JPH11256208A - Copper fine powder - Google Patents

Copper fine powder

Info

Publication number
JPH11256208A
JPH11256208A JP10370198A JP37019898A JPH11256208A JP H11256208 A JPH11256208 A JP H11256208A JP 10370198 A JP10370198 A JP 10370198A JP 37019898 A JP37019898 A JP 37019898A JP H11256208 A JPH11256208 A JP H11256208A
Authority
JP
Japan
Prior art keywords
fine powder
copper
copper fine
conductive paste
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10370198A
Other languages
Japanese (ja)
Other versions
JP3396640B2 (en
Inventor
Hisao Hayashi
尚男 林
Yoshinobu Nakamura
芳信 中村
Hiroyuki Shimamura
宏之 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP37019898A priority Critical patent/JP3396640B2/en
Publication of JPH11256208A publication Critical patent/JPH11256208A/en
Application granted granted Critical
Publication of JP3396640B2 publication Critical patent/JP3396640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide copper fine powder satisfying all characteristics required for the copper fine powder suitable for solventless type thermosetting electrically conductive paste for a via hole. SOLUTION: This copper fine powder for solventless type thermosetting electrically conductive paste for a beer hall is the one in which the electric resistance measured in a powder state is made to less than 1×10-<3> Ω.cm, the specific surface area by BET is made to 0.15 to 0.3 m<2> /g, the tap density is made to >=4.5 g/cc, the product of the grain size (μm) calculated from the specific surface are (m<2> /g) by BET in accordance with formula of the grain size (μm) = 6/[8.93×[the specific surface area (m<2> /g)] by BET] is made to >=13, the size distribution is made to D50 =4 to 7 μm and D90 =9 to 11 μm in microtrack measurement and the hydrogen reduction loss is made to <=0.30%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉体状態での電気
抵抗が著しく低く、充填性に優れており、粒度分布がシ
ャープである銅微粉末に関し、より詳しくは、主に電子
回路用の、特に多層プリント配線板用樹脂基板のビアホ
ール(Via hole、以下、VHと記載する)充填に適した
無溶剤型熱硬化導電性ペースト用の銅微粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper fine powder having a remarkably low electric resistance in a powder state, an excellent filling property, and a sharp particle size distribution, and more particularly to a fine copper powder for an electronic circuit. More particularly, the present invention relates to a copper fine powder for a solventless thermosetting conductive paste suitable for filling a via hole (hereinafter referred to as VH) in a resin substrate for a multilayer printed wiring board.

【0002】[0002]

【従来の技術】従来、銅微粉末は、電子機器用のガラ
ス、セラミック等の基板上にスクリーン印刷や直接描画
等で塗布した後、焼成して厚膜形成を行う、いわゆる焼
成型ペースト用の原材料として使用されている。昨今、
かかる電子機器回路基板においては、機器の小型軽量
化、高機能化のための高速化、デジタル化に伴い、一層
の高密度化が要求されている。しかるに従来の回路基板
の製造方法は基板にドリル加工により貫通穴を形成し、
めっきを行うスルーホール方式が主体であり、上記の要
求を満足するには限界があった。
2. Description of the Related Art Conventionally, copper fine powder is applied to a substrate such as glass or ceramic for electronic equipment by screen printing or direct drawing, and then fired to form a thick film. Used as a raw material. These days,
In such electronic device circuit boards, further densification is required in accordance with the miniaturization and weight reduction of the device, the high speed for high performance, and the digitization. However, the conventional method of manufacturing a circuit board forms a through hole in the board by drilling,
A through-hole method for plating is mainly used, and there is a limit in satisfying the above requirements.

【0003】かかる要求に対応する一手段として、基板
サイズの小型化に加え、自動配線設計、デジタル高速信
号処理化に対応可能なVH構造を有する多層プリント配
線板の開発が注目されている。VH構造の多層プリント
配線板は、穴加工した基板の穴に銅微粉末、樹脂及び硬
化剤からなる無溶剤型の熱硬化導電性ペーストを充填
し、銅箔をサンドイッチし、加熱加圧成形して製造して
いる。当該基板の製造に用いられる熱硬化導電性ペース
トにおいては、従来の焼成型ペーストとは異なり、加熱
による有機バインダーや溶剤の揮発がなく且つ非導電性
の樹脂が介在するので、導電体としての銅微粉末の導電
性や充填性に更に優れた特性が要求される。
As a means for meeting such demands, attention has been paid to the development of a multilayer printed wiring board having a VH structure capable of responding to automatic wiring design and digital high-speed signal processing, in addition to miniaturization of a substrate size. A multi-layer printed wiring board with a VH structure is prepared by filling a hole in a drilled board with a non-solvent type thermosetting conductive paste composed of a fine copper powder, a resin and a curing agent, sandwiching a copper foil, and molding by heating and pressing. Manufacturing. In the thermosetting conductive paste used for manufacturing the substrate, unlike the conventional firing type paste, there is no volatilization of an organic binder or a solvent by heating and a non-conductive resin is interposed, so that copper as a conductor is used. The fine powder is required to have further excellent properties in conductivity and filling properties.

【0004】しかしながら、従来、銅微粉末について
は、溶剤を含む焼成型ペーストに用いるのに適した特
性、即ち銅微粉末の形状、粒径、粒度分布、タップ密度
等を改良するために種々試みられてきているが、無溶剤
型熱硬化導電性ペーストに用いるのに適した特性につい
ては十分には検討されておらず、VH充填用の無溶剤型
熱硬化導電性ペーストに用いるのに適した特性を満たす
銅微粉末は未だ得られていない。
However, various attempts have heretofore been made to improve the properties of copper fine powder suitable for use in a sintering paste containing a solvent, ie, the shape, particle size, particle size distribution, tap density, etc. of the copper fine powder. However, the characteristics suitable for use in the solventless thermosetting conductive paste have not been sufficiently studied, and are suitable for use in the solventless thermosetting conductive paste for VH filling. Copper fine powder satisfying the characteristics has not yet been obtained.

【0005】従来、銅微粉末の製造方法として機械的粉
砕法、アトマイズ法、電気分解法、蒸発法、湿式還元法
等が提案されている。湿式還元法は焼成ペースト用の銅
微粉末の好ましい製造法であるとされており、該湿式還
元法のうちのヒドラジン還元法については0.1〜10
0μmオーダーの銅微粉末の製造に適した手段としてこ
れまでにもいくつかの方法が提案されてきている。
Conventionally, mechanical pulverization, atomization, electrolysis, evaporation, and wet reduction have been proposed as methods for producing fine copper powder. The wet reduction method is considered to be a preferred method for producing fine copper powder for a firing paste, and the hydrazine reduction method of the wet reduction method is 0.1 to 10%.
Several methods have been proposed as means suitable for producing copper fine powder of the order of 0 μm.

【0006】その代表例として、特開平2−29441
4号公報、特開平4−116109号公報、特開平4−
235205号公報等に記載された製造法が挙げられ
る。特開平2−294414号公報には、アミノ酸及び
その塩、アンモニア及びアンモニウム塩、有機アミン類
ならびにジメチルグリオキシムからなる群から選択され
た少なくとも1種の化合物の存在下、銅塩水溶液に水酸
化アルカリ及び還元糖を加え亜酸化銅を析出させ、その
後ヒドラジンにて還元して銅粉末を得る方法が開示され
ている。
A typical example is disclosed in Japanese Patent Application Laid-Open No. 2-29441.
No. 4, JP-A-4-116109, JP-A-4-116109
Production method described in JP-A-235205 and the like. JP-A-2-294414 discloses that an aqueous solution of a copper salt is treated with an alkali hydroxide in the presence of at least one compound selected from the group consisting of amino acids and salts thereof, ammonia and ammonium salts, organic amines and dimethylglyoxime. And a method of adding a reducing sugar to precipitate cuprous oxide, and then reducing with hydrazine to obtain a copper powder.

【0007】又、特開平4−116109号公報には、
銅塩水溶液から水酸化銅、亜酸化銅を経て金属銅に迄還
元する方法が開示されている。その開示された方法では
銅塩水溶液をpH12以上に調整した後に該銅塩水溶液
に還元糖、ヒドラジン系還元剤を添加すること、ヒドラ
ジン系還元剤を添加する前に反応溶液を60℃以上に調
整すること、及び水溶液中の銅(II)イオンを安定に溶
解させるためにロッシェル塩、アミノ酸、アンモニア又
はアンモニア化合物等の錯化剤が使用可能であること等
についても開示している。
Further, Japanese Patent Application Laid-Open No. 4-116109 discloses that
A method of reducing an aqueous copper salt solution to metallic copper via copper hydroxide and cuprous oxide is disclosed. In the disclosed method, a reducing salt and a hydrazine-based reducing agent are added to the copper salt aqueous solution after adjusting the pH of the copper salt aqueous solution to 12 or more, and the reaction solution is adjusted to 60 ° C. or more before adding the hydrazine-based reducing agent. It also discloses that a complexing agent such as Rochelle salt, amino acid, ammonia or an ammonia compound can be used to stably dissolve copper (II) ions in an aqueous solution.

【0008】更に、特開平4−235205号公報に
は、上記特開平4−116109号公報に記載の還元方
法と同様の還元方法において、更に保護コロイドを分割
添加することを含む還元法が開示されている。上記の各
公開公報に開示された製造方法によって得られる銅微粉
末は、粒度分布が狭いことや粒径が小さいこと等を特徴
として挙げているが、その粒度分布の幅は依然広く且つ
粒径が小さい方にばらつくことにより、VH充填用の無
溶剤型熱硬化導電性ペースト向け原材料として未だ不充
分なものであった。
Further, Japanese Patent Application Laid-Open No. Hei 4-235205 discloses a reduction method similar to the reduction method described in Japanese Patent Application Laid-Open No. Hei 4-116109, which further comprises adding a protective colloid in portions. ing. The copper fine powder obtained by the production method disclosed in each of the above publications is characterized by a narrow particle size distribution and a small particle size, but the width of the particle size distribution is still wide and the particle size is small. However, it was still insufficient as a raw material for a non-solvent type thermosetting conductive paste for VH filling due to variation in the smaller one.

【0009】[0009]

【発明が解決しようとする課題】VH構造の多層プリン
ト配線板用樹脂基板においては、従来の焼成型ペースト
を用いた場合とは異なり、VH部分には導電体である銅
微粉末の粒子間に硬化樹脂が介在するので電気抵抗がア
ップする要因となる。また、VHに熱硬化導電性ペース
トを充填する際にスキージ等による充填法が実施される
が、熱硬化導電性ペースト中の銅微粉末の粒度のバラツ
キが大きい場合には、粗粒が先にVHに充填され、それ
につれてスキージに蓄えられている熱硬化導電性ペース
ト中の微粒の割合が高くなる傾向があり、このためスキ
ージに蓄えられている一バッチの熱硬化導電性ペースト
による基板処理枚数が増えるにつれてスキージに残存し
ている熱硬化導電性ペーストの粘度が段々と高くなり、
遂には充填不能、充填不良、VH部分以外の部分でのペ
ーストの付着残存等が生じることになる。
In a resin substrate for a multilayer printed wiring board having a VH structure, unlike the case where a conventional sintering paste is used, a VH portion is provided between particles of copper fine powder as a conductor. The presence of the cured resin causes an increase in electric resistance. In addition, when filling the VH with the thermosetting conductive paste, a filling method using a squeegee or the like is performed. However, when there is a large variation in the particle size of the copper fine powder in the thermosetting conductive paste, the coarse particles are first placed. The proportion of fine particles in the thermosetting conductive paste filled in the VH and stored in the squeegee tends to increase as a result, and therefore, the number of substrates processed by one batch of the thermosetting conductive paste stored in the squeegee As the viscosity increases, the viscosity of the thermosetting conductive paste remaining on the squeegee gradually increases,
Eventually, inability to fill, poor filling, and adhesion of the paste remaining in portions other than the VH portion will occur.

【0010】上記のような不都合を抑制するためには、
熱硬化導電性ペーストに用いられる銅微粉末には下記の
特性が要求される。 (1)粉体状態で測定した電気抵抗が充分に低いこと、
(2)導電性を確保するための充填性に優れているこ
と、(3)熱硬化導電性ペースト中の銅微粉末の含有率
を高くできること、(4)上記(3)項を満たしながら
ペーストの粘度が適度に保たれること。
In order to suppress the above inconveniences,
The following characteristics are required for the copper fine powder used for the thermosetting conductive paste. (1) electric resistance measured in a powder state is sufficiently low;
(2) It is excellent in the filling property for securing the conductivity, (3) The content of the copper fine powder in the thermosetting conductive paste can be increased, and (4) The paste while satisfying the above item (3). That the viscosity of is maintained moderately.

【0011】本発明は熱硬化導電性ペーストに用いられ
る銅微粉末に要求される上記のような要求を満足するた
めになされたものであり、本発明の目的は、上記の全て
の特性を満足するビアホール用無溶剤型熱硬化導電性ペ
ースト用銅微粉末を提供することにある。
The present invention has been made in order to satisfy the above-mentioned requirements required for the copper fine powder used in the thermosetting conductive paste, and an object of the present invention is to satisfy all the above characteristics. To provide a copper fine powder for a solventless thermosetting conductive paste for via holes.

【0012】[0012]

【課題を達成するための手段】本発明者等は、上記の目
的を達成するために種々研究を重ねた結果、粉体状態で
測定した電気抵抗、BETによる比表面積、タップ密
度、BETによる比表面積から計算した粒径とタップ密
度との積、マイクロトラック測定における粒度分布及び
水素還元減量の値がそれぞれ特定の範囲内にある銅微粉
末が上記の全ての特性を満足すること、更に、上記の全
ての特性を満足する銅微粉末が特定の製造方法によって
得られることを見いだし本発明を完成した。
Means for Achieving the Object The present inventors have conducted various studies to achieve the above object, and as a result, the electrical resistance measured in a powder state, the specific surface area by BET, the tap density, the specificity by BET. The product of the particle diameter and tap density calculated from the surface area, the value of the particle size distribution and hydrogen reduction loss in microtrack measurement satisfying all of the above characteristics that the copper fine powder is within a specific range, furthermore, The present inventors have found that a copper fine powder satisfying all the above characteristics can be obtained by a specific production method, and completed the present invention.

【0013】即ち、本発明の銅微粉末は、粉体状態で測
定した電気抵抗が1×10-3Ω・cm以下であり、BE
Tによる比表面積が0.15〜0.3m2 /gであり、
タップ密度が4.5g/cc以上であり、該BETによ
る比表面積(m2 /g)から式 粒径(μm)=6/[8.93×〔BETによる比表面
積(m2/g)〕] に従って計算した粒径(μm)とタップ密度(g/c
c)との積が13以上であり、粒度分布がマイクロトラ
ック測定におけるD50=4〜7μm且つD90=9〜11
μmであり、且つ水素還元減量が0.30%以下である
ことを特徴とするビアホール用無溶剤型熱硬化導電性ペ
ースト用銅微粉末である。
That is, the copper fine powder of the present invention has an electric resistance of 1 × 10 −3 Ω · cm or less measured in a powder state,
The specific surface area by T is 0.15 to 0.3 m 2 / g,
The tap density is 4.5 g / cc or more, and from the specific surface area (m 2 / g) by the BET, the particle size (μm) = 6 / [8.93 × [specific surface area by BET (m 2 / g)] ] And the tap density (g / c) calculated according to
c) is 13 or more, and the particle size distribution is D 50 = 4 to 7 μm and D 90 = 9 to 11 in microtrack measurement.
It is a solvent-free thermosetting conductive paste fine copper powder for via holes, wherein the fine powder has a reduction in hydrogen reduction of 0.30% or less.

【0014】本発明の銅微粉末は、55℃以上の温度に
維持した二価銅イオンの銅塩水溶液に反応当量以上の水
酸化アルカリを添加して酸化第二銅を生成させ、次いで
55℃以上の温度に維持しながら還元糖を徐々に添加し
て該酸化第二銅を酸化第一銅まで還元し、その後濾過洗
浄し、再スラリー化した後、pHを5.5〜8.5に維
持するpH緩衝剤の存在下でヒドラジン系還元剤を徐々
に添加して該酸化第一銅を金属銅まで還元することによ
って製造することができる。
The copper fine powder of the present invention is prepared by adding a reaction equivalent or more of an alkali hydroxide to an aqueous copper salt solution of divalent copper ion maintained at a temperature of 55 ° C. or more to form cupric oxide. While maintaining the above temperature, reducing sugar is gradually added to reduce the cupric oxide to cuprous oxide, and then filtered and washed, and reslurried, and the pH is adjusted to 5.5 to 8.5. It can be produced by gradually adding a hydrazine-based reducing agent in the presence of a maintained pH buffer to reduce the cuprous oxide to metallic copper.

【0015】[0015]

【発明の実施の形態】本発明の銅微粉末は粉体状態で測
定した電気抵抗が1×10-3Ω・cm以下のものであ
る。この電気抵抗が1×10-3Ω・cmを超える場合に
は、当該銅微粉末を用いた熱硬化導電性ペーストにより
VH構造の多層プリント配線板用樹脂基板を形成すると
VH部分の電気抵抗が高くなるので好ましくない。
BEST MODE FOR CARRYING OUT THE INVENTION The copper fine powder of the present invention has an electric resistance of 1 × 10 −3 Ω · cm or less measured in a powder state. When the electric resistance exceeds 1 × 10 −3 Ω · cm, when a resin substrate for a multilayer printed wiring board having a VH structure is formed by a thermosetting conductive paste using the copper fine powder, the electric resistance of the VH portion is reduced. It is not preferable because it becomes high.

【0016】本発明の銅微粉末はBETによる比表面積
が0.15〜0.3m2 /gのものである。このBET
による比表面積が0.15m2 /g未満の場合には、当
該銅微粉末を用いた熱硬化導電性ペーストによりVH構
造の多層プリント配線板用樹脂基板を形成すると、VH
内に充填したペーストの粘度が低過ぎて充填したペース
トの中央部に空洞が生じ、空洞部のペーストが下方にタ
レルという現象が生じるので好ましくない。逆に、BE
Tによる比表面積が0.3m2 /gを超える場合には、
銅微粉末の粒径が小さく、凝集が進むため、ペーストの
粘度が高くなり、ペーストの粘度の増加につれて基板の
穴への熱硬化導電性ペーストの充填が段々と困難にな
り、基板製造能力(生産性)を低下させるので好ましく
ない。
The fine copper powder of the present invention has a specific surface area by BET of 0.15 to 0.3 m 2 / g. This BET
When the specific surface area is less than 0.15 m 2 / g, a resin substrate for a multilayer printed wiring board having a VH structure is formed using a thermosetting conductive paste using the copper fine powder.
The viscosity of the paste filled therein is too low, so that a cavity is formed in the central portion of the filled paste, and a phenomenon in which the paste in the hollow portion is turret downward occurs, which is not preferable. Conversely, BE
When the specific surface area by T exceeds 0.3 m 2 / g,
Since the particle size of the copper fine powder is small and agglomeration proceeds, the viscosity of the paste increases, and as the viscosity of the paste increases, it becomes increasingly difficult to fill the hole of the substrate with the thermosetting conductive paste, and the substrate manufacturing capacity ( Productivity) is not preferred.

【0017】本発明の銅微粉末はタップ密度が4.5g
/cc以上のものである。このタップ密度が4.5g/
cc未満の場合には、当該銅微粉末を用いた無溶剤型熱
硬化導電性ペーストによりVH構造の多層プリント配線
板用樹脂基板を形成すると、VHへの銅微粉末の充填率
が不十分となり、その結果としてVH部分の電気抵抗が
高くなるので好ましくない。
The fine copper powder of the present invention has a tap density of 4.5 g.
/ Cc or more. This tap density is 4.5 g /
In the case of less than cc, when a resin substrate for a multilayer printed wiring board having a VH structure is formed with a solventless thermosetting conductive paste using the copper fine powder, the filling rate of the copper fine powder into the VH becomes insufficient. As a result, the electric resistance of the VH portion increases, which is not preferable.

【0018】本発明の銅微粉末は、上記のBETによる
比表面積(m2 /g)から式 粒径(μm)=6/[8.93×〔BETによる比表面
積(m2/g)〕] に従って計算した粒径(μm)とタップ密度(g/c
c)との積が13以上のものである。この粒径とタップ
密度との積が13未満の場合には、例えば、タップ密度
が十分に高くても銅微粉末の粒径が小さ過ぎる場合に
は、無溶剤型熱硬化導電性ペーストの粘度が高くなり、
ペーストの粘度の増加につれて基板の穴への無溶剤型熱
硬化導電性ペーストの充填が段々と困難になり、基板製
造能力(生産性)を低下させるので好ましくなく、又、
粒径が所定の範囲内にあってもタップ密度が小さ過ぎる
場合には、当該銅微粉末を用いた無溶剤型熱硬化導電性
ペーストによりVH構造の多層プリント配線板用樹脂基
板を形成すると、VHへの銅微粉末の充填率が不十分と
なり、その結果としてVH部分の電気抵抗が高くなるの
で好ましくない。
The copper fine powder of the present invention has a particle size (μm) = 6 / [8.93 × [specific surface area according to BET (m 2 / g)] from the above specific surface area (m 2 / g) according to BET. ] And the tap density (g / c) calculated according to
The product with c) is 13 or more. When the product of the particle size and the tap density is less than 13, for example, when the tap density is sufficiently high but the particle size of the copper fine powder is too small, the viscosity of the solventless thermosetting conductive paste is Is higher,
As the viscosity of the paste increases, it becomes increasingly difficult to fill the holes of the substrate with the solvent-free thermosetting conductive paste, and the substrate manufacturing capacity (productivity) decreases.
If the tap density is too small even if the particle diameter is within a predetermined range, when a resin substrate for a multilayer printed wiring board having a VH structure is formed by a solventless thermosetting conductive paste using the copper fine powder, The filling rate of the copper fine powder into the VH becomes insufficient, and as a result, the electric resistance of the VH portion increases, which is not preferable.

【0019】本発明の銅微粉末は、粒度分布がマイクロ
トラック測定におけるD50=4〜7μm且つD90=9〜
11μmのものである。D50が4μm未満又はD90が9
μm未満の場合には、当該銅微粉末を用いた熱硬化導電
性ペーストによりVH構造の多層プリント配線板用樹脂
基板を形成すると、VH内に充填したペーストの粘度が
低過ぎて充填したペーストの粘度が低過ぎて充填したペ
ーストの中央部に空洞が生じ、空洞部のペーストが下方
にタレルという現象が生じるので好ましくない。逆にD
50が7μmを超えるか又はD90が11μmを超える場合
には、銅微粉末の凝集が大き過ぎてペーストの粘度が高
くなり、ペーストの粘度の増加につれて基板の穴への無
溶剤型熱硬化導電性ペーストの充填が段々と困難にな
り、基板製造能力(生産性)を低下させるので好ましく
ない。
The fine copper powder of the present invention has a particle size distribution of D 50 = 4 to 7 μm and D 90 = 9 to 10 in microtrack measurement.
11 μm. D 50 is less than 4 μm or D 90 is 9
In the case of less than μm, when a resin substrate for a multilayer printed wiring board having a VH structure is formed from a thermosetting conductive paste using the copper fine powder, the viscosity of the paste filled in the VH is too low. Since the viscosity is too low, a cavity is formed in the center of the filled paste, and the phenomenon that the paste in the cavity is turret downward occurs, which is not preferable. Conversely, D
When 50 exceeds 7 μm or D 90 exceeds 11 μm, the agglomeration of the copper fine powder is too large to increase the viscosity of the paste, and as the viscosity of the paste increases, the solventless thermosetting conductive material flows into the holes of the substrate. It is not preferable because the filling of the conductive paste gradually becomes difficult, and the substrate manufacturing capability (productivity) is reduced.

【0020】本発明の銅微粉末の製造方法においては、
まず最初に、55℃以上の温度、好ましくは60〜70
℃の温度に維持した二価銅イオンの銅塩水溶液に反応当
量以上、好ましくは反応当量の1〜2倍の量の水酸化ア
ルカリを添加して酸化第二銅を生成させる。ここで用い
られる二価銅イオンの銅塩として、硫酸銅、塩化銅、硝
酸銅、酢酸銅等を挙げることができる。
In the method for producing a copper fine powder of the present invention,
First, a temperature of 55 ° C. or higher, preferably 60 to 70 ° C.
A cupric oxide is formed by adding an alkali hydroxide in an amount of at least a reaction equivalent, preferably 1 to 2 times the reaction equivalent, to an aqueous solution of a copper salt of divalent copper ion maintained at a temperature of ° C. Examples of the copper salt of divalent copper ion used here include copper sulfate, copper chloride, copper nitrate, and copper acetate.

【0021】この酸化第二銅を生成させる工程は、続く
還元糖での還元を有利に進める上でも是非必要である。
又、銅塩水溶液の温度が55℃未満であるかもしくは水
酸化アルカリが二価の銅イオンに対して反応当量未満で
ある場合には、最終的に生成する銅微粉末の形状や粒度
分布にばらつきが生じるのみならず、反応の進行にも影
響を及ぼすので好ましくない。尚、前記した各公開公報
には水酸化アルカリ等により水酸化銅を生成させる点は
記載されているものの、過剰のアルカリを用いて二価銅
イオンを完全に酸化第二銅にする点については何ら記載
も示唆もされていない。
This step of producing cupric oxide is indispensable for promoting the subsequent reduction with a reducing sugar.
When the temperature of the aqueous copper salt solution is lower than 55 ° C. or the alkali hydroxide has a reaction equivalent less than the equivalent of divalent copper ions, the shape and particle size distribution of the copper fine powder finally formed may be reduced. This is not preferred because it not only causes variations but also affects the progress of the reaction. Although each of the above publications discloses that copper hydroxide is generated by an alkali hydroxide or the like, the point that divalent copper ions are completely converted to cupric oxide using excess alkali is described. No mention or suggestion is made.

【0022】上記のようにして生成した酸化第二銅を次
いで55℃以上の温度、好ましくは60〜70℃の温度
に維持しながら還元糖を徐々に添加して該酸化第二銅を
酸化第一銅まで還元する。この際に温度が55℃未満で
あるかもしくは還元糖を一度に添加すると、即ち徐々に
添加しない場合には、やはり、最終的に生成する銅微粉
末の形状や粒度分布にばらつきが生じるので好ましくな
い。
While maintaining the cupric oxide produced as described above at a temperature of 55 ° C. or higher, preferably at a temperature of 60 to 70 ° C., a reducing sugar is gradually added to reduce the cupric oxide. Reduce to one copper. At this time, if the temperature is lower than 55 ° C. or the reducing sugar is added at once, that is, if the reducing sugar is not added gradually, the shape and the particle size distribution of the finally formed copper fine powder are also varied. Absent.

【0023】上記のようにして生成した酸化第一銅スラ
リーを次いで濾過、洗浄し、中性域で再スラリー化した
後、pHを5.5〜8.5、好ましくは6〜7.5に維
持する適当なpH緩衝剤の存在下でヒドラジン系還元剤
を徐々に添加して該酸化第一銅を金属銅まで還元する。
ここで用いられるpH緩衝剤としてはアミノ酢酸があ
り、又、ヒドラジン系還元剤としてはヒドラジン、水加
ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン、塩酸ヒ
ドラジン等がある。
The cuprous oxide slurry produced as described above is then filtered, washed, and reslurried in a neutral range, and then the pH is adjusted to 5.5 to 8.5, preferably 6 to 7.5. The cuprous oxide is reduced to metallic copper by gradually adding a hydrazine-based reducing agent in the presence of an appropriate pH buffer to be maintained.
The pH buffer used here is aminoacetic acid, and the hydrazine-based reducing agents include hydrazine, hydrated hydrazine, hydrazine sulfate, hydrazine carbonate, hydrazine hydrochloride and the like.

【0024】前記した各公開公報には、液中の二価銅イ
オンを安定化させるために最初の銅塩水溶液に種々の添
加剤を加えることが記載されているが、アルカリ雰囲気
のままで亜酸化銅スラリーの還元処理を進めている。こ
のようにアルカリ側にあってはヒドラジン系還元剤の強
力な還元力により銅微粉末生成の核が大量に発生し、得
られる銅微粉末は目的の粒径に対して相対的に小さく、
粒度もばらつき、且つ凝集の多い物が生成するので、当
該銅微粉末を用いた熱硬化導電性ペーストの粘度が高く
なり、VHへの充填率が悪くなるので、本発明で得られ
る上記効果は得られない。
The above publications disclose that various additives are added to the first aqueous solution of copper salt in order to stabilize the divalent copper ions in the solution. Reduction treatment of copper oxide slurry is in progress. As described above, on the alkali side, a large amount of nuclei for copper fine powder generation is generated due to the strong reducing power of the hydrazine-based reducing agent, and the obtained copper fine powder is relatively small with respect to the target particle size,
The particle size also varies, and a lot of agglomerates are generated, so that the viscosity of the thermosetting conductive paste using the copper fine powder is increased, and the filling rate into VH is deteriorated. I can't get it.

【0025】発明者等はかかる弊害を抑制するために、
ヒドラジン系還元剤による還元の前に酸化第一銅スラリ
ーを濾過、洗浄し、中性域での再スラリー化を行い、該
還元時にpH緩衝剤を添加する方法を見出した。本発明
の銅微粉末の製造方法において酸化第一銅スラリーを濾
過、洗浄し、再スラリー化することは重要である。この
ような処理を実施しない場合には、最終的に得られる銅
微粉末は、粉体状態で測定した電気抵抗が1×10-3Ω
・cmを超えるか、BETによる比表面積が0.3m2
/gを超えるか、BETによる比表面積から計算した粒
径とタップ密度との積が13未満であるか、粒度分布が
マイクロトラック測定におけるD50が4未満であるか、
90が9未満であるか、あるいは水素還元減量が0.3
0%を超えるものとなる。
[0025] The present inventors, in order to suppress such adverse effects,
Prior to the reduction with the hydrazine-based reducing agent, the cuprous oxide slurry was filtered and washed, reslurried in a neutral region, and a method of adding a pH buffer at the time of the reduction was found. In the method for producing a copper fine powder of the present invention, it is important to filter, wash, and re-slurry the cuprous oxide slurry. When such treatment is not performed, the finally obtained fine copper powder has an electric resistance of 1 × 10 −3 Ω measured in a powder state.
・ Cm or specific surface area by BET is 0.3m 2
/ Or more than g, or the product of the particle size and tap density calculated from the specific surface area by BET is less than 13, or a particle size distribution D 50 in the micro-track measurement is less than 4,
D 90 is less than 9, or the hydrogen reduction weight loss is 0.3
It exceeds 0%.

【0026】本発明の銅微粉末の製造方法において、酸
化第一銅を金属銅まで還元する際に、pH緩衝剤、例え
ば等電点がpH6程度のアミノ酢酸を用いることによ
り、このpH緩衝剤は上記スラリー中のヒドラジン系還
元剤濃度を安定化させるための触媒的な反応に関与する
か、あるいはpH緩衝剤はヒドラジン系還元剤と縮合物
を形成すると考えられるので、還元が進む際に消費され
るスラリー中のヒドラジン系還元剤の濃度をほぼ一定に
維持することが可能である。
In the method for producing copper fine powder of the present invention, when reducing cuprous oxide to metallic copper, a pH buffer such as aminoacetic acid having an isoelectric point of about pH 6 is used to reduce the pH buffer. Is involved in the catalytic reaction to stabilize the concentration of the hydrazine-based reducing agent in the slurry, or the pH buffer is considered to form a condensate with the hydrazine-based reducing agent. The concentration of the hydrazine-based reducing agent in the slurry to be produced can be kept almost constant.

【0027】本発明の銅微粉末の製造方法においては、
pHを5.5〜8.5に維持する適当なpH緩衝剤を用
いる。pH緩衝剤により維持されるpH範囲が5.5未
満又は8.5を超える場合には、この上記のような効果
は得られない。又、pH緩衝剤の添加率は0.01〜1
モル/銅モル程度で良く、好ましくは0.05〜0.4
モル/銅モル程度が良い。pH緩衝剤の添加率が0.0
1モル/銅モル未満だと上記pH緩衝剤による効果が小
さく、又、1モル/銅モルを越える場合には、個々の粒
子が大きく成長し過ぎて、当該銅微粉末を用いた無溶剤
型熱硬化導電性ペーストの銅微粉末含有率は低くなる傾
向がある。更に、反応温度は40〜60℃度程度が良
い。40℃未満の場合には還元速度が遅くなり、60℃
を越える場合には加熱に要するコストに見合った効果が
得られない。
In the method for producing a copper fine powder of the present invention,
Use a suitable pH buffer to maintain the pH between 5.5 and 8.5. If the pH range maintained by the pH buffer is less than 5.5 or greater than 8.5, the above effect cannot be obtained. The pH buffer addition rate is 0.01 to 1
Mole / copper mole, preferably 0.05 to 0.4 mole.
A mole / copper mole is good. pH buffer addition rate is 0.0
If it is less than 1 mol / mol of copper, the effect of the pH buffer is small. If it exceeds 1 mol / mol of copper, the individual particles grow too large, and the solvent-free type using the copper fine powder is used. The content of fine copper powder in the thermosetting conductive paste tends to be low. Further, the reaction temperature is preferably about 40 to 60 ° C. If the temperature is lower than 40 ° C., the reduction rate becomes slow,
If the temperature exceeds the above, an effect corresponding to the cost required for heating cannot be obtained.

【0028】本発明の銅微粉末の製造方法においては、
ヒドラジン系還元剤を一度に添加すると、即ち徐々に添
加しない場合には、やはり、最終的に生成する銅微粉末
の形状や粒度分布にばらつきが生じるので好ましくな
い。又、再スラリー化の際にアラビアゴム、ゼラチン等
を保護コロイドとして加えても良い。更に、還元、濾過
後の銅微粉末を、銅微粉末表面上に単分子膜が形成され
る程度の量の適当な脂肪酸で処理することにより、酸化
に対する経時安定性を付与することもできる。
In the method for producing fine copper powder of the present invention,
If the hydrazine-based reducing agent is added all at once, that is, if the hydrazine-based reducing agent is not added gradually, the shape and the particle size distribution of the finally formed copper fine powder are undesirably varied. Further, gum arabic, gelatin or the like may be added as a protective colloid when reslurrying. Furthermore, by treating the copper fine powder after reduction and filtration with a suitable fatty acid in such an amount that a monomolecular film is formed on the surface of the copper fine powder, stability with time against oxidation can be imparted.

【0029】上記のようにして得られる銅微粉末は、粉
体状態で測定した電気抵抗が1×10-3Ω・cm以下で
あり、BETによる比表面積が0.15〜0.3m2
gであり、タップ密度が4.5g/cc以上であり、該
BETによる比表面積(m2/g)から式 粒径(μm)=6/[8.93×〔BETによる比表面
積(m2/g)〕] に従って計算した粒径(μm)とタップ密度(g/c
c)との積が13以上であり、粒度分布がマイクロトラ
ック測定におけるD50=4〜7μm且つD90=9〜11
μmであり、且つ水素還元減量が0.30%以下である
銅微粉末である。
The copper fine powder obtained as described above has an electric resistance measured in a powder state of 1 × 10 −3 Ω · cm or less and a specific surface area by BET of 0.15 to 0.3 m 2 / cm.
g, and has a tap density of 4.5 g / cc or more, the ratio by said BET surface area (m 2 / g) from the formula particle size (μm) = 6 / [8.93 × [specific surface area by BET (m 2 / g)]] and the tap density (g / c)
c) is 13 or more, and the particle size distribution is D 50 = 4 to 7 μm and D 90 = 9 to 11 in microtrack measurement.
μm and a copper fine powder having a hydrogen reduction loss of 0.30% or less.

【0030】[0030]

【実施例】以下に、実施例及び比較例によって本発明を
具体的に説明するが、本発明はかかる事例に限定される
ものではない。 実施例1 硫酸銅(五水塩)100kgを温水に溶解し200リッ
トルの水溶液とし、これを60℃に維持した。この水溶
液に25重量%の水酸化ナトリウムを125リットル加
え、60℃に維持しながら1時間攪拌し、反応させて酸
化第二銅を生成させた。
The present invention will be described below in detail with reference to examples and comparative examples, but the present invention is not limited to such examples. Example 1 100 kg of copper sulfate (pentahydrate) was dissolved in warm water to prepare a 200 liter aqueous solution, which was maintained at 60 ° C. To this aqueous solution was added 125 liters of 25% by weight of sodium hydroxide, and the mixture was stirred for 1 hour while maintaining the temperature at 60 ° C., and reacted to produce cupric oxide.

【0031】上記の反応物を60℃に維持しながら、こ
れに濃度450g/lのグルコース溶液80リットルを
1時間にわたって定量的に添加して酸化第一銅スラリー
を生成させた。このスラリーを濾過洗浄した後、温水を
加えて再スラリー化し、320リットルのスラリーと
し、これにアミノ酢酸1.5kgとアラビアゴム0.7
kgを添加し、攪拌し、温度を50℃に保持した。この
スラリーに20%水加ヒドラジン50リットルを1時間
にわたって定量的に添加して銅微粉末を生成させた。得
られた銅微粉末スラリーを濾過し、純水で充分に洗浄
し、濾過した後、得られた銅微粉末をオレイン酸25g
を含むメタノール中に30分間浸漬し、その後、常法の
乾燥、篩分処理を行って銅微粉末を得た。この銅微粉末
の顕微鏡写真(約10000倍)を図1に示す。図1か
ら明らかなように、得られた銅微粉末は多面体形状を呈
している。
While maintaining the above reaction product at 60 ° C., 80 l of a glucose solution having a concentration of 450 g / l was quantitatively added thereto over 1 hour to form a cuprous oxide slurry. This slurry was filtered and washed, and re-slurried by adding hot water to make a 320-liter slurry, to which 1.5 kg of aminoacetic acid and 0.7 g of gum arabic were added.
kg was added, stirred and the temperature was maintained at 50 ° C. To this slurry, 50 liters of 20% hydrazine hydrate was quantitatively added over 1 hour to produce a copper fine powder. The obtained copper fine powder slurry was filtered, sufficiently washed with pure water, and filtered, and then the obtained copper fine powder was subjected to 25 g of oleic acid.
And then immersed in methanol containing for 30 minutes, followed by ordinary drying and sieving to obtain fine copper powder. FIG. 1 shows a microphotograph (approximately 10,000 times) of this fine copper powder. As is clear from FIG. 1, the obtained copper fine powder has a polyhedral shape.

【0032】実施例2〜4 実施例1に記載の製造方法においてアミノ酢酸の添加量
を1.5kgからそれぞれ3kg、15kg、30kg
に変更した以外は、実施例1と同様の製造方法によって
銅微粉末を得た。実施例1〜4で得られた銅微粉末は実
施例1で得られた銅微粉末と同様に多面体形状を呈して
いた。
Examples 2 to 4 In the production method described in Example 1, the amount of aminoacetic acid added was changed from 1.5 kg to 3 kg, 15 kg and 30 kg, respectively.
Except having changed to, the copper fine powder was obtained by the same manufacturing method as in Example 1. The copper fine powder obtained in Examples 1 to 4 had a polyhedral shape similarly to the copper fine powder obtained in Example 1.

【0033】比較例1 アミノ酢酸を添加しなかった以外は、実施例1と同様の
製造方法によって銅微粉末を得た。 比較例2 アミノ酢酸3kgを反応開始前の硫酸銅水溶液に添加し
た以外は、実施例1と同様の製造方法によって銅微粉末
を得た。 比較例3 酸化第一銅スラリーを生成させた後の濾過洗浄をしない
以外は、実施例1と同様の製造方法によって銅微粉末を
得た。
Comparative Example 1 A copper fine powder was obtained in the same manner as in Example 1 except that no aminoacetic acid was added. Comparative Example 2 Copper fine powder was obtained by the same production method as in Example 1 except that 3 kg of aminoacetic acid was added to the aqueous copper sulfate solution before the start of the reaction. Comparative Example 3 A copper fine powder was obtained by the same production method as in Example 1, except that filtration washing was not performed after the formation of the cuprous oxide slurry.

【0034】特性評価 銅微粉末の特性及び銅微粉末を含む熱硬化導電性ペース
トを用いて形成したVH構造の多層プリント配線板用樹
脂基板の特性を評価した。評価の対象とした銅微粉末は
それぞれ実施例1〜4及び比較例1〜3で得た銅微粉
末、市販品のMETZ社製品♯12(比較例4)、ME
TZ社製品♯13(比較例5)、日本アトマイズ社製銅
粉(比較例6)、及び京都エレックス社製品C−200
(比較例7)の11種類であり、評価した銅微粉末の特
性は、粉体状態で測定した電気抵抗、BETによる比表
面積、タップ密度、BETによる比表面積から計算した
粒径(μm)とタップ密度(g/cc)との積、マイク
ロトラック測定における粒度分布D50及びD90、及び水
素還元減量であった。それらの値は後記の表1に示す通
りであった。
Evaluation of Characteristics The characteristics of the copper fine powder and the characteristics of the resin substrate for a multilayer printed wiring board having a VH structure formed using a thermosetting conductive paste containing the copper fine powder were evaluated. The copper fine powders to be evaluated were the copper fine powders obtained in Examples 1 to 4 and Comparative Examples 1 to 3, respectively, a commercially available METZ product # 12 (Comparative Example 4), ME
TZ product # 13 (Comparative example 5), Nippon Atomize copper powder (Comparative example 6), and Kyoto Elex product C-200
The properties of the copper fine powder evaluated in 11 types of (Comparative Example 7) were the electrical resistance measured in the powder state, the specific surface area by BET, the tap density, and the particle size (μm) calculated from the specific surface area by BET. The product with the tap density (g / cc), the particle size distributions D 50 and D 90 in Microtrack measurement, and the hydrogen reduction weight loss were obtained. The values were as shown in Table 1 below.

【0035】銅微粉末を含む熱硬化導電性ペーストを用
いて形成したVH構造の多層プリント配線板用樹脂基板
の特性を評価するにあたっては、まず、銅微粉末85重
量%と、樹脂組成としてのビスフェノールA型エポキシ
樹脂(エピコート828、油化シェルエポキシ製)3重
量%及びダイマー酸をグルシジルエステル化したエポキ
シ樹脂(YD−171、東都化成製)9重量%と、硬化
剤としてのアミンダクト硬化剤(MY−24、味の素
製)3重量%とを3本ロールにて混練して熱硬化導電性
ペーストを調製した。
In evaluating the characteristics of a resin substrate for a multilayer printed wiring board having a VH structure formed using a thermosetting conductive paste containing copper fine powder, first, 85% by weight of copper fine powder and the resin composition 3% by weight of bisphenol A type epoxy resin (Epicoat 828, manufactured by Yuka Shell Epoxy), 9% by weight of epoxy resin obtained by glycidyl esterification of dimer acid (YD-171, manufactured by Toto Kasei), and amine duct curing as a curing agent 3 wt% of an agent (MY-24, manufactured by Ajinomoto) was kneaded with a three-roll mill to prepare a thermosetting conductive paste.

【0036】一方、ドリルを用いて厚さが200μmで
10cm×10cmのアラミド・エポキシシート(R1
661、松下電工製)に直径0.2mmの貫通穴を、貫
通穴の中心軸間の距離が3mmで且つ格子状に20×2
5=500個形成してVH構造を有する基板とした。こ
の基板に対してステンレス製スキージを45°の角度で
配置し、上記で調製したペースト10gを用い、基板1
00枚を連続して供給して各基板の貫通穴にペーストを
充填した。
On the other hand, using a drill, an aramid epoxy sheet (R1) having a thickness of 200 μm and a size of 10 cm × 10 cm was used.
661, manufactured by Matsushita Electric Works), a through hole having a diameter of 0.2 mm, a distance between the center axes of the through holes of 3 mm, and a 20 × 2 through hole in a lattice shape.
5 = 500 were formed to obtain a substrate having a VH structure. A stainless steel squeegee was placed at an angle of 45 ° with respect to this substrate, and 10 g of the paste prepared above was used.
00 sheets were continuously supplied, and the through holes of each substrate were filled with the paste.

【0037】各実施例及び比較例の銅微粉末を含む熱硬
化導電性ペーストを用いて上記のようにして作成した2
0、40、60、80、100枚目のVH構造の多層プ
リント配線板用樹脂基板についてVHへの充填外観及び
基板上の銅微粉末成分の残存状態を目視で下記の基準で
評価した。 充填外観 ○:目視で全てのVHに完全に充填されている状態、 △:目視で全てのVHに充填されているが、完全には充
填されていないVHが5%以内ある状態、 ×:上記の○及び△以外の状態。 基板上の銅微粉末成分の残存状態 ○:充填後、基板上にペースト成分が全く残存していな
い状態、 △:充填後、基板に指を触れてみた時、かすかに汚れる
状態、 ×:充填後、基板上にペースト成分が残存していること
が肉眼で観察できる状態。
The thermosetting conductive paste containing the copper fine powder of each of the examples and comparative examples was used to prepare 2
With respect to the 0, 40, 60, 80, and 100th resin substrates for a multilayer printed wiring board having a VH structure, the appearance of filling in VH and the remaining state of the copper fine powder component on the substrate were visually evaluated according to the following criteria. Filling appearance :: A state in which all VHs are completely filled visually, Δ: A state in which all the VHs are filled visually but VH which is not completely filled is within 5%, ×: The above State other than ○ and △. Residual state of copper fine powder component on substrate ○: State where no paste component remains on substrate after filling △: State where lightly stains when touching finger on substrate after filling ×: Filling Thereafter, a state in which the paste component remains on the substrate can be visually observed.

【0038】また、ペーストが充填された20、40、
60、80、100枚目の基板の上下面に18μmの銅
箔をプレス温度180℃、圧力50kg/cm2 で60
分間加熱加圧して両面銅張板を作成した。次いで、公知
のエッチング技術を用いて電極パターンを形成し、その
インナビアホールの接続抵抗値(ビア抵抗)を測定し
た。それらの結果は表2及び表3に示す通りであった。
表2及び表3に示すデータから明らかなように、比較例
の銅微粉末を用いて製造された基板に較べ、実施例の銅
微粉末を用いて製造された基板は充填性に優れ、基板上
の残存銅微粉末もなく、またビア抵抗も充分低いことが
分かる。
Further, 20, 40,
A copper foil of 18 μm is placed on the upper and lower surfaces of the 60th, 80th and 100th substrates at a pressing temperature of 180 ° C. and a pressure of 50 kg / cm 2 for 60 hours.
Heating and pressurizing for minutes, a double-sided copper clad board was prepared. Next, an electrode pattern was formed using a known etching technique, and the connection resistance value (via resistance) of the inner via hole was measured. The results were as shown in Tables 2 and 3.
As is clear from the data shown in Tables 2 and 3, as compared with the substrate manufactured using the copper fine powder of the comparative example, the substrate manufactured using the copper fine powder of the example was excellent in the filling property and the substrate was manufactured. It can be seen that there is no residual fine copper powder and the via resistance is sufficiently low.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【発明の効果】本発明の銅微粉末は、無溶剤型熱硬化導
電性ペーストに用いられる原材料に要求される諸特性を
充分に満足する。即ち、VH構造の多層プリント配線板
用樹脂基板において、本発明の銅微粉末は高タップ密度
で粒度分布が狭いため、優れた充填性を示す。また、こ
の優れた充填性に加え、銅微粉末は多面体形状であるの
で粒子間の接触度が高く、電気抵抗は安定して低いレベ
ルを示す。更に、スキージを用いてVHに熱硬化導電性
ペーストを充填する場合にも、連続処理される基板の枚
数が増えてもスキージに蓄えられたペーストの粘度はあ
まり変化せず、ペーストの基板への付着も僅かで、従来
の銅微粉末を用いた場合に比べて1回あたりの基板処理
枚数は飛躍的に改善される。従って、VH構造の多層プ
リント配線板用樹脂基板の性能ならびに生産性を飛躍的
にアップすることが可能である。
The copper fine powder of the present invention sufficiently satisfies the characteristics required for the raw materials used for the solventless thermosetting conductive paste. That is, in a resin substrate for a multilayer printed wiring board having a VH structure, the copper fine powder of the present invention exhibits excellent filling properties since it has a high tap density and a narrow particle size distribution. In addition to the excellent filling properties, the fine copper powder has a polyhedral shape, so that the degree of contact between the particles is high and the electric resistance is stably low. Furthermore, even when the VH is filled with a thermosetting conductive paste using a squeegee, the viscosity of the paste stored in the squeegee does not change much even if the number of substrates to be continuously processed increases, and the paste is applied to the substrate. The adhesion is slight, and the number of processed substrates per processing is dramatically improved as compared with the case where the conventional copper fine powder is used. Therefore, it is possible to dramatically improve the performance and productivity of the resin substrate for a multilayer printed wiring board having a VH structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得られた銅微粉末の顕微鏡写真で
ある。
FIG. 1 is a micrograph of the copper fine powder obtained in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粉体状態で測定した電気抵抗が1×10-3
Ω・cm以下であり、BETによる比表面積が0.15
〜0.3m2 /gであり、タップ密度が4.5g/cc
以上であり、該BETによる比表面積(m2 /g)から
式 粒径(μm)=6/[8.93×〔BETによる比表面
積(m2/g)〕] に従って計算した粒径(μm)とタップ密度(g/c
c)との積が13以上であり、粒度分布がマイクロトラ
ック測定におけるD50=4〜7μm且つD90=9〜11
μmであり、且つ水素還元減量が0.30%以下である
ことを特徴とする、ビアホール用無溶剤型熱硬化導電性
ペースト用銅微粉末。
An electric resistance measured in a powder state is 1 × 10 −3.
Ω · cm or less and specific surface area by BET is 0.15
0.30.3 m 2 / g and tap density 4.5 g / cc
The particle size (μm) calculated from the BET specific surface area (m 2 / g) according to the formula: Particle size (μm) = 6 / [8.93 × [BET specific surface area (m 2 / g)]] ) And tap density (g / c)
c) is 13 or more, and the particle size distribution is D 50 = 4 to 7 μm and D 90 = 9 to 11 in microtrack measurement.
A copper fine powder for a solvent-free thermosetting conductive paste for via holes, characterized in that the copper fine powder has a thickness of 0.3 μm and a hydrogen reduction loss of 0.30% or less.
JP37019898A 1998-12-25 1998-12-25 Copper fine powder for solventless thermosetting conductive paste for via holes and solventless thermosetting conductive paste for via holes Expired - Lifetime JP3396640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37019898A JP3396640B2 (en) 1998-12-25 1998-12-25 Copper fine powder for solventless thermosetting conductive paste for via holes and solventless thermosetting conductive paste for via holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37019898A JP3396640B2 (en) 1998-12-25 1998-12-25 Copper fine powder for solventless thermosetting conductive paste for via holes and solventless thermosetting conductive paste for via holes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9146336A Division JP2911429B2 (en) 1997-06-04 1997-06-04 Production method of copper fine powder

Publications (2)

Publication Number Publication Date
JPH11256208A true JPH11256208A (en) 1999-09-21
JP3396640B2 JP3396640B2 (en) 2003-04-14

Family

ID=18496313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37019898A Expired - Lifetime JP3396640B2 (en) 1998-12-25 1998-12-25 Copper fine powder for solventless thermosetting conductive paste for via holes and solventless thermosetting conductive paste for via holes

Country Status (1)

Country Link
JP (1) JP3396640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330535A (en) * 2004-05-19 2005-12-02 Mitsui Mining & Smelting Co Ltd Silver compound-covered copper powder, method for producing the silver compound-covered copper powder, method for storing the silver compound-covered copper powder and conductive paste using the silver compound-covered copper powder
JP2007305576A (en) * 2006-04-13 2007-11-22 Hitachi Chem Co Ltd Conductive paste, prepreg using same, metal foil lamination plate, and printed wiring board
JP2011029204A (en) * 2006-04-13 2011-02-10 Hitachi Chem Co Ltd Conductive paste and prepreg using the same, metal foiled laminated plate, and printed wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330535A (en) * 2004-05-19 2005-12-02 Mitsui Mining & Smelting Co Ltd Silver compound-covered copper powder, method for producing the silver compound-covered copper powder, method for storing the silver compound-covered copper powder and conductive paste using the silver compound-covered copper powder
JP2007305576A (en) * 2006-04-13 2007-11-22 Hitachi Chem Co Ltd Conductive paste, prepreg using same, metal foil lamination plate, and printed wiring board
JP2011029204A (en) * 2006-04-13 2011-02-10 Hitachi Chem Co Ltd Conductive paste and prepreg using the same, metal foiled laminated plate, and printed wiring board
JP2012089512A (en) * 2006-04-13 2012-05-10 Hitachi Chem Co Ltd Conductive paste and prepreg including the same, metal-foil-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JP3396640B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP2911429B2 (en) Production method of copper fine powder
JP6376176B2 (en) Copper powder, copper paste, method for producing conductive coating film and conductive coating film
KR101345441B1 (en) Spherical silver powder and method for producing same
KR20060046103A (en) Spherical silver powder and method for producing same
JPWO2008059789A1 (en) Silver-plated copper fine powder, conductive paste produced using silver-plated copper fine powder, and method for producing silver-plated copper fine powder
KR101327974B1 (en) Tin powder, process for producing tin powder, and tin powder-containing electrically conductive paste
KR20090022757A (en) The conductive paste composition for electrode including powder coated with silver and the manufacturing method thereof
JP4853152B2 (en) Nickel-coated copper fine particles and manufacturing method thereof, dispersion using the same, manufacturing method thereof, and paste using the same
JP4261786B2 (en) Silver-coated copper powder manufacturing method, silver-coated copper powder obtained by the manufacturing method, conductive paste using the silver-coated copper powder, and printed wiring board using the conductive paste
JPS6381706A (en) Composition for copper based thick film
KR101220327B1 (en) Preparation of the Pd catalytic ink, method for forming metal pattern using the same and method for the surface modification of substrate
JP4144694B2 (en) Tin-coated copper powder, method for producing the tin-coated copper powder, and conductive paste using the tin-coated copper powder
EP3246115B1 (en) Silver powder
JPH11256208A (en) Copper fine powder
KR100631025B1 (en) Method of manufacturing silver powder by chemical reduction
JP2002332501A (en) Method for manufacturing silver-coated copper powder, silver-coated copper powder obtained by the manufacturing method, conductive paste using the silver- coated copper powder, and printed wiring board using the conductive paste
JPH0367402A (en) Conducting composition material
KR101258402B1 (en) Copper Particulate Complex And Copper Paste for Printed Electronics
KR100726694B1 (en) Copper particle clusters and powder containing the same suitable as conductive filler of conductive paste
JP2004084069A (en) Inorganic oxide coated metal powder and its manufacturing method
JP4068440B2 (en) Method for producing copper ultrafine particles
JP2005190907A (en) Surface treatment metal powder, conductive paste using same, and printed wiring board and chip components obtained by using conductive paste
WO2019009146A1 (en) Electrically conductive paste
KR102122317B1 (en) Method for manufacturing silver powder and conducitve paste including silver powder
JP4149410B2 (en) Silver compound-coated copper powder, method for producing the silver compound-coated copper powder, storage method for the silver compound-coated copper powder, and conductive paste using the silver compound-coated copper powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term