JP2020004663A - Negative electrode for lithium ion battery, lithium ion battery using negative electrode, and manufacturing method of lithium ion battery - Google Patents

Negative electrode for lithium ion battery, lithium ion battery using negative electrode, and manufacturing method of lithium ion battery Download PDF

Info

Publication number
JP2020004663A
JP2020004663A JP2018125358A JP2018125358A JP2020004663A JP 2020004663 A JP2020004663 A JP 2020004663A JP 2018125358 A JP2018125358 A JP 2018125358A JP 2018125358 A JP2018125358 A JP 2018125358A JP 2020004663 A JP2020004663 A JP 2020004663A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
lithium ion
active material
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018125358A
Other languages
Japanese (ja)
Other versions
JP2020004663A5 (en
Inventor
直彦 杣
Naohiko Soma
直彦 杣
晃裕 山野
Akihiro Yamano
晃裕 山野
正典 森下
Masanori Morishita
正典 森下
境 哲男
Tetsuo Sakai
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wired Co Ltd
Original Assignee
Wired Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wired Co Ltd filed Critical Wired Co Ltd
Priority to JP2018125358A priority Critical patent/JP2020004663A/en
Priority to PCT/JP2019/025356 priority patent/WO2020004453A1/en
Publication of JP2020004663A publication Critical patent/JP2020004663A/en
Publication of JP2020004663A5 publication Critical patent/JP2020004663A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To obtain a negative electrode for a silicon-containing lithium ion battery having a large capacity and a reduced initial irreversible capacity.SOLUTION: A through hole which penetrates in the negative electrode is formed in a negative electrode in which at least one main surface of a current collector is provided with a negative electrode active material layer in which a negative electrode active material containing silicon is provided, and the negative electrode is pre-doped with lithium ions in advance, and the ratio of the initial discharge capacity to the initial charge capacity in the initial charge and discharge of the negative electrode is 90% or more.SELECTED DRAWING: Figure 1

Description

本発明は、厚さ方向に貫通する貫通孔を有するリチウムイオン電池用負極、該リチウムイオン電池用負極を備えるリチウムイオン電池に関するものである。   The present invention relates to a negative electrode for a lithium ion battery having a through hole penetrating in a thickness direction, and a lithium ion battery including the negative electrode for a lithium ion battery.

リチウムイオン二次電池は、一般に、バインダーを用いて正極活物質等を正極集電体の
両面に塗布した正極と、バインダーを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して積層され、電池ケースに収納される構成を有している。
Lithium ion secondary batteries are generally a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder. Are laminated via an electrolyte layer and housed in a battery case.

従来、製造コストを低減し、自己放電不良がなく、且つ内部抵抗が低く、高容量であるリチウムイオン二次電池が提案されている。
特許文献1には集電体の少なくとも一方の主面に黒鉛からなる負極活物質を配した活物質層を形成し負極に貫通孔を形成している。
さらに、リチウム箔からなる金属リチウム挿入用電極を用いて電気化学的手法により黒鉛にリチウムをプレドープし、その後、該金属リチウム挿入用電極を取り出して再度熱圧着し封止している。
2. Description of the Related Art Hitherto, a lithium-ion secondary battery that has reduced manufacturing costs, has no self-discharge failure, has low internal resistance, and has a high capacity has been proposed.
In Patent Literature 1, an active material layer in which a negative electrode active material made of graphite is formed on at least one main surface of a current collector, and a through hole is formed in the negative electrode.
Further, graphite is pre-doped with lithium by an electrochemical method using a metal lithium insertion electrode made of a lithium foil, and then the metal lithium insertion electrode is taken out, thermocompressed again, and sealed.

このように充放電サイクルの寿命やコスト面で有利な炭素、特に黒鉛系材料が用いられてきた。一方、最近では、高容量の負極活物質として、リチウムと合金化しうる材料などが研究されている。例えば、Si材料は、充放電において1molあたり4.4molのリチウムイオンを吸蔵放出し、Li22Siにおいては4200mAh/g程度もの理論容量を有する。このようにリチウムと合金化しうる材料は電極のエネルギー密度を増加させることができるため、車両用途における負極材料として期待されている。 As described above, carbon, particularly a graphite material, which is advantageous in terms of the life and cost of the charge / discharge cycle, has been used. On the other hand, recently, as a high-capacity negative electrode active material, a material that can be alloyed with lithium has been studied. For example, a Si material absorbs and releases 4.4 mol of lithium ions per mol during charging and discharging, and has a theoretical capacity of about 4200 mAh / g in Li 22 Si 5 . Such a material that can be alloyed with lithium can increase the energy density of the electrode, and is therefore expected as a negative electrode material for vehicle use.

しかしながら、このような大容量を有するリチウムと合金化する材料を負極活物質として用いたリチウムイオン二次電池の多くは、初期充放電時の不可逆容量が大きい。このため、充填された正極の容量利用率が低下し、電池のエネルギー密度が低下するという問題がある。
この初期不可逆容量の問題は、高容量が要求される車両用途への実用化において大きな開発課題となっており、初期不可逆容量を抑制する試みが盛んに行われている。
However, many lithium ion secondary batteries using such a large capacity lithium alloying material as the negative electrode active material have a large irreversible capacity at the time of initial charge and discharge. For this reason, there is a problem that the capacity utilization rate of the filled positive electrode decreases, and the energy density of the battery decreases.
The problem of the initial irreversible capacity has become a major development issue in practical application to a vehicle application requiring a high capacity, and attempts to suppress the initial irreversible capacity have been actively made.

このような不可逆容量に相当するリチウムを補填する技術として、特許文献2に開示されているように、集電体と、前記集電体上に形成され、リチウムイオンが予めドープされた負極活物質を含む負極活物質層と、を有する負極と、正極と、前記正極と前記負極との間に介在する電解質層とを有するリチウムイオン二次電池がある。リチウムイオンが予めドープされた負極活物質を含む負極活物質層の製造方法は、シリコンを含む活物質を含む層の表面に、リチウムを主体とする金属膜を接触させて、リチウムとシリコンを含む活物質とを反応させる工程が開示されている。   As a technique for supplementing lithium corresponding to such irreversible capacity, as disclosed in Patent Document 2, a current collector and a negative electrode active material formed on the current collector and pre-doped with lithium ions are disclosed. There is a lithium ion secondary battery including a negative electrode having a negative electrode active material layer containing: a positive electrode, and an electrolyte layer interposed between the positive electrode and the negative electrode. The method for manufacturing a negative electrode active material layer including a negative electrode active material in which lithium ions are pre-doped includes a lithium-based metal film in contact with the surface of the layer including the silicon-containing active material and including lithium and silicon. A step of reacting with an active material is disclosed.

特開2012−138408号公報JP 2012-138408 A 特開2011−054324号公報JP 2011-054324 A

しかしながら、リチウムプレドープ層はプレドープ量に相当する容量分だけ負極活物質層の表面に形成されているので、リチウムが水分と反応し水酸化リチウムに変化してしまう。これを避けるためには、ドライな雰囲気下で負極、セパレータ、正極、セパレータを積層または卷回しなければならず、ワインダーをドライルームなどに設置しなければならないため、生産性に困難が伴う。   However, since the lithium pre-doped layer is formed on the surface of the negative electrode active material layer by an amount corresponding to the pre-doping amount, lithium reacts with moisture to change to lithium hydroxide. In order to avoid this, the negative electrode, the separator, the positive electrode, and the separator must be laminated or wound in a dry atmosphere, and the winder must be installed in a dry room or the like.

電解液を注液することによりシリコンを含む活物質にリチウムがドープされるが、電解液を注液するのみでは、必ずしもリチウムイオンが活物質に均一にドープされるわけではなく、シリコンの初期の不可逆容量を小さくすることが不十分であった。   The active material containing silicon is doped with lithium by injecting the electrolytic solution. However, merely injecting the electrolytic solution does not necessarily cause the active material to be uniformly doped with lithium ions. It was insufficient to reduce the irreversible capacity.

本発明の目的は、大容量であり、且つ初期の不可逆容量を小さくしたシリコン含有の負極を得ることである。   An object of the present invention is to obtain a silicon-containing negative electrode having a large capacity and a small initial irreversible capacity.

本発明のリチウムイオン電池は、上記課題を解決するためになされたもので、集電体の少なくとも一方の主面にシリコンを含む負極活物質を配した負極活物質層を形成した負極に厚さ方向に貫通する貫通孔を形成し、該負極に予めリチウムイオンをプレドーピングしている。
そして、該負極の初期充放電に於ける初期充電容量に対する初期放電容量の割合は90%以上である
The lithium ion battery of the present invention has been made in order to solve the above-described problem, and has a thickness on a negative electrode in which a negative electrode active material layer including silicon-containing negative electrode active material is formed on at least one main surface of a current collector. A through hole penetrating in the direction is formed, and the negative electrode is pre-doped with lithium ions.
The ratio of the initial discharge capacity to the initial charge capacity in the initial charge and discharge of the negative electrode is 90% or more.

また、本発明によれば、貫通孔の開口径は、1μm以上50μm以下で、貫通孔の開口率は、0.01%以上5%以下である   According to the present invention, the opening diameter of the through hole is 1 μm or more and 50 μm or less, and the opening ratio of the through hole is 0.01% or more and 5% or less.

また、本発明によれば、シリコンを含む負極活物質は、硅素、硅素酸化物の少なくとも一つを含む。   Further, according to the present invention, the negative electrode active material containing silicon contains at least one of silicon and silicon oxide.

また、本発明によれば、集電体の少なくとも一面にシリコンを含む負極活物質組成物を塗布して負極活物質層を形成して負極板を形成する工程と、該負極板の厚さ方向に貫通する貫通孔を形成する工程と、負極板と正極板とをセパレータを介して積層した積層体を形成する工程と、積層体とリチウム挿入用電極とを積層し、且つリチウム挿入用電極由来のリチウムを用いて負極板をプレドープする工程を備える。   Further, according to the present invention, a step of forming a negative electrode plate by forming a negative electrode active material layer by applying a negative electrode active material composition containing silicon to at least one surface of a current collector; Forming a through-hole that penetrates through; forming a laminate in which a negative electrode plate and a positive electrode plate are laminated with a separator interposed therebetween; laminating the laminate with a lithium insertion electrode; And pre-doping the negative electrode plate using the lithium.

本発明のリチウムイオン電池によれば、シリコンを含む負極活物質層を配する負極が厚さ方向に貫通する貫通孔が設けられているので、リチウムイオンがその貫通孔を経由して負極の内部まで浸透する。従って、リチウムイオンが負極の中を拡散する距離が短くなり、ドープされたリチウムイオンの負極内の分布が均一になり、初期の不可逆容量が小さくなる。   According to the lithium ion battery of the present invention, since the negative electrode on which the negative electrode active material layer containing silicon is provided has a through-hole that penetrates in the thickness direction, lithium ions pass through the through-hole into the inside of the negative electrode. Penetrate up to. Therefore, the distance over which the lithium ions diffuse through the negative electrode is shortened, the distribution of the doped lithium ions in the negative electrode becomes uniform, and the initial irreversible capacity is reduced.

本発明に係るリチウムイオン電池の断面図である。1 is a cross-sectional view of a lithium ion battery according to the present invention.

本発明のリチウムイオン電池は、図1に示すように、負極1、正極2、負極と正極との間に介在し、電気的に絶縁するとともにリチウムイオンを伝導するセパレータ3からなる電極積層体と、電極積層体を包装する外装体4と、外装体の内側に充填される電解液5とからなる。
また、負極にリチウムをプレドープするために使用するリチウム挿入用電極6が最外層の負極の外側に配置されている。
As shown in FIG. 1, the lithium ion battery of the present invention has an electrode laminate including a negative electrode 1, a positive electrode 2, a separator 3 interposed between the negative electrode and the positive electrode, electrically insulated and conducting lithium ions. And an outer package 4 for packaging the electrode laminate, and an electrolytic solution 5 filled inside the outer package.
In addition, a lithium insertion electrode 6 used for predoping the negative electrode with lithium is disposed outside the outermost negative electrode.

本発明の負極は、集電体の両面にシリコンを含む負極活物質層が配される。負極活物質層は、シリコンを含む負極活物質と、導電助材と、結着材とを含む。シリコンを含む負極活物質は、シリコン金属、シリコン合金、シリコン酸化物またはそれらと炭素材料との混合物からなる。シリコン金属は、充放電において1モル当たり4.4モルのリチウムイオンを吸蔵放出し、4200mAh/g程度の理論容量を有することができる。   In the negative electrode of the present invention, a negative electrode active material layer containing silicon is provided on both surfaces of the current collector. The negative electrode active material layer includes a negative electrode active material containing silicon, a conductive additive, and a binder. The negative electrode active material containing silicon is made of silicon metal, silicon alloy, silicon oxide, or a mixture thereof with a carbon material. Silicon metal absorbs and releases 4.4 moles of lithium ions per mole during charge and discharge, and can have a theoretical capacity of about 4200 mAh / g.

また、シリコン合金は、シリコンの体積膨張収縮を緩和できるようにリチウムと合金化しない金属との合金の組成を有する。
また、シリコン酸化物は、SiOxと表され、不均化処理することにより微細化シリコンが二酸化シリコンの中に析出したものである。
また、シリコンと炭素材料の混合物としては、シリコン粉末と炭素質粉末を混合したり、炭素質マトリックスの中にシリコン粉末またはシリコン合金粉末を包含したりすることによって得られる。
The silicon alloy has a composition of an alloy of lithium and a metal that is not alloyed so that the volume expansion and contraction of silicon can be reduced.
The silicon oxide is represented by SiOx, and is silicon oxide that has been subjected to disproportionation treatment to precipitate fine silicon in silicon dioxide.
Further, a mixture of silicon and a carbon material can be obtained by mixing silicon powder and carbonaceous powder, or including silicon powder or silicon alloy powder in a carbonaceous matrix.

導電助材は、リチウムイオン電池に使用できるものであれば、特に制限されない。例えば、カーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。   The conductive assistant is not particularly limited as long as it can be used for a lithium ion battery. For example, carbon materials such as carbon black, graphite, and carbon fiber can be used.

結着材は、以下に制限されることはないが、ポリアミド、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどが挙げられる。   The binder is not limited to the following, and examples thereof include polyamide, polyvinylidene fluoride, and polytetrafluoroethylene.

負極には、厚さ方向に貫通する貫通孔7が設けられている。貫通孔は、孔径が1μm以上50μm以下である。孔径が1μm未満になるように穿孔することは難しい。レーザビーム径をサブミクロンに絞ってもレーザビームの周りの負極活物質が一部集電体から剥離することが発生するために孔径が1μm未満を実現することが難しい。一方、50μmを越えた孔径で負極の強度を所定の値に維持しようとすると貫通孔の数が少なくなりすぎる。特に孔径が1μm以上7μm以下が望ましい。リチウムイオンが負極活物質の面方向に移動する距離が短くなり、面内でのリチウムイオンのドープがより均一になる。   The negative electrode is provided with a through hole 7 penetrating in the thickness direction. The through hole has a hole diameter of 1 μm or more and 50 μm or less. It is difficult to perforate so that the hole diameter is less than 1 μm. Even when the laser beam diameter is reduced to submicron, it is difficult to realize a hole diameter of less than 1 μm because a part of the negative electrode active material around the laser beam is separated from the current collector. On the other hand, if it is attempted to maintain the strength of the negative electrode at a predetermined value with a hole diameter exceeding 50 μm, the number of through holes becomes too small. In particular, the pore diameter is desirably from 1 μm to 7 μm. The distance that the lithium ions move in the plane direction of the negative electrode active material is reduced, and the in-plane lithium ion doping becomes more uniform.

貫通孔の開口率は、0.01%以上5%以下である。開口率が0.01%未満であると、リチウムイオンのドープを均一にする効果が発揮されなくなる。一方、開口率が5%を超えると活物質の量が大幅に減り、容量が小さくなる。   The opening ratio of the through holes is 0.01% or more and 5% or less. If the aperture ratio is less than 0.01%, the effect of making lithium ion doping uniform cannot be exhibited. On the other hand, when the aperture ratio exceeds 5%, the amount of the active material is greatly reduced, and the capacity is reduced.

負極は、予めリチウムがドープされている。リチウムのドープ量は負極活物質の初期不可逆容量に相当する量である。   The negative electrode is preliminarily doped with lithium. The doping amount of lithium is an amount corresponding to the initial irreversible capacity of the negative electrode active material.

負極の製造方法は、下記(1)から(3)の工程を含む。
(1)集電体上に負極活物質を含む負極活物質層を形成する。
(2)集電体上に形成された負極活物質層に集電体を含めて厚さ方向に貫通孔を形成する。
(3)集電体の活物質層が塗布されていない未塗布部に負極タブを接合する。
この工程(1)ではリチウムイオン電池の電極の形成に用いられている製造方法であれば特に制限はない。
次に、工程(2)では、用いるレーザ加工装置を限定するものではないが、細孔径の貫通孔を高速で穿孔できることから特願2017−168581号に開示したレーザ加工装置が特に適しており、そのレーザ加工装置を用いて貫通孔を形成する。
次に、工程(3)では、リチウムイオン電池の電極の形成に用いられている製造方法であれば特に制限はない。
このようにして製造した負極を所定の形状に加工して、後述するリチウムイオン電池の組み立てに用いる。
The method for producing the negative electrode includes the following steps (1) to (3).
(1) A negative electrode active material layer containing a negative electrode active material is formed on a current collector.
(2) A through hole is formed in the thickness direction including the current collector in the negative electrode active material layer formed on the current collector.
(3) The negative electrode tab is joined to an uncoated portion of the current collector on which the active material layer is not applied.
In this step (1), there is no particular limitation as long as it is a manufacturing method used for forming an electrode of a lithium ion battery.
Next, in the step (2), the laser processing apparatus to be used is not limited, but the laser processing apparatus disclosed in Japanese Patent Application No. 2017-168581 is particularly suitable because a through hole having a small diameter can be formed at a high speed. A through hole is formed using the laser processing device.
Next, in the step (3), there is no particular limitation as long as it is a manufacturing method used for forming an electrode of a lithium ion battery.
The negative electrode manufactured as described above is processed into a predetermined shape and used for assembling a lithium ion battery described later.

本発明のリチウムイオン電池の正極は、集電体の両面に正極活物質層が配される。正極活物質層は、リチウム複合酸化物を含む正極活物質と、導電助材と、結着材とを含む。リチウム複合酸化物を含む正極活物質は、リチウムを挿入脱離することができるものであれば制限されない。例えば、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、リチウムニッケルマンガン複合酸化物、リチウムニッケルコバルトマンガン複合酸化物、リチウムニッケルアルミニウム複合酸化物、リチウムマンガン酸化物、リン酸鉄リチウムが挙げられる。   In the positive electrode of the lithium ion battery of the present invention, the positive electrode active material layers are provided on both surfaces of the current collector. The positive electrode active material layer includes a positive electrode active material containing a lithium composite oxide, a conductive additive, and a binder. The positive electrode active material containing a lithium composite oxide is not limited as long as it can insert and remove lithium. Examples include lithium cobalt composite oxide, lithium nickel composite oxide, lithium nickel manganese composite oxide, lithium nickel cobalt manganese composite oxide, lithium nickel aluminum composite oxide, lithium manganese oxide, and lithium iron phosphate.

導電助材は、リチウムイオン電池に使用できるものであれば、特に制限されない。例えば、カーボンブラック、グラファイト、炭素繊維などの炭素材料が挙げられる。   The conductive assistant is not particularly limited as long as it can be used for a lithium ion battery. For example, carbon materials such as carbon black, graphite, and carbon fiber can be used.

結着材は、以下に制限されることはないが、ポリアミド、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどが挙げられる。   The binder is not limited to the following, and examples thereof include polyamide, polyvinylidene fluoride, and polytetrafluoroethylene.

正極には、厚さ方向に貫通する貫通孔が設けられている。貫通孔は、孔径が1μm以上50μm以下である。孔径が1μm未満になるように穿孔することは難しい。一方、50μmを越えた孔径で正極の強度を所定の値に維持しようとすると貫通孔の数が少なくなりすぎる。   The positive electrode is provided with a through hole penetrating in the thickness direction. The through hole has a hole diameter of 1 μm or more and 50 μm or less. It is difficult to perforate so that the hole diameter is less than 1 μm. On the other hand, if the strength of the positive electrode is to be maintained at a predetermined value with a hole diameter exceeding 50 μm, the number of through holes becomes too small.

貫通孔の開口率は、0.01%以上5%以下である。開口率が0.01%未満であると、リチウムイオンのドープを均一にする効果が発揮されなくなる。一方、開口率が5%を超えると活物質の量が大幅に減り、容量が小さくなる。   The opening ratio of the through holes is 0.01% or more and 5% or less. If the aperture ratio is less than 0.01%, the effect of making lithium ion doping uniform cannot be exhibited. On the other hand, when the aperture ratio exceeds 5%, the amount of the active material is greatly reduced, and the capacity is reduced.

正極の製造方法は、下記(1)から(3)の工程を含む。
(1)集電体上に正極活物質を含む正極活物質層を形成する。
(2)集電体上に形成された正極活物質層に集電体を含めて厚さ方向に貫通孔を形成する。
(3)集電体の活物質層が塗布されていない未塗布部に正極タブを接合する。
この工程(1)ではリチウムイオン電池の電極の形成に用いられている製造方法であれば特に制限はない。
次に、工程(2)では、特願2017−168581号に開示したレーザ加工装置を用いて貫通孔を形成する。
次に、工程(3)では、リチウムイオン電池の電極の形成に用いられている製造方法であれば特に制限はない。
このようにして製造した正極を所定の形状に加工して、後述するリチウムイオン電池の組み立てに用いる。
The method for manufacturing the positive electrode includes the following steps (1) to (3).
(1) A positive electrode active material layer containing a positive electrode active material is formed on a current collector.
(2) A through hole is formed in the thickness direction including the current collector in the positive electrode active material layer formed on the current collector.
(3) The positive electrode tab is joined to an uncoated portion of the current collector on which the active material layer is not applied.
In this step (1), there is no particular limitation as long as it is a manufacturing method used for forming an electrode of a lithium ion battery.
Next, in step (2), through holes are formed using the laser processing apparatus disclosed in Japanese Patent Application No. 2017-168581.
Next, in the step (3), there is no particular limitation as long as it is a manufacturing method used for forming an electrode of a lithium ion battery.
The positive electrode manufactured as described above is processed into a predetermined shape and used for assembling a lithium ion battery described later.

セパレータは、リチウムイオン電池に用いることができるものであれば特に制限はない。
電解液は、リチウムイオン電池に用いることができるものであれば特に制限はない。例えば、非水系電解液として、有機溶媒にリチウム塩を少なくとも一部溶解することにより得られるものであってもよい。また、固体電解質であってもよい。
The separator is not particularly limited as long as it can be used for a lithium ion battery.
The electrolyte is not particularly limited as long as it can be used for a lithium ion battery. For example, the non-aqueous electrolyte may be obtained by dissolving at least a part of a lithium salt in an organic solvent. Further, it may be a solid electrolyte.

外装体は、リチウムイオン電池に用いることができるものであれば特に制限はない。例えば、金属ケース、パウチ容器などで良い。   The exterior body is not particularly limited as long as it can be used for a lithium ion battery. For example, a metal case or a pouch container may be used.

負極にリチウムをプレドープするためのリチウム源としてリチウム挿入用電極を用意する。リチウム供給電極は、リチウム箔単体または集電体の表面にリチウム箔またはリチウム粉末を固着したものである。このリチウム挿入用電極は、銅などからなるリチウムタブが接合されている。リチウム挿入用電極のリチウム量は負極活物質に含まれるシリコンの初期の不可逆容量に相当する量である。   A lithium insertion electrode is prepared as a lithium source for predoping lithium into the negative electrode. The lithium supply electrode is obtained by fixing lithium foil or lithium powder on the surface of a lithium foil alone or a current collector. This lithium insertion electrode is joined to a lithium tab made of copper or the like. The lithium amount of the lithium insertion electrode is an amount corresponding to the initial irreversible capacity of silicon contained in the negative electrode active material.

本発明のリチウムイオン電池はリチウムイオン電池を組み立てた後で負極にリチウムをプレドープする。
リチウムイオン電池の組み立て方法は以下の工程(1)から工程(4)を備える。
工程(1)では電極組立体を組み立てる。上述した負極と正極とセパレータとを所定の大きさの形状に加工する。次に、負極、セパレータ、正極、セパレータを一組として所定の組を積層する。その際は負極、セパレータ、正極、セパレータの順に積層される。次に、最外層に積層されたセパレータの外側に負極を積層し、両側の最外層の負極の外側にセパレータをそれぞれ積層する。次に、両側の最外層のセパレータの外側にリチウムが接するようにリチウム挿入用電極をそれぞれ積層して電極組立体を組み立てる。
In the lithium ion battery of the present invention, the negative electrode is pre-doped with lithium after assembling the lithium ion battery.
The method for assembling a lithium ion battery includes the following steps (1) to (4).
In step (1), an electrode assembly is assembled. The above-described negative electrode, positive electrode, and separator are processed into a shape having a predetermined size. Next, a predetermined set is laminated with the negative electrode, the separator, the positive electrode, and the separator as one set. In that case, a negative electrode, a separator, a positive electrode, and a separator are stacked in this order. Next, a negative electrode is laminated on the outside of the separator laminated on the outermost layer, and the separator is laminated on the outer sides of the outermost negative electrode on both sides. Next, the lithium insertion electrodes are laminated so that lithium is in contact with the outside of the outermost layer separator on both sides, respectively, to assemble an electrode assembly.

工程(2)では電極組立体を外装体に挿入し、電解液を注液して電池前駆体を製造する。
工程(3)ではリチウムプレドープ処理を施す。図1に示すように、負極タブとリチウムタブとを短絡し、所定の時間そのまま放置することにより、リチウム挿入用電極からイオン化したリチウムがシリコンと合金化してシリコンにリチウムがプレドープされる。
工程(4)ではリチウムタブを負極タブから剥がす。
工程(5)では負極タブ及び正極タブを外装体の外側まで延在するようにして、外装体を封止してリチウムイオン電池を完成する。
In the step (2), the electrode assembly is inserted into the outer package, and an electrolyte is injected to produce a battery precursor.
In the step (3), a lithium pre-doping process is performed. As shown in FIG. 1, when the negative electrode tab and the lithium tab are short-circuited and left for a predetermined time, lithium ionized from the lithium insertion electrode is alloyed with silicon and silicon is pre-doped with lithium.
In step (4), the lithium tab is peeled off from the negative electrode tab.
In the step (5), the negative electrode tab and the positive electrode tab are extended to the outside of the package, and the package is sealed to complete the lithium ion battery.

実施例1
負極は、負極集電体と、上記負極集電体の両面に設けられたシリコンを含む負極活物質層とからなる。負極活物質層の厚さは6μmであり、負極の厚さは22μmである。
負極は、さらに厚さ方向に貫通する直径5μmの貫通孔が設けられている。
貫通孔の開口率が負極表面に対して1.0%になるように、各貫通孔が離間して設けられている。
Example 1
The negative electrode includes a negative electrode current collector and a negative electrode active material layer containing silicon provided on both surfaces of the negative electrode current collector. The thickness of the negative electrode active material layer is 6 μm, and the thickness of the negative electrode is 22 μm.
The negative electrode is further provided with a through hole having a diameter of 5 μm penetrating in the thickness direction.
Each through-hole is provided apart from each other so that the opening ratio of the through-hole is 1.0% with respect to the negative electrode surface.

負極集電体は、厚さ10μmで幅が40mmのニッケルメッキ鋼板からなる。
負極活物質層は、平均粒径5μmのシリコン粒子と、ポリイミド系結着材と、導電助剤としてのアセチレンブラックとが、重量比で80:15:5で構成されている。
負極活物質層は、単位面積あたり3mAhの容量を得るように目付した。
負極活物質層の製造方法は特に限られるわけではないが、ポリイミド系結着材の前駆体としてのポリアミック酸を固形分濃度15質量%含むN−メチル−2−ピロリドンにシリコン粒子とアセチレンブラックを加え、均一に分散し、負極活物質スラリーAを作成した。
次に、負極集電体の一方の幅方向の縁部に幅10mmの未塗工部となるように負極活物質スラリーをニッケルメッキ鋼板の両面にそれぞれ塗膜厚さが6μmで塗布し、130℃で乾燥した。次に、350℃で1時間熱処理を行い、ポリアミック酸を熱硬化させてイミド化した。これらを熱プレスして貫通孔加工前の負極板を作成した。
The negative electrode current collector is made of a nickel-plated steel plate having a thickness of 10 μm and a width of 40 mm.
The negative electrode active material layer is composed of silicon particles having an average particle size of 5 μm, a polyimide binder, and acetylene black as a conductive additive in a weight ratio of 80: 15: 5.
The negative electrode active material layer was laid so as to obtain a capacity of 3 mAh per unit area.
Although the method for producing the negative electrode active material layer is not particularly limited, silicon particles and acetylene black are added to N-methyl-2-pyrrolidone containing a solid concentration of 15% by mass of polyamic acid as a precursor of a polyimide-based binder. In addition, the mixture was uniformly dispersed to prepare a negative electrode active material slurry A.
Next, a negative electrode active material slurry was applied to both sides of the nickel-plated steel sheet at a coating thickness of 6 μm so that an uncoated portion having a width of 10 mm was formed on one widthwise edge of the negative electrode current collector. Dried at ° C. Next, heat treatment was performed at 350 ° C. for 1 hour to thermally cure the polyamic acid to imidize it. These were hot-pressed to form a negative electrode plate before through-hole processing.

次に、円周面に開口部を有する中空の円筒体の円周面に外側から加工対象の貫通孔加工前の負極板を斜めに巻回させながら移送し、円筒体の中心軸に直交するように反射されたレーザパルス光を負極板に照射して貫通孔を形成した。
この負極板から幅40mm、奥行き35mmの負極Aを打ち抜いた。そして、未塗工部にニッケルタブを溶接した。
Next, the negative electrode plate before processing the through hole to be processed is transported from the outside while being obliquely wound on the circumferential surface of the hollow cylindrical body having an opening in the circumferential surface, and is orthogonal to the central axis of the cylindrical body. The reflected laser pulse light was applied to the negative electrode plate to form a through hole.
A negative electrode A having a width of 40 mm and a depth of 35 mm was punched from the negative electrode plate. Then, a nickel tab was welded to the uncoated portion.

正極は、正極集電体と、上記正極集電体の両面に設けられたニッケル系層状複合酸化物を含む正極活物質層とからなる。正極活物質層の厚さは80μmであり、正極の厚さは170μmである。
正極は、さらに厚さ方向に貫通する直径15μmの貫通孔が設けられている。
貫通孔の開口率が正極表面に対して1.0%になるように、各貫通孔が離間して設けられている。
The positive electrode includes a positive electrode current collector and a positive electrode active material layer including a nickel-based layered composite oxide provided on both surfaces of the positive electrode current collector. The thickness of the positive electrode active material layer is 80 μm, and the thickness of the positive electrode is 170 μm.
The positive electrode is further provided with a through hole having a diameter of 15 μm penetrating in the thickness direction.
Each through-hole is provided apart such that the opening ratio of the through-hole is 1.0% with respect to the positive electrode surface.

正極集電体は、厚さ10μmで幅が40mmのステンレス箔からなる。
正極活物質層は、正極活物質としての平均粒径10μmのLiNi0.8Co0.15Al0.05のニッケル系複合酸化物と、PVDF系結着材と導電助剤としてのアセチレンブラックとが、重量比で95:2:3で構成されている。
LiNi0.8Co0.15Al0.05O2は単位重量当たり200mAh/gである。正極活物質層は、単位面積あたり3mAhの容量を得るように目付した。
正極活物質層の製造方法は特に限られるわけではないが、PVDF系結着材を固形分濃度15質量%含むN−メチル−2−ピロリドンにニッケル系複合酸化物とアセチレンブラックを加え、均一に分散し、正極活物質スラリーを作成した。
次に、片側の塗膜の厚さが80μmとなるように正極活物質スラリーをSUS箔の両面に塗布し、120℃で乾燥した。これらを熱プレスして貫通孔加工前に正極板を作成した。
The positive electrode current collector is made of a stainless foil having a thickness of 10 μm and a width of 40 mm.
The positive electrode active material layer includes a nickel-based composite oxide of LiNi 0.8 Co 0.15 Al 0.05 O 2 having an average particle size of 10 μm as a positive electrode active material, a PVDF-based binder, and acetylene as a conductive additive. Black and 95: 2: 3 by weight.
LiNi 0.8 Co 0.15 Al 0.05 O 2 is 200 mAh / g per unit weight. The weight of the positive electrode active material layer was set so as to obtain a capacity of 3 mAh per unit area.
The method for producing the positive electrode active material layer is not particularly limited, but a nickel-based composite oxide and acetylene black are added to N-methyl-2-pyrrolidone containing a PVDF-based binder at a solid concentration of 15% by mass, and the mixture is uniformly mixed. This was dispersed to prepare a positive electrode active material slurry.
Next, the positive electrode active material slurry was applied to both surfaces of the SUS foil so that the thickness of the coating film on one side was 80 μm, and dried at 120 ° C. These were hot-pressed to prepare a positive electrode plate before processing the through-hole.

次に、円周面に開口部を有する中空の円筒体の円周面に外側から加工対象の正極板を斜めに巻回させながら移送し、円筒体の中心軸に直交するように反射されたレーザパルス光を正極板に照射して貫通孔を形成して正極板を作成した。
この正極板から幅35mm、奥行き30mmの正極Aを打ち抜いた。そして、未塗工部にアルミニウムタブを溶接した。
Next, the positive electrode plate to be processed was transported from the outside while being wound obliquely from the outside to the circumferential surface of the hollow cylindrical body having an opening in the circumferential surface, and was reflected so as to be orthogonal to the central axis of the cylindrical body. The positive electrode plate was formed by irradiating the positive electrode plate with laser pulse light to form a through hole.
From this positive electrode plate, a positive electrode A having a width of 35 mm and a depth of 30 mm was punched. Then, an aluminum tab was welded to the uncoated portion.

次に、リチウムイオン二次電池を作成した。負極Aを3枚と正極Aを2枚との間にポリオレフィン系の微多孔膜を介在させて電極積層体を作成した。さらに電極積層体の積層方向の両側のポリオレフィン系の微多孔膜を介在させてリチウム箔を積層させた。リチウム箔には銅タブを溶接してある。この積層体を、各タブの一部が外側に現れるようにして、樹脂―金属封止体の中に挿入し、1M−LiPF6のEC−DMCの電解質を注液し、封止して実施例1のリチウムイオン二次電池Aを作成した。   Next, a lithium ion secondary battery was prepared. An electrode laminate was prepared by interposing a polyolefin-based microporous film between three negative electrodes A and two positive electrodes A. Further, a lithium foil was laminated with a polyolefin-based microporous film on both sides in the laminating direction of the electrode laminate. A copper tab is welded to the lithium foil. The laminated body was inserted into a resin-metal sealed body so that a part of each tab appeared on the outside, and 1M-LiPF6 EC-DMC electrolyte was injected and sealed. Thus, a lithium ion secondary battery A of No. 1 was prepared.

この実施例1のリチウムイオン二次電池Aにリチウムプレドープ処理を施した。負極タブとリチウムタブとを所定の時間短絡しリチウムをシリコンにプレドープした。負極タブとリチウムタブとの間の開回路電圧は0.003Vであった。
次に、負極タブとリチウムタブとの間の電圧が1Vになるまで放電した。
次に、正極タブと負極タブとを用いて、電池電圧が3.7Vになるまで0.025Cで充電し、続いて、電池電圧が2.5Vになるまで0.025Cで放電した。充電容量は110mAhであり、放電容量は100mAhであった。初回の充放電での不可逆容量は9%であった。
The lithium ion secondary battery A of Example 1 was subjected to a lithium pre-doping process. The negative electrode tab and the lithium tab were short-circuited for a predetermined time, and lithium was pre-doped into silicon. The open circuit voltage between the negative tab and the lithium tab was 0.003V.
Next, discharge was performed until the voltage between the negative electrode tab and the lithium tab became 1 V.
Next, using the positive electrode tab and the negative electrode tab, the battery was charged at 0.025 C until the battery voltage reached 3.7 V, and then discharged at 0.025 C until the battery voltage reached 2.5 V. The charge capacity was 110 mAh and the discharge capacity was 100 mAh. The irreversible capacity at the first charge / discharge was 9%.

実施例2
負極は、負極集電体と、上記負極集電体の両面に設けられた酸化シリコン及び黒鉛を含む負極活物質層とからなる。負極活物質層の厚さは60μmであり、負極の厚さは130μmである。
負極は、さらに厚さ方向に貫通する直径5μmの貫通孔が設けられている。
貫通孔の開口率が負極表面に対して1.5%になるように、各貫通孔が離間して設けられている。
Example 2
The negative electrode includes a negative electrode current collector, and a negative electrode active material layer including silicon oxide and graphite provided on both surfaces of the negative electrode current collector. The thickness of the negative electrode active material layer is 60 μm, and the thickness of the negative electrode is 130 μm.
The negative electrode is further provided with a through hole having a diameter of 5 μm penetrating in the thickness direction.
Each through-hole is provided apart such that the opening ratio of the through-hole is 1.5% with respect to the negative electrode surface.

負極集電体は、厚さ10μmで幅が40mmのニッケルメッキ鋼板からなる。
負極活物質層は、平均粒径20μmの酸化シリコン粒子と、平均粒径15μmの黒鉛と、アクリル系結着材とが、重量比で10:85:5で構成されている。
負極活物質層は、単位面積あたり3mAhの容量を得るように目付した。
負極活物質層の製造方法は特に限られるわけではないが、アクリル系結着材を固形分濃度15質量%含む脱イオン化水に酸化シリコン粒子と黒鉛を加え、均一に分散し、負極活物質スラリーBを作成した。
次に、負極集電体の一方の幅方向の縁部に幅10mmの未塗工部ができるように負極活物質スラリーBをニッケルメッキ鋼板の両面にそれぞれ塗膜厚さ60μmで塗布し、130℃で乾燥した。これらを熱プレスして貫通孔加工前の負極板を作成した。
The negative electrode current collector is made of a nickel-plated steel plate having a thickness of 10 μm and a width of 40 mm.
The negative electrode active material layer is composed of silicon oxide particles having an average particle diameter of 20 μm, graphite having an average particle diameter of 15 μm, and an acrylic binder in a weight ratio of 10: 85: 5.
The anode active material layer was laid so as to obtain a capacity of 3 mAh per unit area.
Although the method for producing the negative electrode active material layer is not particularly limited, silicon oxide particles and graphite are added to deionized water containing an acrylic binder at a solid concentration of 15% by mass, and the mixture is uniformly dispersed. B was created.
Next, the negative electrode active material slurry B was applied to both sides of the nickel-plated steel sheet at a coating thickness of 60 μm so that an uncoated portion having a width of 10 mm was formed at one widthwise edge of the negative electrode current collector. Dried at ° C. These were hot pressed to form a negative electrode plate before through hole processing.

次に、円周面に開口部を有する中空の円筒体の円周面に外側から加工対象の貫通孔加工前の負極板を斜めに巻回させながら移送し、円筒体の中心軸に直交するように反射されたレーザパルス光を負極板に照射して貫通孔を形成した。
この負極板から幅40mm、奥行き35mmの負極Bを打ち抜いた。そして、未塗工部にニッケルタブを溶接した。
Next, the negative electrode plate before processing the through hole to be processed is transported from the outside while being obliquely wound on the circumferential surface of the hollow cylindrical body having an opening in the circumferential surface, and is orthogonal to the central axis of the cylindrical body. The reflected laser pulse light was applied to the negative electrode plate to form a through hole.
A negative electrode B having a width of 40 mm and a depth of 35 mm was punched from the negative electrode plate. Then, a nickel tab was welded to the uncoated portion.

次に、リチウムイオン二次電池を作成した。負極Bを3枚と正極Aを2枚とを間にポリオレフィン系の微多孔膜を介在させて電極積層体を作成した。さらに電極積層体の積層方向の両側のポリオレフィン系の微多孔膜を介在させてリチウム箔を積層させた。リチウム箔には銅タブを溶接してある。この積層体を、各タブの一部が外側に現れるようにして、樹脂―金属封止体の中に挿入し、1M−LiPFのEC−DMCの電解質を注液し、封止して実施例2のリチウムイオン二次電池Bを作成した。 Next, a lithium ion secondary battery was prepared. An electrode laminate was prepared by interposing a polyolefin-based microporous film between three negative electrodes B and two positive electrodes A. Further, a lithium foil was laminated with a polyolefin-based microporous film on both sides in the laminating direction of the electrode laminate. A copper tab is welded to the lithium foil. This laminated body is inserted into a resin-metal sealing body so that a part of each tab appears outside, and an EC-DMC electrolyte of 1M-LiPF 6 is injected, sealed, and then performed. A lithium ion secondary battery B of Example 2 was produced.

この実施例2のリチウムイオン二次電池Bにリチウムプレドープ処理を施した。負極タブと銅タブとを所定の時間短絡しリチウムをシリコンにプレドープした。負極タブと銅タブとの間の開回路電圧は0.003Vであった。
次に、負極タブと銅タブとの間の電圧が1Vになるまで放電した。
次に、正極タブと負極タブとを用いて、電池電圧が4.0Vになるまで0.025Cで充電し、続いて、電池電圧が2.7Vになるまで0.025Cで放電した。充電容量は110mAhであり、放電容量は100mAhであった。初回の充放電での不可逆容量は9%であった。
The lithium ion secondary battery B of Example 2 was subjected to lithium pre-doping. The negative electrode tab and the copper tab were short-circuited for a predetermined time, and lithium was pre-doped into silicon. The open circuit voltage between the negative tab and the copper tab was 0.003V.
Next, discharging was performed until the voltage between the negative electrode tab and the copper tab became 1 V.
Next, using the positive electrode tab and the negative electrode tab, the battery was charged at 0.025 C until the battery voltage became 4.0 V, and then discharged at 0.025 C until the battery voltage became 2.7 V. The charge capacity was 110 mAh and the discharge capacity was 100 mAh. The irreversible capacity at the first charge / discharge was 9%.

実施例3
負極は、負極集電体と、上記負極集電体の両面に設けられた酸化シリコンを含む負極活物質層とからなる。負極活物質層の厚さは60μmであり、負極の厚さは130μmである。
負極は、さらに厚さ方向に貫通する直径5μmの貫通孔が設けられている。
貫通孔の開口率が負極表面に対して2.0%になるように、各貫通孔が離間して設けられている。
Example 3
The negative electrode includes a negative electrode current collector and a negative electrode active material layer containing silicon oxide provided on both surfaces of the negative electrode current collector. The thickness of the negative electrode active material layer is 60 μm, and the thickness of the negative electrode is 130 μm.
The negative electrode is further provided with a through hole having a diameter of 5 μm penetrating in the thickness direction.
Each through-hole is provided apart such that the opening ratio of the through-hole becomes 2.0% with respect to the negative electrode surface.

負極集電体は、厚さ10μmで幅が40mmのSUS箔からなる。
負極活物質層は、平均粒径20μmの酸化シリコン粒子と、ポリイミド系結着材と、導電助剤としてのアセチレンブラックとが、重量比で82:15:3で構成されている。
負極活物質層は、単位面積あたり3mAhの容量を得るように目付した。
負極活物質層の製造方法は特に限られるわけではないが、ポリイミド系結着材の前駆体としてのポリアミック酸を固形分濃度15質量%含むN−メチル−2−ピロリドンに酸化シリコン粒子とアセチレンブラックを加え、均一に分散し、負極活物質スラリーCを作成した。
次に、負極集電体の一方の幅方向の縁部に幅10mmの未塗工部ができるように負極活物質スラリーをSUS箔の両面にそれぞれ塗膜厚さ60μmで塗布し、130℃で乾燥した。次に、350℃で1時間熱処理を行い、ポリアミック酸を熱硬化させてイミド化した。これらを熱プレスして貫通孔加工前の負極板を作成した。
The negative electrode current collector is made of a SUS foil having a thickness of 10 μm and a width of 40 mm.
The negative electrode active material layer is composed of silicon oxide particles having an average particle diameter of 20 μm, a polyimide binder, and acetylene black as a conductive additive in a weight ratio of 82: 15: 3.
The negative electrode active material layer was laid so as to obtain a capacity of 3 mAh per unit area.
Although the method for producing the negative electrode active material layer is not particularly limited, silicon oxide particles and acetylene black are added to N-methyl-2-pyrrolidone containing 15% by mass of a solid content of polyamic acid as a precursor of a polyimide-based binder. Was added and uniformly dispersed to prepare a negative electrode active material slurry C.
Next, a negative electrode active material slurry was applied to both sides of the SUS foil at a coating thickness of 60 μm so that an uncoated portion having a width of 10 mm was formed on one widthwise edge of the negative electrode current collector. Dried. Next, heat treatment was performed at 350 ° C. for 1 hour to thermally cure the polyamic acid to imidize it. These were hot-pressed to form a negative electrode plate before through-hole processing.

次に、円周面に開口部を有する中空の円筒体の円周面に外側から加工対象の貫通孔加工前の負極板を斜めに巻回させながら移送し、円筒体の中心軸に直交するように反射されたレーザパルス光を負極板に照射して貫通孔を形成した。
この負極板から幅40mm、奥行き35mmの負極Cを打ち抜いた。そして、未塗工部にニッケルタブを溶接した。
Next, the negative electrode plate before processing the through hole to be processed is transported from the outside while being obliquely wound on the circumferential surface of the hollow cylindrical body having an opening in the circumferential surface, and is orthogonal to the central axis of the cylindrical body. The reflected laser pulse light was applied to the negative electrode plate to form a through hole.
A negative electrode C having a width of 40 mm and a depth of 35 mm was punched from the negative electrode plate. Then, a nickel tab was welded to the uncoated portion.

次に、実施例3のリチウムイオン二次電池Cを作成した。負極Bを3枚と正極Aを2枚とを間にポリオレフィン系の微多孔膜を介在させて電極積層体を作成した。さらに電極積層体の積層方向の両側のポリオレフィン系の微多孔膜を介在させてリチウム箔を積層させた。リチウム箔には銅タブを溶接してある。この積層体を、各タブの一部が外側に現れるようにして、樹脂―金属封止体の中に挿入し、1M−LiPF6のEC−DMCの電解質を注液し、封止して実施例3のリチウムイオン二次電池Cを作成した。   Next, a lithium ion secondary battery C of Example 3 was produced. An electrode laminate was prepared by interposing a polyolefin-based microporous film between three negative electrodes B and two positive electrodes A. Further, a lithium foil was laminated with a polyolefin-based microporous film on both sides in the laminating direction of the electrode laminate. A copper tab is welded to the lithium foil. The laminated body was inserted into a resin-metal sealed body so that a part of each tab appeared on the outside, and 1M-LiPF6 EC-DMC electrolyte was injected and sealed. A lithium ion secondary battery C of No. 3 was produced.

この実施例3のリチウムイオン二次電池Cにリチウムプレドープ処理を施した。負極タブと銅タブとを所定の時間短絡しリチウムをシリコンにプレドープした。負極タブと銅タブとの間の開回路電圧は0.003Vであった。
次に、負極タブと銅タブとの間の電圧が1Vになるまで放電した。
次に、正極タブと負極タブとを用いて、電池電圧が4.0Vになるまで0.025Cで充電し、続いて、電池電圧が2.7Vになるまで0.025Cで放電した。充電容量は110mAhであり、放電容量は100mAhであった。初回の充放電での不可逆容量は9%であった。
The lithium ion secondary battery C of Example 3 was subjected to lithium pre-doping. The negative electrode tab and the copper tab were short-circuited for a predetermined time, and lithium was pre-doped into silicon. The open circuit voltage between the negative tab and the copper tab was 0.003V.
Next, discharging was performed until the voltage between the negative electrode tab and the copper tab became 1 V.
Next, using the positive electrode tab and the negative electrode tab, the battery was charged at 0.025 C until the battery voltage became 4.0 V, and then discharged at 0.025 C until the battery voltage became 2.7 V. The charge capacity was 110 mAh and the discharge capacity was 100 mAh. The irreversible capacity at the first charge / discharge was 9%.

比較例1
比較例1の負極Dは負極板に貫通孔を穿孔していない点を除き、実施例1と同様である。
また、比較例1の正極Bは正極板に貫通孔を穿孔していない点を除き、実施例1と同様である。
Comparative Example 1
The negative electrode D of Comparative Example 1 was the same as Example 1 except that no through-hole was formed in the negative electrode plate.
The positive electrode B of Comparative Example 1 was the same as Example 1 except that no through hole was formed in the positive electrode plate.

次に、比較例1のリチウムイオン二次電池Dを作成した。負極Dを3枚と正極Bを2枚とを間にポリオレフィン系の微多孔膜を介在させて電極積層体を作成した。さらに電極積層体の積層方向の両側のポリオレフィン系の微多孔膜を介在させてリチウム箔を積層させた。リチウム箔には銅タブを溶接してある。この積層体を各タブの一部が外側に現れるようにして、樹脂―金属封止体の中に挿入し、1M−LiPFのEC−DMCの電解質を注液し、封止して比較例1のリチウムイオン二次電池Dを作成した。 Next, a lithium ion secondary battery D of Comparative Example 1 was prepared. An electrode laminate was prepared by interposing a polyolefin-based microporous film between three negative electrodes D and two positive electrodes B. Further, a lithium foil was laminated with a polyolefin-based microporous film on both sides in the laminating direction of the electrode laminate. A copper tab is welded to the lithium foil. This laminated body was inserted into a resin-metal sealed body so that a part of each tab appeared outside, and a 1M-LiPF 6 EC-DMC electrolyte was injected and sealed, and sealed. Thus, a lithium ion secondary battery D was manufactured.

この比較例1のリチウムイオン二次電池Dをリチウムプレドープ処理を施した。負極タブと銅タブとを所定の時間短絡しリチウムをシリコンにプレドープした。負極タブと銅タブとの間の開回路電圧は0.010Vであった。
次に、負極タブと銅タブとの間の電圧が1Vになるまで放電した。
次に、正極タブと負極タブとを用いて、電池電圧が4.0Vになるまで0.025Cで充電し、続いて、電池電圧が2.7Vになるまで0.025Cで放電した。充電容量は110mAhであり、放電容量は90mAhであった。初回の充放電での不可逆容量は18%であった。
The lithium ion secondary battery D of Comparative Example 1 was subjected to a lithium pre-doping treatment. The negative electrode tab and the copper tab were short-circuited for a predetermined time, and lithium was pre-doped into silicon. The open circuit voltage between the negative tab and the copper tab was 0.010V.
Next, discharging was performed until the voltage between the negative electrode tab and the copper tab became 1 V.
Next, using the positive electrode tab and the negative electrode tab, the battery was charged at 0.025 C until the battery voltage became 4.0 V, and then discharged at 0.025 C until the battery voltage became 2.7 V. The charge capacity was 110 mAh and the discharge capacity was 90 mAh. The irreversible capacity at the first charge / discharge was 18%.

この発明の実施例1乃至3のリチウムイオン二次電池は、初期不可逆容量が10%以下と、比較例1の18%に比べて小さくなっている。その理由として以下のことが考えられる。活物質層を貫通する貫通孔があることにより、リチウム箔からイオン化したリチウムイオンが負極に均一に到達することができるために、比較例1のように負極の外縁から中心にイオン伝導する必要がなく、均一にプレドープすることができるものと考えられる。   The lithium ion secondary batteries of Examples 1 to 3 of the present invention have an initial irreversible capacity of 10% or less, which is smaller than 18% of Comparative Example 1. The following can be considered as the reason. Since there is a through hole penetrating the active material layer, lithium ions ionized from the lithium foil can uniformly reach the negative electrode. Therefore, it is necessary to conduct ions from the outer edge of the negative electrode to the center as in Comparative Example 1. Therefore, it is considered that they can be pre-doped uniformly.

この発明の実施例1と比較例1のリチウムイオン二次電池の負極に於けるリチウムのプレドープの濃度の分布を調べた。負極から幅方向に幅5mmで長さ40mmのリボン状に切り出し、そのリボンを8等分してリチウム濃度測定用サンプルを作成した。
リチウム濃度は、ICP−MS(誘導結合プラズマ質量分析計)を用いて測定した。
実施例1のリチウム濃度の標準偏差が15%であるのに対して比較例1のリチウム濃度の標準偏差は43%であった。
比較例1の電池ではリチウムイオンの拡散方向が電極面に並行方向であるのに対して、実施例1の電池ではリチウムイオンが垂直方向に拡散することが影響しているものと考えられる。
The distribution of the pre-doped concentration of lithium in the negative electrodes of the lithium ion secondary batteries of Example 1 of the present invention and Comparative Example 1 was examined. From the negative electrode, a ribbon having a width of 5 mm and a length of 40 mm was cut out in the width direction, and the ribbon was divided into eight equal parts to prepare a sample for lithium concentration measurement.
The lithium concentration was measured using ICP-MS (inductively coupled plasma mass spectrometer).
The standard deviation of the lithium concentration of Example 1 was 15%, while the standard deviation of the lithium concentration of Comparative Example 1 was 43%.
In the battery of Comparative Example 1, the diffusion direction of lithium ions is parallel to the electrode surface, whereas in the battery of Example 1, the diffusion of lithium ions in the vertical direction is considered to have an effect.

1 負極
2 正極
3 セパレータ
4 外装体
5 電解液
6 リチウム挿入用電極
7 貫通孔
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Separator 4 Outer body 5 Electrolyte solution 6 Lithium insertion electrode 7 Through-hole

Claims (6)

集電体の少なくとも一面にシリコンを含む負極活物質層が備えられるリチウムイオン電池用負極において、
上記負極を厚さ方向に貫通する貫通孔が設けられ、
上記負極活物質層にはリチウムがプレドープされ、
上記負極の初期充放電に於ける初期充電容量に対する初期放電容量の割合は90%以上であることを特徴とするリチウムイオン電池用負極。
In a negative electrode for a lithium ion battery, which is provided with a negative electrode active material layer containing silicon on at least one surface of the current collector,
A through-hole penetrating the negative electrode in the thickness direction is provided,
The negative electrode active material layer is pre-doped with lithium,
A negative electrode for a lithium ion battery, wherein the ratio of the initial discharge capacity to the initial charge capacity in the initial charge and discharge of the negative electrode is 90% or more.
上記貫通孔の開口径は、1μm以上50μm以下で、
上記貫通孔の開口率は、0.01%以上5%以下であることを特徴とする請求項1に記載のリチウムイオン電池用負極。
The opening diameter of the through hole is 1 μm or more and 50 μm or less,
The negative electrode for a lithium ion battery according to claim 1, wherein an opening ratio of the through hole is 0.01% or more and 5% or less.
上記シリコンを含む負極活物質は、シリコン、シリコン酸化物の少なくとも一つを含むことを特徴とする請求項1または2に記載のリチウムイオン電池用負極。   The negative electrode for a lithium ion battery according to claim 1, wherein the negative electrode active material containing silicon includes at least one of silicon and silicon oxide. 請求項1乃至3のいずれかに記載のリチウムイオン電池用負極を備えることを特徴とするリチウムイオン電池。   A lithium ion battery comprising the negative electrode for a lithium ion battery according to claim 1. 負極の初期充放電に於ける初期充電容量に対する初期放電容量の割合が90%以上であるリチウムイオン電池の製造方法において、
集電体の少なくとも一面にシリコンを含む負極活物質組成物を塗布して負極活物質層を形成して負極板を形成する工程と、
該負極板の厚さ方向に貫通する貫通孔を形成する工程と、
上記負極板と正極板をセパレータを介して積層した積層体を形成する工程と、
上記積層体とリチウム挿入用電極とを積層し、且つ上記リチウム挿入用電極由来のリチウムを用いて上記負極板をプレドープする工程を備えることを特徴とするリチウムイオン電池の製造方法。
In a method for producing a lithium ion battery, wherein the ratio of the initial discharge capacity to the initial charge capacity in the initial charge and discharge of the negative electrode is 90% or more,
A step of forming a negative electrode plate by applying a negative electrode active material composition containing silicon on at least one surface of the current collector to form a negative electrode active material layer,
Forming a through hole penetrating in the thickness direction of the negative electrode plate;
A step of forming a laminate in which the negative electrode plate and the positive electrode plate are laminated via a separator,
A method for producing a lithium ion battery, comprising: laminating the laminate and a lithium insertion electrode, and pre-doping the negative electrode plate using lithium derived from the lithium insertion electrode.
上記貫通孔を形成する工程では、
上記貫通孔の開口径は、1μm以上50μm以下で、
上記貫通孔の開口率は、0.01%以上5%以下である貫通孔を形成することを特徴とする請求項4に記載のリチウムイオン電池の製造方法。
In the step of forming the through hole,
The opening diameter of the through hole is 1 μm or more and 50 μm or less,
The method for manufacturing a lithium ion battery according to claim 4, wherein a through hole having an opening ratio of 0.01% or more and 5% or less is formed.
JP2018125358A 2018-06-29 2018-06-29 Negative electrode for lithium ion battery, lithium ion battery using negative electrode, and manufacturing method of lithium ion battery Pending JP2020004663A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018125358A JP2020004663A (en) 2018-06-29 2018-06-29 Negative electrode for lithium ion battery, lithium ion battery using negative electrode, and manufacturing method of lithium ion battery
PCT/JP2019/025356 WO2020004453A1 (en) 2018-06-29 2019-06-26 Negative electrode for lithium ion battery, lithium ion battery using said negative electrode, and method for producing lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018125358A JP2020004663A (en) 2018-06-29 2018-06-29 Negative electrode for lithium ion battery, lithium ion battery using negative electrode, and manufacturing method of lithium ion battery

Publications (2)

Publication Number Publication Date
JP2020004663A true JP2020004663A (en) 2020-01-09
JP2020004663A5 JP2020004663A5 (en) 2020-02-20

Family

ID=68984876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018125358A Pending JP2020004663A (en) 2018-06-29 2018-06-29 Negative electrode for lithium ion battery, lithium ion battery using negative electrode, and manufacturing method of lithium ion battery

Country Status (2)

Country Link
JP (1) JP2020004663A (en)
WO (1) WO2020004453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007919A1 (en) * 2021-07-28 2023-02-02 パナソニックIpマネジメント株式会社 Battery and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138408A (en) * 2010-12-24 2012-07-19 Nec Tokin Corp Electrochemical device and manufacturing method thereof
JP6448336B2 (en) * 2014-12-04 2019-01-09 積水化学工業株式会社 Method for producing lithium ion secondary battery
KR20180024005A (en) * 2015-08-04 2018-03-07 미쓰이 가가쿠 가부시키가이샤 Cathode for lithium ion secondary battery, lithium ion secondary battery containing same, and method for manufacturing negative electrode for lithium ion secondary battery
JP2017120746A (en) * 2015-12-29 2017-07-06 日立マクセル株式会社 Lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007919A1 (en) * 2021-07-28 2023-02-02 パナソニックIpマネジメント株式会社 Battery and method for producing same

Also Published As

Publication number Publication date
WO2020004453A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
KR101170218B1 (en) Electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR101378074B1 (en) Electrode for electrochemical device and electrochemical device comprising the same
CN110100349B (en) Cylindrical nonaqueous electrolyte secondary battery
US11223038B2 (en) Method for manufacturing secondary battery
WO2013098970A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
JP2013182712A (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2019054216A1 (en) Separator for lithium ion battery
KR20130137390A (en) A separator and electrochemical device including the same
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
CN106654168B (en) Nonaqueous electrolyte secondary battery and method for producing same, and conductive assistant for nonaqueous electrolyte secondary battery and method for producing same
CN110021782B (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
CN110247019B (en) Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
WO2020004453A1 (en) Negative electrode for lithium ion battery, lithium ion battery using said negative electrode, and method for producing lithium ion battery
US10714725B2 (en) Separator for nonaqueous electrolyte secondary battery
US10243204B2 (en) Negative electrode active material, and negative electrode and lithium ion secondary battery using the negative electrode active material
KR20130100678A (en) Secondary battery and manufacturing method using the same
JP2020004663A5 (en)
JP6083289B2 (en) Lithium ion secondary battery
JP6489360B2 (en) Secondary battery
JPWO2018198969A1 (en) Battery member for secondary battery, secondary battery, and method of manufacturing the same
WO2013098969A1 (en) Method for producing electrode and method for producing non-aqueous electrolyte battery
TW201508978A (en) Electrode structure and secondary battery
JP2017098207A (en) Secondary battery having electrode body
JP6681017B2 (en) Secondary battery having electrode body
US20170054145A1 (en) Lithium ion secondary battery and method of producing same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191226

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200901