JPH11263618A - Re-ba-cu-o-based oxide superconductor and its production - Google Patents

Re-ba-cu-o-based oxide superconductor and its production

Info

Publication number
JPH11263618A
JPH11263618A JP10067469A JP6746998A JPH11263618A JP H11263618 A JPH11263618 A JP H11263618A JP 10067469 A JP10067469 A JP 10067469A JP 6746998 A JP6746998 A JP 6746998A JP H11263618 A JPH11263618 A JP H11263618A
Authority
JP
Japan
Prior art keywords
phase
oxide superconductor
value
based oxide
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10067469A
Other languages
Japanese (ja)
Other versions
JP4019132B2 (en
Inventor
Shiyuuichi Kobayashi
秀一 小早志
Hideetsu Haseyama
秀悦 長谷山
Mamoru Sato
守 佐藤
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Dowa Mining Co Ltd filed Critical Chubu Electric Power Co Inc
Priority to JP06746998A priority Critical patent/JP4019132B2/en
Publication of JPH11263618A publication Critical patent/JPH11263618A/en
Application granted granted Critical
Publication of JP4019132B2 publication Critical patent/JP4019132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfy the requirements such as electric characteristics, magnetic characteristics, mechanical characteristics and environmental resistance for a superconductor and to obtain a higher critical current density by allowing a twin crystal having a specified plane distance to be present in a specified crystal phase which constitutes the superconducting phase. SOLUTION: The RE-Ba-Cu-O-based oxide superconductor has fine dispersion of RE2(1-q) Ba1+r CUO5+s phase (211 phase) and/or RE4(1-q) Ba2(1+r) CU2 O2(5+s) phase (422 phase) 10 RE1-x Ba2+y CU3 Od phase (123 phase) which constitutes the superconducting phase. In this superconductor, a twin crystal is present in the (123 phase) crystal phase and the distance between the twin crystal planes is <100 nm. Further, the superconductor has an amorphous phase on the interface between the (123 phase) and the (211 phase) and/or the (422 phase). In the formulae, RE represents one or more rare earth metal elements including Y; (x), (y), (d) satisfy -0.3<x<0.3, -0.3<y<0.3, 6.5<d<7.5; (q),(r),(s) satisfy -0.3<q<0.3, -0.3<r<0.3, -0.5<s<0.5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に、超電導体電
流リード、超電導体磁気軸受け、超電導体磁気シール
ド、超電導体バルクマグネット等に用いることが可能な
電気特性、磁気特性、機械強度、耐環境性及び必要な大
きさ等の条件を満たすことが可能なREーBaーCuー
O系酸化物超電導体及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a superconductor current lead, a superconductor magnetic bearing, a superconductor magnetic shield, a superconductor bulk magnet, and the like. The present invention relates to a RE-Ba-Cu-O-based oxide superconductor capable of satisfying conditions such as properties and required size, and a method for producing the same.

【0002】[0002]

【従来の技術】超電導体電流リード、超電導体磁気軸受
け、超電導体磁気シールド、超電導体バルクマグネット
等を構成するための超電導体は、その機能上から要求さ
れる電気特性、磁気特性、機械強度、耐環境性及び必要
な大きさ等の条件を満たさなければならない。このよう
な条件を満たす可能性を有する超電導体の一つとして、
いわゆる溶融法で製造されるREーBaーCuーO系酸
化物超電導体を挙げることができる。すなわち、RE化
合物(REはYを含む1種もしくは2種以上の希土類金
属元素)、Ba化合物及びCu化合物を含む原料混合体
を該原料混合体の融点温度以上に加熱溶融した後に、徐
冷工程を行って結晶を成長させて得られる超電導体であ
る。この具体例としては、例えば、特開平4-119968号公
報に記載の方法が知られている。この公報に記載の方法
は、RE化合物、Ba化合物及びCu化合物を所定の比
に混合して溶融急冷した後、得られた凝固物を再度粉砕
し、それを成形した後再度溶融して徐冷工程を施して結
晶化させるもので、上述の各条件をある程度満たすこと
が可能なREーBaーCuーO系酸化物超電導体を得て
いる。
2. Description of the Related Art A superconductor for forming a superconductor current lead, a superconductor magnetic bearing, a superconductor magnetic shield, a superconductor bulk magnet, and the like has electrical characteristics, magnetic characteristics, mechanical strength, mechanical strength, and the like required from the function thereof. Conditions such as environmental resistance and required size must be satisfied. As one of the superconductors that have the possibility of satisfying such conditions,
An RE-Ba-Cu-O-based oxide superconductor produced by a so-called melting method can be used. That is, a raw material mixture containing an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound and a Cu compound is heated and melted to a temperature equal to or higher than the melting point of the raw material mixture, and then a slow cooling step is performed. And a superconductor obtained by growing a crystal. As a specific example thereof, for example, a method described in Japanese Patent Application Laid-Open No. H4-119968 is known. In the method described in this publication, a RE compound, a Ba compound, and a Cu compound are mixed at a predetermined ratio, melt-quenched, and then the obtained solidified product is pulverized again. An RE-Ba-Cu-O-based oxide superconductor is obtained, which is subjected to a step for crystallization and capable of satisfying the above-mentioned conditions to some extent.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の方法で得られるREーBaーCuーO系酸化物超電
導体は、電気的特性、特に、臨界電流密度については、
近年の要請に必ずしも十分に応えられる程度に高い値を
有しているとはいえないことが判明した。
However, the RE-Ba-Cu-O-based oxide superconductor obtained by the above-mentioned conventional method has the following problems in terms of electrical characteristics, particularly, critical current density.
It has been found that it is not necessarily high enough to respond to recent demands.

【0004】本発明者等がその原因を研究したところ、
以下の点が解明された。すなわち、上記方法で得られる
超電導体は、REBaCu相(123相)中
に、REBaCu相(211相)が微細に分
散された構造を有するものであって、急冷して得られた
凝固物を再度粉砕することによって211相を微細にし
ている。しかるに、再度溶融して徐冷する工程において
211相が再度凝集粗大化してしまっていたことが判明
した。この211相はピンニングセンターとして働き、
より微細に分散した方が臨界電流密度が高くなるが、こ
の凝集粗大化のために臨界電流密度が低く抑えられてい
た。
When the present inventors studied the cause,
The following points have been elucidated. That is, the superconductor obtained by the above method has a structure in which RE 2 Ba 1 Cu 1 Od phase (211 phase) is finely dispersed in RE 1 Ba 2 Cu 3 Od phase (123 phase). The solidified product obtained by quenching is pulverized again to make the 211 phase fine. However, it was found that in the step of melting and slow cooling again, the 211 phase was again aggregated and coarsened. This 211 phase works as a pinning center,
The more finely dispersed, the higher the critical current density. However, the critical current density was suppressed to be low due to the coagulation coarsening.

【0005】本発明は上述の背景のもとでなされたもの
であり、超電導体電流リード、超電導体磁気軸受け、超
電導体磁気シールド、超電導体バルクマグネット等に用
いることが可能な電気特性、磁気特性、機械強度、耐環
境性及び必要な大きさ等の条件を満たしつつ、より高い
臨界電流密度を有するREーBaーCuーO系酸化物超
電導体を提供することを目的とする。
The present invention has been made in view of the above background, and has electrical and magnetic characteristics applicable to superconductor current leads, superconductor magnetic bearings, superconductor magnetic shields, superconductor bulk magnets, and the like. It is an object of the present invention to provide an RE-Ba-Cu-O-based oxide superconductor having a higher critical current density while satisfying conditions such as mechanical strength, environmental resistance, and required size.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する手段
として、請求項1の発明は、超電導相を構成するRE
1−xBa2+yCu結晶相に該結晶の双晶が存
在するとともに、これら双晶面の間隔が100nm未満
であることを特徴とするREーBaーCuーO系酸化物
超電導体である。(但し、REはYを含む1種もしくは
2種以上の希土類金属元素であり、RE −xBa
2+yCu相とはx,y,dがそれぞれ−0.3
<x<0.3,−0.3<y<0.3,6.5<d<
7.5の範囲である値をとる相が1種以上存在する相で
ある。)
Means for Solving the Problems As means for solving the above-mentioned problems, the invention of claim 1 is directed to a RE which constitutes a superconducting phase.
With twins of the crystal is present in the 1-x Ba 2 + y Cu 3 O d crystalline phase, RE over Ba over Cu over O-based oxide superconductor, wherein the spacing of twin planes is less than 100nm It is. (However, RE is one or more rare earth metal elements including Y, and RE 1 -xBa
The 2 + y Cu 3 O d phase means that x, y, and d are each -0.3.
<X <0.3, -0.3 <y <0.3, 6.5 <d <
This is a phase in which one or more phases have a value in the range of 7.5. )

【0007】請求項2の発明は、超電導相を構成するR
1−xBa2+yCu(REはYを含む1種も
しくは2種以上の希土類金属元素)相中に、RE
2(1−q)Ba1+rCuO5+s相又はRE
4(1−q)Ba2(1+r)Cu2(5+s)
が微細に分散したREーBaーCuーO系酸化物超電導
体において、前記RE1−xBa2+yCu
と、前記RE2(1−q)Ba1+rCuO5+s相又
はRE4(1−q)Ba2(1+r)Cu
2(5+s)相との界面にアモルファス相を有すること
を特徴とするREーBaーCuーO系酸化物超電導体で
ある。(但し、RE1−xBa2+yCu相とは
x,y,dがそれぞれ−0.3<x<0.3,−0.3
<y<0.3,6.5<d<7.5の範囲である値をと
る相が1種以上存在する相であり、また、RE
2(1−q)Ba1+rCuO +s相及びRE
4(1−q)Ba2(1+r)Cu2(5+s)
とはq,r,sがそれぞれ−0.3<q<0.3,−
0.3<r<0.3,−0.5<s<0.5の範囲であ
る値をとる相が一種以上存在する相である。)
According to a second aspect of the present invention, R
In the E 1-x Ba 2 + y Cu 3 O d (RE is one or more rare earth metal elements containing Y) phase, RE
2 (1-q) Ba 1 + r CuO 5 + s phase or RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase in finely dispersed RE over Ba over Cu over O-based oxide superconductor, the RE 1-x Ba 2 + y Cu 3 O d phase And the RE 2 (1-q) Ba 1 + r CuO 5 + s phase or RE 4 (1-q) Ba 2 (1 + r) Cu 2 O
An RE-Ba-Cu-O-based oxide superconductor having an amorphous phase at an interface with a 2 (5 + s) phase. (However, in the RE 1-x Ba 2 + y Cu 3 Od phase, x, y, and d are −0.3 <x <0.3, −0.3, respectively.
<Y <0.3, 6.5 <d <7.5, at least one phase having a value in the range of
2 (1-q) Ba 1 + r CuO 5 + s phase and RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase and the q, r, s respectively -0.3 <q <0.3, -
This is a phase in which at least one phase has a value in the range of 0.3 <r <0.3 and −0.5 <s <0.5. )

【0008】請求項3の発明は、RE1−xBa2+y
Cu(REはYを含む1種もしくは2種以上の希
土類金属元素)相中にRE2(1−q)Ba1+rCu
5+s相及び/又はRE4(1−q)Ba
2(1+r)Cu2(5+s)相が微細に分散した
酸化物超電導体において、RE1−xBa2+yCu
結晶のa軸長の値をa、b軸長の値をbとしたとき
に、ρ=2(b−a)/(a+b)で与えられるρが
1.5以上であることを特徴とするREーBaーCuー
O系酸化物超電導体である。(但し、RE1−xBa
2+yCu相とはx,y,dがそれぞれ−0.3
<x<0.3,−0.3<y<0.3,6.5<d<
7.5の範囲である値をとる相が1種以上存在する相で
あり、また、RE2(1−q)Ba1+rCuO +s
相及びRE4(1−q)Ba2(1+r)Cu
2(5+s)相とはq,r,sがそれぞれ−0.3<q
<0.3,−0.3<r<0.3,−0.5<s<0.
5の範囲である値をとる相が一種以上存在する相であ
る。)
[0008] The invention according to claim 3 is characterized in that RE 1-x Ba 2 + y
In a Cu 3 O d (RE is one or more rare earth metal elements containing Y) phase, RE 2 (1-q) Ba 1 + r Cu
O 5 + s phase and / or RE 4 (1-q) Ba
In an oxide superconductor in which 2 (1 + r) Cu 2 O 2 (5 + s) phase is finely dispersed, RE 1-x Ba 2 + y Cu 3
When the value of the a-axis length of the Od crystal is a and the value of the b-axis length is b, ρ given by ρ = 2 (ba) / (a + b) is 1.5 or more. Is a RE-Ba-Cu-O-based oxide superconductor. (However, RE 1-x Ba
The 2 + y Cu 3 O d phase means that x, y, and d are each -0.3.
<X <0.3, -0.3 <y <0.3, 6.5 <d <
Phase takes a value in the range of 7.5 is a phase that occurs more than one, also, RE 2 (1-q) Ba 1 + r CuO 5 + s
Phase and RE 4 (1-q) Ba 2 (1 + r) Cu 2 O
The 2 (5 + s) phase means that q, r, and s are each -0.3 <q
<0.3, -0.3 <r <0.3, -0.5 <s <0.
A phase having a value in the range of 5 is one or more phases. )

【0009】請求項4の発明は、超電導相を構成するR
1−xBa2+yCu(REはYを含む1種も
しくは2種以上の希土類金属元素)相中に、RE
2(1−q)Ba1+rCuO5+s相又はRE
4(1−q)Ba2(1+r)Cu2(5+s)
が微細に分散したREーBaーCuーO系酸化物超電導
体において、前記RE1−xBa2+yCu結晶
相に該結晶の双晶が存在し、且つこれら双晶面の間隔が
100nm未満であり、前記RE1−xBa2+yCu
相と、前記RE2(1−q)Ba1+rCuO
5+s相又はRE4(1−q)Ba2(1+r)Cu
2(5+s)相との界面にアモルファス相を有するこ
とを特徴とするREーBaーCuーO系酸化物超電導体
である。(但し、RE1−xBa2+yCu相と
はx,y,dがそれぞれ−0.3<x<0.3,−0.
3<y<0.3,6.5<d<7.5の範囲である値を
とる相が1種以上存在する相であり、また、RE
2(1−q)Ba1+rCuO +s相及びRE
4(1−q)Ba2(1+r)Cu2(5+s)
とはq,r,sがそれぞれ−0.3<q<0.3,−
0.3<r<0.3,−0.5<s<0.5の範囲であ
る値をとる相が一種以上存在する相である。)
According to a fourth aspect of the present invention, R
In the E 1-x Ba 2 + y Cu 3 O d (RE is one or more rare earth metal elements containing Y) phase, RE
2 (1-q) Ba 1 + r CuO 5 + s phase or RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase in finely dispersed RE over Ba over Cu over O-based oxide superconductor, the RE 1-x Ba 2 + y Cu 3 O d crystals The twins of the crystals are present in the phase and the spacing between these twin planes is less than 100 nm, and the RE 1-x Ba 2 + y Cu
3 Od phase and the RE 2 (1-q) Ba 1 + r CuO
5 + s phase or RE 4 (1-q) Ba 2 (1 + r) Cu 2
An RE-Ba-Cu-O-based oxide superconductor characterized by having an amorphous phase at an interface with an O 2 (5 + s) phase. (However, the RE 1-x Ba 2 + y Cu 3 Od phase has x, y, and d of −0.3 <x <0.3, −0.
3 <y <0.3, 6.5 <d <7.5, and at least one phase having a value in the range of 6.5 <d <7.5.
2 (1-q) Ba 1 + r CuO 5 + s phase and RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase and the q, r, s respectively -0.3 <q <0.3, -
This is a phase in which at least one phase has a value in the range of 0.3 <r <0.3 and −0.5 <s <0.5. )

【0010】請求項5の発明は、RE1−xBa2+y
Cu(REはYを含む1種もしくは2種以上の希
土類金属元素)相中にRE2(1−q)Ba1+rCu
5+s相及び/又はRE4(1−q)Ba
2(1+r)Cu2(5+s)相が微細に分散した
酸化物超電導体において、前記RE1−xBa2+y
結晶相に該結晶の双晶が存在し、且つこれらの
双晶面の間隔が100nm未満であり、該結晶のa軸長
の値をa、b軸長の値をbとしたときにρ=2(b−
a)/(a+b)で与えられるρが1.5%以上である
ことを特徴とするREーBaーCuーO系酸化物超電導
体である。(但し、RE1−xBa2+yCu
とはx,y,dがそれぞれ−0.3<x<0.3,−
0.3<y<0.3,6.5<d<7.5の範囲である
値をとる相が1種以上存在する相であり、また、RE
2(1−q)Ba1+rCuO +s相及びRE
4(1−q)Ba2(1+r)Cu2(5+s)
とはq,r,sがそれぞれ−0.3<q<0.3,−
0.3<r<0.3,−0.5<s<0.5の範囲であ
る値をとる相が一種以上存在する相である。)
[0010] The invention of claim 5 is characterized in that RE 1-x Ba 2 + y
In a Cu 3 O d (RE is one or more rare earth metal elements including Y) phase, RE 2 (1-q) Ba 1 + r Cu
O 5 + s phase and / or RE 4 (1-q) Ba
In an oxide superconductor in which 2 (1 + r) Cu 2 O 2 (5 + s) phase is finely dispersed, the RE 1-x Ba 2 + y C
Twins of the crystal exist in the u 3 O d crystal phase, and the distance between these twin planes is less than 100 nm. The value of the a-axis length of the crystal is a, and the value of the b-axis length is b. Sometimes ρ = 2 (b−
a) An RE-Ba-Cu-O-based oxide superconductor, wherein ρ given by (a) / (a + b) is 1.5% or more. (However, in the RE 1-x Ba 2 + y Cu 3 Od phase, x, y, and d are −0.3 <x <0.3, −
0.3 <y <0.3, 6.5 <d <7.5, at least one phase having a value in the range of 7.5 <d <7.5.
2 (1-q) Ba 1 + r CuO 5 + s phase and RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase and the q, r, s respectively -0.3 <q <0.3, -
This is a phase in which at least one phase has a value in the range of 0.3 <r <0.3 and −0.5 <s <0.5. )

【0011】請求項6の発明は、RE1−xBa2+y
Cu(REはYを含む1種もしくは2種以上の希
土類金属元素)相中にRE2(1−q)Ba1+rCu
5+s相及び/又はRE4(1−q)Ba
2(1+r)Cu2(5+s)相が微細に分散した
酸化物超電導体において、前記RE1−xBa2+y
結晶相に該結晶の双晶が存在し、且つこれらの
双晶面の間隔が100nm未満であり、該結晶のa軸長
の値をa、b軸長の値をbとしたときにρ=2(b−
a)/(a+b)で与えられるρが1.5%以上であ
り、さらに、前記RE1−xBa2+yCu
と、前記RE2(1−q)Ba1+rCuO5+s相及
び/又は前記RE4(1−q)Ba2(1+r)Cu
2(5+s)相との界面にアモルファス相を有するこ
とを特徴とするREーBaーCuーO系酸化物超電導体
である。(但し、RE1−xBa2+yCu相と
はx,y,dがそれぞれ−0.3<x<0.3,−0.
3<y<0.3,6.5<d<7.5の範囲である値を
とる相が1種以上存在する相であり、また、RE
2(1−q)Ba1+rCuO +s相及びRE
4(1−q)Ba2(1+r)Cu2(5+s)
とはq,r,sがそれぞれ−0.3<q<0.3,−
0.3<r<0.3,−0.5<s<0.5の範囲であ
る値をとる相が一種以上存在する相である。)
[0011] The invention of claim 6 is the present invention, wherein RE 1-x Ba 2 + y
In a Cu 3 O d (RE is one or more rare earth metal elements containing Y) phase, RE 2 (1-q) Ba 1 + r Cu
O 5 + s phase and / or RE 4 (1-q) Ba
In an oxide superconductor in which 2 (1 + r) Cu 2 O 2 (5 + s) phase is finely dispersed, the RE 1-x Ba 2 + y C
Twins of the crystal exist in the u 3 O d crystal phase, and the distance between these twin planes is less than 100 nm. The value of the a-axis length of the crystal is a, and the value of the b-axis length is b. Sometimes ρ = 2 (b−
a) / (a + b) is not less than 1.5%, and the RE 1-x Ba 2 + y Cu 3 Od phase and the RE 2 (1-q) Ba 1 + r CuO 5 + s phase and / or Or the above RE 4 (1-q) Ba 2 (1 + r) Cu 2
An RE-Ba-Cu-O-based oxide superconductor characterized by having an amorphous phase at an interface with an O 2 (5 + s) phase. (However, the RE 1-x Ba 2 + y Cu 3 Od phase has x, y, and d of −0.3 <x <0.3, −0.
3 <y <0.3, 6.5 <d <7.5, and at least one phase having a value in the range of 6.5 <d <7.5.
2 (1-q) Ba 1 + r CuO 5 + s phase and RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase and the q, r, s respectively -0.3 <q <0.3, -
This is a phase in which at least one phase has a value in the range of 0.3 <r <0.3 and −0.5 <s <0.5. )

【0012】請求項7の発明は、請求項1ないし6のい
ずれかに記載のREーBaーCuーO系酸化物超電導体
において、Ag元素が1〜60wt%含まれることを特
徴とするREーBaーCuーO系酸化物超電導体であ
る。
According to a seventh aspect of the present invention, there is provided the RE-Ba-Cu-O-based oxide superconductor according to any one of the first to sixth aspects, wherein the Ag element is contained in an amount of 1 to 60 wt%. —Ba—Cu—O-based oxide superconductor.

【0013】請求項8の発明は、請求項1ないし7のい
ずれかに記載のREーBaーCuーO系酸化物超電導体
において、Pt、Pd、Ru、Rh、Ir、Os、R
e、Ceの1種もしくは2種以上の元素が0.05〜5
wt%含まれることを特徴とするREーBaーCuーO
系酸化物超電導体である。
[0013] The invention of claim 8 provides the RE-Ba-Cu-O-based oxide superconductor according to any one of claims 1 to 7, wherein Pt, Pd, Ru, Rh, Ir, Os, R
e, one or more elements of Ce are 0.05 to 5
wt-% RE-Ba-Cu-O
It is a system oxide superconductor.

【0014】請求項9の発明は、RE化合物(REはY
を含む1種もしくは2種以上の希土類金属元素)、Ba
化合物及びCu化合物を含む原料混合体に、少なくとも
該原料混合体の融点より高い温度領域における熱処理を
含む処理を施した後に、RE1−xBa2+yCu
相を含む酸化物超電導体相を結晶成長させる処理を有
するREーBaーCuーO系酸化物超電導体の製造方法
において、前記RE1−xBa2+yCu相を含
む酸化物超電導体相を結晶成長させる処理を行なう際の
酸素分圧を、該処理工程の前の工程における酸素分圧と
異ならしめて行なうことを特徴とするREーBaーCu
ーO系酸化物超電導体の製造方法である。
A ninth aspect of the present invention is directed to a method for preparing an RE compound, wherein RE is Y
, One or two or more rare earth metal elements), Ba
After subjecting the raw material mixture containing the compound and the Cu compound to a treatment including a heat treatment at least in a temperature region higher than the melting point of the raw material mixture, RE 1-x Ba 2 + y Cu 3 O
The method of manufacturing a RE over Ba over Cu over O-based oxide superconductor having a process for crystal growth of the oxide superconductor phase containing d-phase oxide superconducting containing the RE 1-x Ba 2 + y Cu 3 O d phase RE-Ba-Cu wherein the oxygen partial pressure at the time of carrying out the treatment for growing the body phase is different from the oxygen partial pressure at the step before the treatment step.
A method for producing an O-based oxide superconductor.

【0015】請求項10の発明は、請求項9に記載のR
EーBaーCuーO系酸化物超電導体の製造方法におい
て、 前記原料混合体にさらにPt,Pd,Ru,R
h,Ir,Os,Re,Ceの金属又はこれらの化合物
の1種または2種以上の元素を0.05〜5wt%(化
合物の場合はその金属のみの元素重量で示す)添加する
ことを特徴とするREーBaーCuーO系酸化物超電導
体の製造方法である。
According to a tenth aspect of the present invention, the R
In the method for producing an E-Ba-Cu-O-based oxide superconductor, Pt, Pd, Ru, R
h, Ir, Os, Re, Ce metal or one or more of these compounds are added in an amount of 0.05 to 5 wt% (in the case of a compound, the weight of the metal alone is shown). Is a method for producing a RE-Ba-Cu-O-based oxide superconductor.

【0016】請求項11の発明は、請求項9ないし10
のいずれかに記載のREーBaーCuーO系酸化物超電
導体の製造方法において、前記原料混合体にさらにAg
の金属ないし化合物を1〜60wt%(化合物の場合は
Agのみの元素重量で示す)添加することを特徴とする
REーBaーCuーO系酸化物超電導体の製造方法であ
る。
The invention of claim 11 is the invention of claims 9 to 10
In the method for producing a RE-Ba-Cu-O-based oxide superconductor according to any one of the above,
Wherein the metal or compound is added in an amount of 1 to 60 wt% (in the case of a compound, expressed by the element weight of only Ag).

【0017】上述の構成において、超電導相を構成する
RE1−xBa2+yCu結晶相(123相)に
該結晶の双晶が存在するとともに、これら双晶面の間隔
が100nm未満である場合、又は、RE1ーxBa
2+yCu相とRE2( 1−q)Ba1+rCu
5+s相(211相)又はRE4(1−q)Ba2(
1+r)Cu2(5+s)相(422相)との界面
にアモルファス相が存在すると、これらが磁束を止める
ピンニングセンターとして働き、高磁場下でも高い臨界
電流密度を示すことが確認されている。
In the above structure, twins of the crystal are present in the RE 1-x Ba 2 + y Cu 3 Od crystal phase (123 phase) constituting the superconducting phase, and the distance between these twin planes is less than 100 nm. If there is, or RE 1-x Ba
2 + y Cu 3 O d phase and RE 2 (1-q) Ba 1 + r Cu
O 5 + s phase (211 phase) or RE 4 (1-q) Ba 2 (
It has been confirmed that when an amorphous phase exists at the interface with the ( 1 + r) Cu 2 O 2 (5 + s) phase (422 phase), these act as a pinning center for stopping magnetic flux and exhibit a high critical current density even under a high magnetic field. .

【0018】また、これに加えて、Ag,Pt,Pd,
Ru,Rh,Ir,Os,Re,Ce等の元素を適宜添
加すると上記効果がより顕著になることが確認されてい
る。
In addition, Ag, Pt, Pd,
It has been confirmed that the above effects become more remarkable when elements such as Ru, Rh, Ir, Os, Re, and Ce are appropriately added.

【0019】さらに、REーBaーCuーO系酸化物超
電導体を製造する場合、雰囲気中の酸素濃度によって凝
固温度が変化する。低酸素濃度にすると凝固温度が下が
り、高酸素濃度にすると凝固温度が上がる。このことを
利用して低酸素濃度下で溶融凝固させることによって低
温での反応が可能となり、酸化物超電導体中の双晶面の
間隔をほぼ70nm以下、少なくとも100nm未満と
密にすることができ、同時に、211相の凝集粗大化を
抑えて微細に分散させることができるようになった。ま
た、RE1ーxBa2+yCu相とRE
2(1−q)Ba1+rCuO5+s相又はRE
4(1−q)Ba2(1+r)Cu2(5+s)
との界面にアモルファス相が発生し、これら双晶面及び
アモルファス相及び211相が磁束を止めるピンニング
センターとして働き、高磁場下でも高い臨界電流密度を
示すようになることが確認されている。
Further, when manufacturing a RE—Ba—Cu—O-based oxide superconductor, the solidification temperature changes depending on the oxygen concentration in the atmosphere. A low oxygen concentration lowers the coagulation temperature, while a high oxygen concentration raises the coagulation temperature. By utilizing this fact, it is possible to react at a low temperature by melting and solidifying under a low oxygen concentration, and it is possible to make the interval between twin planes in the oxide superconductor approximately 70 nm or less, at least less than 100 nm. At the same time, it became possible to finely disperse the 211 phase while suppressing the coarsening of the 211 phase. In addition, RE 1-x Ba 2 + y Cu 3 Od phase and RE
2 (1-q) Ba 1 + r CuO 5 + s phase or RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) an amorphous phase at the interface between the phases is generated, serves as a pinning center to these twin plane and an amorphous phase and 211 phase stops flux, high magnetic field It has been confirmed that a high critical current density is exhibited even below.

【0020】さらに、RE化合物、Ba化合物、Cu化
合物を含む原料混合体に所定の熱処理を加え、粉砕し成
形したものを加熱して半溶融状態にした後、雰囲気中の
酸素分圧を低酸素分圧側から高酸素分圧側へ変化させな
がら結晶成長させる工程において、酸素分圧の変化があ
ればよいが変化率は10%以上あることが望ましい。な
お、この際、酸素分圧の絶対値には依存しない。また、
結晶成長を行なう温度は、原料混合体を半溶融状態にす
るときの酸素分圧下(低酸素分圧側)でRE ーxBa
2+yCu相が結晶成長する温度より高い温度な
らよいが、望ましくは1〜50℃高い温度まで降温し、
そこから温度を保持又は0.1〜5℃/hrの速度で徐
冷しながら酸素分圧を高酸素分圧側に変化させて結晶成
長させることが望ましい。また、RE化合物、Ba化合
物、Cu化合物を主な元素とする原料を用いて溶融後結
晶化させてRE1ーxBa2+yCu相、RE
2( 1−q)Ba1+rCuO5+s相又はRE
4(1−q)Ba2(1+r)Cu2(5+s)
を有する酸化物超電導体を製造すると、雰囲気や温度条
件により、BaとREとの相互置換が起こり、その過度
な置換は超電導体の臨界電流密度特性や臨界温度特性を
低下させる。酸素量もこの置換や焼成雰囲気により変化
する。これらx,y,d,d,q,rの範囲としては、
それぞれ、−0.3<x<0.3,−0.3<y<0.
3,6.5<d<7.5,−0.3<q<0.3,−
0.3<r<0.3,−0.5<s<0.5の範囲の値
をとることが望ましい。
Further, a predetermined heat treatment is applied to the raw material mixture containing the RE compound, the Ba compound, and the Cu compound, and the pulverized and molded material is heated to a semi-molten state. In the step of growing the crystal while changing the partial pressure from the partial pressure side to the high oxygen partial pressure side, the oxygen partial pressure may be changed, but the change rate is preferably 10% or more. At this time, it does not depend on the absolute value of the oxygen partial pressure. Also,
The temperature at which the crystal is grown is RE 1 xBa under the oxygen partial pressure (low oxygen partial pressure side) when the raw material mixture is brought into a semi-molten state.
The temperature may be higher than the temperature at which the 2 + y Cu 3 Od phase grows, but preferably the temperature is lowered to a temperature higher by 1 to 50 ° C.
It is desirable to grow the crystal by changing the oxygen partial pressure to a higher oxygen partial pressure while maintaining the temperature or gradually cooling at a rate of 0.1 to 5 ° C./hr. In addition, a raw material containing a RE compound, a Ba compound, and a Cu compound as main elements is melted and crystallized to obtain a RE 1-x Ba 2 + y Cu 3 Od phase,
2 (1-q) Ba 1 + r CuO 5 + s phase or RE
4 (1-q) when Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase to produce an oxide superconductor having, by atmospheric and temperature conditions, occur interchangeability of Ba and RE, the excessive substitution Decreases critical current density characteristics and critical temperature characteristics of superconductors. The amount of oxygen also changes depending on the substitution and the firing atmosphere. The range of these x, y, d, d, q, r is:
-0.3 <x <0.3, -0.3 <y <0.
3,6.5 <d <7.5, -0.3 <q <0.3,-
It is desirable to take a value in the range of 0.3 <r <0.3, -0.5 <s <0.5.

【0021】また、このような手法で結晶化させた材料
はその後酸素分圧が80〜100%である雰囲気中でア
ニールすることで、臨界温度および臨界電流密度特性等
の高い超電導特性が得られるようになる。その際のアニ
ール温度条件としては少なくとも700℃〜300℃の
温度範囲で100h以上の保持もしくは徐冷をする行程
を含むことが望ましい。そして、このアニール処理を行
うと、前記RE1−xBa2+yCu結晶に効率
よく酸素が供給され、a軸の軸長の値aとb軸の軸長の
値bとの差が大きくなる。ここで、ρ=2(b−a)/
(a+b)で与えられるρは1.5%以上が望ましく、
大きいほど高特性が得られるが、2.2%以上にはなり
にくい。
The material crystallized by such a method is thereafter annealed in an atmosphere having an oxygen partial pressure of 80 to 100%, whereby high superconducting characteristics such as critical temperature and critical current density characteristics can be obtained. Become like The annealing temperature conditions at this time preferably include a step of holding or slowly cooling for at least 100 hours in a temperature range of 700 ° C. to 300 ° C. Then, after this annealing treatment, efficient oxygen is supplied to the RE 1-x Ba 2 + y Cu 3 O d crystal, the difference between the axial length of the value b of the axial length of the values a and b axes of a shaft growing. Here, ρ = 2 (ba) /
Ρ given by (a + b) is desirably 1.5% or more,
The higher the value, the higher the characteristics can be obtained, but it is difficult to reach 2.2% or more.

【0022】なお、Ptは、0.05〜5wt%の範囲
で含まれていると、REBaCuO相が微細にな
り、高特性を示すことが確認されている。また、Pt,
Pd,Ru,Rh,Ir,Os,Re,Ceの金属若し
くは化合物粉末が0.05〜5wt%、好ましくは0.
4〜0.6wt%の範囲で含まれていても同様に高特性
を示すことが確認されている。
It has been confirmed that when Pt is contained in the range of 0.05 to 5 wt%, the RE 2 BaCuO 5 phase becomes fine and exhibits high characteristics. Also, Pt,
Metal or compound powder of Pd, Ru, Rh, Ir, Os, Re, Ce is 0.05 to 5 wt%, preferably 0.1 to 5 wt% .
It has been confirmed that even when contained in the range of 4 to 0.6 wt% , high characteristics are similarly exhibited.

【0023】さらに、Agが結晶中に微細に分散する
と、マイクロクラックが減少し、磁気特性、機械強度、
耐水性が向上する。この際、1wt%以下ではその効果
が低く、60wt%より多いと、超電導電流が流れにく
くなり、特性が劣化してしまう。Ag含有量のより好ま
しい範囲は10〜30wt%である。
Further, when Ag is finely dispersed in the crystal, microcracks are reduced, and the magnetic properties, mechanical strength,
Water resistance is improved. At this time, the effect is low when the content is 1 wt% or less, and when the content is more than 60 wt%, the superconducting current becomes difficult to flow and the characteristics are deteriorated. A more preferable range of the Ag content is 10 to 30 wt%.

【0024】[0024]

【発明の実施の形態】(実施例1)Y、BaCO
、CuOの各原料粉末をY:Ba:Cu=18:2
4:34になるように秤量し、さらに0.5wt%のP
t粉末を添加して混合した。次に、この混合粉を、大気
中、室温から880℃まで10時間で昇温し、30時間
保持した後、10時間かけて室温まで降温することによ
り焼成した。この仮焼粉をライカイ機により粉砕し、平
均粒径を約20μmとした。次に、これを外径53mm
厚さ28mmのディスク状にプレス成形して成形体を作
製した。
(Embodiment 1) Y 2 O 3 , BaCO 3
3. Each raw material powder of CuO was prepared as Y: Ba: Cu = 18: 2
4: 34% and weighed 0.5wt% P
t powder was added and mixed. Next, the temperature of the mixed powder was raised from room temperature to 880 ° C. in the air for 10 hours, and the temperature was maintained for 30 hours. The calcined powder was pulverized with a raikai machine to have an average particle size of about 20 μm. Next, this is 53 mm in outer diameter
A compact was produced by press molding into a 28 mm thick disk.

【0025】この成形体をアルミナ基板上に乗せて酸素
分圧1%中1025℃で半溶融状態にした後、成形体の
上部が低温側となるように上下に5℃/cmの温度勾配
を加えて試料上部が975℃となるまで10℃/min
で降温し、予め作製しておいたY(Ba0.75Sr
0.25Cu7−z相中にYBaCuO
が分散した種結晶を成長方向がc軸と平行になるように
成形体の上部に接触させる。次に、酸素分圧を1%から
100%まで上げることにより、種結晶側から結晶化を
行った。さらに900℃まで1℃/hourで降温し、
そこから室温まで50時間で徐冷を行った。
After placing the compact on an alumina substrate to make it in a semi-molten state at 1025 ° C. in an oxygen partial pressure of 1%, a temperature gradient of 5 ° C./cm is applied vertically so that the upper portion of the compact is on the low temperature side. In addition, 10 ° C / min until the sample upper part reaches 975 ° C.
And the temperature was lowered, and Y 1 (Ba 0.75 Sr
0.25) 2 Cu 3 O 7- z phase to Y 2 BaCuO 5 phase is dispersed seed crystal growth direction is brought into contact with the upper portion of the molded body so as to be parallel to the c axis. Next, crystallization was performed from the seed crystal side by increasing the oxygen partial pressure from 1% to 100%. Further, the temperature is lowered at 1 ° C / hour to 900 ° C,
From there, slow cooling was performed to room temperature in 50 hours.

【0026】結晶化した成形体をガス置換を行える炉の
中に設置した。まず、ロータリーポンプで0.1Tor
rまで炉内を排気した後、酸素ガスを流し込んで酸素分
圧が95%以上である大気圧の酸素雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から600℃まで10時間で昇温し、600
℃で100時間保持して室温まで約2時間で降温し、再
び500℃まで10時間で昇温した後そこから300℃
まで200時間かけて徐冷し、300℃から室温まで1
0時間で降温させた。
The crystallized compact was placed in a furnace capable of gas replacement. First, 0.1 Torr by rotary pump
After the inside of the furnace was evacuated to a pressure of r, oxygen gas was flown into the atmosphere at atmospheric pressure where the oxygen partial pressure was 95% or more. Thereafter, the temperature was raised from room temperature to 600 ° C. for 10 hours while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min.
The temperature was kept at 100 ° C. for 100 hours, the temperature was lowered to room temperature in about 2 hours, and the temperature was raised again to 500 ° C. in 10 hours, and then 300 ° C.
Slowly from 200 ° C to room temperature for 1 hour.
The temperature was lowered at 0 hours.

【0027】得られた材料は種結晶を反映して材料全体
がc軸に配向し、123相中に211相が微細に分散し
た組織を有していた。この211相は80%以上が2μ
m以下と微細化されていた。また、透過型電子顕微鏡写
真により、123相中に発生する双晶を観察したとこ
ろ、図1のように双晶面が約50nm間隔と細かく並ん
でいた。さらに123相と211相を透過型電子顕微鏡
で観察した結果を図2に示す。さらに、境界を拡大した
ものを図3に示す。図3のは123相、はアモルフ
ァス相、は211相である。
The obtained material had a structure in which the entire material was oriented along the c-axis, reflecting the seed crystal, and 211 phases were finely dispersed in 123 phases. 80% or more of this 211 phase is 2μ
m or less. Further, when twins generated in the 123 phase were observed by a transmission electron micrograph, twin planes were finely arranged at intervals of about 50 nm as shown in FIG. FIG. 2 shows the results of observation of the 123 phase and 211 phase with a transmission electron microscope. FIG. 3 shows an enlarged boundary. FIG. 3 shows a 123 phase, an amorphous phase and a 211 phase.

【0028】得られたディスク状材料の臨界温度(T
c)は90Kであった。温度77Kにおける臨界電流密
度の磁場依存性は図3のように1T付近の高磁場下でも
高い値を示していた。
[0028] The critical temperature (T
c) was 90K. The magnetic field dependence of the critical current density at a temperature of 77 K showed a high value even under a high magnetic field around 1 T as shown in FIG.

【0029】(実施例2)Sm、BaCO、C
uOの各原料粉末をSm:Ba:Cu=18:24:3
4になるように秤量し、さらに0.5wt%のPt粉末
を添加して混合した。次に、この混合粉を、大気中、室
温から880℃まで10時間で昇温し、30時間保持し
た後、10時間かけて室温まで降温することにより焼成
した。この仮焼粉をライカイ機により粉砕し、平均粒径
を約20μmとした。次に、これを外径53mm厚さ2
8mmのディスク状にプレス成形して成形体を作製し
た。
Example 2 Sm 2 O 3 , BaCO 3 , C
Each raw material powder of uO was prepared as Sm: Ba: Cu = 18: 24: 3.
The mixture was weighed so as to obtain a Pt. 4, and 0.5 wt% of Pt powder was further added and mixed. Next, the temperature of the mixed powder was raised from room temperature to 880 ° C. in the air for 10 hours, and the temperature was maintained for 30 hours. The calcined powder was pulverized with a raikai machine to have an average particle size of about 20 μm. Next, this was applied to an outer diameter of 53 mm and a thickness of 2
A compact was produced by press molding into an 8 mm disk shape.

【0030】この成形体をアルミナ基板上に乗せて酸素
分圧1%中1085℃で半溶融状態にした後、成形体の
上部が低温側となるように上下に5℃/cmの温度勾配
を加えて試料上部が1035℃となるまで10℃/mi
nで降温し、予め作製しておいたNd1.1Ba1.9
Cu7−z相中にNdBaCu10相が分
散した種結晶を成長方向がc軸と平行になるように成形
体の上部に接触させる。次に、酸素分圧を1%から10
0%まで上げることにより、種結晶側から結晶化を行っ
た。さらに960℃まで1℃/hourで降温し、そこ
から室温まで50時間で徐冷を行った。
After placing this compact on an alumina substrate to make it in a semi-molten state at 1085 ° C. in an oxygen partial pressure of 1%, a temperature gradient of 5 ° C./cm is applied vertically so that the upper portion of the compact is on the low temperature side. In addition, 10 ° C / mi until the sample upper part reaches 1035 ° C.
n, and Nd 1.1 Ba 1.9 prepared in advance.
A seed crystal in which the Nd 4 Ba 2 Cu 2 O 10 phase is dispersed in the Cu 3 O 7-z phase is brought into contact with the upper part of the compact so that the growth direction is parallel to the c-axis. Next, the oxygen partial pressure is increased from 1% to 10%.
By increasing to 0%, crystallization was performed from the seed crystal side. The temperature was further decreased to 960 ° C. at 1 ° C./hour, and then gradually cooled to room temperature in 50 hours.

【0031】結晶化した成形体をガス置換を行える炉の
中に設置した。まず、ロータリーポンプで0.1Tor
rまで炉内を排気した後、酸素ガスを流し込んで酸素分
圧が95%以上である大気圧の酸素雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から600℃まで10時間で昇温し、600
℃で100時間保持して室温まで約2時間で降温し、再
び500℃まで10時間で昇温した後そこから300℃
まで200時間かけて徐冷し、300℃から室温まで1
0時間で降温させた。
The crystallized compact was placed in a furnace capable of gas replacement. First, 0.1 Torr by rotary pump
After the inside of the furnace was evacuated to a pressure of r, oxygen gas was flown into the atmosphere at atmospheric pressure where the oxygen partial pressure was 95% or more. Thereafter, the temperature was raised from room temperature to 600 ° C. for 10 hours while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min.
The temperature was kept at 100 ° C. for 100 hours, the temperature was lowered to room temperature in about 2 hours, and the temperature was raised again to 500 ° C. in 10 hours, and then 300 ° C.
Slowly from 200 ° C to room temperature for 1 hour.
The temperature was lowered at 0 hours.

【0032】得られた材料は種結晶を反映して材料全体
がc軸に配向し、Sm1+xBa +yCu
((x,y,d)の値はエネルギー分散型光電子分光法
により測定したところ、(x,y,d)=(0.1,−
0.1,6.95)、(0,0,6.9)、(−0.
1,0.1,6.85)等の相が主に存在していた。)
中にSmBaCuO相が微細に分散した組織を有し
ていた。この211相は80%以上が2μm以下と微細
化されていた。また、透過型電子顕微鏡写真により、1
23相中に発生する双晶を観察したところ、実施例1と
同様に約50nm間隔と細かく並んでいた。さらにSm
1+xBa2+yCuO相と211相の界面には実施
例1と同様なアモルファス相が存在していた。
In the obtained material, the whole material is oriented along the c-axis reflecting the seed crystal, and the value of the Sm 1 + xBa 2 + yCu 3 Od phase ((x, y, d) is determined by energy dispersive photoelectron spectroscopy. And (x, y, d) = (0.1, −
0.1, 6.95), (0, 0, 6.9), (-0.
1,0.1,6.85). )
It had a structure in which the Sm 2 BaCuO 5 phase was finely dispersed. 80% or more of the 211 phase was refined to 2 μm or less. Also, according to the transmission electron micrograph, 1
When twins generated in the 23 phases were observed, they were finely arranged at intervals of about 50 nm as in Example 1. Further Sm
1 + x Ba 2 + y CuO d phase similar amorphous phase as in Example 1 at the interface 211 phase was present.

【0033】得られたディスク状材料の臨界温度(T
c)は92Kであった。温度77Kにおける臨界電流密
度の磁場依存性は図4のように1〜2T付近の高磁場下
でも高い値を示していた。
[0033] The critical temperature (T
c) was 92K. The magnetic field dependence of the critical current density at a temperature of 77 K showed a high value even under a high magnetic field around 1-2 T as shown in FIG.

【0034】(実施例3)Nd、BaCO、C
uOの各原料粉末をNd:Ba:Cu=18:24:3
4になるように秤量し、さらに0.5wt%のCe粉
末、0.5wt%のPt粉末及び10wt%のAg粉末
を添加して混合した。次に、この混合粉を、大気中、室
温から880℃まで10時間で昇温し、30時間保持し
た後、10時間かけて室温まで降温することにより焼成
した。この仮焼粉をライカイ機により粉砕し、平均粒径
を約20μmとした。次に、これを外径53mm厚さ2
8mmのディスク状にプレス成形して成形体を作製し
た。
Example 3 Nd 2 O 3 , BaCO 3 , C
Each raw material powder of uO was Nd: Ba: Cu = 18: 24: 3
4 and then 0.5 wt% of Ce powder, 0.5 wt% of Pt powder and 10 wt% of Ag powder were added and mixed. Next, the temperature of the mixed powder was raised from room temperature to 880 ° C. in the air for 10 hours, and the temperature was maintained for 30 hours. The calcined powder was pulverized with a raikai machine to have an average particle size of about 20 μm. Next, this was applied to an outer diameter of 53 mm and a thickness of 2
A compact was produced by press molding into an 8 mm disk shape.

【0035】この成形体をアルミナ基板上に乗せて酸素
分圧1%中1065℃で半溶融状態にした後、成形体の
上部が低温側となるように上下に5℃/cmの温度勾配
を加えて試料上部が1015℃となるまで10℃/mi
nで降温し、予め作製しておいたNd1.1Ba1.9
Cu7−z相中にNdBaCu10相が分
散した種結晶を成長方向がc軸と平行になるように成形
体の上部に接触させる。次に、酸素分圧を1%から10
0%まで上げることにより、種結晶側から結晶化を行っ
た。さらに940℃まで1℃/hourで降温し、そこ
から室温まで50時間で徐冷を行った。
After placing this compact on an alumina substrate to make it in a semi-molten state at 1065 ° C. in an oxygen partial pressure of 1%, a temperature gradient of 5 ° C./cm is applied vertically so that the upper portion of the compact is on the low temperature side. In addition, 10 ° C / mi until the sample upper part reaches 1015 ° C.
n, and Nd 1.1 Ba 1.9 prepared in advance.
A seed crystal in which the Nd 4 Ba 2 Cu 2 O 10 phase is dispersed in the Cu 3 O 7-z phase is brought into contact with the upper part of the compact so that the growth direction is parallel to the c-axis. Next, the oxygen partial pressure is increased from 1% to 10%.
By increasing to 0%, crystallization was performed from the seed crystal side. The temperature was further lowered to 940 ° C. at 1 ° C./hour, and then gradually cooled to room temperature in 50 hours.

【0036】結晶化した成形体をガス置換を行える炉の
中に設置した。まず、ロータリーポンプで0.1Tor
rまで炉内を排気した後、酸素ガスを流し込んで酸素分
圧が95%以上である大気圧の酸素雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から600℃まで10時間で昇温し、600
℃で100時間保持して室温まで約2時間で降温し、再
び500℃まで10時間で昇温した後そこから300℃
まで200時間かけて徐冷し、300℃から室温まで1
0時間で降温させた。
The crystallized compact was placed in a furnace capable of gas replacement. First, 0.1 Torr by rotary pump
After the inside of the furnace was evacuated to a pressure of r, oxygen gas was flown into the atmosphere at atmospheric pressure where the oxygen partial pressure was 95% or more. Thereafter, the temperature was raised from room temperature to 600 ° C. for 10 hours while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min.
The temperature was kept at 100 ° C. for 100 hours, the temperature was lowered to room temperature in about 2 hours, and the temperature was raised again to 500 ° C. in 10 hours, and then 300 ° C.
Slowly from 200 ° C to room temperature for 1 hour.
The temperature was lowered at 0 hours.

【0037】得られた材料は種結晶を反映して材料全体
がc軸に配向し、Nd1+xBa +yCu
((x,y,d)の値はエネルギー分散型光電子分光法
により測定したところ、(x,y,d)=(0.1,−
0.1,6.95)、(0,0,6.9)、(−0.
1,0.1,6.85)等の相が主に存在していた。)
中にNdBaCu10相が微細に分散した組織
を有していた。この422相は80%以上が5μm以下
と微細化されていた。また、透過型電子顕微鏡写真によ
り、Nd1+xBa2+yCu相中に発生する双
晶を観察したところ、実施例1と同様に双晶面が約50
nm間隔と細かく並んでいた。さらにNd +xBa
2+yCu相と422相との界面には実施例1と
同様なアモルファス相が存在していた。
In the obtained material, the entire material is oriented along the c-axis reflecting the seed crystal, and the value of the Nd 1 + xBa 2 + yCu 3 Od phase ((x, y, d) is determined by energy dispersive photoelectron spectroscopy. And (x, y, d) = (0.1, −
0.1, 6.95), (0, 0, 6.9), (-0.
1,0.1,6.85). )
It had a structure in which Nd 4 Ba 2 Cu 2 O 10 phase was finely dispersed. 80% or more of the 422 phase was refined to 5 μm or less. When a twin generated in the Nd 1 + x Ba 2 + y Cu 3 Od phase was observed by a transmission electron micrograph, the twin plane was found to be about 50 as in Example 1.
It was finely aligned with the nm interval. Further, Nd 1 + xBa
An amorphous phase similar to that in Example 1 was present at the interface between the 2 + y Cu 3 Od phase and the 422 phase.

【0038】得られたディスク状材料の臨界温度(T
c)は94Kであった。温度77Kにおける臨界電流密
度の磁場依存性は図4のように1〜2T付近の高磁場下
でも高い値を示していた。
The critical temperature (T
c) was 94K. The magnetic field dependence of the critical current density at a temperature of 77 K showed a high value even under a high magnetic field around 1-2 T as shown in FIG.

【0039】(実施例4)Nd、BaCO、C
uOの各原料粉末をNd:Ba:Cu=5:30:65
になるように秤量して混合した。次に、この混合粉を、
大気中、室温から880℃まで10時間で昇温し、30
時間保持した後、10時間かけて室温まで降温すること
により焼成した。この仮焼粉をライカイ機により粉砕
し、平均粒径を約20μmとした。次に、これを内径φ
50mm、高さ80mmのNdの坩堝に入れ、酸
素分圧1%中1065℃に10時間で加熱し融液にし
た。次に棒の先端に直径φ3mm、厚さ5mmのMgO
の単結晶を設置し、この融液に120rpmで回転させ
ながら約2mm程度先端を浸した。ここで、酸素分圧を
1%から100%まで上げ、次いで種結晶を0.1mm
/hourの速度で引き上げることにより結晶育成を行
なった。
Example 4 Nd 2 O 3 , BaCO 3 , C
Each raw material powder of uO was Nd: Ba: Cu = 5: 30: 65
Was weighed and mixed. Next, this mixed powder is
In the air, the temperature was raised from room temperature to 880 ° C. in 10 hours,
After holding for a period of time, the temperature was lowered to room temperature over a period of 10 hours to perform firing. The calcined powder was pulverized with a raikai machine to have an average particle size of about 20 μm. Next, this is
It was placed in a 50 mm, 80 mm high Nd 2 O 3 crucible and heated to 1065 ° C. in 1% oxygen partial pressure for 10 hours to form a melt. Next, at the tip of the rod, use MgO with a diameter of 3 mm and a thickness of 5 mm.
Was placed, and the tip was immersed in this melt at about 2 mm while rotating at 120 rpm. Here, the oxygen partial pressure was increased from 1% to 100%, and then the seed crystal was 0.1 mm.
The crystal was grown by pulling at a rate of / hour.

【0040】育成した結晶をガス置換を行なえる炉の中
に設置した。まず、ロータリーポンプで0.1Torr
まで炉内を排気した後、酸素ガスを流し込んで酸素分圧
が95%以上である大気圧の酸素雰囲気にした。その後
も0.5L/minの流量で酸素ガスを炉内に流しなが
ら、室温から700℃まで10時間で昇温し、700℃
で20時間保持して室温まで約2時間で降温し、再び5
00℃まで10時間で昇温した後そこから300℃まで
200時間かけて徐冷し、300℃から室温まで10時
間で降温させた。
The grown crystal was placed in a furnace capable of gas replacement. First, 0.1 Torr with a rotary pump
After the inside of the furnace was evacuated, oxygen gas was flowed into the furnace to form an oxygen atmosphere at atmospheric pressure with an oxygen partial pressure of 95% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 700 ° C. for 10 hours.
, And the temperature was lowered to room temperature in about 2 hours.
After the temperature was raised to 00 ° C. in 10 hours, the temperature was gradually reduced to 300 ° C. over 200 hours, and the temperature was lowered from 300 ° C. to room temperature in 10 hours.

【0041】得られた材料は材料全体がc軸に配向し、
Nd1+xBa2+yCu相((x,y,d)の
値はエネルギー分散型光電子分光法により測定したとこ
ろ、(x,y,d)=(0.1,−0.1,6.9
5)、(0,0,6.9)、(−0.1,0.1,6.
85)等の相が主に存在していた。)等の相が主に存在
していた)となっていた。また、透過型電子顕微鏡写真
により、Nd1+xBa +yCu相中に発生す
る双晶を観察したところ、実施例1と同様に双晶面が約
50nm間隔と細かく並んでいた。得られたディスク状
材料の臨界温度(Tc)は94Kであった。温度77
K、外部磁場2Tにおける臨界電流密度は2万A/cm
と、高磁場下においても高い値を示した。
In the obtained material, the entire material is oriented along the c-axis,
The value of the Nd 1 + x Ba 2 + y Cu 3 Od phase ((x, y, d) was measured by energy dispersive photoelectron spectroscopy, and (x, y, d) = (0.1, −0.1, 6) .9
5), (0, 0, 6.9), (-0.1, 0.1, 6..
85) were mainly present. ) Were mainly present). Further, when twins generated in the Nd 1 + xBa 2 + yCu 3 Od phase were observed by a transmission electron micrograph, the twin planes were finely arranged at intervals of about 50 nm as in Example 1. The critical temperature (Tc) of the obtained disk-shaped material was 94K. Temperature 77
K, critical current density in external magnetic field 2T is 20,000 A / cm
2 and a high value even under a high magnetic field.

【0042】(実施例5)Y、BaCO、Cu
Oの各原料粉末をY:Ba:Cu=18:24:34に
なるように秤量し、Pt坩堝中で、1400℃で30分
間溶融して銅板に流し込み急冷して凝固させた。この凝
固体をポットミルにより平均粒径2μmに粉砕した。次
に、この粉砕した混合粉を再び大気中、室温から920
℃まで10時間で昇温し、10時間保持した後、10時
間かけて室温まで降温することにより焼成した。この仮
焼された混合粉をライカイ機により粉砕し平均粒径を約
10μmとした。次に、これを外径53mm厚さ28m
mのディスク状にプレス成形して成形体を作製した。
Example 5 Y 2 O 3 , BaCO 3 , Cu
Each raw material powder of O was weighed so that Y: Ba: Cu = 18: 24: 34, melted in a Pt crucible at 1400 ° C. for 30 minutes, poured into a copper plate and rapidly cooled to solidify. This solidified product was pulverized by a pot mill to an average particle size of 2 μm. Next, the pulverized mixed powder was again removed from the room temperature to 920 in air.
The temperature was raised to 10 ° C. for 10 hours, maintained for 10 hours, and then lowered to room temperature over 10 hours for firing. The calcined mixed powder was pulverized by a raikai machine to have an average particle size of about 10 μm. Next, this is an outer diameter of 53 mm and a thickness of 28 m.
m was press-molded into a disk shape to produce a molded body.

【0043】この成形体をアルミナ基板上に乗せて酸素
分圧1%中1025℃で半溶融状態にした後、成形体の
上部が低温側となるように上下に5℃/cmの温度勾配
を加えて試料上部が975℃となるまで10℃/min
で降温し、予め作製しておいたY(Ba0.75Sr
0.25Cu7−z相中にYBaCuO
が分散した種結晶を成長方向がc軸と平行になるように
成形体の上部に接触させる。次に、酸素分圧を1%から
100%まで上げることにより、種結晶側から結晶化を
行った。さらに900℃まで1℃/hourで降温し、
そこから室温まで50時間で徐冷を行った。
After placing this compact on an alumina substrate to make it in a semi-molten state at 1025 ° C. in an oxygen partial pressure of 1%, a temperature gradient of 5 ° C./cm was applied vertically so that the upper portion of the compact was on the low temperature side. In addition, 10 ° C / min until the sample upper part reaches 975 ° C.
And the temperature was lowered, and Y 1 (Ba 0.75 Sr
0.25) 2 Cu 3 O 7- z phase to Y 2 BaCuO 5 phase is dispersed seed crystal growth direction is brought into contact with the upper portion of the molded body so as to be parallel to the c axis. Next, crystallization was performed from the seed crystal side by increasing the oxygen partial pressure from 1% to 100%. Further, the temperature is lowered at 1 ° C / hour to 900 ° C,
From there, slow cooling was performed to room temperature in 50 hours.

【0044】結晶化した成形体をガス置換を行える炉の
中に設置し、以下のように2通りの温度条件で酸素アニ
ール処理を行った。まず、ロータリーポンプで0.1T
orrまで炉内を排気した後、酸素ガスを流し込んで酸
素分圧が95%以上である大気圧の酸素雰囲気にし、そ
の後も0.5L/minの流量で酸素ガスを炉内に流し
た。 (温度条件1)室温から600℃まで15分で昇温し、
600℃で100時間保持して炉内から取り出すことで
室温まで急降温し、再び500℃まで2時間で昇温した
後500℃で100時間保持して室温まで約10時間で
降温させる。 (温度条件2)室温から500℃まで2時間で昇温した
後500℃で100時間保持して室温まで約10時間で
降温させる。
The crystallized compact was placed in a furnace capable of gas replacement, and was subjected to oxygen annealing under the following two temperature conditions. First, 0.1T with a rotary pump
After the furnace was evacuated to orr, oxygen gas was flown into the oxygen atmosphere at an atmospheric pressure in which the oxygen partial pressure was 95% or more, and thereafter, oxygen gas was flown into the furnace at a flow rate of 0.5 L / min. (Temperature condition 1) The temperature was raised from room temperature to 600 ° C. in 15 minutes,
The temperature is kept at 600 ° C. for 100 hours, taken out of the furnace, rapidly cooled to room temperature, raised again to 500 ° C. for 2 hours, then kept at 500 ° C. for 100 hours, and cooled to room temperature in about 10 hours. (Temperature condition 2) The temperature is raised from room temperature to 500 ° C. for 2 hours, then kept at 500 ° C. for 100 hours, and lowered to room temperature in about 10 hours.

【0045】得られた材料は種結晶を反映して材料全体
がc軸に配向し、123相中に211相が微細に分散し
た組織を有していた。この211相は80%以上が2μ
m以下と微細化されていた。また、透過型電子顕微鏡写
真により、123相中に発生する双晶を観察したとこ
ろ、実施例1と同様に約50nm間隔と細かく並んでい
た。さらに123相と211相の界面には実施例1と同
様なアモルファス相が存在していた。
The obtained material had a structure in which the entire material was oriented along the c-axis reflecting the seed crystal, and 211 phases were finely dispersed in 123 phases. 80% or more of this 211 phase is 2μ
m or less. Further, when twins generated in the 123 phase were observed by a transmission electron micrograph, they were finely arranged at intervals of about 50 nm as in Example 1. Further, an amorphous phase similar to that in Example 1 was present at the interface between the 123 phase and the 211 phase.

【0046】図6は実施例5の温度条件1でアニール処
理して製造した超電導体の臨界温度の測定結果を示す
図、図7は実施例5の温度条件2でアニール処理して製
造した超電導体の臨界温度の測定結果を示す図である。
これらの図に示されるように、臨界温度(Tc)はとも
に約90Kであった。
FIG. 6 is a view showing the measurement result of the critical temperature of the superconductor manufactured by annealing under the temperature condition 1 of the fifth embodiment. FIG. 7 is a diagram showing the superconductor manufactured by annealing at the temperature condition 2 of the fifth embodiment. It is a figure showing a measurement result of a critical temperature of a body.
As shown in these figures, both critical temperatures (Tc) were about 90K.

【0047】図8は実施例5の温度条件1でアニール処
理して製造した超電導体の臨界電流密度の磁場依存性を
示す図、図9は実施例5の温度条件2でアニール処理し
て製造した超電導体の臨界電流密度の磁場依存性を示す
図である。これらの図は、いずれも温度77K、70
K、65Kのそれぞれの場合における臨界電流密度の磁
場依存性の測定結果を示すものである。これらの図に示
されるように、1〜4T付近の高磁場下でも高い値を示
し、特に65K程度に冷却するとその効果は大きくなっ
ていた。
FIG. 8 is a diagram showing the magnetic field dependence of the critical current density of the superconductor manufactured by annealing at the temperature condition 1 of the fifth embodiment. FIG. 9 is manufactured by annealing at the temperature condition 2 of the fifth embodiment. FIG. 5 is a diagram showing the magnetic field dependence of the critical current density of the superconductor thus obtained. These figures show that the temperatures are 77K and 70K.
It shows the measurement results of the magnetic field dependence of the critical current density in each case of K and 65K. As shown in these figures, the value was high even under a high magnetic field of about 1 to 4 T, and the effect was particularly enhanced when cooled to about 65K.

【0048】さらにこれらディスク状材料の端部付近か
ら約1立方cmの試料を切り出し、約30〜100μm
に粉砕してXRD(X線回折装置)により格子定数a,
b,cを測定した。ここで、c軸はa軸とb軸の約3倍
長の軸とし、aとbでは軸長が長い方をb軸、短い方を
a軸とした。また、格子定数の決定には指数(hkl)
がそれぞれ、(200)、(020)および(006)
であるピークを用いて行った。
Further, a sample of about 1 cubic cm was cut out from the vicinity of the end of these disc-shaped materials,
And crushed by XRD (X-ray diffractometer) to obtain a lattice constant a,
b and c were measured. Here, the c-axis is an axis approximately three times as long as the a-axis and the b-axis. In a and b, the longer axis is the b-axis and the shorter is the a-axis. An index (hkl) is used to determine the lattice constant.
Are (200), (020) and (006), respectively.
Was performed using the peak of

【0049】図10は上記実施例5並びに後述する比較
例2の酸化物超電導体のXRD測定結果から求めた格子
定数a,b,cからρの値を求め、このρと臨界電流密
度のピーク値との関係を示す図である。ここで、ρ
(%)は、斜方晶性を示す値であり、a軸長の値a(格
子定数)とb軸長の値b(格子定数)との差をaとbと
の平均で割った値であって、ρ=2(b−a)/(a+
b)で定義される値である。また、図11は実施例5並
びに後述する比較例2の酸化物超電導体の温度65K及
び70Kにおける1〜4T周辺での臨界電流密度(J
c)のピーク値とρの値との関係をグラフにして示す図
である。本実施例の温度条件でアニールした材料はρの
値が比較的大きくなり、つまり斜方晶性が大きくなり、
Jcが高くなっていることがわかる。
FIG. 10 shows the values of ρ from the lattice constants a, b, and c obtained from the XRD measurement results of the oxide superconductors of Example 5 and Comparative Example 2 described later. It is a figure showing the relation with a value. Where ρ
(%) Is a value indicating the orthorhombic property, and is a value obtained by dividing the difference between the a-axis length value a (lattice constant) and the b-axis length value b (lattice constant) by the average of a and b. Where ρ = 2 (ba) / (a +
This is the value defined in b). FIG. 11 shows the critical current densities (J around 1 to 4 T at 65 K and 70 K of the oxide superconductors of Example 5 and Comparative Example 2 described later.
It is a figure which shows the relationship between the peak value of c) and the value of (rho) in a graph. The material annealed under the temperature conditions of the present embodiment has a relatively large value of ρ, that is, a large orthorhombic property,
It can be seen that Jc is high.

【0050】(比較例1)Y、BaCO、Cu
Oの各原料粉末をY:Ba:Cu=18:24:34に
なるように秤量し、さらに0.5wt%のPt粉末を添
加して混合した。次に、この混合粉を、大気中、室温か
ら880℃まで10時間で昇温し、30時間保持した
後、10時間かけて室温まで降温することにより焼成し
た。この仮焼粉をライカイ機により粉砕し、平均粒径を
約20μmとした。次に、これを外径53mm厚さ28
mmのディスク状にプレス成形して成形体を作製した。
Comparative Example 1 Y 2 O 3 , BaCO 3 , Cu
Each raw material powder of O was weighed so that Y: Ba: Cu = 18: 24: 34, and 0.5 wt% Pt powder was further added and mixed. Next, the temperature of the mixed powder was raised from room temperature to 880 ° C. in the air for 10 hours, and the temperature was maintained for 30 hours. The calcined powder was pulverized with a raikai machine to have an average particle size of about 20 μm. Next, this was added to an outer diameter of 53 mm and a thickness of 28 mm.
A compact was produced by press molding into a disk having a diameter of mm.

【0051】この成形体をアルミナ基板上に乗せて大気
中1100℃で半溶融状態にした後、成形体の上部が低
温側となるように上下に5℃/cmの温度勾配を加えて
試料上部が1000℃となるまで10℃/minで降温
し、予め作製しておいたNd1.1Ba1.9Cu
7−z相中にNdBaCu10相が分散した種
結晶を成長方向がc軸と平行になるように成形体の上部
に接触させた。次に、900℃まで1℃/hourで降
温し、そこから室温まで50時間で徐冷を行った。
After placing this compact on an alumina substrate to make it in a semi-molten state at 1100 ° C. in the atmosphere, a temperature gradient of 5 ° C./cm was applied up and down so that the upper part of the compact was on the low temperature side. Temperature was lowered at 10 ° C./min until the temperature reached 1000 ° C., and Nd 1.1 Ba 1.9 Cu 3 O prepared in advance was prepared.
A seed crystal in which the Nd 4 Ba 2 Cu 2 O 10 phase was dispersed in the 7-z phase was brought into contact with the upper part of the compact so that the growth direction was parallel to the c-axis. Next, the temperature was lowered to 900 ° C. at 1 ° C./hour, and then gradually cooled to room temperature in 50 hours.

【0052】結晶化した成形体をガス置換を行える炉の
中に設置した。まず、ロータリーポンプで0.1Tor
rまで炉内を排気した後、酸素ガスを流し込んで酸素分
圧が95%以上である大気圧の酸素雰囲気にした。その
後も0.5L/minの流量で酸素ガスを炉内に流しな
がら、室温から500℃まで10時間で昇温した後そこ
から300℃まで200時間かけて徐冷し、300℃か
ら室温まで10時間で降温させた。
The crystallized compact was placed in a furnace capable of gas replacement. First, 0.1 Torr by rotary pump
After the inside of the furnace was evacuated to a pressure of r, oxygen gas was flown into the atmosphere at atmospheric pressure where the oxygen partial pressure was 95% or more. Thereafter, while flowing oxygen gas into the furnace at a flow rate of 0.5 L / min, the temperature was raised from room temperature to 500 ° C. for 10 hours, and then gradually cooled from that temperature to 300 ° C. over 200 hours. The temperature was lowered over time.

【0053】得られた材料は種結晶を反映して材料全体
がc軸に配向し、YBaCuO相中に211
相が微細に分散した組織を有していたが、この211相
は平均粒径が約5μm程度と比較的大きなものとなって
いた。また、透過型電子顕微鏡写真により、YBa
Cu相中に発生する双晶を観察したところ、図5
のように双晶面の間隔が広く100nm以上の間隔で並
んでいた。得られたディスク状材料の臨界温度(Tc)
が90Kであった。温度77Kにおける臨界電流密度の
磁場依存性は図4のように1〜2T付近の高磁場下では
低い値を示していた。
The overall resulting material reflecting the seed crystal material is oriented in the c-axis, Y 1 Ba 2 CuO 3 O d phase to 211
Although the phase had a finely dispersed structure, the 211 phase had a relatively large average particle size of about 5 μm. In addition, according to a transmission electron micrograph, it was confirmed that Y 1 Ba 2
Observation of twins generated in the Cu 3 Od phase revealed that FIG.
The spacing between twin planes was wide as shown in FIG. Critical temperature (Tc) of the obtained disk-shaped material
Was 90K. The magnetic field dependence of the critical current density at a temperature of 77 K showed a low value under a high magnetic field around 1-2 T as shown in FIG.

【0054】(比較例2)この比較例は、結晶化行程は
実施例5と同様にし、アニールの温度条件を以下のよう
に変えた例である。すなわち、室温から300℃まで3
時間で昇温した後300℃で100時間保持して室温ま
で約3時間で降温させた。
(Comparative Example 2) This comparative example is an example in which the crystallization step is the same as in Example 5, and the annealing temperature conditions are changed as follows. That is, from room temperature to 300 ° C.
After the temperature was raised over a period of time, the temperature was maintained at 300 ° C. for 100 hours and the temperature was lowered to room temperature in about 3 hours.

【0055】得られた材料は種結晶を反映して材料全体
がc軸に配向し、123相中に211相が微細に分散し
た組織を有していた。この211相は80%以上が2μ
m以下と微細化されていた。しかしながら、透過型電子
顕微鏡写真により、123相中に発生する双晶を観察し
たところ、その間隔は100nm以上とまばらであっ
た。
The obtained material had a structure in which the entire material was oriented along the c-axis reflecting the seed crystal and 211 phases were finely dispersed in 123 phases. 80% or more of this 211 phase is 2μ
m or less. However, when the twins generated in the 123 phase were observed by a transmission electron micrograph, the interval was sparse, that is, 100 nm or more.

【0056】図12は比較例2の温度条件でアニール処
理して製造した酸化物超電導体の臨界温度の測定結果を
示す図、図13は比較例2の温度条件でアニール処理し
て製造した酸化物超電導体の臨界電流密度の磁場依存性
を示す図である。図12から、臨界温度(Tc)は約8
8Kであることがわかる。また、図13は、温度を77
K、70K、65Kと変えて測定した結果であり、この
図に示されるように高磁場下ではJcが低かった。
FIG. 12 is a graph showing the results of measurement of the critical temperature of an oxide superconductor manufactured by annealing under the temperature conditions of Comparative Example 2, and FIG. FIG. 4 is a diagram showing the magnetic field dependence of the critical current density of a superconductor. From FIG. 12, the critical temperature (Tc) is about 8
It turns out that it is 8K. Also, FIG.
The results were measured with K, 70K, and 65K, and Jc was low under a high magnetic field as shown in this figure.

【0057】さらに、この比較例2についても実施例5
と同様にして格子定数a,b,cを求め、ρを求め、さ
らにそれぞれの場合の臨界電流密度のピーク値を求めた
結果は図10に示した通りである。また、これらの結果
をプロットしてρと電界電流密度のピーク値との関係を
グラフにして示したのが図11である。なお、図11は
温度65K及び70Kにおける1〜4T周辺での臨界電
流密度(Jc)の減少率が最も少ない点とρとの関係を
示すものでもある。本比較例の温度条件でアニールした
材料はρの値が比較的小さく、つまり斜方晶性が小さい
ためにJcも低いことがわかる。
Further, the comparative example 2 is also the same as the example 5
As shown in FIG. 10, the lattice constants a, b, and c were obtained in the same manner as described above, ρ was obtained, and the peak value of the critical current density in each case was obtained. FIG. 11 is a graph showing the relationship between ρ and the peak value of the electric field current density by plotting these results. FIG. 11 also shows the relationship between the point where the rate of decrease in the critical current density (Jc) around 1 to 4T at the temperature of 65K and 70K is the least and ρ. It can be seen that the material annealed under the temperature conditions of this comparative example has a relatively small value of ρ, that is, a low orthorhombicity, and thus a low Jc.

【0058】[0058]

【発明の効果】以上詳述したように、本発明にかかるR
EーBaーCuーO系酸化物超電導体は、超電導相を構
成するRE1−xBa2+yCu結晶相に該結晶
の双晶が存在するとともにこれら双晶面の間隔が100
nm未満であるようにし、あるいは、RE1−xBa
2+yCu相とRE2(1−q)Ba1+rCu
5+s相又はRE4(1−q)Ba2(1+r)Cu
2(5+s)相との界面にアモルファス相を有する
ようにし、あるいは、これらにAg,Pt,Pd,R
u,Rh,Ir,Os,Re,Ce等を適宜添加するよ
うにすることによって、より高い臨界電流密度を得るこ
とを可能にし、また、本発明の製造方法は、RE1−x
Ba2+yCu相を含む酸化物超電導体相を結晶
成長させる処理を行なう際の酸素分圧を、該処理工程の
前の工程における酸素分圧と異ならしめて行なうことに
よって上記REーBaーCuーO系酸化物超電導体を製
造することを可能にしている。
As described in detail above, R according to the present invention
E over Ba over Cu over O-based oxide superconductor, the spacing of these twin planes with twins of the crystal is present in RE 1-x Ba 2 + y Cu 3 O d crystalline phase constituting the superconducting phase 100
nm or RE 1-x Ba
2 + y Cu 3 O d phase and RE 2 (1-q) Ba 1 + r Cu
O 5 + s phase or RE 4 (1-q) Ba 2 (1 + r) Cu
An amorphous phase is provided at the interface with the 2 O 2 (5 + s) phase, or Ag, Pt, Pd, R
By appropriately adding u, Rh, Ir, Os, Re, Ce and the like, it is possible to obtain a higher critical current density. In addition, the production method of the present invention provides RE 1-x
By making the oxygen partial pressure during the crystal growth of the oxide superconductor phase containing the Ba 2 + y Cu 3 Od phase different from the oxygen partial pressure in the step before this processing step, the above RE-Ba- This makes it possible to produce a Cu-O-based oxide superconductor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に係るREーBaーCuーO系酸化物
超電導体に形成された双晶の透過型電子顕微鏡写真を示
す図である。
FIG. 1 is a view showing a transmission electron micrograph of twins formed on a RE—Ba—Cu—O-based oxide superconductor according to Example 1. FIG.

【図2】実施例1に係るREーBaーCuーO系酸化物
超電導体におけるYBaCu相とYBaC
uO相との界面の透過型電子顕微鏡写真を示す図であ
る。
FIG. 2 shows a Y 1 Ba 2 Cu 3 Od phase and a Y 2 BaC in the RE—Ba—Cu—O-based oxide superconductor according to Example 1.
shows a transmission electron micrograph of the interface between uO 5 phase.

【図3】図2の部分拡大写真を示す図である。FIG. 3 is a view showing a partially enlarged photograph of FIG. 2;

【図4】実施例1ないし3及び比較例1で製造した酸化
物超電導体の臨界電流密度の磁場依存性を示す図であ
る。
FIG. 4 is a diagram showing the magnetic field dependence of the critical current density of the oxide superconductors manufactured in Examples 1 to 3 and Comparative Example 1.

【図5】比較例1に係るREーBaーCuーO系酸化物
超電導体におけるYBaCu相とYBaC
uO相との界面の透過型電子顕微鏡写真を示す図であ
る。
FIG. 5 shows a Y 1 Ba 2 Cu 3 O d phase and a Y 2 BaC in the RE—Ba—Cu—O-based oxide superconductor according to Comparative Example 1.
shows a transmission electron micrograph of the interface between uO 5 phase.

【図6】実施例5の温度条件1でアニール処理して製造
した超電導体の臨界温度の測定結果を示す図である。.
FIG. 6 is a view showing a measurement result of a critical temperature of a superconductor manufactured by performing an annealing treatment under temperature condition 1 of Example 5. .

【図7】実施例5の温度条件2でアニール処理して製造
した超電導体の臨界温度の測定結果を示す図である。
FIG. 7 is a view showing a measurement result of a critical temperature of a superconductor manufactured by annealing under temperature condition 2 in Example 5.

【図8】実施例5の温度条件1でアニール処理して製造
した超電導体の臨界電流密度の磁場依存性を示す図であ
る。
FIG. 8 is a diagram showing the magnetic field dependence of the critical current density of a superconductor manufactured by annealing under the temperature condition 1 of Example 5.

【図9】実施例5の温度条件2でアニール処理して製造
した超電導体の臨界電流密度の磁場依存性を示す図であ
る。
FIG. 9 is a diagram showing the magnetic field dependence of the critical current density of a superconductor manufactured by annealing under temperature condition 2 in Example 5.

【図10】実施例5並びに後述する比較例2の酸化物超
電導体のXRD測定結果から求めた格子定数a,b,c
からρの値を求め、このρと臨界電流密度のピーク値と
の関係を示す図である。
FIG. 10 shows lattice constants a, b, and c obtained from XRD measurement results of oxide superconductors of Example 5 and Comparative Example 2 described later.
Is a diagram showing the relationship between the value of ρ and the peak value of the critical current density.

【図11】実施例5並びに後述する比較例2の酸化物超
電導体の温度65K及び70Kにおける1〜4T周辺で
の臨界電流密度(Jc)のピーク値とρの値との関係を
グラフにして示す図である。
FIG. 11 is a graph showing the relationship between the peak value of critical current density (Jc) and the value of ρ around 1 to 4 T at temperatures of 65 K and 70 K of the oxide superconductors of Example 5 and Comparative Example 2 described later. FIG.

【図12】比較例2の温度条件でアニール処理して製造
した酸化物超電導体の臨界温度の測定結果を示す図であ
る。.
FIG. 12 is a diagram showing a measurement result of a critical temperature of an oxide superconductor manufactured by annealing under the temperature conditions of Comparative Example 2. .

【図13】比較例2の温度条件でアニール処理して製造
した酸化物超電導体の臨界電流密度の磁場依存性を示す
図である。
13 is a diagram showing the magnetic field dependence of the critical current density of an oxide superconductor manufactured by annealing under the temperature conditions of Comparative Example 2. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 守 東京都千代田区丸の内一丁目8番2号 同 和鉱業株式会社内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Mamoru Sato 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. 20-1 Inside Chubu Electric Power Co., Inc.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】超電導相を構成するRE1−xBa2+y
Cu結晶相に該結晶の双晶が存在するとともに、
これら双晶面の間隔が100nm未満であることを特徴
とするREーBaーCuーO系酸化物超電導体。(但
し、REはYを含む1種もしくは2種以上の希土類金属
元素であり、RE −xBa2+yCu相とは
x,y,dがそれぞれ−0.3<x<0.3,−0.3
<y<0.3,6.5<d<7.5の範囲である値をと
る相が1種以上存在する相である。)
1. RE 1-x Ba 2 + y constituting a superconducting phase
While twins of the crystal exist in the Cu 3 Od crystal phase,
An RE-Ba-Cu-O-based oxide superconductor, wherein the distance between these twin planes is less than 100 nm. (Where, RE is one or more rare earth metal elements including Y, RE 1 -x Ba 2 + y Cu 3 O d phase A x, y, d respectively -0.3 <x <0. 3, -0.3
<Y <0.3, 6.5 <d <7.5. )
【請求項2】超電導相を構成するRE1−xBa2+y
Cu(REはYを含む1種もしくは2種以上の希
土類金属元素)相中に、RE2(1−q)Ba1+r
uO5+s相及び/又はRE4(1−q)Ba
2(1+r)Cu2(5+s)相が微細に分散した
REーBaーCuーO系酸化物超電導体において、 前記RE1−xBa2+yCu相と、前記RE
2(1−q)Ba1+rCuO5+s相及び/又はRE
4(1−q)Ba2(1+r)Cu2(5+ s)
との界面にアモルファス相を有することを特徴とするR
EーBaーCuーO系酸化物超電導体。(但し、RE
1−xBa2+yCu相とはx,y,dがそれぞ
れ−0.3<x<0.3,−0.3<y<0.3,6.
5<d<7.5の範囲である値をとる相が1種以上存在
する相であり、また、RE2(1−q)Ba1+rCu
+s相及びRE4(1−q)Ba2(1+r)Cu
2(5+s)相とはq,r,sがそれぞれ−0.3
<q<0.3,−0.3<r<0.3,−0.5<s<
0.5の範囲である値をとる相が一種以上存在する相で
ある。)
2. RE 1-x Ba 2 + y constituting a superconducting phase
In a Cu 3 O d (RE is one or more rare earth metal elements containing Y) phase, RE 2 (1-q) Ba 1 + r C
uO5 + s phase and / or RE4 (1-q) Ba
2 (1 + r) in the Cu 2 O 2 (5 + s ) phase is finely dispersed RE over Ba over Cu over O-based oxide superconductor, the RE 1-x Ba 2 + y Cu 3 O d phase and the RE
2 (1-q) Ba 1 + r CuO 5 + s phase and / or RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5+ s) R , characterized in that it comprises an interface amorphous phase of the phase
E-Ba-Cu-O-based oxide superconductor. (However, RE
The 1-x Ba 2 + y Cu 3 O d phase has x, y, and d of −0.3 <x <0.3, −0.3 <y <0.3, and 6.
One or more phases having a value in the range of 5 <d <7.5 are present, and RE 2 (1-q) Ba 1 + r Cu
O 5 + s phase and RE 4 (1-q) Ba 2 (1 + r) Cu
2 O 2 (5 + s) is a phase q, r, s respectively -0.3
<Q <0.3, -0.3 <r <0.3, -0.5 <s <
A phase having a value in the range of 0.5 is one or more phases. )
【請求項3】RE1−xBa2+yCu(REは
Yを含む1種もしくは2種以上の希土類金属元素)相中
にRE2(1−q)Ba1+rCuO5+s相及び/又
はRE4(1−q)Ba2(1+r)Cu
2(5+s)相が微細に分散した酸化物超電導体におい
て、 RE1−xBa2+yCu結晶のa軸長の値を
a、b軸長の値をbとしたときに、ρ=2(b−a)/
(a+b)で与えられるρが1.5%以上であることを
特徴とするREーBaーCuーO系酸化物超電導体。
(但し、RE1−xBa2+yCu相とはx,
y,dがそれぞれ−0.3<x<0.3,−0.3<y
<0.3,6.5<d<7.5の範囲である値をとる相
が1種以上存在する相であり、また、RE2(1−q)
Ba1+rCuO +s相及びRE4(1−q)Ba
2(1+r)Cu2(5+s)相とはq,r,sが
それぞれ−0.3<q<0.3,−0.3<r<0.
3,−0.5<s<0.5の範囲である値をとる相が一
種以上存在する相である。)
3. An RE 1-x Ba 2 + y Cu 3 Od (RE is one or more rare earth metal elements containing Y) phase and a RE 2 (1-q) Ba 1 + r CuO 5 + s phase and / or RE 4 (1-q) Ba 2 (1 + r) Cu 2 O
In an oxide superconductor in which 2 (5 + s) phases are finely dispersed, when the value of the a-axis length of RE 1-x Ba 2 + y Cu 3 O d crystal is a and the value of the b-axis length is b, ρ = 2 (ba) /
The RE-Ba-Cu-O-based oxide superconductor, wherein ρ given by (a + b) is 1.5% or more.
(However, the RE 1-x Ba 2 + y Cu 3 Od phase is x,
y and d are -0.3 <x <0.3 and -0.3 <y, respectively.
<0.3, 6.5 <d <7.5, at least one phase having a value in the range of 7.5, and RE 2 (1-q)
Ba 1 + r CuO 5 + s phase and RE 4 (1-q) Ba
2 (1 + r) Cu 2 O 2 (5 + s) phase means that q, r, and s are -0.3 <q <0.3, -0.3 <r <0.
This is a phase in which one or more phases have a value in the range of 3, -0.5 <s <0.5. )
【請求項4】超電導相を構成するRE1−xBa2+y
Cu(REはYを含む1種もしくは2種以上の希
土類金属元素)相中に、RE2(1−q)Ba1+r
uO5+s相及び/又はRE4(1−q)Ba
2(1+r)Cu2(5+s)相が微細に分散した
REーBaーCuーO系酸化物超電導体において、 前記RE1−xBa2+yCu結晶相に該結晶の
双晶が存在し、且つこれら双晶面の間隔が100nm未
満であり、 前記RE1−xBa2+yCu相と、前記RE
2(1−q)Ba1+rCuO5+s相及び/又はRE
4(1−q)Ba2(1+r)Cu2(5+ s)
との界面にアモルファス相を有することを特徴とするR
EーBaーCuーO系酸化物超電導体。(但し、RE
1−xBa2+yCu相とはx,y,dがそれぞ
れ−0.3<x<0.3,−0.3<y<0.3,6.
5<d<7.5の範囲である値をとる相が1種以上存在
する相であり、また、RE2(1−q)Ba1+rCu
+s相及びRE4(1−q)Ba2(1+r)Cu
2(5+s)相とはq,r,sがそれぞれ−0.3
<q<0.3,−0.3<r<0.3,−0.5<s<
0.5の範囲である値をとる相が一種以上存在する相で
ある。)
4. RE 1-x Ba 2 + y constituting a superconducting phase
In a Cu 3 O d (RE is one or more rare earth metal elements containing Y) phase, RE 2 (1-q) Ba 1 + r C
uO5 + s phase and / or RE4 (1-q) Ba
In 2 (1 + r) Cu 2 O 2 (5 + s) phase is finely dispersed RE over Ba over Cu over O-based oxide superconductor, twinning of the RE 1-x Ba 2 + y Cu 3 O d crystalline phase in the crystal And the distance between these twin planes is less than 100 nm, wherein the RE 1-x Ba 2 + y Cu 3 O d phase and the RE
2 (1-q) Ba 1 + r CuO 5 + s phase and / or RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5+ s) R , characterized in that it comprises an interface amorphous phase of the phase
E-Ba-Cu-O-based oxide superconductor. (However, RE
The 1-x Ba 2 + y Cu 3 O d phase has x, y, and d of −0.3 <x <0.3, −0.3 <y <0.3, and 6.
One or more phases having a value in the range of 5 <d <7.5 are present, and RE 2 (1-q) Ba 1 + r Cu
O 5 + s phase and RE 4 (1-q) Ba 2 (1 + r) Cu
2 O 2 (5 + s) is a phase q, r, s respectively -0.3
<Q <0.3, -0.3 <r <0.3, -0.5 <s <
A phase having a value in the range of 0.5 is one or more phases. )
【請求項5】RE1−xBa2+yCu(REは
Yを含む1種もしくは2種以上の希土類金属元素)相中
にRE2(1−q)Ba1+rCuO5+s相及び/又
はRE4(1−q)Ba2(1+r)Cu
2(5+s)相が微細に分散した酸化物超電導体におい
て、 前記RE1−xBa2+yCu結晶相に該結晶の
双晶が存在し、且つこれらの双晶面の間隔が100nm
未満であり、 該結晶のa軸長の値をa、b軸長の値をbとしたときに
ρ=2(b−a)/(a+b)で与えられるρが1.5
%以上であることを特徴とするREーBaーCuーO系
酸化物超電導体。(但し、RE1−xBa2+yCu
相とはx,y,dがそれぞれ−0.3<x<0.
3,−0.3<y<0.3,6.5<d<7.5の範囲
である値をとる相が1種以上存在する相であり、また、
RE2(1−q)Ba1+rCuO +s相及びRE
4(1−q)Ba2(1+r)Cu2(5+s)
とはq,r,sがそれぞれ−0.3<q<0.3,−
0.3<r<0.3,−0.5<s<0.5の範囲であ
る値をとる相が一種以上存在する相である。)
5. An RE 1-x Ba 2 + y Cu 3 Od (RE is one or more rare earth metal elements containing Y) phase and an RE 2 (1-q) Ba 1 + r CuO 5 + s phase and / or RE 4 (1-q) Ba 2 (1 + r) Cu 2 O
2 in (5 + s) phase oxide superconductor dispersed finely, the RE 1-x Ba 2 + y Cu 3 O twinning of the crystals present in the d-crystal phase, and 100nm spacing of these twin planes
When the value of the a-axis length of the crystal is a and the value of the b-axis length is b, ρ given by ρ = 2 (ba) / (a + b) is 1.5
% Or more of RE-Ba-Cu-O-based oxide superconductor. (However, RE 1-x Ba 2 + y Cu 3
The Od phase means that x, y, and d are -0.3 <x <0.
A phase having at least one phase having a value in a range of 3, −0.3 <y <0.3, 6.5 <d <7.5;
RE 2 (1-q) Ba 1 + r CuO 5 + s phase and RE
4 (1-q) Ba 2 (1 + r) Cu 2 O 2 (5 + s) phase and the q, r, s respectively -0.3 <q <0.3, -
This is a phase in which at least one phase has a value in the range of 0.3 <r <0.3 and −0.5 <s <0.5. )
【請求項6】RE1−xBa2+yCu(REは
Yを含む1種もしくは2種以上の希土類金属元素)相中
にRE2(1−q)Ba1+rCuO5+s相及び/又
はRE4(1−q)Ba2(1+r)Cu
2(5+s)相が微細に分散した酸化物超電導体におい
て、 前記RE1−xBa2+yCu結晶相に該結晶の
双晶が存在し、且つこれらの双晶面の間隔が100nm
未満であり、 該結晶のa軸長の値をa、b軸長の値をbとしたときに
ρ=2(b−a)/(a+b)で与えられるρが1.5
%以上であり、 さらに、前記RE1−xBa2+yCu相と、前
記RE2(1−q)Ba1+rCuO5+s相及び/又
は前記RE4(1−q)Ba2(1+r)Cu
2(5+s)相との界面にアモルファス相を有すること
を特徴とするREーBaーCuーO系酸化物超電導体。
(但し、RE1−xBa2+yCu相とはx,
y,dがそれぞれ−0.3<x<0.3,−0.3<y
<0.3,6.5<d<7.5の範囲である値をとる相
が1種以上存在する相であり、また、RE2(1−q)
Ba1+rCuO +s相及びRE4(1−q)Ba
2(1+r)Cu2(5+s)相とはq,r,sが
それぞれ−0.3<q<0.3,−0.3<r<0.
3,−0.5<s<0.5の範囲である値をとる相が一
種以上存在する相である。)
6. An RE 1-x Ba 2 + y Cu 3 Od (RE is one or more rare earth metal elements containing Y) phase and a RE 2 (1-q) Ba 1 + r CuO 5 + s phase and / or RE 4 (1-q) Ba 2 (1 + r) Cu 2 O
2 in (5 + s) phase oxide superconductor dispersed finely, the RE 1-x Ba 2 + y Cu 3 O twinning of the crystals present in the d-crystal phase, and 100nm spacing of these twin planes
When the value of the a-axis length of the crystal is a and the value of the b-axis length is b, ρ given by ρ = 2 (ba) / (a + b) is 1.5
Not less than%, further, the RE 1-x Ba 2 + y Cu 3 O d phase and said RE 2 (1-q) Ba 1 + r CuO 5 + s phase and / or the RE 4 (1-q) Ba 2 (1 + r) Cu 2 O
An RE-Ba-Cu-O-based oxide superconductor having an amorphous phase at an interface with a 2 (5 + s) phase.
(However, the RE 1-x Ba 2 + y Cu 3 Od phase is x,
y and d are -0.3 <x <0.3 and -0.3 <y, respectively.
<0.3, 6.5 <d <7.5, at least one phase having a value in the range of 7.5, and RE 2 (1-q)
Ba 1 + r CuO 5 + s phase and RE 4 (1-q) Ba
2 (1 + r) Cu 2 O 2 (5 + s) phase means that q, r, and s are -0.3 <q <0.3, -0.3 <r <0.
This is a phase in which one or more phases have a value in the range of 3, -0.5 <s <0.5. )
【請求項7】請求項1ないし6のいずれかに記載のRE
ーBaーCuーO系酸化物超電導体において、Ag元素
が1〜60wt%含まれることを特徴とするREーBa
ーCuーO系酸化物超電導体。
7. The RE according to claim 1, wherein
-Ba-Cu-O-based oxide superconductor containing 1 to 60 wt% of an Ag element
-Cu-O based oxide superconductor.
【請求項8】請求項1ないし7のいずれかに記載のRE
ーBaーCuーO系酸化物超電導体において、Pt、P
d、Ru、Rh、Ir、Os、Re、Ceの1種もしく
は2種以上の元素が0.05〜5wt%含まれることを
特徴とするREーBaーCuーO系酸化物超電導体。
8. The RE according to claim 1, wherein
-Ba-Cu-O based oxide superconductor, Pt, P
A RE-Ba-Cu-O-based oxide superconductor comprising 0.05 to 5 wt% of one or more of d, Ru, Rh, Ir, Os, Re, and Ce.
【請求項9】RE化合物(REはYを含む1種もしくは
2種以上の希土類金属元素)、Ba化合物及びCu化合
物を含む原料混合体に、少なくとも該原料混合体の融点
より高い温度領域における熱処理を含む処理を施した後
に、RE1−xBa2+yCu相を含む酸化物超
電導体相を結晶成長させる処理を有するREーBaーC
uーO系酸化物超電導体の製造方法において、 前記RE1−xBa2+yCu相を含む酸化物超
電導体相を結晶成長させる処理を行なう際の酸素分圧
を、該処理工程の前の工程における酸素分圧と異ならし
めて行なうことを特徴とするREーBaーCuーO系酸
化物超電導体の製造方法。
9. A heat treatment of a raw material mixture containing an RE compound (RE is one or more rare earth metal elements containing Y), a Ba compound and a Cu compound at least in a temperature range higher than the melting point of the raw material mixture. RE-Ba-C having a process of crystal-growing an oxide superconductor phase containing a RE 1-x Ba 2 + y Cu 3 O d phase after performing a process including
In the method for producing a uO-based oxide superconductor, the oxygen partial pressure at the time of performing the process of crystal-growing the oxide superconductor phase including the RE 1-x Ba 2 + y Cu 3 O d phase is determined by the following method. A method for producing a RE-Ba-Cu-O-based oxide superconductor, wherein the method is performed differently from the oxygen partial pressure in the previous step.
【請求項10】請求項9に記載のREーBaーCuーO
系酸化物超電導体の製造方法において、 前記原料混合
体にさらにPt,Pd,Ru,Rh,Ir,Os,R
e,Ceの金属又はこれらの化合物の1種または2種以
上の元素を0.05〜5wt%(化合物の場合はその金
属のみの元素重量で示す)添加することを特徴とするR
EーBaーCuーO系酸化物超電導体の製造方法。
10. The RE—Ba—Cu—O according to claim 9.
In the method for producing an oxide-based superconductor, Pt, Pd, Ru, Rh, Ir, Os, R
e, a metal of Ce, or one or more elements of these compounds is added in an amount of 0.05 to 5 wt% (in the case of a compound, indicated by the element weight of the metal alone).
A method for producing an E-Ba-Cu-O-based oxide superconductor.
【請求項11】請求項9ないし10のいずれかに記載の
REーBaーCuーO系酸化物超電導体の製造方法にお
いて、 前記原料混合体にさらにAgの金属ないし化合物を1〜
60wt%(化合物の場合はAgのみの元素重量で示
す)添加することを特徴とするREーBaーCuーO系
酸化物超電導体の製造方法。
11. The method for producing a RE—Ba—Cu—O-based oxide superconductor according to claim 9, wherein a metal or a compound of Ag is further added to the raw material mixture.
A method for producing a RE-Ba-Cu-O-based oxide superconductor, comprising adding 60 wt% (in the case of a compound, the element weight of Ag alone).
JP06746998A 1998-03-17 1998-03-17 RE-Ba-Cu-O-based oxide superconductor and method for producing the same Expired - Fee Related JP4019132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06746998A JP4019132B2 (en) 1998-03-17 1998-03-17 RE-Ba-Cu-O-based oxide superconductor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06746998A JP4019132B2 (en) 1998-03-17 1998-03-17 RE-Ba-Cu-O-based oxide superconductor and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11263618A true JPH11263618A (en) 1999-09-28
JP4019132B2 JP4019132B2 (en) 2007-12-12

Family

ID=13345861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06746998A Expired - Fee Related JP4019132B2 (en) 1998-03-17 1998-03-17 RE-Ba-Cu-O-based oxide superconductor and method for producing the same

Country Status (1)

Country Link
JP (1) JP4019132B2 (en)

Also Published As

Publication number Publication date
JP4019132B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
CN114164485B (en) Method for co-doping FeSe superconductor material with Si and Te elements
JP4019132B2 (en) RE-Ba-Cu-O-based oxide superconductor and method for producing the same
JP2967154B2 (en) Oxide superconductor containing Ag and having uniform crystal orientation and method for producing the same
JP4628041B2 (en) Oxide superconducting material and manufacturing method thereof
JP3195041B2 (en) Oxide superconductor and manufacturing method thereof
JP6217842B2 (en) Bulk oxide superconductor and method for producing bulk oxide superconductor
JP4109363B2 (en) Oxide superconducting material and manufacturing method thereof
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
JP3889139B2 (en) Oxide superconductor containing silver and method for producing the same
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP3854364B2 (en) Method for producing REBa2Cu3Ox-based superconductor
JPH07106906B2 (en) Oxide superconducting material containing rare earth element and method for producing the same
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JPH10265221A (en) Production of oxide superconductor
JP3136281B2 (en) Oxide superconductor and manufacturing method thereof
JP4071860B2 (en) Superconducting bulk material and manufacturing method thereof
JP4951790B2 (en) Manufacturing method of oxide superconductivity
JP2761727B2 (en) Manufacturing method of oxide superconductor
JP2000247795A (en) Production of re123 oxide superconductive bulk body
JP2914799B2 (en) Manufacturing method of oxide superconducting bulk material
JP4153651B2 (en) Seed crystal of oxide superconducting material and manufacturing method of oxide superconducting material using the same
JP2001114595A (en) High temperature oxide superconductive material and method for producing the same
JPH04160062A (en) Production of superconducting material
JPH0717714A (en) Production of superconducting oxide
JP2001180932A (en) Oxide superconductor and its production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees