JP6448336B2 - Method for producing lithium ion secondary battery - Google Patents

Method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP6448336B2
JP6448336B2 JP2014245750A JP2014245750A JP6448336B2 JP 6448336 B2 JP6448336 B2 JP 6448336B2 JP 2014245750 A JP2014245750 A JP 2014245750A JP 2014245750 A JP2014245750 A JP 2014245750A JP 6448336 B2 JP6448336 B2 JP 6448336B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
active material
material layer
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014245750A
Other languages
Japanese (ja)
Other versions
JP2016110777A (en
Inventor
健一 新明
健一 新明
利絵 寺西
利絵 寺西
豊川 卓也
卓也 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014245750A priority Critical patent/JP6448336B2/en
Publication of JP2016110777A publication Critical patent/JP2016110777A/en
Application granted granted Critical
Publication of JP6448336B2 publication Critical patent/JP6448336B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a lithium ion secondary battery.

リチウムイオン二次電池の放電容量が初期充電後に低下することが従来から問題になっている。これを解決するために、例えば、電池製造時の初期充電工程の前に、酸化ケイ素(SiO及びSiO2)を負極活物質として用いた負極とリチウム金属とを反応させるリチウムプレドープ工程が従来から行われている(特許文献1、2参照)。プレドープ工程においては、酸化ケイ素中の二酸化ケイ素(SiO2)が予めリチウムシリケート(Li4SiO4)に変わる。この結果、その後の初期充電工程において、リチウムシリケート等の副生成物が生成したり、電解液中のリチウムイオンが失われて放電容量が低下したりする、という不可逆容量の発生を防止することができる。 It has been a problem that the discharge capacity of a lithium ion secondary battery decreases after initial charging. In order to solve this, for example, a lithium pre-doping process in which a negative electrode using silicon oxide (SiO and SiO 2 ) as a negative electrode active material and lithium metal is reacted before an initial charging process at the time of battery manufacture has been conventionally performed. (See Patent Documents 1 and 2). In the pre-doping step, silicon dioxide (SiO 2 ) in silicon oxide is changed into lithium silicate (Li 4 SiO 4 ) in advance. As a result, it is possible to prevent the occurrence of irreversible capacity such that by-products such as lithium silicate are generated in the subsequent initial charging step or the lithium ion in the electrolyte is lost and the discharge capacity is reduced. it can.

特許第4928828号公報Japanese Patent No. 4928828 国際公開第2011/125325号International Publication No. 2011/125325

しかしながら、リチウムプレドープを行うことによって、負極活物質層が膨張し、セルの外装体を変形させる問題があった。更に、リチウムプレドープによって負極活物質層がリチウムイオンを吸収したことにより負極活物質層中の空隙が減少したため、初回の充電時にリチウムイオンを吸蔵した負極活物質層およびセルが、リチウムプレドープを行わなかった場合に比べて大きく膨張する問題があった。この問題は、複数のセルを限られた容器内にコンパクトに束ねて収納することを難しくするだけでなく、電池の体積あたりのエネルギー密度を低下させることにもなるので、解決することが求められている。   However, the lithium pre-doping has a problem in that the negative electrode active material layer expands and deforms the outer package of the cell. Furthermore, since the negative electrode active material layer absorbed lithium ions by lithium pre-doping, voids in the negative electrode active material layer were reduced, so that the negative electrode active material layer and the cell that occluded lithium ions during the initial charge were There was a problem that it expanded greatly compared with the case where it did not carry out. This problem not only makes it difficult to compactly store a plurality of cells in a limited container, but also reduces the energy density per volume of the battery. ing.

本発明は上記事情に鑑みてなされたものであり、負極活物質層がリチウムイオンを吸蔵することに伴うセルの膨張を低減し得るリチウムイオン二次電池の製造方法の提供を課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the manufacturing method of the lithium ion secondary battery which can reduce the expansion | swelling of the cell accompanying a negative electrode active material layer occlusion of lithium ion.

[1] 酸化ケイ素を含む負極活物質層を有する負極と、正極とを有するセルを備えたリチウムイオン二次電池の製造方法であって、前記負極活物質層の体積密度を0.8g/cm以上1.5g/cm以下に調整した後、リチウムプレドープを行うプレドープ工程と、前記セルを加圧しながら初回充電を行う充電工程と、を有する、リチウムイオン二次電池の製造方法。
[2] 前記プレドープ工程において、前記セルを加圧しながらリチウムプレドープを行う、上記[1]に記載のリチウムイオン二次電池の製造方法。
[3] 前記セルを0.3kg/cm以上6.6kg/cm 以下の圧力にて加圧する、上記[2]に記載のリチウムイオン二次電池の製造方法。
[4] 前記充電工程において、前記セルを0.3kg/cm以上6.6kg/cm 以下の圧力にて加圧する、上記[1]〜[3]の何れか一項に記載のリチウムイオン二次電池の製造方法。
[1] A method for producing a lithium ion secondary battery comprising a cell having a negative electrode active material layer containing silicon oxide and a positive electrode, the volume density of the negative electrode active material layer being 0.8 g / cm A method for producing a lithium ion secondary battery, comprising: a pre-doping step of performing lithium pre-doping after adjusting to 3 to 1.5 g / cm 3 and a charging step of performing initial charging while pressurizing the cell.
[2] The method for producing a lithium ion secondary battery according to [1], wherein in the pre-doping step, lithium pre-doping is performed while pressurizing the cell.
[3] the cell is pressurized at 0.3 kg / cm 2 or more 6.6 kg / cm 2 or less pressure method for producing a lithium ion secondary battery according to [2].
[4] In the charging step, pressurizing the cell at 0.3 kg / cm 2 or more 6.6 kg / cm 2 or less of pressure, lithium ions according to any one of the above [1] to [3] A method for manufacturing a secondary battery.

本発明によれば、リチウムプレドープ前の負極活物質層を加圧することによって負極活物質層を適度な体積密度に引き締めるため、リチウムプレドープ時及びその後の初回充電時における負極活物質層の膨張を低減することができる。上記加圧後の体積密度は適度であるため、負極活物質層がリチウムプレドープ時にリチウムを吸収することを妨げず、リチウムを充分に吸収できるため、不可逆容量を低減し、十分な容量発現率が得られる。   According to the present invention, in order to tighten the negative electrode active material layer to an appropriate volume density by pressurizing the negative electrode active material layer before lithium pre-doping, the expansion of the negative electrode active material layer during lithium pre-doping and the subsequent initial charge Can be reduced. Since the volume density after the pressurization is moderate, the negative electrode active material layer does not prevent lithium from being absorbed during lithium pre-doping and can sufficiently absorb lithium, thereby reducing irreversible capacity and sufficient capacity development rate. Is obtained.

第一実施形態において製造するリチウムイオン二次電池の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the lithium ion secondary battery manufactured in 1st embodiment.

本発明の第一実施形態は、図1に示す様に、負極集電体としての第一の有孔導電性板2(以下、負極集電体2と呼ぶことがある。)上に負極活物質層3が形成されてなる負極4と、正極集電体としての第二の有孔導電性板5(以下、正極集電体5と呼ぶことがある。)上に正極活物質層6が形成されてなる正極7と、が積層されてなる電極積層体を備えたリチウムイオン二次電池1の製造方法である。   In the first embodiment of the present invention, as shown in FIG. 1, a negative electrode active material is formed on a first porous conductive plate 2 (hereinafter also referred to as a negative electrode current collector 2) as a negative electrode current collector. A positive electrode active material layer 6 is formed on a negative electrode 4 formed with the material layer 3 and a second porous conductive plate 5 (hereinafter, also referred to as a positive electrode current collector 5) as a positive electrode current collector. It is a manufacturing method of the lithium ion secondary battery 1 provided with the electrode laminated body by which the positive electrode 7 formed is laminated | stacked.

本明細書及び特許請求の範囲において、「導電性板」の用語は、板状の導電体であることを意味し、導電性材料からなる板材だけに限られず、導電性線材が編まれた布(網)、導電性フィルム、導電性シートを含む用語である。さらに、「金属板」の用語は、板状の金属体であることを意味し、金属製の板材だけに限られず、金属線材が編まれた板状の金属布(金属網)、金属板を薄く延した金属箔、金属フィルム、金属膜を含む用語である。   In the present specification and claims, the term “conductive plate” means a plate-like conductor, and is not limited to a plate made of a conductive material, but a cloth in which a conductive wire is knitted. It is a term including (net), conductive film, and conductive sheet. Furthermore, the term “metal plate” means a plate-like metal body, and is not limited to a metal plate material, but a plate-like metal cloth (metal net) knitted with a metal wire, and a metal plate. It is a term that includes thinly stretched metal foil, metal film, and metal film.

(体積密度の調整)
本実施形態においては、負極活物質層3の体積密度を、リチウムプレドープ前に、0.8g/cm以上1.5g/cm以下に調整する。体積密度を調整する方法は特に限定されず、例えば、負極活物質層3が形成された負極集電体2を有する負極4を2枚の平板状冶具の間に挟んで、負極活物質層3の全面を厚み方向に均一に加圧する方法が挙げられる。加圧処理を施した負極4を正極7にセパレータ8を介して積層して、電極積層体を得る。
(Adjustment of volume density)
In this embodiment, the volume density of the negative electrode active material layer 3 is adjusted to 0.8 g / cm 3 or more and 1.5 g / cm 3 or less before lithium pre-doping. The method for adjusting the volume density is not particularly limited. For example, the negative electrode active material layer 3 having a negative electrode current collector 2 on which the negative electrode active material layer 3 is formed is sandwiched between two flat jigs. A method in which the entire surface is uniformly pressurized in the thickness direction. The negative electrode 4 subjected to the pressure treatment is laminated on the positive electrode 7 via the separator 8 to obtain an electrode laminate.

リチウムプレドープ前の負極活物質層3の体積密度は、0.8g/cm以上1.45g/cm以下が好ましく、0.8g/cm以上1.35g/cm以下がより好ましく、0.8g/cm以上1.25g/cm以下がさらに好ましく、0.8g/cm以上1.15g/cm以下が特に好ましく、0.8g/cm以上1.05g/cm以下が最も好ましい。上記の好適な範囲の順に、初回充電時のセル厚みの増加率を低減し、二次電池の容量発現率を高められる傾向がある。 Volume density of the negative electrode active material layer 3 before the lithium pre-doping is preferably from 0.8 g / cm 3 or more 1.45 g / cm 3 or less, more preferably 0.8 g / cm 3 or more 1.35 g / cm 3 or less, 0.8 g / cm 3 or more 1.25 g / cm 3 more preferably less, 0.8 g / cm 3 or more 1.15 g / cm 3 or less are particularly preferred, 0.8 g / cm 3 or more 1.05 g / cm 3 or less Is most preferred. In the order of the above preferable range, there is a tendency that the increase rate of the cell thickness at the first charge is reduced and the capacity expression rate of the secondary battery is increased.

(体積密度の測定方法)
電極を所定の大きさ(例えば、φ16mm)で打ち抜いた測定試料を複数枚準備する。各測定試料の質量を精密天秤にて秤量し、電極活物質層の質量を測定する。予め測定した集電体の質量を測定結果から差し引くことにより、測定試料中の電極活物質層の質量を算出することができる。また、断面出し加工した測定試料をSEMで観察する公知方法によって、電極活物質層の厚みを測定する。各測定値の平均値から下記式(1)に基づいて、電極活物質層の体積密度を算出することができる。
体積密度(g/cm)=電極活物質層の質量(g)/[(電極活物質の厚み(cm)×打ち抜いた電極の面積(cm)]・・・(1)
(Measurement method of volume density)
A plurality of measurement samples are prepared by punching electrodes with a predetermined size (for example, φ16 mm). The mass of each measurement sample is weighed with a precision balance, and the mass of the electrode active material layer is measured. By subtracting the mass of the current collector measured in advance from the measurement result, the mass of the electrode active material layer in the measurement sample can be calculated. Further, the thickness of the electrode active material layer is measured by a known method of observing the measurement sample subjected to cross-section processing with an SEM. Based on the following formula (1), the volume density of the electrode active material layer can be calculated from the average value of the measured values.
Volume density (g / cm 3 ) = Mass (g) of electrode active material layer / [(Thickness of electrode active material (cm) × Punched electrode area (cm 2 )] (1)

(プレドープ工程)
上記の加圧処理の後、負極4の最外面に位置する負極活物質層3aの表面に第三の有孔導電性板9を重ね置き、該有孔導電性板9を介して更にリチウム供給板10を重ね置いた電極積層体を得て、この電極積層体が電解液14に接した状態でリチウムプレドープを行う。
(Pre-doping process)
After the above pressure treatment, a third porous conductive plate 9 is placed on the surface of the negative electrode active material layer 3 a located on the outermost surface of the negative electrode 4, and lithium is further supplied through the porous conductive plate 9. An electrode laminate on which the plates 10 are stacked is obtained, and lithium pre-doping is performed in a state where the electrode laminate is in contact with the electrolytic solution 14.

本実施形態においては、電極積層体および電解液14を外装体13に封入したセル1を得て、このセル1を加圧しながらリチウムプレドープを行う。セル1を加圧する方法は特に限定されず、例えば、セル1を2枚の平板状冶具の間に挟んで、セル1の全面を厚み方向に均一に加圧する方法が挙げられる。セル1を所定温度において放置することによって、リチウムプレドープを自然に進行させることができる。リチウムプレドープ中のセル1の加圧は必須ではないが、プレドープの進行に伴って負極活物質層3が膨れる傾向があるため、加圧によってこの膨れを抑制することが好ましい。また、リチウムプレドープ時にセル1を冶具に挟んで体積一定を保持することは、その保持と、負極活物質層3及びセル1の内圧の上昇との拮抗によって、セル1を加圧することになる。したがって、リチウムプレドープ時の加圧の方法として、積極的に外部から圧力を加える方法、およびセル1の体積を一定に保ってセル1の内圧の上昇をセル1の加圧に転換する方法、の少なくとも一方を採用することができる。   In this embodiment, the cell 1 in which the electrode laminate and the electrolyte solution 14 are enclosed in the outer package 13 is obtained, and lithium pre-doping is performed while the cell 1 is pressurized. The method for pressurizing the cell 1 is not particularly limited, and examples thereof include a method in which the cell 1 is sandwiched between two flat jigs and the entire surface of the cell 1 is uniformly pressed in the thickness direction. By leaving the cell 1 at a predetermined temperature, the lithium pre-doping can be allowed to proceed naturally. Although pressurization of the cell 1 during lithium pre-doping is not essential, the negative electrode active material layer 3 tends to swell as the pre-doping progresses, and therefore it is preferable to suppress this swell by pressurization. In addition, holding the cell 1 in a fixed volume by holding the cell 1 between the jigs during lithium pre-doping pressurizes the cell 1 by antagonizing the holding and the increase in the internal pressure of the negative electrode active material layer 3 and the cell 1. . Therefore, as a method of pressurization during lithium pre-doping, a method of positively applying pressure from the outside, and a method of converting the increase in the internal pressure of cell 1 to pressurization of cell 1 while keeping the volume of cell 1 constant, At least one of the above can be adopted.

プレドープ工程においてセル1を加圧する程度としては、負極4を構成する負極材の種類にもよるが、負極4の厚み方向に対して、0.3kg/cm以上6.6kg/cm 以下の圧力にて加圧することが好ましい。0.3kg/cm未満であると、セル1の膨れを防止する効果が得られない場合がある。6.6kg/cm超であると、セル1の膨れを防止できるが、負極活物質層3および正極活物質層6を物理的に押しつぶす恐れがある。 The extent of pressurizing the cell 1 in the pre-doping process, depending on the kind of the negative electrode material constituting the negative electrode 4, the thickness direction of the negative electrode 4, 0.3 kg / cm 2 or more 6.6 kg / cm 2 or less of It is preferable to pressurize with pressure. If it is less than 0.3 kg / cm 2 , the effect of preventing the cell 1 from swelling may not be obtained. If it exceeds 6.6 kg / cm 2 , swelling of the cell 1 can be prevented, but the negative electrode active material layer 3 and the positive electrode active material layer 6 may be physically crushed.

(充電工程)
プレドープ工程の後、セル1の負極集電体2に接続された端子2z及び正極集電体5に接続された端子5zをそれぞれ外部電源に接続してセル1の充電を行う。セル1の充電を初めて行う初回充電時におけるセル1の膨れを抑制するために、セル1を加圧しながら初回充電を行う。加圧の方法は特に限定されず、例えば、プレドープ工程におけるセル1及び負極活物質層3の加圧方法と同じ方法が採用できる。
(Charging process)
After the pre-doping process, the terminal 2z connected to the negative electrode current collector 2 of the cell 1 and the terminal 5z connected to the positive electrode current collector 5 are respectively connected to an external power source to charge the cell 1. In order to suppress the swelling of the cell 1 at the time of the initial charge when the cell 1 is charged for the first time, the initial charge is performed while pressurizing the cell 1. The method of pressurization is not particularly limited, and for example, the same method as the pressurization method of the cell 1 and the negative electrode active material layer 3 in the pre-doping step can be adopted.

充電工程においてセル1を加圧する程度としては、負極4を構成する負極材の種類にもよるが、セル1の厚み方向に対して、0.3kg/cm以上6.6kg/cm 以下の圧力にて加圧することが好ましい。0.3kg/cm未満であると、セル1の膨れを防止する効果が得られない場合がある。6.6kg/cm超であると、セル1の膨れを防止できるが、負極活物質層3および正極活物質層6を物理的に押しつぶす恐れがある。 The extent of pressurizing the cell 1 in the charging step, depending on the kind of the negative electrode material constituting the negative electrode 4, the cell 1 to the thickness direction, 0.3 kg / cm 2 or more 6.6 kg / cm 2 or less of It is preferable to pressurize with pressure. If it is less than 0.3 kg / cm 2 , the effect of preventing the cell 1 from swelling may not be obtained. If it exceeds 6.6 kg / cm 2 , swelling of the cell 1 can be prevented, but the negative electrode active material layer 3 and the positive electrode active material layer 6 may be physically crushed.

以下、本実施形態に係るリチウムイオン二次電池の各構成を詳細に説明する。特に、リチウムプレドープの効果を高める観点から好ましい実施形態を例示する。   Hereafter, each structure of the lithium ion secondary battery which concerns on this embodiment is demonstrated in detail. In particular, preferred embodiments are exemplified from the viewpoint of enhancing the effect of lithium pre-doping.

<負極について>
負極4を構成する第一の有孔導電性板2の材料、面積、及び厚みは特に制限されず、公知のリチウムイオン二次電池の負極集電体と同じ材料、面積、及び厚みが適用可能である。例えば、有孔金属板が好適である。具体的には、例えば、面積40×20cm、厚み5〜50μmのパンチング加工を施した圧延銅箔や電解銅箔等が挙げられる。金属板を構成する金属の種類は特に限定されず、例えば、銅、チタン、ニッケル、ステンレス鋼等の金属が挙げられる。
<About negative electrode>
The material, area, and thickness of the first porous conductive plate 2 constituting the negative electrode 4 are not particularly limited, and the same material, area, and thickness as the negative electrode current collector of a known lithium ion secondary battery can be applied. It is. For example, a perforated metal plate is suitable. Specifically, for example, rolled copper foil or electrolytic copper foil subjected to punching with an area of 40 × 20 cm and a thickness of 5 to 50 μm can be given. The kind of metal which comprises a metal plate is not specifically limited, For example, metals, such as copper, titanium, nickel, stainless steel, are mentioned.

本実施形態で使用する有孔導電性板2には、電解液が板を通過することを可能にする貫通孔が複数設けられている。複数の貫通孔の形状、大きさ、個数、相対配置は特に制限されない。個々の孔は互いに独立していてもよいし、互いに連結していてもよい。貫通孔の個数が多過ぎたり、偏って配置されたりしていると、有孔導電性板2の表面に負極活物質層3を保持することが難しくなる場合がある。この場合を考慮して、貫通孔の個数や配置等を適宜調整する。
リチウムプレドープを行う際に、負極集電体2の片面又は両面に形成された負極活物質層3に対して均一にリチウム金属を拡散させる観点から、負極活物質層3を形成した集電体の領域の全面に亘って均一になるべく多数の貫通孔が配置されていることが好ましい。
The perforated conductive plate 2 used in the present embodiment is provided with a plurality of through holes that allow the electrolytic solution to pass through the plate. The shape, size, number, and relative arrangement of the plurality of through holes are not particularly limited. The individual holes may be independent from each other or may be connected to each other. If the number of through-holes is too large or arranged unevenly, it may be difficult to hold the negative electrode active material layer 3 on the surface of the porous conductive plate 2. Considering this case, the number and arrangement of the through holes are appropriately adjusted.
From the viewpoint of uniformly diffusing lithium metal to the negative electrode active material layer 3 formed on one side or both sides of the negative electrode current collector 2 when performing lithium pre-doping, the current collector formed with the negative electrode active material layer 3 It is preferable that as many through-holes as possible be arranged over the entire surface of the region.

負極集電体2に設けられた複数の貫通孔の形状や大きさは、互いに同じであっても良いし、異なっていても良い。貫通孔の貫通方向(中心軸線方向)に見たときに、貫通孔の内壁を構成する枠の一部が欠けていても構わない。つまり、「貫通孔」の用語は、導電性板に設けられた切れ込みを含む用語である。   The shapes and sizes of the plurality of through holes provided in the negative electrode current collector 2 may be the same as or different from each other. When viewed in the through direction of the through hole (the direction of the central axis), a part of the frame constituting the inner wall of the through hole may be missing. That is, the term “through hole” is a term including a notch provided in the conductive plate.

負極集電体2の片面又は両面に負極活物質層3を形成する。負極活物質層3の構成材料(負極材)としては、リチウムイオンを吸蔵及び放出可能な負極活物質を含む材料であって、初期充電前におけるリチウムプレドープ工程においてリチウムと不可逆的な反応を起こす負極活物質を含む材料であれば特に制限されず、公知の負極材が適用可能である。   The negative electrode active material layer 3 is formed on one side or both sides of the negative electrode current collector 2. The constituent material (negative electrode material) of the negative electrode active material layer 3 is a material containing a negative electrode active material capable of occluding and releasing lithium ions, and causes an irreversible reaction with lithium in the lithium pre-doping step before initial charging. The material is not particularly limited as long as it includes a negative electrode active material, and a known negative electrode material is applicable.

好適な負極活物質として例えば金属酸化物が挙げられる。前記金属酸化物としては、例えば酸化ケイ素等のリチウムと合金化可能な金属酸化物が挙げられる。酸化ケイ素としては、一般式「SiO(式中、zは0.5〜1.5のいずれかの数である。)」で表されるものが例示できる。ここで酸化ケイ素を「SiO」単位で見た場合、このSiOは、アモルファス状のSiOであるか、又はSi:SiOのモル比が約1:1となるように、ナノクラスターのSiの周囲にSiOが存在する、Si及びSiOの複合物である。SiOは、充放電時におけるSiの膨張及び収縮に対して緩衝作用を有すると推測される。 Examples of suitable negative electrode active materials include metal oxides. Examples of the metal oxide include metal oxides that can be alloyed with lithium such as silicon oxide. Examples of the silicon oxide include those represented by the general formula “SiO z (wherein z is any number from 0.5 to 1.5)”. Here, when the silicon oxide is viewed in “SiO” units, this SiO is amorphous SiO, or around the Si of the nanocluster so that the molar ratio of Si: SiO 2 is about 1: 1. This is a composite of Si and SiO 2 in which SiO 2 exists. SiO 2 is presumed to have a buffering action against the expansion and contraction of Si during charging and discharging.

酸化ケイ素は、粉末状又は粒子状であることが好ましい。粒子状の酸化ケイ素の平均粒子径は特に制限されず、例えば1〜30μmであることが好ましい。   The silicon oxide is preferably in the form of powder or particles. The average particle diameter of the particulate silicon oxide is not particularly limited, and is preferably 1 to 30 μm, for example.

負極活物質層3の形成方法は特に限定されず、例えば、負極集電体2上に負極活物質を含む負極材を5〜100μm程度の厚みで塗布した後、負極材に含まれる溶媒を乾燥除去することによって、集電体2上に負極活物質層を形成することができる。負極材としては、酸化ケイ素等の前記負極活物質の他に、PVDF、SBR等のバインダー樹脂(結着剤)及び炭素材料、金属粒子等の導電助剤を含むことが好ましい。これらの負極活物質、バインダー樹脂及び導電助剤の種類及び組み合わせは特に限定されず、公知のリチウムイオン二次電池の負極活物質層を構成する材料の組み合わせが適用できる。   The method for forming the negative electrode active material layer 3 is not particularly limited. For example, a negative electrode material containing a negative electrode active material is applied on the negative electrode current collector 2 with a thickness of about 5 to 100 μm, and then the solvent contained in the negative electrode material is dried. By removing, the negative electrode active material layer can be formed on the current collector 2. In addition to the negative electrode active material such as silicon oxide, the negative electrode material preferably contains a binder resin (binder) such as PVDF and SBR, and a conductive aid such as a carbon material and metal particles. The types and combinations of these negative electrode active materials, binder resins, and conductive assistants are not particularly limited, and combinations of materials constituting the negative electrode active material layers of known lithium ion secondary batteries can be applied.

負極集電体2上に負極活物質層3を直接形成する方法を採用してもよいし、他の基材上に負極活物質層3を形成してから、負極集電体2上に負極活物質層3を転写して、さらに圧着する方法も採用してもよい。負極集電体2上に負極活物質層3を直接形成する場合においても、負極集電体2上に負極活物質層3を圧着する処理を行ってもよい。   A method of directly forming the negative electrode active material layer 3 on the negative electrode current collector 2 may be adopted, or after forming the negative electrode active material layer 3 on another base material, the negative electrode on the negative electrode current collector 2 is formed. A method in which the active material layer 3 is transferred and further crimped may be employed. Even when the negative electrode active material layer 3 is directly formed on the negative electrode current collector 2, a process of pressure bonding the negative electrode active material layer 3 on the negative electrode current collector 2 may be performed.

<正極について>
正極7を構成する第二の有孔導電性板5の材料、面積、及び厚みは特に制限されず、公知のリチウムイオン二次電池の正極集電体と同じ材料、面積、及び厚みが適用可能である。例えば、有孔金属板が好適である。具体的には、例えば、面積40×20cm、厚み5〜50μmのパンチング加工を施した圧延アルミニウム箔等が挙げられる。金属板を構成する金属の種類は特に限定されず、例えば、銅、アルミニウム、チタン、ニッケル、ステンレス鋼等の金属が挙げられる。正極7と負極4の面積が等しいことが好ましいため、第二の有孔導電性板5の面積は、第一の有孔導電性板2の面積と略同等であることが好ましい。
<About positive electrode>
The material, area, and thickness of the second porous conductive plate 5 constituting the positive electrode 7 are not particularly limited, and the same material, area, and thickness as those of the positive electrode current collector of a known lithium ion secondary battery can be applied. It is. For example, a perforated metal plate is suitable. Specifically, for example, rolled aluminum foil subjected to punching with an area of 40 × 20 cm and a thickness of 5 to 50 μm can be used. The kind of metal which comprises a metal plate is not specifically limited, For example, metals, such as copper, aluminum, titanium, nickel, stainless steel, are mentioned. Since the areas of the positive electrode 7 and the negative electrode 4 are preferably equal, the area of the second perforated conductive plate 5 is preferably substantially equal to the area of the first perforated conductive plate 2.

本実施形態で使用する第二の有孔導電性板5には、電解液が板の表面と裏面を通過可能な貫通孔が複数設けられている。複数の貫通孔の形状、大きさ、個数、相対配置の説明は、前述した第一の有孔導電性板2に設けられた貫通孔の説明と同様である。   The second porous conductive plate 5 used in the present embodiment is provided with a plurality of through-holes through which the electrolytic solution can pass through the front and back surfaces of the plate. The description of the shape, size, number, and relative arrangement of the plurality of through holes is the same as the description of the through holes provided in the first perforated conductive plate 2 described above.

正極集電体の片面又は両面に正極活物質層6を形成する。正極活物質層6の構成材料(正極材)としては、リチウムイオンを吸蔵及び放出可能な正極活物質を含む材料であれば特に限定されず、公知のリチウムイオン二次電池の正極材が適用可能である。   The positive electrode active material layer 6 is formed on one side or both sides of the positive electrode current collector. The constituent material (positive electrode material) of the positive electrode active material layer 6 is not particularly limited as long as the material includes a positive electrode active material capable of occluding and releasing lithium ions, and a positive electrode material of a known lithium ion secondary battery can be applied. It is.

好適な正極活物質として、例えば、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物等の金属酸リチウム化合物が挙げられる。金属酸リチウム化合物として、一般式「LiM(式中、Mは金属であり;x及びyは、金属Mと酸素Oとの組成比である。)」で表される金属酸リチウム化合物が例示できる。具体的には、例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等が例示できる。また、類似の組成であるオリビン型リン酸鉄リチウム(LiFePO4)が挙げられる。 Examples of suitable positive electrode active materials include lithium metal acid compounds such as lithium composite cobalt oxide, lithium composite nickel oxide, and lithium composite manganese oxide. As a metal acid lithium compound, a metal acid lithium compound represented by the general formula “LiM x O y (wherein M is a metal; x and y are composition ratios of metal M and oxygen O)” Can be illustrated. Specific examples include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Also include a composition similar olivine-type lithium iron phosphate (LiFePO 4).

前記一般式において、Mが複数種の金属であってもよい。このような金属酸リチウム化合物としては、例えば一般式「LiM (式中、M、M及びMは互いに異なる種類の金属であり;p、q、r及びyは、金属M、M及びMと酸素Oとの組成比である。)」で表されるものが例示できる。ここで、p+q+r=xである。前記一般式で表される金属酸リチウム化合物としては、LiNi0.33Mn0.33Co0.33等が例示できる。 In the general formula, M may be a plurality of kinds of metals. As such a metal acid lithium compound, for example, the general formula “LiM 1 p M 2 q M 3 r O y (wherein M 1 , M 2 and M 3 are different kinds of metals; p, q, r and y are the composition ratios of the metals M 1 , M 2 and M 3 and oxygen O.) ”. Here, p + q + r = x. Examples of the lithium metalate compound represented by the general formula include LiNi 0.33 Mn 0.33 Co 0.33 O 2 and the like.

正極活物質層6の形成方法は特に限定されず、例えば、正極集電体5上に正極活物質6を含む正極材を5〜100μm程度の厚みで塗布した後、正極材に含まれる溶媒を乾燥除去することによって、正極集電体5上に正極活物質層6を形成することができる。正極材としては、金属酸リチウム化合物等の正極活物質の他に、バインダー樹脂(結着剤)及び導電助剤を含むことが好ましい。これらの正極活物質、バインダー樹脂及び導電助剤の種類及び組み合わせは特に限定されず、公知のリチウムイオン二次電池の正極活物質層を構成する材料の組み合わせが適用できる。   The method for forming the positive electrode active material layer 6 is not particularly limited. For example, after the positive electrode material containing the positive electrode active material 6 is applied on the positive electrode current collector 5 with a thickness of about 5 to 100 μm, the solvent contained in the positive electrode material is changed. By removing by drying, the positive electrode active material layer 6 can be formed on the positive electrode current collector 5. The positive electrode material preferably contains a binder resin (binder) and a conductive auxiliary agent in addition to a positive electrode active material such as a metal acid lithium compound. The types and combinations of these positive electrode active materials, binder resins and conductive additives are not particularly limited, and combinations of materials constituting the positive electrode active material layers of known lithium ion secondary batteries can be applied.

正極集電体5上に正極活物質層6を直接形成する方法を採用してもよいし、他の基材上に正極活物質層6を形成してから、正極集電体5上に正極活物質層6を転写して、さらに圧着させる方法も採用してもよい。正極集電体5上に正極活物質層6を直接形成する場合においても、正極集電体5上に正極活物質層6を圧着させる処理を行ってもよい。   A method of directly forming the positive electrode active material layer 6 on the positive electrode current collector 5 may be adopted, or the positive electrode active material layer 6 may be formed on another substrate and then the positive electrode current collector 5 may be formed on the positive electrode current collector 5. A method of transferring the active material layer 6 and further press-bonding may also be employed. Even when the positive electrode active material layer 6 is directly formed on the positive electrode current collector 5, a process of pressure bonding the positive electrode active material layer 6 on the positive electrode current collector 5 may be performed.

<電極積層体について>
負極4と正極7を対面配置して両電極の短絡を防ぐ目的及び電解液を保持する目的で、両電極の間にセパレータ8を配置して、第一の負極4A(4)、セパレータ8、正極7、セパレータ8、第二の負極4B(4)の順で積層した電極積層体を得る。積層前又は積層後に負極4及び正極7をプレスして、各電極を構成する電極活物質層の体積密度を調整してもよい。
<About electrode laminate>
For the purpose of preventing the short circuit between the two electrodes by placing the negative electrode 4 and the positive electrode 7 facing each other and maintaining the electrolyte, a separator 8 is disposed between the two electrodes, and the first negative electrode 4A (4), separator 8, An electrode laminate in which the positive electrode 7, the separator 8, and the second negative electrode 4B (4) are laminated in this order is obtained. You may press the negative electrode 4 and the positive electrode 7 before or after lamination | stacking, and may adjust the volume density of the electrode active material layer which comprises each electrode.

セパレータ8は絶縁性を有し、電解液を保持又は通過させることが可能なものであれば特に限定されず、公知のリチウムイオン二次電池で使用されるセパレータが適用可能である。例えば、オレフィン系樹脂からなる多孔質膜又は不織布、絶縁性粒子からなる多孔性絶縁膜等が挙げられる。絶縁性粒子を含む組成物を負極又は正極の表面に塗布して、セパレータ8としての絶縁性膜を前記表面に形成する公知方法も採用できる。セパレータ8の厚みは、絶縁性が保たれる厚みであれば特に限定されず、例えば5〜50μm程度の厚みが挙げられる。   The separator 8 is not particularly limited as long as it has insulating properties and can hold or pass the electrolytic solution, and a separator used in a known lithium ion secondary battery is applicable. For example, a porous film or non-woven fabric made of an olefin resin, a porous insulating film made of insulating particles, and the like can be given. A known method in which a composition containing insulating particles is applied to the surface of the negative electrode or positive electrode to form an insulating film as the separator 8 on the surface can also be employed. The thickness of the separator 8 will not be specifically limited if it is the thickness by which insulation is maintained, For example, the thickness of about 5-50 micrometers is mentioned.

本実施形態においては、電極積層体の最外面に位置する各負極活物質層3の表面3aに、第三の有孔導電性板9と第四の有孔導電性板11を重ね置き、これらの有孔導電性板9,11を介して更にリチウム供給板10,12を積層する。
以下、第三の有孔導電性板9及びリチウム供給板10について説明するが、第四の有孔導電性板11及びリチウム供給板12の説明もこれと同じであるため省略する。
In the present embodiment, a third porous conductive plate 9 and a fourth porous conductive plate 11 are stacked on the surface 3a of each negative electrode active material layer 3 located on the outermost surface of the electrode laminate, and these The lithium supply plates 10 and 12 are further laminated through the perforated conductive plates 9 and 11.
Hereinafter, the third porous conductive plate 9 and the lithium supply plate 10 will be described. However, the description of the fourth porous conductive plate 11 and the lithium supply plate 12 is also the same, and the description thereof will be omitted.

リチウム供給板10を負極活物質層の表面3aに接触させず、第三の有孔導電性板9を介在させることによって、後で行うリチウムプレドープの際に、負極活物質層3の全体に亘って均一にドープすることができる。仮に、表面3aにリチウム供給板10を直接に配置した場合、表面3aの凹凸の影響及びリチウム供給板10(例えばリチウム金属箔)の皺の影響を受けて、リチウム供給板10が密着する箇所と浮き上がる箇所とが生じる。この場合、密着する箇所が濃くドープされて、浮き上がる箇所が薄くドープされるため、負極活物質層3の全体に亘って均一にドープすることが難しくなる。   The lithium supply plate 10 is not brought into contact with the surface 3a of the negative electrode active material layer, and the third porous conductive plate 9 is interposed so that the whole of the negative electrode active material layer 3 is formed during lithium pre-doping performed later. It is possible to dope uniformly throughout. If the lithium supply plate 10 is directly disposed on the surface 3a, the lithium supply plate 10 is in close contact with the surface 3a due to the unevenness of the surface 3a and the effect of wrinkles on the lithium supply plate 10 (for example, lithium metal foil). A floating part is generated. In this case, since the portion to be in close contact is heavily doped, and the floating portion is lightly doped, it is difficult to dope uniformly throughout the negative electrode active material layer 3.

第三の有孔導電性板9には、電解液が板を通過することを可能にする貫通孔が複数設けられている。複数の貫通孔の形状、大きさ、個数、相対配置は特に制限されない。個々の孔は互いに独立していてもよいし、互いに連結していてもよい。リチウムプレドープを行う際に、リチウム供給板10から溶出したリチウム金属又はリチウムイオンが、第三の有孔導電性板9を通過して、負極活物質層3に対して均一に拡散する観点から、有孔導電性板9の負極活物質層3に載置する領域の全面に亘って均一になるべく多数の貫通孔が配置されていることが好ましい。   The third porous conductive plate 9 is provided with a plurality of through holes that allow the electrolyte to pass through the plate. The shape, size, number, and relative arrangement of the plurality of through holes are not particularly limited. The individual holes may be independent from each other or may be connected to each other. From the viewpoint of lithium metal or lithium ions eluted from the lithium supply plate 10 passing through the third porous conductive plate 9 and uniformly diffusing into the negative electrode active material layer 3 when performing lithium pre-doping. In addition, it is preferable that as many through holes as possible be arranged over the entire surface of the region of the porous conductive plate 9 placed on the negative electrode active material layer 3.

第三の有孔導電性板9が有する貫通孔の平均孔径(穴径)は、例えば、0.001mm〜1.0mmが好ましく、0.01mm〜0.7mmがより好ましく、0.1mm〜0.4mmが更に好ましい。
第三の有孔導電性板9の空孔率は、例えば、5〜50%が好ましく、10〜35%がより好ましく、10〜20%が更に好ましい。
前記空孔率は、有孔を形成した導電性板と有孔を形成する前の導電性板との質量比から算出する方法で求められる。例えば、前記質量比が1/2である場合の空孔率は50%である。
The average hole diameter (hole diameter) of the through holes of the third porous conductive plate 9 is, for example, preferably 0.001 mm to 1.0 mm, more preferably 0.01 mm to 0.7 mm, and 0.1 mm to 0. More preferably, 4 mm.
For example, the porosity of the third porous conductive plate 9 is preferably 5 to 50%, more preferably 10 to 35%, and still more preferably 10 to 20%.
The porosity is obtained by a method of calculating from a mass ratio between the conductive plate in which the holes are formed and the conductive plate before the holes are formed. For example, the porosity when the mass ratio is 1/2 is 50%.

第三の有孔導電性板9を構成する材料は、導電性材料であれば特に限定されず、リチウム金属およびリチウムイオンを吸着し難い材料であることが好ましい。このような導電性材料としては、例えば、前述した電極集電体としても利用可能な銅、アルミニウム、チタン等の金属、合金、導電性ポリマーを含有する多孔質性樹脂又は導電性布等が挙げられる。より具体的には、金属製のパンチング箔(板)、板状のメッシュ等が例示できる。このうち、表面の凹凸が少なく平面性が高い、金属製のパンチング箔を使用することが好ましい。   The material constituting the third porous conductive plate 9 is not particularly limited as long as it is a conductive material, and is preferably a material that hardly adsorbs lithium metal and lithium ions. Examples of such a conductive material include metals such as copper, aluminum, and titanium that can also be used as the above-described electrode current collector, alloys, porous resins or conductive cloths containing a conductive polymer, and the like. It is done. More specifically, a metal punching foil (plate), a plate-like mesh, and the like can be exemplified. Among these, it is preferable to use a metal punching foil with less surface irregularities and high flatness.

第三の有孔導電性板9の面積は、リチウム供給板10と略同等又はそれよりも一回り大きい程度の面積であることが好ましい。この面積であると、リチウム供給板10が直接に負極活物質層の表面3aに接触することを防止することができる。また、リチウム供給板10から溶出したリチウム金属又はリチウムイオンが負極活物質層の表面3aにアクセスする容易さを、表面3aの全面においてほぼ均一にする観点から、第三の有孔性導電性板9の面積は、表面3aと略同等又はそれよりも一回り小さい程度の面積であることが好ましい(図1参照)。   The area of the third perforated conductive plate 9 is preferably the same as that of the lithium supply plate 10 or an area that is slightly larger than that. With this area, the lithium supply plate 10 can be prevented from directly contacting the surface 3a of the negative electrode active material layer. Further, from the viewpoint of making the ease of access of the lithium metal or lithium ions eluted from the lithium supply plate 10 to the surface 3a of the negative electrode active material layer substantially uniform over the entire surface 3a, the third porous conductive plate The area 9 is preferably the same as the surface 3a or slightly smaller than the surface 3a (see FIG. 1).

第三の有孔導電性板9の厚みは特に限定されず、リチウム供給板10から溶出したリチウム金属又はリチウムイオンが容易に通過して拡散し易くなる観点から、薄い方が好ましい。例えば、5μm〜50μm程度の厚みが好適である。   The thickness of the third porous conductive plate 9 is not particularly limited, and is preferably thinner from the viewpoint that lithium metal or lithium ions eluted from the lithium supply plate 10 can easily pass through and diffuse. For example, a thickness of about 5 μm to 50 μm is suitable.

リチウム供給板10を構成する材料は、接触した電解液にリチウム金属又はリチウムイオンが溶出する材料であれば特に限定されず、公知のリチウムプレドープに使用されるリチウム金属含有材料が適用できる。例えば、リチウム金属又はリチウム合金からなる金属箔、リチウム金属又はリチウム合金を含む多孔性樹脂材料、リチウム金属又はリチウム合金を含む多孔性無機材料等、が挙げられる。リチウム供給板10がリチウム金属箔であると、リチウムプレドープの進行とともにリチウム金属箔が溶解して無くなる。   The material which comprises the lithium supply board 10 will not be specifically limited if lithium metal or a lithium ion elutes into the electrolyte solution which contacted, The lithium metal containing material used for well-known lithium pre dope is applicable. Examples thereof include a metal foil made of lithium metal or a lithium alloy, a porous resin material containing lithium metal or a lithium alloy, a porous inorganic material containing lithium metal or a lithium alloy, and the like. If the lithium supply plate 10 is a lithium metal foil, the lithium metal foil dissolves and disappears with the progress of lithium pre-doping.

リチウム供給板10の形状は、第三の有孔性導電板9の表面9aに対して載置可能な平面を有する形状であれば特に限定されず、「板材」だけに限られず、線材が編まれた平面状の布、薄く延した箔、第三の有孔性導電板9の表面9a上に形成された膜等の形状を含む。リチウム供給板10は、第三の有孔性導電板9と同様の複数の貫通孔を有していてもよいし、有していなくてもよい。   The shape of the lithium supply plate 10 is not particularly limited as long as it has a flat surface that can be placed on the surface 9a of the third porous conductive plate 9, and is not limited to the “plate material”. It includes shapes such as a thin flat cloth, a thinly stretched foil, and a film formed on the surface 9a of the third porous conductive plate 9. The lithium supply plate 10 may or may not have a plurality of through holes similar to the third porous conductive plate 9.

リチウム供給板10の厚みは特に限定されず、負極4の不可逆容量を補償する量のリチウム金属を供給可能な厚みを適宜設定すればよい。例えば、リチウム金属箔を使用する場合、10μm〜200μm程度の厚みが好適である。   The thickness of the lithium supply plate 10 is not particularly limited, and a thickness capable of supplying an amount of lithium metal that compensates for the irreversible capacity of the negative electrode 4 may be set as appropriate. For example, when lithium metal foil is used, a thickness of about 10 μm to 200 μm is suitable.

本実施形態においては、図1に示す様に、正極7の両側に第一の負極4A(4)と第二の負極4B(4)が備えられ、第一の負極4Aの外側の表面に第三の有孔性導電板9を介してリチウム供給板10が積層され、第二の負極4Bの外側の表面に第四の有孔性導電板11を介してリチウム供給板12が積層されている。   In the present embodiment, as shown in FIG. 1, the first negative electrode 4A (4) and the second negative electrode 4B (4) are provided on both sides of the positive electrode 7, and the first negative electrode 4A has a first electrode on the outer surface. The lithium supply plate 10 is laminated via the three porous conductive plates 9, and the lithium supply plate 12 is laminated on the outer surface of the second negative electrode 4B via the fourth porous conductive plate 11. .

本実施形態の構成に代えて、負極4A及び負極4Bのどちらか一方の負極だけにリチウム供給板を配置しても構わないが、リチウムプレドープの処理効率を高める観点から、両方の負極に対してリチウム供給板を配置することが好ましい。   In place of the configuration of the present embodiment, the lithium supply plate may be disposed only on one of the negative electrode 4A and the negative electrode 4B, but from the viewpoint of increasing the processing efficiency of lithium pre-doping, It is preferable to arrange a lithium supply plate.

本実施形態の変形例として、負極4/セパレータ8/正極7を1つの積層ユニットとして、複数の積層ユニットが間にセパレータを挟んで積層された電極積層体を備えたリチウムイオン二次電池が挙げられる。この変形例においても、前述したように、電極積層体の最上面および最下面を構成する負極に、それぞれ有孔導電性板9,11を介してリチウム供給板10,12を配置することによって、同様にリチウムプレドープを行うことができる。   As a modification of the present embodiment, there is a lithium ion secondary battery including an electrode stack in which a negative electrode 4 / separator 8 / positive electrode 7 are used as one stacked unit and a plurality of stacked units are stacked with a separator interposed therebetween. It is done. Also in this modification example, as described above, by disposing the lithium supply plates 10 and 12 via the porous conductive plates 9 and 11 respectively on the negative electrodes constituting the uppermost surface and the lowermost surface of the electrode laminate, Similarly, lithium pre-doping can be performed.

例えば20層程度の多数の正極及び負極が積層された電極積層体を備えている場合、当該電極積層体の中間層としてリチウム供給板及び有孔性導電板を配置してもよい。この場合、非導電性のセパレータとリチウム供給板とが接触しないように配置することが好ましく、リチウム供給板を有孔導電性板で挟んだ配置がより好ましい。例えば、「負極―・・・―負極―(有孔性導電板−リチウム供給板―有孔性導電板)―セパレータ―正極―セパレータ―負極―「有孔性導電板−リチウム供給板―有孔性導電板」―セパレータ―正極―セパレータ―・・・―負極」の様に積層することができる。   For example, when an electrode laminate in which a large number of positive and negative electrodes of about 20 layers are laminated, a lithium supply plate and a porous conductive plate may be arranged as an intermediate layer of the electrode laminate. In this case, the non-conductive separator and the lithium supply plate are preferably arranged so as not to contact each other, and more preferably, the lithium supply plate is sandwiched between the perforated conductive plates. For example, "Negative electrode -...-Negative electrode-(Perforated conductive plate-Lithium supply plate-Perforated conductive plate)-Separator-Positive electrode-Separator-Negative electrode-" Perforated conductive plate-Lithium supply plate-Perforated Can be laminated like “conductive plate” -separator-positive electrode-separator --- negative electrode.

<電池の組み立てについて>
電極積層体を構成する負極4A,4Bにリチウム供給板10,12を配置した後、電極積層体を外装体13で仮封止する。外装体13の種類は特に限定されず、公知のリチウムイオン二次電池に使用される金属製又は樹脂製の外装体が適用できる。電池の形態は特に限定されず、箱型、コイン型、巻回し型(筒型)、シート型等、公知の電池形態を採用できる。本実施形態においては、外装体13として樹脂フィルムを使用して、電極積層体をラミネートしたシート型のラミネートセルを得る。セルを仮封止する際、負極集電体2及び正極集電体5にそれぞれ電気的に接続された引出配線2z,5z(タブ配線)を外装体13の外部に突出させる。各引出配線は、外部回路へ接続するための電極端子として機能する。
<Battery assembly>
After the lithium supply plates 10 and 12 are arranged on the negative electrodes 4A and 4B constituting the electrode laminate, the electrode laminate is temporarily sealed with the outer package 13. The kind of the exterior body 13 is not specifically limited, The metal or resin exterior body used for a well-known lithium ion secondary battery is applicable. The form of the battery is not particularly limited, and a known battery form such as a box type, a coin type, a wound type (cylinder type), a sheet type, or the like can be adopted. In the present embodiment, a resin film is used as the exterior body 13 to obtain a sheet-type laminate cell in which the electrode laminate is laminated. When temporarily sealing the cell, lead-out wirings 2z and 5z (tab wiring) electrically connected to the negative electrode current collector 2 and the positive electrode current collector 5 are projected to the outside of the outer package 13. Each lead-out wiring functions as an electrode terminal for connecting to an external circuit.

ラミネートセルの仮封止を部分的に解いて、電解質14を注入した後で完全に封止する。電解質14は、ゲル状又は液状であることが好ましく、液状の電解液であることがより好ましい。ゲル状又は液状であると、リチウム供給体10から溶出したリチウム金属又はリチウムイオンの電解質14内における拡散効率が高まり、リチウムプレドープの処理効率が向上する。   The laminated cell is partially unsealed and completely sealed after the electrolyte 14 is injected. The electrolyte 14 is preferably in the form of a gel or liquid, and more preferably a liquid electrolyte. When it is in a gel or liquid state, the diffusion efficiency of lithium metal or lithium ions eluted from the lithium supply body 10 in the electrolyte 14 is increased, and the processing efficiency of lithium pre-doping is improved.

<電解液について>
本実施形態においては、リチウム供給体にリチウム金属が含まれるので、電解質14としては、水分が実質的に含まれない(例えば、100ppm未満)非水系電解液が好ましい。非水系電解液としては、例えば、非水系溶媒にリチウム塩が溶解された公知の非水系電解液が挙げられる。具体的には、例えば、LiPF6、LiBF4、LiClO4等のリチウム塩が、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチル等の有機溶媒に溶解された電解液が挙げられる。電解液のリチウム塩濃度は特に限定されず、例えば、0.5〜2mol/L程度が挙げられる。
<About electrolyte>
In this embodiment, since lithium metal is contained in the lithium supply body, the electrolyte 14 is preferably a non-aqueous electrolyte solution that does not substantially contain moisture (for example, less than 100 ppm). Examples of the non-aqueous electrolyte include known non-aqueous electrolytes in which a lithium salt is dissolved in a non-aqueous solvent. Specifically, for example, lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, etc. And an electrolytic solution dissolved in the organic solvent. The lithium salt concentration of the electrolytic solution is not particularly limited, and examples thereof include about 0.5 to 2 mol / L.

<リチウムプレドープについて>
封止したラミネートセルを所定温度において放置することによって、リチウムプレドープを自然に進行させることができる。この際、ラミネートセルを加圧することにより、リチウムプレドープを更に促進することができる。リチウム供給体10,12から電解液14に溶出したリチウム金属又はリチウムイオンは、有孔導電性板9,11の貫通孔および電極集電体2,5の貫通孔を通過して、各負極活物質層3に拡散及び浸透する。負極活物質層3においては、リチウムシリケート等の副生成物が生成して、不可逆容量の原因物質が不活化されてもよい。
<About lithium pre-dope>
By leaving the sealed laminate cell at a predetermined temperature, the lithium pre-dope can be allowed to proceed naturally. At this time, the lithium pre-dope can be further promoted by pressurizing the laminate cell. Lithium metal or lithium ions eluted from the lithium supply bodies 10 and 12 into the electrolyte solution 14 pass through the through holes of the perforated conductive plates 9 and 11 and the through holes of the electrode current collectors 2 and 5, respectively. It diffuses and penetrates into the material layer 3. In the negative electrode active material layer 3, a by-product such as lithium silicate may be generated, and the causative substance of irreversible capacity may be inactivated.

ここで、リチウムプレドープ時に有孔導電性板9,11を備えた状態でラミネートセルを加圧することによって、電極積層体が膨張することを抑制し、電極の厚みの増加をより効果的に抑制することができる。更に、有孔導電性板9,11が介在していることによりリチウムのドープ反応が電極積層体の全体に亘って均一に進むため、ドープ反応が不均一に進んだ場合に発生する電極の歪みを防ぐことができる。この結果、歪みが生じた場合に発生する負極活物質層3の剥がれを防ぎ、負極集電体2に対する負極活物質層3の密着性を一層高めることができる。   Here, by pressurizing the laminate cell with the porous conductive plates 9 and 11 at the time of lithium pre-doping, the electrode laminate is suppressed from expanding and the increase in the electrode thickness is more effectively suppressed. can do. Furthermore, since the lithium dope reaction proceeds uniformly over the entire electrode stack due to the presence of the perforated conductive plates 9, 11, electrode distortion that occurs when the dope reaction proceeds non-uniformly. Can be prevented. As a result, it is possible to prevent peeling of the negative electrode active material layer 3 that occurs when distortion occurs, and to further improve the adhesion of the negative electrode active material layer 3 to the negative electrode current collector 2.

本実施形態においては、各負極活物質層の表面3aに直接リチウム供給体10,12を貼り付けず、有孔導電性板9,11を介在させているため、リチウム金属(リチウムイオン)が各負極活物質層3の内部に均一に拡散及び浸透し得る。このメカニズムを以下に考察する。   In this embodiment, since the lithium supply bodies 10 and 12 are not directly attached to the surface 3a of each negative electrode active material layer, and the porous conductive plates 9 and 11 are interposed, lithium metal (lithium ions) is each The anode active material layer 3 can be uniformly diffused and penetrated inside. This mechanism is considered below.

各負極活物質層の表面(電極表面)に直接リチウム供給体を貼り付けた場合、電極表面が不均一に反応する。これは、ミクロの視点において、電極表面とリチウム供給体とが接触する部分のみが反応し易いためである。反応が先行して進む部分は、リチウムが結合したことにより物理的に膨張する。このため、不均一な反応は、各負活物質層の剥がれ、不均一な膨れによるシワ及びうねりの発生を引き起こす。   When a lithium supply body is directly attached to the surface (electrode surface) of each negative electrode active material layer, the electrode surface reacts unevenly. This is because only the portion where the electrode surface and the lithium supplier are in contact with each other easily reacts from a microscopic viewpoint. The portion where the reaction proceeds is physically expanded due to the bonding of lithium. For this reason, a non-uniform reaction causes peeling of each negative active material layer, and causes wrinkles and undulations due to non-uniform swelling.

一方、パンチング箔等の有孔導電性板9,11を間に介在させる本実施形態の場合、基本的には、有孔導電性板9,11の所定位置に設けられた複数の貫通孔を通して、リチウム金属(リチウムイオン)が電極表面に供給される。つまり、各貫通孔がリチウム金属の供給源になるため、各貫通孔の相対的な配置を制御することによって、電極表面上にリチウム金属の供給源を均一に配置することができる。この結果、各負極活物質層に均一にリチウム金属をドープすることができる。さらに、有孔導電性板9,11が電極表面を押さえているため、電極表面における活物質層の剥がれ、膨れ、シワの発生等を抑制することができる。   On the other hand, in the case of this embodiment in which perforated conductive plates 9 and 11 such as punching foil are interposed, basically, a plurality of through holes provided at predetermined positions of the perforated conductive plates 9 and 11 are passed through. Lithium metal (lithium ions) is supplied to the electrode surface. That is, since each through-hole becomes a lithium metal supply source, the lithium metal supply source can be uniformly arranged on the electrode surface by controlling the relative arrangement of each through-hole. As a result, each negative electrode active material layer can be uniformly doped with lithium metal. Furthermore, since the porous conductive plates 9 and 11 hold the electrode surface, the active material layer on the electrode surface can be prevented from being peeled off, swollen, or wrinkled.

本実施形態で使用する有孔導電性板9,11は、導電性であるため、負極表面とリチウム供給体の間に電位差が発生し得る。この電位差があることによってリチウム供給体からリチウム金属(リチウムイオン)が溶出することが促進されると考えられる。この理由は、次のように考えられる。まず、電解液中のリチウムイオンが拡散及び浸透して、負極活物質層内で還元されてリチウム金属になる。これにより電解液中のリチウムイオン濃度が低下する。この濃度低下に伴って、リチウム供給体のリチウム金属がイオン化して電解液中に溶解し、上記濃度低下を抑制する方向に働くと推測される。この一連のプロセスが繰り返されることによってリチウムプレドープが進行するならば、上記の電位差がリチウム金属の溶出及びイオン化に寄与する可能性がある。事実、後述する比較例7の実験結果で示すように、有孔導電性板9,11に代えて非導電性の多孔質セパレータを使用した場合、上記電位差は発生せず、リチウムプレドープが促進されないことが確かめられた。   Since the perforated conductive plates 9 and 11 used in this embodiment are conductive, a potential difference may be generated between the negative electrode surface and the lithium supply body. It is considered that the presence of this potential difference promotes the elution of lithium metal (lithium ions) from the lithium supplier. The reason is considered as follows. First, lithium ions in the electrolytic solution diffuse and permeate, and are reduced in the negative electrode active material layer to become lithium metal. Thereby, the lithium ion concentration in electrolyte solution falls. Along with this decrease in concentration, it is presumed that the lithium metal of the lithium supplier is ionized and dissolved in the electrolytic solution, and works to suppress the concentration decrease. If lithium pre-doping proceeds by repeating this series of processes, the above-described potential difference may contribute to elution and ionization of lithium metal. In fact, as shown in the experimental results of Comparative Example 7 described later, when a non-conductive porous separator is used instead of the porous conductive plates 9 and 11, the above potential difference does not occur, and lithium pre-doping is accelerated. It was confirmed that it was not done.

以下、実施例を示して本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(1)使用した原料
本実施例で使用した原料を以下に示す。
・導電助剤
アセチレンブラック(電気化学工業社製「HS−100」、平均粒子径(48nm))
カーボンナノチューブ(保土谷化学社製「NT−7」、平均繊維径(65nm)、平均繊維長(6um以上))
・バインダー
スチレン−ブタジエン樹脂(以下、「SBR」と略記する)(JSR社製)
・(C)有機溶媒
エチレンカーボネート(以下、「EC」と略記する)(キシダ化学社製)
プロピレンカーボネート(以下、「PC」と略記する)(キシダ化学社製)
(1) Used raw materials The raw materials used in this example are shown below.
-Conductive auxiliary agent acetylene black ("HS-100" manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (48 nm))
Carbon nanotube ("NT-7" manufactured by Hodogaya Chemical Co., Ltd., average fiber diameter (65nm), average fiber length (6um or more))
Binder Styrene-butadiene resin (hereinafter abbreviated as “SBR”) (manufactured by JSR)
(C) Organic solvent Ethylene carbonate (hereinafter abbreviated as “EC”) (Kishida Chemical Co., Ltd.)
Propylene carbonate (hereinafter abbreviated as “PC”) (manufactured by Kishida Chemical Co., Ltd.)

[実施例1]
(負極材の製造)
一酸化ケイ素(SiO、平均粒子径1μm、69質量部)、アセチレンブラック(10質量部)、カーボンナノチューブ(6質量部)、ポリアクリル酸リチウム(全酸基の30モル%がリチウム塩とされたもの、以下、「PAALi」と略記することがある、12質量部)、及びSBR(3質量部)を試薬瓶に入れ、さらにここに蒸留水を添加して濃度調整した後、ディスパーを用いて、この濃度調整したものを3000rpmで90分間混合した。次いで、超音波ホモジナイザーを用いてこの混合物を10分間分散処理した後、再度、自公転ミキサーを用いてこの分散物を2000rpmで3分間混合することにより、負極材を得た。ここまでの操作は、すべて25℃で行った。
[Example 1]
(Manufacture of negative electrode materials)
Silicon monoxide (SiO, average particle diameter 1 μm, 69 parts by mass), acetylene black (10 parts by mass), carbon nanotubes (6 parts by mass), lithium polyacrylate (30 mol% of all acid groups were converted to lithium salts) In the following, 12 parts by mass), which may be abbreviated as “PAALi”, and SBR (3 parts by mass) are placed in a reagent bottle, and distilled water is added thereto to adjust the concentration. The solution whose concentration was adjusted was mixed at 3000 rpm for 90 minutes. Next, this mixture was subjected to a dispersion treatment for 10 minutes using an ultrasonic homogenizer, and then this dispersion was again mixed for 3 minutes at 2000 rpm using a self-revolving mixer to obtain a negative electrode material. All the operations so far were performed at 25 ° C.

(負極の製造)
ダイヘッドが装着された塗工機を用いて、厚さ10μmのパンチング銅箔(穴径0.3mm、空孔率16.7%、福田金属箔粉工業社製)の両面に、上記で得られた負極材を塗布した。この際の条件は、塗工速度2m/min、乾燥温度100℃であった。その後、ロールプレス機を用いて、表1の「プレドープ工程前の負極活物質層の体積密度」となるような加圧条件でプレスすることによって、集電体である銅箔上の両面に厚さ、それぞれ25μmの負極活物質層を形成して、負極を得た。得られた負極は、負極活物質層部分(104×62mm)と、未塗工部分(タブ部分、2×2cm)の寸法であった。
前述した方法によって求めた負極活物質層の体積密度は1.0g/cmであった。
(Manufacture of negative electrode)
Using a coating machine equipped with a die head, the above is obtained on both sides of a 10 μm-thick punched copper foil (hole diameter: 0.3 mm, porosity: 16.7%, manufactured by Fukuda Metal Foil Powder Co., Ltd.) A negative electrode material was applied. The conditions at this time were a coating speed of 2 m / min and a drying temperature of 100 ° C. Then, using a roll press machine, by pressing on the pressurization conditions which become "the volume density of the negative electrode active material layer before a pre dope process" of Table 1, it is thick on both surfaces on the copper foil which is a collector. Each negative active material layer having a thickness of 25 μm was formed to obtain a negative electrode. The obtained negative electrode had dimensions of a negative electrode active material layer portion (104 × 62 mm) and an uncoated portion (tab portion, 2 × 2 cm).
The volume density of the negative electrode active material layer determined by the above-described method was 1.0 g / cm 3 .

(正極材の製造)
ニッケル・コバルト・マンガン酸リチウム(Ni:Co:Mn=1:1:1、LiNMC)(93質量部)と、ポリフッ化ビニリデン(PVDF)(4質量部)と、導電助剤であるカーボンブラック(3質量部)とを混合して正極混合材を調製し、これをN−メチルピロリドン(NMP)中に分散させて、正極材(スラリー)を得た。
(Manufacture of positive electrode material)
Nickel, cobalt, lithium manganate (Ni: Co: Mn = 1: 1: 1, LiNMC) (93 parts by mass), polyvinylidene fluoride (PVDF) (4 parts by mass), and carbon black ( 3 parts by mass) was mixed to prepare a positive electrode mixed material, which was dispersed in N-methylpyrrolidone (NMP) to obtain a positive electrode material (slurry).

(正極の製造)
負極の製造工程と同様に、ダイヘッドが装着された塗工機を用いて、厚さ15μmのパンチングAl箔(穴径0.3mm、空孔率16.7%、福田金属箔粉工業社製)の両面に、上記で得られた正極材を塗布した。この際の条件は、塗工速度2m/min、乾燥温度140℃であった。その後、ロールプレス機を用いて、表1の「プレドープ工程前の負極活物質層の体積密度」となるような加圧条件でプレスすることによって、集電体である銅箔上の両面に厚さ、それぞれ60μmの正極活物質層を形成して、正極を得た。得られた正極は、正極活物質層部分(102×60mm)と、未塗工部分(タブ部分、2×2cm)の寸法であった。
(Manufacture of positive electrode)
Similar to the negative electrode manufacturing process, using a coating machine equipped with a die head, a punching Al foil with a thickness of 15 μm (hole diameter: 0.3 mm, porosity: 16.7%, manufactured by Fukuda Metal Foil Powder Industry Co., Ltd.) The positive electrode material obtained above was applied to both sides of the above. The conditions at this time were a coating speed of 2 m / min and a drying temperature of 140 ° C. Then, using a roll press machine, by pressing on the pressurization conditions which become "the volume density of the negative electrode active material layer before a pre dope process" of Table 1, it is thick on both surfaces on the copper foil which is a collector. A positive electrode active material layer having a thickness of 60 μm was formed to obtain a positive electrode. The obtained positive electrode had dimensions of a positive electrode active material layer portion (102 × 60 mm) and an uncoated portion (tab portion, 2 × 2 cm).

(電解液の製造)
有機溶媒として、EC及びPCの混合溶媒(EC:PC=30:70(体積比))をポリ容器に量り取り、ここにシュウ酸リチウム−三フッ化ホウ素錯体を加えて、シュウ酸リチウム−三フッ化ホウ素錯体中のリチウム原子の濃度が1.0モル/kgとなるようにし、23℃で混合することにより、電解液を得た。
(Manufacture of electrolyte)
As an organic solvent, a mixed solvent of EC and PC (EC: PC = 30: 70 (volume ratio)) is weighed into a plastic container, to which a lithium oxalate-boron trifluoride complex is added, and lithium oxalate-3 The concentration of lithium atoms in the boron fluoride complex was adjusted to 1.0 mol / kg and mixed at 23 ° C. to obtain an electrolytic solution.

(リチウムイオン二次電池の製造)
上記で得られた負極及び正極の間にセルロース製セパレータフィルム(日本高度紙工業社製、TBL‐4620)を、第一の負極―セパレータ―正極―セパレータ―第二の負極の順に重ね合せて配置し、各電極の端子用タブを超音波溶接により接合して、各タブを負極及び正極の外方に突出させて、電極積層体を得た(図1参照)。
(Manufacture of lithium ion secondary batteries)
A separator film made of cellulose (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TBL-4620) is placed between the negative electrode and the positive electrode obtained above in the order of first negative electrode-separator-positive electrode-separator-second negative electrode. And the tab for terminals of each electrode was joined by ultrasonic welding, and each tab was made to protrude outward of a negative electrode and a positive electrode, and the electrode laminated body was obtained (refer FIG. 1).

(リチウムプレドープ工程)
上記で得られた電極積層体の両方の外面を構成する負極の各々に、106×64mmにカットしたパンチング銅箔を、負極活物質層部分を覆うように重ね置き、さらにその上に、負極の不可逆容量を補償するのに必要な量のリチウム金属箔(104×62mm)を設置した。
次いで、この電極積層体の負極及び正極から突出させた前記端子用タブが外部へ突出するように、アルミニウムラミネートフィルムを配置し、電極積層体に電解液を注液後、このフィルムの外周をラミネート加工して電極積層体を真空封止した。その後、得られたセルを加圧治具にセットし、セルを3.3kg/cmの力で加圧状態とし、25℃の恒温槽中にて、48h静置することによりリチウムプレドープ処理を行い、ラミネートセルを製造した。作製した電池の定格容量は1000mAhである。
この後、製造したラミネートセルの初回充電を行う際にも、セルを3.3kg/cmの力で加圧状態とした。
(Lithium pre-doping process)
On each of the negative electrodes constituting the outer surfaces of both of the electrode laminates obtained above, a punched copper foil cut to 106 × 64 mm is overlaid so as to cover the negative electrode active material layer portion, and further on the negative electrode active material layer portion, An amount of lithium metal foil (104 × 62 mm) necessary to compensate for the irreversible capacity was installed.
Next, an aluminum laminate film is arranged so that the terminal tabs protruding from the negative electrode and the positive electrode of the electrode laminate are projected to the outside, and an electrolyte is poured into the electrode laminate, and the outer periphery of the film is laminated. The electrode laminate was processed and vacuum sealed. Thereafter, the obtained cell was set in a pressure jig, the cell was brought into a pressurized state with a force of 3.3 kg / cm 2 , and left in a constant temperature bath at 25 ° C. for 48 hours to perform lithium pre-doping treatment. The laminate cell was manufactured. The rated capacity of the manufactured battery is 1000 mAh.
Thereafter, when the manufactured laminate cell was charged for the first time, the cell was put into a pressurized state with a force of 3.3 kg / cm 2 .

[実施例2〜17]
実施例1と同様に組み立てたラミネートセルを、表1に示す加圧状態にして、プレドープ工程と、その後の充電工程を行い、実施例2〜17のラミネートセルを製造した。ただし、リチウムプレドープ前の負極活物質層の体積密度を実施例1と変えて調整する場合には、負極作製時の加圧状態を適宜変更した。また、実施例11〜13は、セルを加圧しない状態でリチウムプレドープを行った。
[Examples 2 to 17]
The laminate cell assembled in the same manner as in Example 1 was put into a pressurized state as shown in Table 1, and a pre-doping step and a subsequent charging step were performed to manufacture laminate cells of Examples 2 to 17. However, when the volume density of the negative electrode active material layer before lithium pre-doping was adjusted in the same manner as in Example 1, the pressure state at the time of preparing the negative electrode was appropriately changed. Moreover, Examples 11-13 performed lithium pre dope in the state which does not pressurize a cell.

[比較例1〜6]
実施例1と同様に組み立てたラミネートセルを、表1に示す加圧状態にして、プレドープ工程と、その後の充電工程を行い、比較例1〜6のラミネートセルを製造した。ただし、リチウムプレドープ前の負極活物質層の体積密度を実施例1と変えて調整する場合には、負極作製時の加圧状態を適宜変更した。また、比較例1は、セルを加圧しない状態でリチウムプレドープを行った。また、比較例1〜2,4は、セルを加圧しない状態で初回の充電を行った。
[Comparative Examples 1-6]
The laminate cell assembled in the same manner as in Example 1 was put into a pressurized state shown in Table 1, and a pre-doping step and a subsequent charging step were performed to produce laminate cells of Comparative Examples 1 to 6. However, when the volume density of the negative electrode active material layer before lithium pre-doping was adjusted in the same manner as in Example 1, the pressure state at the time of preparing the negative electrode was appropriately changed. Moreover, the comparative example 1 performed lithium pre dope in the state which does not pressurize a cell. Moreover, Comparative Examples 1-2 and 4 performed the first charge in the state which does not pressurize a cell.

Figure 0006448336
Figure 0006448336

(セル厚みの評価)
作製した各ラミネートセルの厚みについて、リチウムプレドープ前と、初回充電後において測定した。リチウムプレドープ前の厚みを1としたときの初回充電後の厚みの増加率を算出した。この結果を表2に示す。
(Evaluation of cell thickness)
About the thickness of each produced laminate cell, it measured before lithium pre dope and after the first charge. The increase rate of the thickness after the first charge when the thickness before lithium pre-doping was set to 1 was calculated. The results are shown in Table 2.

(リチウムイオン二次電池の充放電特性の評価)
作製した各リチウムイオン二次電池について、25℃において0.1Cの定電流定電圧充電を、上限電圧4.2Vとして電流値が0.05Cに収束するまで行った後、0.1Cの定電流放電を2.5Vまで行った。次いで、充放電電流を0.5Cとして同様の方法で、充放電サイクルを3回繰り返し行い、リチウムイオン二次電池の状態を安定させた。次いで、充放電電流を0.2Cとして同様の方法で、充放電を行い、容量発現率({[1サイクル目の放電容量(mAh)]/[定格容量(mAh)]}×100)(%)、充放電電流を1Cとして同様の方法で、充放電サイクルを繰り返しおこない100サイクルでの容量維持率({[100サイクル目の放電容量(mAh)]/[1サイクル目の放電容量(mAh)]}×100)(%)を算出した。この結果を表2に示す。
(Evaluation of charge / discharge characteristics of lithium ion secondary battery)
About each produced lithium ion secondary battery, after performing constant-current constant-voltage charge of 0.1C at 25 degreeC until the electric current value converges to 0.05C as upper limit voltage 4.2V, 0.1C constant-current Discharging was performed up to 2.5V. Subsequently, the charge / discharge current was set to 0.5 C, and the charge / discharge cycle was repeated three times in the same manner to stabilize the state of the lithium ion secondary battery. Next, charging / discharging was performed in the same manner with a charging / discharging current of 0.2 C, and a capacity expression rate ({[discharge capacity (mAh) of the first cycle) / [rated capacity (mAh)]} × 100) (% ), Charge / discharge current is set to 1C, charge / discharge cycle is repeated in the same manner, and capacity retention rate at 100 cycles ({[discharge capacity at 100th cycle (mAh)] / [discharge capacity at 1st cycle (mAh)] ]} × 100) (%) was calculated. The results are shown in Table 2.

Figure 0006448336
Figure 0006448336

上記の結果から、実施例1〜9においては、リチウムプレドープ前の負極活物質層の密度が適度であり、リチウムプレドープ工程および初回充電工程の両方でセルを充分に加圧しているため、充電後のセルの膨らみが小さく、容量維持率も良好であることが分かる。実施例11〜13においては、リチウムプレドープ時にセルを加圧していないため、充電後のセルの膨らみが実施例1〜9よりも大きいことが分かる。
実施例14〜17においても、実施例1〜9と同様に良好な結果が得られている。実施例14〜17の結果から、リチウムプレドープ前の負極活物質層の密度が高くなるにつれて、セル厚みの増加率が上昇し、容量維持率が低下することが分かる。これは、負極活物質層の密度がリチウムプレドープの程度又は効果に影響を与えていることを示している。
一方、比較例1,2,4においては、初回充電時にセルを加圧していないため、充電後のセルの膨らみが大きいことが分かる。また、比較例3(参考例)においては、初回充電時のセルの加圧の程度が少ないため、充電後のセルの膨らみが大きいことが分かる。また、比較例5,6においては、リチウムプレドープ前の負極活物質層の体積密度が過度に高いため、容量維持率が低下し、セルの膨らみの増加率が高いことが分かる。
From the above results, in Examples 1 to 9, the density of the negative electrode active material layer before lithium pre-doping is moderate, and the cell is sufficiently pressurized in both the lithium pre-doping step and the initial charging step. It can be seen that the swelling of the cell after charging is small and the capacity retention rate is also good. In Examples 11-13, since the cell was not pressurized at the time of lithium pre dope, it turns out that the swelling of the cell after charge is larger than Examples 1-9.
In Examples 14 to 17, good results were obtained as in Examples 1 to 9. From the results of Examples 14 to 17, it can be seen that as the density of the negative electrode active material layer before lithium pre-doping increases, the increase rate of the cell thickness increases and the capacity retention rate decreases. This indicates that the density of the negative electrode active material layer affects the degree or effect of lithium pre-doping.
On the other hand, in Comparative Examples 1, 2, and 4, since the cell was not pressurized during the initial charge, it can be seen that the swelling of the cell after charging is large. Further, in Comparative Example 3 (reference example), it can be seen that since the degree of pressurization of the cell at the first charge is small, the swelling of the cell after charging is large. In Comparative Examples 5 and 6, it can be seen that the volume density of the negative electrode active material layer before lithium pre-doping is excessively high, so that the capacity retention rate is lowered and the increase rate of cell swelling is high.

[比較例7]
パンチング箔を使用せずに、電極積層体の両方の外面を構成する負極活物質層の上にセルロース製セパレータフィルム(日本高度紙工業社製、TBL‐4620)を重ね合せて、さらにその上にリチウム金属箔を設置したこと以外は比較例1と同様の方法にてラミネートセルを作製した。なお、本実験においては、48時間のリチウムドープ後にセルを開放すると、リチウム金属箔が残っていることが確認された。また、容量発現率が比較例1よりも劣る結果であった。この結果から、非導電性のセパレータよりも導電性の有孔導電性板を介してリチウム金属箔を負極活物質層の上に配置する方がリチウムプレドープの効率が向上することが分かる。
[Comparative Example 7]
Without using a punching foil, a cellulose separator film (manufactured by Nippon Kogyo Paper Industries Co., Ltd., TBL-4620) is layered on the negative electrode active material layer constituting both outer surfaces of the electrode laminate, and further on it. A laminate cell was produced in the same manner as in Comparative Example 1 except that a lithium metal foil was installed. In this experiment, when the cell was opened after 48 hours of lithium doping, it was confirmed that the lithium metal foil remained. Further, the capacity expression rate was inferior to that of Comparative Example 1. From this result, it can be seen that the lithium pre-doping efficiency is improved when the lithium metal foil is disposed on the negative electrode active material layer via the conductive porous conductive plate rather than the non-conductive separator.

本発明は、リチウムイオン二次電池の分野で広く利用可能である。   The present invention can be widely used in the field of lithium ion secondary batteries.

1…リチウムイオン二次電池、2…第一の有孔導電性板(負極集電体)、3…負極活物質層、3a…負極活物質層の表面、4A,4B,4…負極、5…第二の有孔導電性板(正極集電体)、6…正極活物質層、6a…正極活物質層の表面、7…正極、8…セパレータ、9…第三の有孔導電性板、10…リチウム供給板、11…第四の有孔導電性板、12…リチウム供給板、13…外装体、14…電解質 DESCRIPTION OF SYMBOLS 1 ... Lithium ion secondary battery, 2 ... 1st porous electroconductive board (negative electrode collector), 3 ... Negative electrode active material layer, 3a ... Surface of negative electrode active material layer, 4A, 4B, 4 ... Negative electrode, 5 2nd porous conductive plate (positive electrode current collector), 6 ... positive electrode active material layer, 6a ... surface of positive electrode active material layer, 7 ... positive electrode, 8 ... separator, 9 ... 3rd porous conductive plate DESCRIPTION OF SYMBOLS 10 ... Lithium supply board, 11 ... 4th perforated electroconductive board, 12 ... Lithium supply board, 13 ... Exterior body, 14 ... Electrolyte

Claims (6)

酸化ケイ素を含む負極活物質層を有する負極と、正極とを有するセルを備えたリチウムイオン二次電池の製造方法であって、
前記負極活物質層の体積密度を0.8g/cm以上1.5g/cm以下に調整した後、リチウムプレドープを行うプレドープ工程と、前記セルを加圧しながら初回充電を行う充電工程と、を有する、リチウムイオン二次電池の製造方法。
A method for producing a lithium ion secondary battery comprising a negative electrode having a negative electrode active material layer containing silicon oxide and a cell having a positive electrode,
After adjusting the volume density of the negative electrode active material layer to 0.8 g / cm 3 or more and 1.5 g / cm 3 or less, a pre-doping step of performing lithium pre-doping, and a charging step of performing initial charging while pressurizing the cell; A method for producing a lithium ion secondary battery.
前記プレドープ工程において、前記セルを加圧しながらリチウムプレドープを行う、請求項1に記載のリチウムイオン二次電池の製造方法。   The method for producing a lithium ion secondary battery according to claim 1, wherein in the pre-doping step, lithium pre-doping is performed while pressurizing the cell. 前記セルを0.3kg/cm以上6.6kg/cm 以下の圧力にて加圧する、請求項2に記載のリチウムイオン二次電池の製造方法。 Pressurizing the cell at 0.3 kg / cm 2 or more 6.6 kg / cm 2 or less pressure method for manufacturing a lithium ion secondary battery according to claim 2. 前記充電工程において、前記セルを0.3kg/cm以上6.6kg/cm 以下の圧力にて加圧する、請求項1〜3の何れか一項に記載のリチウムイオン二次電池の製造方法。 In the charging step, pressurizing the cell at 0.3 kg / cm 2 or more 6.6 kg / cm 2 or less pressure method for producing a lithium ion secondary battery according to any one of claims 1 to 3 . 前記プレドープ工程において、In the pre-doping step,
前記負極活物質層の表面に、有孔導電性板を重ね置き、A porous conductive plate is placed on the surface of the negative electrode active material layer,
前記有孔導電性板の上にリチウム供給板を重ね置いた電極積層体を得て、Obtaining an electrode laminate in which a lithium supply plate is placed on the porous conductive plate,
前記電極積層体が電解液に接した状態で、前記電極積層体を2枚の平板状冶具の間に挟み、加圧下でリチウムプレドープを行う、請求項2又は3に記載のリチウムイオン二次電池の製造方法。4. The lithium ion secondary according to claim 2, wherein the electrode laminate is sandwiched between two flat jigs in a state where the electrode laminate is in contact with the electrolytic solution, and lithium pre-doping is performed under pressure. Battery manufacturing method.
前記プレドープ工程の前に、前記負極を2枚の平板状冶具の間に挟み、前記負極活物質層の全面を厚み方向に均一に加圧することにより、前記負極活物質層の体積密度を0.8g/cmPrior to the pre-doping step, the negative electrode is sandwiched between two flat jigs, and the entire surface of the negative electrode active material layer is uniformly pressed in the thickness direction, whereby the volume density of the negative electrode active material layer is reduced to 0. 0. 8g / cm 3 以上1.5g/cm1.5 g / cm or more 3 以下に調整する、請求項1〜5の何れか一項に記載のリチウムイオン二次電池の製造方法。The manufacturing method of the lithium ion secondary battery as described in any one of Claims 1-5 adjusted to the following.
JP2014245750A 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery Active JP6448336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245750A JP6448336B2 (en) 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245750A JP6448336B2 (en) 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2016110777A JP2016110777A (en) 2016-06-20
JP6448336B2 true JP6448336B2 (en) 2019-01-09

Family

ID=56124564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245750A Active JP6448336B2 (en) 2014-12-04 2014-12-04 Method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6448336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200092643A (en) * 2019-01-25 2020-08-04 주식회사 엘지화학 Method for manufacturing negative electrode for secondary battery

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6926654B2 (en) * 2017-05-11 2021-08-25 株式会社豊田自動織機 Method for manufacturing lithium-doped negative electrode
US20200219669A1 (en) * 2017-07-18 2020-07-09 Nissan Motor Co., Ltd. Method for pre-doping negative electrode active material and method for manufacturing electrode for electric device and electric device
JP6967901B2 (en) * 2017-07-26 2021-11-17 旭化成株式会社 Manufacturing method of non-aqueous lithium-type power storage element
JP6976097B2 (en) * 2017-07-26 2021-12-08 旭化成株式会社 Alkali metal ion doping method
WO2019088139A1 (en) 2017-11-02 2019-05-09 国立大学法人東京大学 Secondary battery negative electrode, secondary battery, and methods for manufacturing these
JP7027825B2 (en) * 2017-11-10 2022-03-02 住友ゴム工業株式会社 Manufacturing method of lithium-ion power storage device and lithium-ion power storage device
JP7118639B2 (en) * 2017-12-27 2022-08-16 東京応化工業株式会社 MODIFIED CELLULOSE FIBER, DISPERSION, POROUS MEMBRANE, ELECTRICAL STORAGE ELEMENT, AND METHOD FOR MANUFACTURING POROUS MEMBRANE
KR102238829B1 (en) * 2018-02-07 2021-04-09 주식회사 엘지화학 Lithium metal secondary battery and battery module including the same
JP6956029B2 (en) * 2018-02-27 2021-10-27 株式会社エンビジョンAescジャパン How to manufacture film exterior batteries
JP7034777B2 (en) * 2018-03-12 2022-03-14 三洋化成工業株式会社 Lithium-ion battery manufacturing method
JP2020004663A (en) * 2018-06-29 2020-01-09 株式会社ワイヤード Negative electrode for lithium ion battery, lithium ion battery using negative electrode, and manufacturing method of lithium ion battery
KR20200129518A (en) * 2019-05-09 2020-11-18 주식회사 엘지화학 Manufacturing methods for the secondary battery
KR20200129908A (en) * 2019-05-10 2020-11-18 주식회사 엘지화학 Method for manufacturing negative electrode
KR20210011245A (en) * 2019-07-22 2021-02-01 주식회사 엘지화학 Method for manufacturing secondary battery
KR20210018164A (en) * 2019-08-07 2021-02-17 주식회사 엘지화학 Lithium metal secondary battery and battery module including the same
CN114464778A (en) * 2022-01-18 2022-05-10 清华大学 Method for preparing negative pole piece, negative pole piece and secondary battery

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111339A (en) * 1997-10-06 1999-04-23 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP3533117B2 (en) * 1999-07-23 2004-05-31 日本電気株式会社 Method of manufacturing film-covered battery
JP2003059538A (en) * 2001-08-20 2003-02-28 Sony Corp Manufacturing method of cell
JP2003217671A (en) * 2002-01-18 2003-07-31 At Battery:Kk Manufacturing method for gastight battery and sealing evaluation method for gastight battery
JP5172134B2 (en) * 2006-01-10 2013-03-27 パナソニック株式会社 Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2007258084A (en) * 2006-03-24 2007-10-04 Sanyo Electric Co Ltd Lithium secondary battery
JP5301090B2 (en) * 2006-08-18 2013-09-25 株式会社Kri Electrode for lithium ion capacitor and lithium ion capacitor using the same
JP5182477B2 (en) * 2007-09-21 2013-04-17 信越化学工業株式会社 Non-aqueous secondary battery
JP2009076372A (en) * 2007-09-21 2009-04-09 Shin Etsu Chem Co Ltd Non-aqueous secondary battery
JP2009295289A (en) * 2008-06-02 2009-12-17 Panasonic Corp Lithium-ion secondary battery and method of manufacturing the same
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
KR102344143B1 (en) * 2012-05-09 2021-12-30 신에쓰 가가꾸 고교 가부시끼가이샤 Predoping method for lithium, lithium­predoped electrode, and electricity storage device
JP6112111B2 (en) * 2012-06-12 2017-04-12 日本電気株式会社 Lithium ion secondary battery manufacturing method and lithium ion secondary battery
JP2014086222A (en) * 2012-10-22 2014-05-12 Idemitsu Kosan Co Ltd Method for manufacturing secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200092643A (en) * 2019-01-25 2020-08-04 주식회사 엘지화학 Method for manufacturing negative electrode for secondary battery
CN113614951A (en) * 2019-01-25 2021-11-05 株式会社Lg新能源 Method for preparing negative electrode for secondary battery
US20220020976A1 (en) * 2019-01-25 2022-01-20 Lg Energy Solution, Ltd. Method of producing negative electrode for secondary battery
KR102586822B1 (en) * 2019-01-25 2023-10-11 주식회사 엘지에너지솔루션 Method for manufacturing negative electrode for secondary battery

Also Published As

Publication number Publication date
JP2016110777A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
JP6448336B2 (en) Method for producing lithium ion secondary battery
US9214661B2 (en) Electrode manufacturing method
JP6690358B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery using the same
JP2022191483A (en) Production method of negative electrode for secondary battery, and production method of secondary battery
JP2012174434A (en) Method for manufacturing battery
KR101551682B1 (en) Electrode and method of manufacturing an active material for the electrode
JP2005243455A (en) Electrochemical device
JP2013182735A (en) Method for manufacturing multilayered membrane electrode assembly and lithium ion secondary battery
JP2012256544A (en) Manufacturing method of electrode for secondary battery
WO2013180083A1 (en) Lithium ion secondary battery
JP2018160379A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP2018113220A (en) Method for manufacturing lithium ion secondary battery
KR20140009041A (en) Energy storage device
US10038194B2 (en) Negative electrode, method for producing the same, and battery
JP6083289B2 (en) Lithium ion secondary battery
JP2013161689A (en) Secondary battery electrode and manufacturing method of the same
JP5725356B2 (en) Method for manufacturing electrode for secondary battery
JP6494265B2 (en) Method for producing lithium ion secondary battery
JP5704401B2 (en) Secondary battery electrode and manufacturing method thereof
JP2016219285A (en) Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2010278300A (en) Method of manufacturing lithium ion capacitor
JP2015103432A (en) Method for manufacturing all solid state battery
WO2022230661A1 (en) Secondary battery negative electrode, secondary battery, and method for manufacturing secondary battery negative electrode
JP6729127B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181204

R151 Written notification of patent or utility model registration

Ref document number: 6448336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151