸蔵する際の膨張が大きい活物質を形成した場合においても、粗面化した面が当接する2枚の金属箔間には空隙が存在することにより、その空隙が膨張を緩和するため、充放電に伴う活物質の集電体からの剥離を解消するとともに電極全体の変形や破断を防ぐことができる。   With this configuration, even when an active material having a large expansion when occluding lithium ions such as silicon is formed on the laminated metal foil, there is a gap between the two metal foils with which the roughened surface abuts. Therefore, since the void relaxes the expansion, it is possible to eliminate the peeling of the active material from the current collector due to charging / discharging, and to prevent deformation and breakage of the entire electrode.

また、本発明のリチウムイオン電池は、上記リチウムイオン電池用積層金属箔からなる集電体の表面にリチウムイオンを吸蔵、放出する負極活物質を有する負極と、金属薄板からなる集電体表面にリチウムイオンを吸蔵、放出する正極活物質を有する正極と、リチウムイオン導電性の電解液またはポリマー電解質とを備えたことを特徴とする。   Further, the lithium ion battery of the present invention has a negative electrode having a negative electrode active material that occludes and releases lithium ions on the surface of the current collector made of the laminated metal foil for a lithium ion battery, and a current collector surface made of a metal thin plate. A positive electrode having a positive electrode active material that occludes and releases lithium ions and a lithium ion conductive electrolyte or polymer electrolyte are provided.

本構成によって、エネルギー密度を高めながら、サイクル特性を向上できるリチウムイオン電池とすることができる。   With this configuration, it is possible to provide a lithium ion battery capable of improving cycle characteristics while increasing energy density.

本発明のリチウムイオン電池用積層金属箔によれば、リチウムイオンとの反応時の活物質の膨張による極板の変形を緩和し、負極板自体に入るしわやなどの変形やちぎれなどの破断などを防ぐことにより、リチウムイオン電池の充放電サイクル特性を向上させることが可能となる。   According to the laminated metal foil for a lithium ion battery of the present invention, the deformation of the electrode plate due to the expansion of the active material at the time of reaction with lithium ions is alleviated, and the deformation such as wrinkles and breakage entering the negative electrode plate itself is broken. By preventing this, it becomes possible to improve the charge / discharge cycle characteristics of the lithium ion battery.

以下本発明を実施するための最良の形態について、図面を参照しながら、説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1にかかるリチウムイオン電池用負極の概略縦断面図である。図1において、負極1は、集電体3と、その上に担持された活物質2とからなる。集電体3は、金属箔5と金属箔6とからなり、金属箔5と金属箔6とが当接する面は、ともに粗面化した面であり、金属箔5と金属箔6との間には、空隙4が存在する。金属箔5は、金属箔6と当接する面と対向する面も粗面化した面であり、その面に活物質2が形成されている。金属箔6の金属箔5と当接する面と対向する面も粗面化した面である。
(Embodiment 1)
FIG. 1 is a schematic longitudinal sectional view of a negative electrode for a lithium ion battery according to Embodiment 1 of the present invention. In FIG. 1, a negative electrode 1 is composed of a current collector 3 and an active material 2 carried thereon. The current collector 3 includes a metal foil 5 and a metal foil 6, and the surfaces on which the metal foil 5 and the metal foil 6 are in contact with each other are roughened surfaces. There is a void 4. The metal foil 5 is a surface roughened also on the surface facing the metal foil 6, and the active material 2 is formed on the surface. The surface of the metal foil 6 that faces the surface that contacts the metal foil 5 is also a roughened surface.

金属箔5および金属箔6としては、少なくともそれらが当接する面の表面を粗面化した銅からなるものを用いることができる。金属箔5の活物質2を担持する面の表面性状はその活物質2の材質によって好ましい形状が異なるが、活物質2との接着強度を保てる程度に合わせて粗面化させておけばよい。   As metal foil 5 and metal foil 6, what consists of copper which roughened the surface of the surface which at least contacts them can be used. The surface property of the surface of the metal foil 5 that supports the active material 2 has a preferable shape depending on the material of the active material 2, but may be roughened to the extent that the adhesive strength with the active material 2 can be maintained.

活物質2は、具体的には、基材としてシリコン単体、シリコン酸化物およびSi−Sn合金などを含む。なお、活物質2は、基材の構成元素以外の他の元素を含んでいてもよい。活物質2の厚さ9は、4μm〜50μm程度あれば良いが、これに制限されるものではない。電池の構成によって決めればよい。活物質2の厚さ9とは、負極板の総厚さから集電体の厚さを除いた厚さである。   Specifically, the active material 2 includes, as a base material, silicon alone, silicon oxide, Si—Sn alloy, and the like. The active material 2 may contain elements other than the constituent elements of the base material. The thickness 9 of the active material 2 may be about 4 μm to 50 μm, but is not limited thereto. What is necessary is just to decide by the structure of a battery. The thickness 9 of the active material 2 is a thickness obtained by subtracting the thickness of the current collector from the total thickness of the negative electrode plate.

集電体3中で弾性率が小さい層10は、金属箔5のみよりなる領域である。集電体3の中で弾性率が大きい層11は金属箔5と金属箔6との積層によって生じる空隙4を含む層状の領域として形成できる。   The layer 10 having a small elastic modulus in the current collector 3 is a region made of only the metal foil 5. The layer 11 having a large elastic modulus in the current collector 3 can be formed as a layered region including the void 4 generated by the lamination of the metal foil 5 and the metal foil 6.

なお、金属箔5の厚さ7と金属箔6の厚さ8とは、それぞれ4μm以上、50μm以下であることが好ましい。ここで厚さ7および厚さ8は、金属箔5および金属箔6の総厚さを意味する。すなわち粗面化した凸部を含む厚さである。厚さ7と厚さ8とはそれぞれ4μm未満であれば強度が不足し、50μmを超えると集電体3自体の厚さが増し、高容量化に支障を来す場合があるからである。   In addition, it is preferable that the thickness 7 of the metal foil 5 and the thickness 8 of the metal foil 6 are 4 μm or more and 50 μm or less, respectively. Here, the thickness 7 and the thickness 8 mean the total thickness of the metal foil 5 and the metal foil 6. That is, the thickness includes the roughened convex portion. If the thickness 7 and the thickness 8 are less than 4 μm, the strength is insufficient, and if it exceeds 50 μm, the thickness of the current collector 3 itself increases, which may hinder the increase in capacity.

金属箔5の金属箔6と当接する面および金属箔6の金属箔5と当接する面の表面粗さRz(JIS B0601に準拠)は0.1μm以上10μm以下であることが好ましい。表面粗さRzが0.1μm未満で有れば、空隙4を含む弾性率が大きい層11を形成することが困難となり、10μmを超えると集電体3自体の厚さが増し、高容量化に支障を来す場合があるからである。   The surface roughness Rz (based on JIS B0601) of the surface of the metal foil 5 that contacts the metal foil 6 and the surface of the metal foil 6 that contacts the metal foil 5 is preferably 0.1 μm or more and 10 μm or less. If the surface roughness Rz is less than 0.1 μm, it is difficult to form the layer 11 having a large elastic modulus including the voids 4, and if it exceeds 10 μm, the thickness of the current collector 3 itself increases and the capacity increases. This is because it may cause trouble.

また、弾性率が大きい層11には、空隙4の他に樹脂12を含んでいても良い。その場合を、図2を参照しながら説明する。   Further, the layer 11 having a large elastic modulus may contain a resin 12 in addition to the gap 4. Such a case will be described with reference to FIG.

図2において、図1と同じ構成については同じ符号を用い、説明を省略する。図2において、弾性率が大きい層11は、空隙4と、樹脂12とを含む。樹脂12は、金属箔6の金属箔5と当接する面に例えば樹脂材料を塗布することで形成できる。   In FIG. 2, the same components as those in FIG. In FIG. 2, the layer 11 having a large elastic modulus includes voids 4 and a resin 12. The resin 12 can be formed by, for example, applying a resin material to the surface of the metal foil 6 that contacts the metal foil 5.

樹脂12はその中に導電性粒子とフィラー13との少なくともいずれかを含むことが好ましい。導電性粒子としてはカーボンが挙げられる。さらにフィラー13の含有量を調整することで、弾性率が大きい層11をコントロールすることが可能となる。   The resin 12 preferably contains at least one of conductive particles and filler 13 therein. Examples of the conductive particles include carbon. Furthermore, it becomes possible to control the layer 11 with a large elastic modulus by adjusting the content of the filler 13.

積層する金属箔5と金属箔6の間に樹脂を含むことにより、単なる空隙4のみの場合と同じく弾性率の異なる層を形成することができる。金属箔5または金属箔6の表面凸部とその周囲の空壁4、樹脂12、導電性粒子またはフィラー13により、弾性率が大きな層11を形成することができ、積層構造化させた集電体3を形成することができる。   By including a resin between the metal foil 5 and the metal foil 6 to be laminated, layers having different elastic moduli can be formed as in the case of the simple gap 4 alone. The layer 11 having a large elastic modulus can be formed by the surface convex portion of the metal foil 5 or the metal foil 6 and the surrounding empty wall 4, the resin 12, the conductive particles or the filler 13, and a current collector having a laminated structure The body 3 can be formed.

弾性率の大きい層11は変形に対する応力緩和層として機能するものであれば複数層形成してもよい。すなわち弾性率の小さい層10と弾性率の大きい層11とを交互に積層することにより、さらにその効果を増すことも可能となる。すなわち、このような積層複合化した集電体3は、活物質が充電時にリチウムイオンと反応して膨張することによる極板変形を緩和することが可能となり、集電体3全体についてみれば応力が緩和するため、集電体3の強度が向上し、強度劣化の起こりにくい負極1が得られる。   As long as the layer 11 having a large elastic modulus functions as a stress relaxation layer against deformation, a plurality of layers may be formed. That is, the effect can be further increased by alternately laminating the layer 10 having a small elastic modulus and the layer 11 having a large elastic modulus. That is, such a laminated composite current collector 3 can alleviate electrode plate deformation caused by expansion of the active material by reacting with lithium ions during charging. Therefore, the strength of the current collector 3 is improved, and the negative electrode 1 in which the strength is hardly deteriorated is obtained.

また、上記のような集電体3を備える負極1を用いることによって、サイクル特性に優れたリチウムイオン電池を得ることが可能となる。   In addition, by using the negative electrode 1 including the current collector 3 as described above, a lithium ion battery having excellent cycle characteristics can be obtained.

次に、本発明のリチウムイオン電池用負極の製造方法について説明する。   Next, the manufacturing method of the negative electrode for lithium ion batteries of this invention is demonstrated.

例えば図1に示す本発明のリチウムイオン電池用負極は、例えば、集電体3のみをあらかじめ積層構造体として作製しておいてから、塗工プロセスや真空蒸着プロセスによって集電体3の表面に活物質2を形成し、負極を作製する方法や、塗工プロセスや真空蒸着プロセスによって表面に活物質2があらかじめ形成された金属箔5を別の金属箔6と積層する方法などが挙げられる。   For example, in the negative electrode for a lithium ion battery of the present invention shown in FIG. 1, for example, only the current collector 3 is prepared in advance as a laminated structure, and then the surface of the current collector 3 is applied by a coating process or a vacuum deposition process. Examples thereof include a method of forming an active material 2 and producing a negative electrode, and a method of laminating a metal foil 5 on which a surface of the active material 2 is previously formed by a coating process or a vacuum deposition process with another metal foil 6.

集電体3の表面に活物質2を形成する方法としては、真空蒸着装置を用いた薄膜プロセスを例示することができる。真空蒸着装置は、真空チャンバーならびに雰囲気制御用のガス導入口からなる。真空チャンバー内には、基板(集電体)となる金属箔、シリコン原料が配置されている。長尺の金属箔を用いる場合は、金属箔の巻出し用のロール、キャン、巻き取りローラーなどの機構を設けてもよい。また、蒸着装置において、シリコン原料を加熱する手段として、電子ビーム(EB)により蒸着源を加熱している。   As a method for forming the active material 2 on the surface of the current collector 3, a thin film process using a vacuum vapor deposition apparatus can be exemplified. The vacuum deposition apparatus includes a vacuum chamber and a gas inlet for controlling the atmosphere. In the vacuum chamber, a metal foil to be a substrate (current collector) and a silicon raw material are arranged. When a long metal foil is used, mechanisms such as a roll for winding the metal foil, a can, and a take-up roller may be provided. In the vapor deposition apparatus, the vapor deposition source is heated by an electron beam (EB) as means for heating the silicon raw material.

このような蒸着装置とローラープレス機を用いた場合の、本発明のリチウムイオン電池用負極の製造方法を、以下により具体的に説明する。   The method for producing the negative electrode for a lithium ion battery of the present invention when such a vapor deposition apparatus and a roller press are used will be described more specifically below.

(製造方法1)
まず、図1に示す負極の製造方法について説明する。積層した集電体3を作製するために2枚の表面が平滑な銅箔の表面を粗面化する。粗面化の方法としては、銅箔の表面に電着により平均粒径2μmの銅粒子を堆積させ、銅箔の表面粗さRzが1μm以上になるようにする。銅箔上への銅粒子の電着の条件を調整することで、表面粗さRzが1〜10μmの粗面化銅箔を得ることができる。別の粗面化の方法としては、銅箔の表面に抵抗加熱の真空蒸着法により銅粒子を膜厚0.1μm以上蒸着することにより表面粗さRzが0.1〜10μmの粗面化銅箔を得ることができる。
(Manufacturing method 1)
First, a method for manufacturing the negative electrode shown in FIG. 1 will be described. In order to produce the laminated current collector 3, the surface of the copper foil having two smooth surfaces is roughened. As a roughening method, copper particles having an average particle diameter of 2 μm are deposited on the surface of the copper foil by electrodeposition so that the surface roughness Rz of the copper foil becomes 1 μm or more. A roughened copper foil having a surface roughness Rz of 1 to 10 μm can be obtained by adjusting the conditions for electrodeposition of copper particles on the copper foil. As another roughening method, roughened copper having a surface roughness Rz of 0.1 to 10 μm is obtained by evaporating copper particles to a thickness of 0.1 μm or more on the surface of the copper foil by a resistance heating vacuum deposition method. A foil can be obtained.

得られた2枚の銅箔を粗面化した面同士を対向させて積層し、ローラープレス機に通して圧着することで、2枚の銅箔からなり、それらの間に空隙4を有する積層化した集電体3を得ることが出来る。   Laminated surfaces of the two obtained copper foils are laminated so as to face each other, and are laminated by pressing through a roller press to have a gap 4 between them. The current collector 3 can be obtained.

この集電体3の表面に活物質2であるシリコン酸化物を、塗工プロセスまたは薄膜プロセスを用いて成膜する。塗工プロセスの場合、シリコン酸化物粉末をバインダーや溶媒と共に混練し、スリットなどを通過させて、集電体3の表面に塗布する。薄膜プロセスの場合、集電体3を基板として真空チャンバー内に取り付け、シリコン原料をEB加熱手段により加熱して、シリコンの単体を構成するシリコン原子を、酸素ガスをチャンバー内に導入しながら集電体3の表面に堆積させる。なお、活物質2を形成する集電体3の表面は、粗面化させておいたほうが好ましい。粗面化の方法は前述した方法と同様の方法を適用できるし、ローラープレス機で圧着する際のローラー表面を粗面化させておくことで粗面化させても良い。   A silicon oxide as the active material 2 is formed on the surface of the current collector 3 by using a coating process or a thin film process. In the case of the coating process, the silicon oxide powder is kneaded together with a binder and a solvent, passed through a slit, and applied to the surface of the current collector 3. In the case of a thin film process, the current collector 3 is mounted as a substrate in a vacuum chamber, the silicon raw material is heated by EB heating means, and silicon atoms constituting a single silicon are collected while oxygen gas is introduced into the chamber. Deposit on the surface of the body 3. Note that the surface of the current collector 3 forming the active material 2 is preferably roughened. As the roughening method, the same method as described above can be applied, or roughening may be performed by roughening the roller surface when the pressure is applied by a roller press.

このようにして、積層体化され空隙4を有する集電体3の表面に、活物質を成膜した負極1を形成することができる。   In this way, the negative electrode 1 in which the active material is formed can be formed on the surface of the current collector 3 that is formed into a laminate and has the voids 4.

(製造方法2)
次に、図2に示す負極の製造方法について説明する。製造方法1で記載した方法のうちのいずれかの方法で得られた2枚の表面が粗面化した銅箔のうち、1枚の銅箔の粗面化した面に樹脂12を塗布し、もう1枚の粗面化した面と対向させ、ローラープレス機を用いて圧着することで、積層化した集電体3が得られる。
(Manufacturing method 2)
Next, a method for manufacturing the negative electrode shown in FIG. 2 will be described. The resin 12 is applied to the roughened surface of one copper foil of the two copper foils having the roughened surface obtained by any one of the methods described in the production method 1, The laminated current collector 3 is obtained by facing the other roughened surface and pressing with a roller press.

この塗布する樹脂12には分散された金属粉やカーボンナノファイバーなど導電性粒子を混合しておいてもよいし、強度改善のためフィラーなどを加えてもよい。   The resin 12 to be applied may be mixed with conductive particles such as dispersed metal powder or carbon nanofibers, or a filler may be added to improve the strength.

この集電体3の表面に活物質であるシリコン酸化物を形成する方法は、製造方法1と同様の方法が適用できる。なお、活物質2を形成する集電体3の表面は、粗面化させておいたほうが好ましい。粗面化の方法は前述した方法と同様の方法を適用できるし、ローラープレス機で圧着する際のローラー表面を粗面化させておくことで粗面化させても良い。   As a method for forming silicon oxide as an active material on the surface of the current collector 3, the same method as the manufacturing method 1 can be applied. Note that the surface of the current collector 3 forming the active material 2 is preferably roughened. As the roughening method, the same method as described above can be applied, or roughening may be performed by roughening the roller surface when the pressure is applied by a roller press.

このようにして、積層体化され空隙4に樹脂12を有する集電体3の表面に、活物質を成膜した負極1を形成することができる。   In this way, the negative electrode 1 in which the active material is formed can be formed on the surface of the current collector 3 that is formed into a laminate and has the resin 12 in the void 4.

上記のような製造方法1または2の他に、以下のような製造方法3によっても、本発明のリチウムイオン電池用負極を作製することができる。   In addition to the production method 1 or 2 as described above, the negative electrode for lithium ion batteries of the present invention can also be produced by the following production method 3.

(製造方法3)
この製造方法においては、まず、製造方法1に記載の方法で、2枚の銅箔を粗面化する。1枚の銅箔は、粗面化した面と対向する面も同様の方法で粗面化する。両面を粗面化した銅箔の表面に活物質であるシリコン酸化物を形成する。シリコン酸化物を形成する方法は、製造方法1と同様の方法が適用できる。
(Manufacturing method 3)
In this manufacturing method, first, two copper foils are roughened by the method described in Manufacturing Method 1. One copper foil roughens the surface opposite to the roughened surface by the same method. Silicon oxide, which is an active material, is formed on the surface of the copper foil roughened on both sides. The method similar to the manufacturing method 1 can be applied to the method for forming silicon oxide.

その後、もう1枚の銅箔を、粗面化した面同士が当接するように重ね、ローラープレスなどにより圧着する。その際、粗面化した面同士の間の空隙に樹脂を塗布しておいても良い。   Thereafter, another copper foil is stacked so that the roughened surfaces are in contact with each other, and is pressed by a roller press or the like. At that time, a resin may be applied to the gap between the roughened surfaces.

以下、具体的な実施例によって本発明をさらに詳細に説明する。なお、本発明は以下に示す実施例に限定されない。   Hereinafter, the present invention will be described in more detail by way of specific examples. In addition, this invention is not limited to the Example shown below.

(実施例1)
まず、負極と組み合わせる正極を作製した。まず、平均粒径10μmのコバルト酸リチウム(LiCoO)に導電材であるアセチレンブラックを3重量%混合し、結着材であるポリフッ化ビリニデン(PVdF)のN−メチル−2−ピロリドン(NMP)溶液をPVdF重量に対して4重量%加えて練合し、ペースト状正極合剤を作製した。この正極合剤を、アルミニウム箔からなる集電体シートに塗着し、乾燥後、圧延して、正極板を作製した。得られた正極板を、所定の大きさに切断して、正極を得た。
Example 1
First, a positive electrode combined with a negative electrode was produced. First, 3% by weight of acetylene black as a conductive material is mixed with lithium cobalt oxide (LiCoO 2 ) having an average particle size of 10 μm, and N-methyl-2-pyrrolidone (NMP) of poly (vinylidene fluoride) (PVdF) as a binder. The solution was kneaded by adding 4% by weight with respect to the PVdF weight to prepare a paste-like positive electrode mixture. This positive electrode mixture was applied to a current collector sheet made of an aluminum foil, dried and then rolled to prepare a positive electrode plate. The obtained positive electrode plate was cut into a predetermined size to obtain a positive electrode.

次に、負極を作製した。まず、積層した集電体を作製するために、電着により粒径2〜5μmの銅粒子を銅箔の表裏両面に堆積させ、銅箔厚さが18μmで表裏の表面粗さRzが5μmの粗面化銅箔を作製した。得られた粗面化銅箔2枚を対向させて積み重ね、ローラープレス機に通して厚み35μmになるように圧着することによって一体化した。空隙を含む部分の厚みは銅箔間の表面粗さが大きいほど大きいものが得られるが、顕微鏡観察の結果からは3μmであることが確認できた。さらに、この積層された集電体表面上にシリコン酸化物を成膜した。積層集電体を基板として真空チャンバー内に取り付け、シリコン原料をEB加熱手段により加熱して、シリコンの単体を構成するシリコン原子を、酸素ガスをチャンバー内に導入しながら集電体の表面に厚さ10μmのシリコン酸化物として堆積させた。なお、蒸着原料は、純度99.9999%のシリコン単結晶を用いた。シリコン単結晶に照射される電子ビームの加速電圧は−8kVとし、エミッションを300mAとした。最後に、得られた極板を、所定の大きさに切断して負極を得た。   Next, a negative electrode was produced. First, in order to produce a laminated current collector, copper particles having a particle diameter of 2 to 5 μm are deposited on both the front and back surfaces of the copper foil by electrodeposition, the copper foil thickness is 18 μm, and the front and back surface roughness Rz is 5 μm. A roughened copper foil was produced. The obtained two roughened copper foils were stacked facing each other and integrated by pressing through a roller press to a thickness of 35 μm. The larger the surface roughness between the copper foils, the larger the thickness of the part including the voids, but it was confirmed from the result of microscopic observation that it was 3 μm. Further, a silicon oxide film was formed on the surface of the stacked current collector. The laminated current collector is mounted as a substrate in a vacuum chamber, the silicon raw material is heated by EB heating means, and silicon atoms constituting the silicon simple substance are thickened on the surface of the current collector while introducing oxygen gas into the chamber. It was deposited as a 10 μm thick silicon oxide. Note that a silicon single crystal having a purity of 99.9999% was used as a deposition material. The acceleration voltage of the electron beam applied to the silicon single crystal was −8 kV, and the emission was 300 mA. Finally, the obtained electrode plate was cut into a predetermined size to obtain a negative electrode.

得られた正極および負極を用いて、円筒型電池を作製した。まず、正極と負極とを厚さ25μmのポリエチレン製多孔質のセパレータを介して渦巻状に捲回した。その際、正極活物質と負極活物質とがセパレータを介して対向するようにした。その極板群をニッケルメッキした電池ケース内に収納し、さらに正極と正極端子とをリードを介して接続し、負極をリードでケースに接続した。次に、電解液として、炭酸エチレン(EC)と炭酸エチルメチル(EMC)との体積比1:3の混合溶媒中に濃度が1mol/LとなるようにLiPFを溶解させたものを用い、それを電池ケース内に所定量注液した。最後に封口板によりケースを密封して電池を作製した。 A cylindrical battery was produced using the obtained positive electrode and negative electrode. First, the positive electrode and the negative electrode were spirally wound through a 25 μm thick polyethylene porous separator. At that time, the positive electrode active material and the negative electrode active material were opposed to each other with a separator interposed therebetween. The electrode plate group was housed in a nickel-plated battery case, the positive electrode and the positive electrode terminal were connected via a lead, and the negative electrode was connected to the case by a lead. Next, an electrolytic solution in which LiPF 6 is dissolved in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 1: 3 so as to have a concentration of 1 mol / L is used. A predetermined amount thereof was poured into the battery case. Finally, the case was sealed with a sealing plate to produce a battery.

(比較例1)
比較例1として、負極に積層構造の集電体用いることなく、実施例1と同じ厚さ(35μm)の粗面化銅箔(表裏共に表面粗さRz=5μm)を集電体として用いたこと以外は、上記実施例1と同様にして比較電池1を作製した。
(Comparative Example 1)
As Comparative Example 1, a current collector having the same thickness (35 μm) as Example 1 (surface roughness Rz = 5 μm on both sides) was used as a current collector without using a current collector with a laminated structure for the negative electrode. A comparative battery 1 was produced in the same manner as in Example 1 except that.

(実施例2)
負極として以下に記す負極を用いたこと以外は実施例1と同様にして電池を作製した。
(Example 2)
A battery was fabricated in the same manner as in Example 1 except that the negative electrode described below was used as the negative electrode.

負極の作製方法としては、まず、表面粗さRzが5μmになるように粒径2〜5μm銅粒子を電着により裏表両面に堆積させ、銅箔厚みが18μmの粗面化銅箔(1)および粗面化銅箔(2)を作製した。得られた粗面化銅箔2枚のうち一方の粗面化銅箔(1)の表面にエポキシ系樹脂を塗布し、その上に粗面化銅箔(2)を重ね、ローラープレス機に通し、厚さ35μmの積層銅箔を作製した。次に、粗面化銅箔(1)の上にシリコン酸化物を実施例1と同様にして成膜し、負極板(1)を作製した。   As a method for producing the negative electrode, first, copper particles having a particle size of 2 to 5 μm were deposited on both the front and back surfaces by electrodeposition so that the surface roughness Rz was 5 μm, and a roughened copper foil having a copper foil thickness of 18 μm (1) And roughened copper foil (2) was produced. An epoxy resin is applied to the surface of one of the two roughened copper foils (1), and the roughened copper foil (2) is stacked on the surface of the copper foil. Then, a laminated copper foil having a thickness of 35 μm was produced. Next, a silicon oxide film was formed on the roughened copper foil (1) in the same manner as in Example 1 to produce a negative electrode plate (1).

得られた負極を用い、実施例1と同様にして電池を作製した。   Using the obtained negative electrode, a battery was produced in the same manner as in Example 1.

(実施例3)
負極として以下に記す負極を用いたこと以外は実施例1と同様にして電池を作製した。
(Example 3)
A battery was fabricated in the same manner as in Example 1 except that the negative electrode described below was used as the negative electrode.

負極の作製方法としては、まず、表面粗さRzが5μmになるように、銅粒子を裏表両面に電着させ、銅箔厚みが18μmの粗面化銅箔(1)および粗面化銅箔(2)を作製した。次に、粗面化銅箔(1)の上にシリコン酸化物を実施例1と同様にして成膜し、負極板(1)を作製した。さらに、粗面化銅箔(2)の上に粒子状のアセチレンブラックをバインダーとの重量比で5wt%混合したエポキシ系樹脂を塗布し、負極板(1)をその上に重ね、負極を作製した。積層後の負極の厚みは積層銅箔とシリコン酸化物の合計として45μmであった。   As a method for producing the negative electrode, first, copper particles were electrodeposited on both the front and back surfaces so that the surface roughness Rz was 5 μm, and the roughened copper foil (1) and the roughened copper foil having a copper foil thickness of 18 μm. (2) was produced. Next, a silicon oxide film was formed on the roughened copper foil (1) in the same manner as in Example 1 to produce a negative electrode plate (1). Further, an epoxy resin in which 5 wt% of particulate acetylene black is mixed with the binder on the roughened copper foil (2) is applied, and the negative electrode plate (1) is stacked thereon to produce a negative electrode. did. The thickness of the negative electrode after lamination was 45 μm as the total of the laminated copper foil and silicon oxide.

得られた負極を用い、実施例1と同様にして電池を作製した。   Using the obtained negative electrode, a battery was produced in the same manner as in Example 1.

(評価方法)
以上のようにして製造した実施例1、実施例2及び実施例3の電池および比較電池1について、周囲温度25℃に設定し、連続充放電装置を用いて充放電試験を行った。試験条件は、充電電流40mAで、電池電圧4.2Vまで定電流で充電し、20分間休止した後、放電電流40mAで、終止電圧2.5Vまで放電した。この充放電サイクルを2回繰り返し、2回目の放電容量を初期容量とした。サイクル特性に関しては、この初期容量に対する100サイクル試験後の放電容量との比を維持率として測定した。得られた結果を表1および図4に示す。
(Evaluation methods)
About the battery of Example 1, Example 2 and Example 3 manufactured as described above and the comparative battery 1, an ambient temperature was set to 25 ° C., and a charge / discharge test was performed using a continuous charge / discharge device. The test conditions were a charge current of 40 mA and a constant current charge up to a battery voltage of 4.2 V. After resting for 20 minutes, a discharge current of 40 mA was discharged to a final voltage of 2.5 V. This charge / discharge cycle was repeated twice, and the second discharge capacity was defined as the initial capacity. Regarding the cycle characteristics, the ratio of the initial capacity to the discharge capacity after the 100-cycle test was measured as a maintenance factor. The obtained results are shown in Table 1 and FIG.

Figure 2007026913
Figure 2007026913

表1および図4に示すように、実施例1、実施例2および実施例3の電池は、容量維持率が大きく、比較電池1と同程度の初期容量を持ちながら100サイクル後の容量維持率も改善されていることがわかる。   As shown in Table 1 and FIG. 4, the batteries of Example 1, Example 2 and Example 3 have a large capacity maintenance rate, and have a capacity similar to that of the comparative battery 1 and a capacity maintenance rate after 100 cycles. It can be seen that there is also an improvement.

試験後の電池を分解して極板を観察した結果、比較電池1の負極では、充放電時のリチウムイオンの挿入・脱入による活物質の膨張・収縮による変形を緩和されなかったために、負極板自体にしわが入るなどの変形やちぎれなどの破断が起こっており、そのため容量低下が起こっていたものと考えられた。それに対して実施例1、実施例2および実施例3の負極は充放電試験後の変形が少なく極板の破断も起こっていなかった。特に活物質と直接接していない方の銅箔においては、破断は全く起こっておらず、負極群としては導通が良好に保たれていることが確認できた。   As a result of disassembling the battery after the test and observing the electrode plate, the negative electrode of the comparative battery 1 was not relieved from deformation due to expansion / contraction of the active material due to insertion / desorption of lithium ions during charging / discharging. It was thought that deformation such as wrinkles on the plate itself and breakage such as tearing occurred, which caused capacity reduction. On the other hand, the negative electrodes of Example 1, Example 2 and Example 3 had little deformation after the charge / discharge test, and the electrode plate did not break. In particular, in the copper foil that was not in direct contact with the active material, no breakage occurred, and it was confirmed that the continuity of the negative electrode group was kept good.

すなわち、集電体を積層化することにより、リチウムイオンとの反応時の活物質の膨張による極板の変形を緩和し、負極板自体の変形や破断が防げ、リチウムイオン電池の充放電サイクル特性が向上したものと考えられる。   In other words, by laminating the current collector, the deformation of the electrode plate due to the expansion of the active material during the reaction with lithium ions is alleviated, and the deformation and breakage of the negative electrode plate itself can be prevented. Is considered to have improved.

なお、実施例1の電池では、比較電池1よりも集電体である銅箔の変形が小さいため容量維持率が良好であったものと考えられる。   In addition, in the battery of Example 1, since the deformation | transformation of the copper foil which is a collector is smaller than the comparative battery 1, it is thought that the capacity | capacitance maintenance factor was favorable.

また、実施例2および実施例3の電池では、極板に入るクラックの進行が、積層界面でその進行がとまり、より容量維持率の低下が小さかったものと推測される。   Moreover, in the batteries of Example 2 and Example 3, it is presumed that the progress of cracks entering the electrode plate stopped at the lamination interface, and the decrease in the capacity retention rate was smaller.

さらに、実施例3の電池では、実施例2に比べ、サイクル試験後においても極板抵抗の変化が小さく、より容量維持率の低下が小さかったものと推測される。   Further, in the battery of Example 3, it is presumed that the change in the electrode plate resistance was small after the cycle test and the decrease in the capacity maintenance rate was smaller than that in Example 2.

なお、実施例3の負極の積層構造を作る際、カーボン粒子を混ぜたバインダーを塗布したが、カーボン粒子以外にも、金属粒子、カーボン繊維、無機フィラーなど金属箔と一体となって集電体として機能するものであればこの限りではない。   In addition, when making the laminated structure of the negative electrode of Example 3, a binder mixed with carbon particles was applied, but in addition to the carbon particles, a current collector integrated with a metal foil such as metal particles, carbon fibers, and inorganic fillers. However, this does not apply if it functions as

なお、本実施例では金属箔を35μmとしたが、この厚みは負極板に形成する活物質厚みによって決まる値で、実際的には4〜50μmの活物質厚みに対応して同程度の厚みに関して信頼性の確認を行い、負極板の破断のないことが確認された。   In the present embodiment, the metal foil is 35 μm, but this thickness is a value determined by the thickness of the active material formed on the negative electrode plate, and practically the same thickness corresponding to the active material thickness of 4 to 50 μm. The reliability was confirmed and it was confirmed that the negative electrode plate was not broken.

本発明により、高容量であり、かつサイクル特性に優れたリチウムイオン電池を提供することが可能となる。   According to the present invention, it is possible to provide a lithium ion battery having a high capacity and excellent cycle characteristics.

本発明の実施の形態1におけるリチウムイオン電池用負極の概略縦断面図Schematic longitudinal cross-sectional view of the negative electrode for lithium ion batteries in Embodiment 1 of this invention 本発明の実施の形態1における別のリチウムイオン電池用負極の概略縦断面図Schematic longitudinal sectional view of another negative electrode for a lithium ion battery according to Embodiment 1 of the present invention 本発明の実施の形態に示す条件で作製した電池と比較例の充放電サイクル特性を示す図The figure which shows the charging / discharging cycling characteristics of the battery produced on the conditions shown to embodiment of this invention, and a comparative example

符号の説明Explanation of symbols

1 負極
2 活物質
3 集電体
4 空隙
5,6 金属箔
7,8 金属箔の厚さ
9 活物質の厚さ
10 弾性率が小さい層
11 弾性率が大きい層
12 樹脂
13 導電性粒子またはフィラー
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Active material 3 Current collector 4 Space | gap 5,6 Metal foil 7, 8 Metal foil thickness 9 Active material thickness 10 Low elastic modulus layer 11 High elastic modulus layer 12 Resin 13 Conductive particle or filler

Claims (7)

第1の面と、前記第1の面に対向する第2の面との少なくともいずれかの面が粗面化した面である金属箔が複数積層したリチウムイオン電池用積層金属箔であって、
前記積層した金属箔同士が当接する面は、粗面化した面であり、
前記粗面化した面が当接する2枚の金属箔間には空隙が存在すること、
を特徴とするリチウムイオン電池用積層金属箔。
A laminated metal foil for a lithium ion battery in which a plurality of metal foils, each of which is a roughened surface of at least one of the first surface and the second surface facing the first surface,
The surface on which the laminated metal foils abut each other is a roughened surface,
There is a gap between the two metal foils with which the roughened surface abuts,
A laminated metal foil for a lithium ion battery.
前記金属箔の厚さは4μm以上50μm以下であること、
を特徴とする請求項1に記載のリチウムイオン電池用積層金属箔。
The thickness of the metal foil is 4 μm or more and 50 μm or less,
The laminated metal foil for a lithium ion battery according to claim 1.
前記粗面化した面の表面粗さRzは、0.1μm以上10μm以下であること、
を特徴とする請求項1に記載のリチウムイオン電池用積層金属箔。
The surface roughness Rz of the roughened surface is 0.1 μm or more and 10 μm or less,
The laminated metal foil for a lithium ion battery according to claim 1.
前記2枚の金属箔間の空隙の少なくとも一部は、樹脂を有すること、
を特徴とする請求項1に記載のリチウムイオン電池用積層金属箔。
At least part of the gap between the two metal foils has a resin;
2. The laminated metal foil for a lithium ion battery according to claim 1, wherein
前記樹脂は、導電性粒子とフィラーとの少なくともいずれかを含むこと、
を特徴とする請求項4に記載のリチウムイオン電池用積層金属箔。
The resin includes at least one of conductive particles and a filler;
The laminated metal foil for a lithium ion battery according to claim 4.
前記導電性粒子はカーボンを含むこと、
を特徴とする請求項5に記載のリチウムイオン電池用積層金属箔。
The conductive particles include carbon;
The laminated metal foil for a lithium ion battery according to claim 5.
請求項1から6のいずれかに記載のリチウムイオン電池用積層金属箔からなる集電体表面にリチウムイオンを吸蔵、放出する負極活物質を有する負極と、
金属薄板からなる集電体表面にリチウムイオンを吸蔵、放出する正極活物質を有する正極と、
リチウムイオン導電性の電解液またはポリマー電解質と、
を備えたリチウムイオン電池。
A negative electrode having a negative electrode active material that occludes and releases lithium ions on the surface of the current collector made of the laminated metal foil for a lithium ion battery according to any one of claims 1 to 6,
A positive electrode having a positive electrode active material that absorbs and releases lithium ions on the surface of a current collector made of a thin metal plate;
A lithium ion conductive electrolyte or polymer electrolyte;
Lithium ion battery with
JP2005208082A 2005-07-19 2005-07-19 Laminated metal foil for lithium ion battery and lithium ion battery using the same Active JP4967267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208082A JP4967267B2 (en) 2005-07-19 2005-07-19 Laminated metal foil for lithium ion battery and lithium ion battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208082A JP4967267B2 (en) 2005-07-19 2005-07-19 Laminated metal foil for lithium ion battery and lithium ion battery using the same

Publications (2)

Publication Number Publication Date
JP2007026913A true JP2007026913A (en) 2007-02-01
JP4967267B2 JP4967267B2 (en) 2012-07-04

Family

ID=37787424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208082A Active JP4967267B2 (en) 2005-07-19 2005-07-19 Laminated metal foil for lithium ion battery and lithium ion battery using the same

Country Status (1)

Country Link
JP (1) JP4967267B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218125A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery and lithium-ion secondary battery
JP2009295422A (en) * 2008-06-05 2009-12-17 Sony Corp Anode collector, anode and secondary battery
CN101453008B (en) * 2007-11-30 2011-01-26 比亚迪股份有限公司 Battery positive pole piece, preparing method thereof, and battery having the positive pole piece
JP2012064501A (en) * 2010-09-17 2012-03-29 Hitachi Ltd Nonaqueous electrolyte secondary battery and collector
JP2012074166A (en) * 2010-09-28 2012-04-12 Hitachi Ltd Lithium secondary battery having stress relaxation layer
KR20190039206A (en) * 2016-09-16 2019-04-10 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, power tool and electronic device
CN112825621A (en) * 2019-09-19 2021-05-21 株式会社Lg化学 Electrode current collector comprising resistive layer between two or more metal foils, electrode comprising same, and lithium secondary battery
CN114665099A (en) * 2020-12-24 2022-06-24 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery
CN114914452A (en) * 2022-03-11 2022-08-16 江苏正力新能电池技术有限公司 Current collector, pole piece and secondary battery
EP4080621A1 (en) 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrical collector body of secondary battery and secondary battery
EP4089770A1 (en) 2021-05-13 2022-11-16 Prime Planet Energy & Solutions, Inc. Secondary battery current collector and manufacturing method for same, and secondary battery
KR20220155216A (en) 2021-05-14 2022-11-22 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Current collector of secondary battery and secondary battery
WO2024038184A1 (en) * 2022-08-18 2024-02-22 Meta Materials Inc. Weldable composite conductors
CN112825621B (en) * 2019-09-19 2024-10-29 株式会社Lg新能源 Electrode current collector comprising a resistive layer between two or more metal foils, electrode comprising the same, and lithium secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102698850B1 (en) 2019-09-19 2024-08-23 주식회사 엘지에너지솔루션 Electrode Current Collector Comprising a Heat-Pressure Conversion Layer Between Two or More Metal Foils, Electrode Comprising the Same, and Lithium Secondary Battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244380A (en) * 1997-02-28 1998-09-14 Shin Kobe Electric Mach Co Ltd Ultrasonic welding method of a large number of laminated metallic foils
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture
JP2001357855A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003017069A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP2005085677A (en) * 2003-09-10 2005-03-31 Sanyo Electric Co Ltd Lithium secondary battery and usage thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10244380A (en) * 1997-02-28 1998-09-14 Shin Kobe Electric Mach Co Ltd Ultrasonic welding method of a large number of laminated metallic foils
JPH11273683A (en) * 1998-03-19 1999-10-08 Furukawa Electric Co Ltd:The Copper foil for negative electrode current collector of nonaqueous solvent secondary battery and its manufacture
JP2001357855A (en) * 2000-06-14 2001-12-26 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte secondary battery
JP2003017069A (en) * 2001-06-28 2003-01-17 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
JP2005085677A (en) * 2003-09-10 2005-03-31 Sanyo Electric Co Ltd Lithium secondary battery and usage thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218125A (en) * 2007-03-02 2008-09-18 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery and lithium-ion secondary battery
CN101453008B (en) * 2007-11-30 2011-01-26 比亚迪股份有限公司 Battery positive pole piece, preparing method thereof, and battery having the positive pole piece
JP2009295422A (en) * 2008-06-05 2009-12-17 Sony Corp Anode collector, anode and secondary battery
JP2012064501A (en) * 2010-09-17 2012-03-29 Hitachi Ltd Nonaqueous electrolyte secondary battery and collector
JP2012074166A (en) * 2010-09-28 2012-04-12 Hitachi Ltd Lithium secondary battery having stress relaxation layer
KR102171213B1 (en) 2016-09-16 2020-10-28 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary batteries, lithium ion secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
KR20190039206A (en) * 2016-09-16 2019-04-10 가부시키가이샤 무라타 세이사쿠쇼 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, power tool and electronic device
CN112825621A (en) * 2019-09-19 2021-05-21 株式会社Lg化学 Electrode current collector comprising resistive layer between two or more metal foils, electrode comprising same, and lithium secondary battery
CN112825621B (en) * 2019-09-19 2024-10-29 株式会社Lg新能源 Electrode current collector comprising a resistive layer between two or more metal foils, electrode comprising the same, and lithium secondary battery
JP7285819B2 (en) 2020-12-24 2023-06-02 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
CN114665099A (en) * 2020-12-24 2022-06-24 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery
JP2022100811A (en) * 2020-12-24 2022-07-06 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
US12074328B2 (en) 2020-12-24 2024-08-27 Prime Planet Energy & Solutions, Inc. Non-aqueous electrolyte secondary battery
CN114665099B (en) * 2020-12-24 2023-11-10 泰星能源解决方案有限公司 Nonaqueous electrolyte secondary battery
KR20220145281A (en) 2021-04-21 2022-10-28 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Electrical collector body of secondary battery and secondary battery
EP4080621A1 (en) 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrical collector body of secondary battery and secondary battery
EP4089770A1 (en) 2021-05-13 2022-11-16 Prime Planet Energy & Solutions, Inc. Secondary battery current collector and manufacturing method for same, and secondary battery
JP2022175835A (en) * 2021-05-14 2022-11-25 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery current collector and secondary battery
EP4123763A1 (en) 2021-05-14 2023-01-25 Prime Planet Energy & Solutions, Inc. Current collector of secondary battery and secondary battery
KR20220155216A (en) 2021-05-14 2022-11-22 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Current collector of secondary battery and secondary battery
JP7377831B2 (en) 2021-05-14 2023-11-10 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery current collector and secondary battery
CN114914452A (en) * 2022-03-11 2022-08-16 江苏正力新能电池技术有限公司 Current collector, pole piece and secondary battery
WO2024038184A1 (en) * 2022-08-18 2024-02-22 Meta Materials Inc. Weldable composite conductors
WO2024038180A1 (en) * 2022-08-18 2024-02-22 Meta Materials Inc. Conductive conduit

Also Published As

Publication number Publication date
JP4967267B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4967267B2 (en) Laminated metal foil for lithium ion battery and lithium ion battery using the same
JP5313761B2 (en) Lithium ion battery
JP6448336B2 (en) Method for producing lithium ion secondary battery
JP5304796B2 (en) Positive electrode plate for lithium ion secondary battery, lithium ion secondary battery, vehicle, battery-mounted device, and method for producing positive electrode plate for lithium ion secondary battery
KR101891013B1 (en) Electrical device
JP2020510961A (en) Prelithiated hybrid energy storage device
JP6759936B2 (en) Non-aqueous electrolyte secondary battery and negative electrode unit
JP6202106B2 (en) Electrical device
JP2016510941A (en) Multi-layer battery electrode design to enable thicker electrode manufacturing
JP2011029075A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2007134272A (en) Current collector, anode, and battery
JP2002203552A (en) Non-aqueous electrolyte battery
JP2012009209A (en) Negative electrode for lithium ion secondary battery
CN111095618B (en) Electrode for electricity storage device and method for manufacturing same
WO2015045719A1 (en) Positive electrode for stacked lithium ion secondary batteries
KR20160100348A (en) Electrical device
WO2021250803A1 (en) Secondary battery and method for producing same
WO2016111063A1 (en) Lithium ion battery, method for manufacturing same, and apparatus for manufacturing lithium ion battery
JP2010061819A (en) Nonaqueous secondary battery
JP7040353B2 (en) Lithium ion secondary battery
JP7304380B2 (en) Electrode current collector and secondary battery
JP2008198408A (en) Nonaqueous electrolyte secondary battery
JP6958272B2 (en) Non-aqueous electrolyte secondary battery
CN105934845A (en) Electrical device
CN111386616A (en) Method of manufacturing electrode for secondary battery and method of manufacturing secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4967267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3