JP2004084069A - Inorganic oxide coated metal powder and its manufacturing method - Google Patents

Inorganic oxide coated metal powder and its manufacturing method Download PDF

Info

Publication number
JP2004084069A
JP2004084069A JP2003183688A JP2003183688A JP2004084069A JP 2004084069 A JP2004084069 A JP 2004084069A JP 2003183688 A JP2003183688 A JP 2003183688A JP 2003183688 A JP2003183688 A JP 2003183688A JP 2004084069 A JP2004084069 A JP 2004084069A
Authority
JP
Japan
Prior art keywords
metal powder
inorganic oxide
powder
oxide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003183688A
Other languages
Japanese (ja)
Other versions
JP4150638B2 (en
JP2004084069A5 (en
Inventor
Takahiko Sakagami
坂上 貴彦
Katsuhiko Yoshimaru
吉丸 克彦
Hiroyuki Shimamura
島村 宏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003183688A priority Critical patent/JP4150638B2/en
Publication of JP2004084069A publication Critical patent/JP2004084069A/en
Publication of JP2004084069A5 publication Critical patent/JP2004084069A5/ja
Application granted granted Critical
Publication of JP4150638B2 publication Critical patent/JP4150638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide inorganic oxide coated metal powder having shrinkage resistance, and to provide its manufacturing method. <P>SOLUTION: The inorganic oxide coated metal powder has an inorganic oxide layer on the surface of particles of metal powder and the inorganic oxide layer is constituted of silicon oxide, aluminum oxide, magnesium oxide, etc., and in which the diameter of crystallites of the metal powder particles is ≥50 nm. In the method for manufacturing the inorganic oxide coated metal powder, the inorganic oxide is caused to adhere to the surface of the metal powder particles by a mechanochemical technique to form the inorganic oxide layer on the surface of the particles and then heat treatment is carried out to regulate the diameter of the crystallites of the metal powder to ≥50 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本件出願に係る発明は、無機酸化物コート金属粉及びその無機酸化物コート金属粉の製造方法に関する。なお、特にセラミック材料用途に好適な無機酸化物コート金属粉の提供を目的とする。
【0002】
【従来の技術】
従来から銅粉及び銀粉は、銅ペースト及び銀ペーストの原料、低温焼成セラミック基板の原料として広く用いられる。前者の金属ペーストは、その取り扱いの容易さ故に、実験目的の使用から、電子産業用途に到るまで広範な領域において、簡便に導体回路を形成するために使用されてきた。例えば、電子顕微鏡の試料調整用、プリント配線板の導体回路の引き回し、多層プリント配線板の層間導通を得るためのスルーホールの代替えとしての層間導通導体の形成、セラミックコンデンサの電極形成等である。そして、種々の用途の中でも特に、低温焼成セラミック基板に用いる場合には、グリーンシートに加工して、焼結したときの寸法安定性は重要な問題である。
【0003】
このような低温焼成セラミック用途の金属粉の製造は、大別して乾式製造法と湿式製造法とに分類して捉えることができる。後者の湿式製造法とは、目的とする金属元素を含む溶液中から金属粉を直接析出させることにより製造する方法であると考えるのが妥当である。従って、前者の乾式製造法には、完全にメカニカルな手法のみを用いる粉砕法はもちろん、溶融金属を用いるアトマイズ法を含むものとなる。
【0004】
これらの手法で得られる金属粉の特徴としては、前者の乾式製造法で得られる金属粉は、その結晶子径が40〜50nmであり比較的大きく、金属粉を低温焼成セラミック基板の焼成を行う場合の耐酸化性及び耐収縮性に優れるという長所を有している。これに対し、湿式製造法で製造した金属粉は、その結晶子径が一般的に35nm以下であり乾式製造法で得られる金属粉と比較して小さく、低温焼成セラミック基板の焼成時の耐酸化性及び耐収縮性に劣るという短所を有している。耐収縮性は、金属粉の結晶子の大きさにより左右されると言われる。即ち、結晶子径が大きいほど、高温加熱されたときの収縮性が小さく、耐収縮性に優れるものとなる。
【0005】
本件明細書でいう金属粉は、金属粉含有スラリーの製造に用いられ、低温焼成セラミックのグリーンシートに加工し、焼成することで低温焼成セラミックとする用途に主に用いられる。従って、酸化が容易で耐酸化性に劣る金属粉は低温焼成セラミックの品質を大きく変質させるものとなる。更に、結晶子径が小さな場合は、収縮率が大きく、耐収縮性に劣る金属粉となり、焼成して金属粉含有スラリーのバインダを除去する際に、収縮挙動が大きくなり低温焼成セラミックの寸法精度を良好に維持することが困難となる。これらのことを考える限り、乾式製造法で製造した金属粉を用いることが望ましいように思われる。
【0006】
【発明が解決しようとする課題】
しかしながら、乾式製造法で得られる粉体の特性として、粒度分布がブロードであり、精度の高い微粉の製造が困難という欠点が存在する。近年の、低温焼成セラミックの表面の仕上げ精度に対する要求は益々厳しくなっており、レーザー回折散乱式粒度分布測定法による重量累積粒径D50の値が10μm以下で、狭い粒度分布を持つ金属粉で、分散性に優れた金属粉に対する要求が顕著になってきているのである。
【0007】
しかも、そのような微細な金属粉であっても、低温焼成セラミックの焼成時の耐酸化性、焼成時の収縮挙動の小さな耐収縮性に優れた粉体であることが市場に於いて望まれてきたのである。この要求を満たそうとすると、湿式製造法で得られた微細な粒径とシャープな粒度分布を持つ金属粉を用いて、これらの要求を満たすことが望ましい。
【0008】
そして、耐収縮性を改善するため、湿式法で得られた金属粉の結晶子径を大きくしようとする場合には、当該金属粉を加熱して、粉粒の内部のグレインサイズを成長させればよい。従って、湿式法で得られた金属粉を、単に加熱すればよいと考えられる。
【0009】
ところが、通常の金属粉の状態で、単に加熱を行うだけでは、当該金属粉の表面は酸化してしまい、表面に酸化物被膜を形成し著しく凝集状態が進行することになり、粉体の分散性が著しく損なわれるものとなる。このような粉体を低温焼成セラミックの製造に用いると、得られる低温焼成セラミックの表面状態が荒れる結果となるのである。従って、通常の銅粉を単に加熱するのみでは、粉粒の分散性の確保と同時に、優れた耐酸化性及び耐収縮性を兼ね備え、粒度分布がシャープで粒径の小さな金属粉の提供を行うことが困難であった。
【0010】
【課題を解決するための手段】
そこで、鋭意研究の結果、本件発明者等は、湿式製造法で得られた金属粉を無機酸化物層で予め被覆することで、結晶子径を大きくした金属粉を得ることが可能であることに想到したのである。以下に、本件発明を説明する。
【0011】
請求項には、「金属粉の粉粒表面に無機酸化物層を備える無機酸化物コート金属粉であって、無機酸化物層は、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛のいずれかで構成されており、且つ、金属粉の粉粒の持つ結晶子径が50nm以上であることを特徴とする無機酸化物コート金属粉。」としている。即ち、結晶子径が50nm以上の金属粉の粉粒の表面に無機酸化物層を備える構成とするのである。結晶子径を、従来の湿式製造法で得られた金属粉の結晶子径よりも大きくすることで、耐収縮性を改善することが可能となるのである。
【0012】
この段階での金属粉は、低温焼成セラミックに用いることの出来る金属材であれば、特にその材質は限定を受けるものではない。ところが、近年の低温焼成セラミックの製造に用いる金属粉に求められる粉体特性を考慮すれば、湿式製造法で得られた銅粉及び銀粉のいずれかを使用することが好ましい。
【0013】
そして、無機酸化物層には、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛のいずれかを用いるものである。中でも酸化ケイ素、酸化アルミニウム、酸化マグネシウムのいずれかを用いることが好ましいのである。また、酸化亜鉛は、芯材に銀粉を用いる場合に特に好ましいものである。酸化ケイ素並びに酸化アルミニウム並びに酸化マグネシウムは、金属粉の粉粒の表面に均一に固着させやすいのである。しかも同時に、低温焼成セラミックの焼成温度が、一般的に900℃以上であることを考えれば、最も有効に芯材である金属粉の凝集を防止するためのバリア層として機能するからである。
【0014】
しかしながら、この無機酸化物層の厚さを物理的にゲージ厚さとして示すことは、微細な粉粒の集合体である金属粉という性格上困難である。従って、本件発明者等は、無機酸化物層の厚さを、換算質量厚さとして表すこととした。換算質量厚さとは、無機酸化物コート金属粉重量の中の無機酸化物層の占める割合として質量%で表示するものである。そして、厳密に考えれば、換算質量厚さを適用して考える場合には、金属粉の持つ粒径を考慮することが必要になる。金属粉の重量が一定として、粒径が小さい金属粉と粒径が大きな金属粉とが存在していれば、前者の比表面積の方が大きく、同量の無機酸化物で粉粒の表面被覆を行えば、前者の金属粉の無機酸化物層の方が薄くなるからである。
【0015】
そこで、本件発明者等は、現在の低温焼成セラミックに於いて求められる金属粉の粒径を考慮し、レーザー回折散乱式粒度分布測定法による重量累積粒径D50の値が0.1μm〜10μmである金属粉を対象にした場合の無機酸化物層の厚さ(換算質量厚さ)は、無機酸化物コート金属粉の無機酸化物被覆量が0.1質量%〜10質量%であることを明らかにしている。
【0016】
被覆量が0.1質量%未満の場合には、低温焼成セラミックの焼成時の加熱による粉粒の凝集進行の防止バリア層としての役割を果たさない。これに対して、10質量%を超える厚さの場合には、得られる無機酸化物コート金属粉の分散性が悪くなるのである。このような厚さの均一な無機酸化物層を作り込むことによって、本件発明に係る無機酸化物コート金属粉は、その粉体自体では、導電性を有しないものとなる。更に、製造上のバラツキを無くして安定した非導電性を確保し、得られる耐収縮性を安定化させるためには、1質量%〜10質量%を採用することが、より好ましいのである。以上に述べたような、無機酸化物のコート量を採用することで、初めて十分な熱処理が行えることで、結晶子径の調整が可能となるのである。
【0017】
以上に述べてきた無機酸化物コート金属粉の製造は、以下のような方法で行われる。本件発明に係る導体回路形成用の無機酸化物コート金属粉の製造方法は、金属粉の粉粒の表面に、無機酸化物をメカノケミカル的な手法で固着させることで当該粉粒の表面に無機酸化物層を形成し、熱処理することで金属粉の結晶子径を50nm以上に調整することを特徴とするものである。即ち、金属粉の表面を無機酸化物層で被覆することで、熱処理温度を高く設定することが可能となるのである。その結果、結晶子径を、乾式製造方法で得られた金属粉の持つ結晶子径と同等若しくはそれ以上の大きさとすることができるのである。
【0018】
この製造方法に於いて、「金属粉の粉粒の表面に、無機酸化物をメカノケミカル的な手法で固着させる」とは、金属粉とその表面に固着させる無機酸化物の粉体とを、攪拌混合したり、ボールミル方式のメディアを用いる等して、金属粉の粉粒表面に無機酸化物を固着させるのであり、金属粉の粉粒と無機酸化物粉体の粉粒とを混合衝突させることのできる装置であれば足りるのであり、特殊な設備を必要とするものではない。このときに用いる無機酸化物粉体としては、粉体の持つ比表面積が50m/g以上のものを用いることが好ましい。この比表面積は、主に無機酸化物粉体の粉粒の径により左右されるものであり、比表面積が大きくなれば、粉粒の径も小さくなるものと言える。
【0019】
そして、熱処理は、以下のようなコンディションの下で行われる。厳密に言えば、金属粉の種類に応じてコンディションを変更して行われる。この熱処理は、いわゆる再結晶化を促し、結晶子径を大きくするためのものである。しかしながら、この熱処理は、無機酸化物コート金属粉の品質を変質させないよう、金属粉の表面自体の凝集を促進するものであってはならない。
【0020】
これらのことを考慮して、金属粉に銅粉を用いる場合に於いては、熱処理は500℃〜1000℃の還元雰囲気若しくは不活性ガス雰囲気中で行うことが望ましい。500℃未満の温度での加熱では、湿式製造法で得られた銅粉の結晶を再結晶化させることが困難となる。これに対して、1000℃を越える温度での加熱を行うと、無機酸化物層が存在しても、芯材である銅粉の凝集が進行すると共に、銅粉自体が軟化して粉粒形状が悪化する事となるのである。そして、銅自体は非常に酸化しやすい傾向にあるため、加熱雰囲気は還元雰囲気若しくは不活性ガス雰囲気を採用することが好ましいのである。
【0021】
また、金属粉に銀粉を用いる場合に於いては、熱処理は350℃〜900℃の温度で、大気雰囲気、還元雰囲気若しくは不活性ガス雰囲気のいずれかの雰囲気中で行うことが望ましい。この加熱処理は、結晶子径を調整することと、銀粉内に含まれ、加熱膨張の原因になる有機不純物を気化させ脱ガス処理することを目的として行うものである。従って、350℃未満の温度での加熱では、不純物の脱ガス処理が良好に行えず、湿式製造法で得られた銀粉の結晶を再結晶化させることが困難となる。これに対して、900℃を越える温度での加熱を行うと、無機酸化物層が存在しても、芯材である銀粉の表面までも酸化の進行が著しくなると共に、銀粉自体が軟化して粉粒形状が悪化する事となるのである。そして、銀の場合には銅と比較して酸化しにくいため、加熱雰囲気には大気雰囲気を用いることが可能であり、当然に還元雰囲気若しくは不活性ガス雰囲気を採用することも品質の安全性を考えれば好ましいのである。
【0022】
このような製造方法を採用することで、無機酸化物コート金属粉の凝集の進行を防止して、「レーザー回折散乱式粒度分布測定法による平均粒径D50と粒度分布の標準偏差SDとの関係式SD/D50×100で表される工程変動指数CV値」を悪化させないようにできるのである。なお、「標準偏差SD」とは、レーザー回折散乱式粒度分布測定法を用いて測定した結果として得られる粉体の粒度分布のから得られる標準偏差のことであり、このCV値の値が小さいほど、粉粒の粒径が揃っており、分散性に優れ、大きなバラツキをもっていないことを意味している。
【0023】
【発明の実施の形態】
以下、本発明を実施形態を通じて、比較例と対比しつつ、本件発明に関し、より詳細に説明する。
【0024】
第1実施形態: 最初に芯材として用いた銅粉の製造方法を説明する。硫酸銅(五水塩)4kg及びアミノ酢酸120gを水に溶解させて、液温60℃の8L(リットル)の銅塩水溶液を作製した。そして、この水溶液を撹拌しながら、5.75kg(1.15当量)の25wt%水酸化ナトリウム溶液を約30分間かけて定量的に添加し、液温60℃で60分間の撹拌を行い、液色が完全に黒色になるまで熟成させて酸化第二銅を生成した。その後30分間放置し、グルコース1.5kg添加して、1時間熟成することで酸化第二銅を酸化第一銅に還元した。さらに、水和ヒドラジン1kgを5分間かけて定量的に添加して酸化第一銅を還元することで金属銅にして、銅粉スラリーを生成した。
【0025】
そして、得られた銅粉スラリーを濾過し、純水で十分に洗浄し、再度濾過した後、乾燥して銅粉を得た。この銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.93μmであり、工程変動指数CV値は0.22であり、結晶子径は32.2nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が13.0%であった。
【0026】
なお、本件明細書における結晶子径の測定は、RIGAKU社製 RINT200Vを用い結晶子解析ソフトを用いて平均結晶子径を求めたものであり、本件明細書における結晶子径とは、この平均結晶子径のことである。そして、収縮率の測定は、測定に用いる20gの粉体を、95wt%のターピネオールCと、5wt%のエチルセルロースの組成の溶液20gに入れ、三本ロールで混練後、80℃の温度で1時間乾燥し、再度粉体の状態にした。そして、得られた粉体を熱機械分析装置(セイコー電子工業社製TMA/SS6000)を用いて所定の雰囲気中で、昇温速度10℃/分で加熱しつつ熱膨張率を連続して測定し、雰囲気温度が900℃のときの熱収縮率を測定したのである。
【0027】
そして、この銅粉1kgと無機酸化物である酸化ケイ素粉0.05kgとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化ケイ素コート銅粉を製造した。この段階の酸化ケイ素コート銅粉の表面に被覆された酸化ケイ素の被覆量は、5質量%であった。この加熱前の酸化ケイ素コート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.94μmであり、工程変動指数CV値は0.25であり、結晶子径は28.2nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が6.3%であった。即ち、銅粉がメカノケミカルな加工を受けることで、本来の湿式製造法で得られた銅粉に比べ、結晶子径は小さくなるが、酸化物被覆層が存在している事から、熱膨張時の収縮率も小さくなるが、市場で要求されている範囲内に収まる収縮率までは及ばないものであった。
【0028】
そこで、以上のようにして得られた酸化ケイ素コート銅粉を、水素濃度1wt%の窒素ガス雰囲気中で、500℃、700℃、900℃の各温度で1時間の加熱を行い結晶子径を調整した3種類の酸化ケイ素コート銅粉を得た。この結果、▲1▼500℃の温度を採用した場合の、加熱後の酸化ケイ素コート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.92μmであり、結晶子径は52.6nm、工程変動指数CV値は、0.24であり、▲2▼700℃の温度を採用した場合の、加熱後の酸化ケイ素コート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.93μmであり、結晶子径は58.4nm、工程変動指数CV値は、0.25であり、▲3▼900℃の温度を採用した場合の、加熱後の酸化ケイ素コート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.94μmであり、結晶子径は66.8nm、工程変動指数CV値は、0.24であった。
【0029】
この結果から、結晶子径は、500℃及び700℃の温度を採用した場合に乾式製造法で得られる銅粉と同等の結晶子径が得られ、900℃の温度で加熱した場合には乾式製造法で得られる銅粉以上の大きさの結晶子径が得られている事が分かるのである。また、いずれの温度で加熱しても、無機酸化物層を形成する前の銅粉のCV値から見て大きく悪化していないことが分かる。
【0030】
更に、3種類の酸化ケイ素コート銅粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率は、▲1▼500℃の加熱温度を採用した場合の、加熱後の酸化ケイ素コート銅粉の収縮率が2.5%、▲2▼700℃の加熱温度を採用した場合の、加熱後の酸化ケイ素コート銅粉の収縮率が2.0%、▲3▼900℃の加熱温度を採用した場合の、加熱後の酸化ケイ素コート銅粉の収縮率が1.2%であり、全てが理想的といわれる3%以内の収縮率に収まっていた。
【0031】
第2実施形態: この実施形態で用いた銅粉は、第1実施形態で用いたと同じ製造方法で得られたものを用いたため、重複した記載を避けるため、ここでの説明は省略する。即ち、レーザー回折散乱式粒度分布測定法の重量累積粒径D50が0.93μm、工程変動指数CV値は0.22、結晶子径は32.2nm、900℃での収縮率が13.0%の銅粉を芯材として用いたのである。
【0032】
そして、この銅粉1kgと無機酸化物である酸化アルミニウム粉0.03kgとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化アルミニウムコート銅粉を製造した。この段階の酸化アルミニウムコート銅粉の表面に被覆された酸化アルミニウムの被覆量は、3質量%であった。この加熱前の酸化アルミニウムコート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.92μmであり、工程変動指数CV値は0.25であり、結晶子径は27.8nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が4.2%であった。即ち、銅粉がメカノケミカルな加工を受けることで、本来の湿式製造法で得られた銅粉に比べ、結晶子径は小さくなるが、酸化物被覆層が存在している事から、熱膨張時の収縮率も小さくなるが、市場で要求されている範囲内に収まる収縮率までは及ばないものであった。
【0033】
そこで、以上のようにして得られた酸化アルミニウムコート銅粉を、水素濃度1wt%の還元雰囲気中で、900℃の温度で1時間の加熱を行い結晶子径を調整した。この結果、加熱後の酸化アルミニウムコート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.93μmであり、結晶子径は68.0nm、工程変動指数CV値は、0.26であった。この結晶子径は、乾式製造法で得られる銅粉以上の大きさの結晶子径が得られている事が分かるのである。更に、上述の酸化アルミニウムコート銅粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率が0.6%であり、3%以内の収縮率に収まっていた。
【0034】
第3実施形態: この実施形態で用いた銅粉は、第1実施形態で用いたと同じ製造方法で得られたものを用いたため、重複した記載を避けるため、ここでの説明は省略する。即ち、レーザー回折散乱式粒度分布測定法の重量累積粒径D50が0.93μm、工程変動指数CV値は0.22、結晶子径は32.2nm、900℃での収縮率が13.0%の銅粉を芯材として用いたのである。
【0035】
そして、この銅粉1kgと無機酸化物である酸化マグネシウム粉0.03kgとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化マグネシウムコート銅粉を製造した。この段階の酸化マグネシウムコート銅粉の表面に被覆された酸化マグネシウムの被覆量は、3質量%であった。この加熱前の酸化マグネシウムコート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.92μmであり、工程変動指数CV値は0.28であり、結晶子径は28.2nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が5.8%であった。即ち、銅粉がメカノケミカルな加工を受けることで、本来の湿式製造法で得られた銅粉に比べ、結晶子径は小さくなるが、酸化物被覆層が存在している事から、熱膨張時の収縮率も小さくなるが、市場で要求されている範囲内に収まる収縮率までは及ばないものであった。
【0036】
そこで、以上のようにして得られた酸化マグネシウムコート銅粉を、水素濃度1wt%の還元雰囲気中で、900℃の温度で1時間の加熱を行い結晶子径を調整した。この結果、加熱後の酸化マグネシウムコート銅粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は0.93μmであり、結晶子径は60.6nm、工程変動指数CV値は、0.26であった。この結晶子径は、乾式製造法で得られる銅粉以上の大きさの結晶子径が得られている事が分かるのである。更に、上述の酸化アルミニウムコート銅粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率が1.1%であり、3%以内の収縮率に収まっていた。
【0037】
第4実施形態: 最初に芯材として用いた銀粉の製造方法を説明する。ここでは、反応容器内でイオン交換水360mlに硝酸銀300gを添加し、完全に溶解させた後、25wt%濃度のアンモニア水300mlを添加し、攪拌してアンミン銀錯体水溶液を調整し、17℃に温調した。そして、そのアンミン銀錯体水溶液を約3秒間で添加し、約3分間攪拌することにより銀粒子の還元析出を完了させた。その後、銀粒子を濾別採取し、純水で十分に洗浄し、乾燥して銀粉を得た。
【0038】
この銀粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は1.51μmであり、工程変動指数CV値は0.34であり、結晶子径は7.7nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が16.0%であった。なお、熱膨張係数の測定は、第1実施形態に記載したと同様の方法で行った。
【0039】
そして、この銀粉1kgと無機酸化物である酸化ケイ素粉0.05kgとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化ケイ素コート銀粉を製造した。この段階の酸化ケイ素コート銀粉の表面に被覆された酸化ケイ素の被覆量は、5質量%であった。この加熱前の酸化ケイ素コート銀粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は1.30μmであり、工程変動指数CV値は0.27であり、結晶子径は6.8nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が7.0%であった。即ち、銀粉がメカノケミカルな加工を受けることで、本来の湿式製造法で得られた銀粉に比べ、結晶子径は小さくなるが、酸化物被覆層が存在している事から、熱膨張時の収縮率も小さくなるが、市場で要求されている範囲内に収まる収縮率までは及ばないものであった。
【0040】
そこで、以上のようにして得られた酸化ケイ素コート銀粉を、大気雰囲気中で、450℃の温度で1時間の加熱を行い結晶子径を調整した酸化ケイ素コート銀粉を得た。この結果、加熱後の酸化ケイ素コート銀粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は1.32μmであり、結晶子径は60.0nm、工程変動指数CV値は、0.33であった。
【0041】
この結果から、結晶子径は、乾式製造法で得られる銀粉(乾式製造法で得られる銀粉の結晶子径は、一般的に30〜40nm)以上の大きさの結晶子径が得られている事が分かるのである。また、加熱後に於いても、無機酸化物層を形成する前の銀粉のCV値から見て大きく悪化していないことが分かる。
【0042】
更に、加熱後の酸化ケイ素コート銀粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率が2.1%であり、理想的といわれる5%以内の収縮率に収まっていた。
【0043】
第5実施形態: この実施形態で用いた銀粉は、第4実施形態で用いたと同じ製造方法で得られたものを用いたため、重複した記載を避けるため、ここでの説明は省略する。即ち、レーザー回折散乱式粒度分布測定法の重量累積粒径D50が1.51μm、工程変動指数CV値は0.34、結晶子径は7.7nm、900℃での収縮率が16.0%の銀粉を芯材として用いたのである。
【0044】
そして、この銀粉1kgと無機酸化物である酸化アルミニウム粉0.05kgとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化アルミニウムコート銀粉を製造した。この段階の酸化アルミニウムコート銀粉の表面に被覆された酸化アルミニウムの被覆量は、5質量%であった。この加熱前の酸化アルミニウムコート銀粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は1.33μmであり、工程変動指数CV値は0.27であり、結晶子径は6.3nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が6.5%であった。即ち、銀粉がメカノケミカルな加工を受けることで、本来の湿式製造法で得られた銀粉に比べ、結晶子径は小さくなるが、酸化物被覆層が存在している事から、熱膨張時の収縮率も小さくなるが、市場で要求されている範囲内に収まる収縮率までは及ばないものであった。
【0045】
そこで、以上のようにして得られた酸化アルミニウムコート銀粉を、大気雰囲気中で、450℃の温度で1時間の加熱を行い結晶子径を調整した。この結果、加熱後の酸化アルミニウムコート銀粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は1.31μmであり、結晶子径は68.0nm、工程変動指数CV値は、0.32であった。この結晶子径は、乾式製造法で得られる銀粉以上の大きさの結晶子径が得られている事が分かるのである。また、加熱後においても、加熱前の無機酸化物層を形成した後の銀粉のCV値から見て、むしろ良好な値となっていることが分かるのである。更に、上述の酸化アルミニウムコート銀粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率が1.8%であり、5%以内の収縮率に収まっていた。
【0046】
第6実施形態: この実施形態で用いた銀粉は、第4実施形態で用いたと同じ製造方法で得られたものを用いたため、重複した記載を避けるため、ここでの説明は省略する。即ち、レーザー回折散乱式粒度分布測定法の重量累積粒径D50が1.51μm、工程変動指数CV値は0.34、結晶子径は7.7nm、900℃での収縮率が16.0%の銀粉を芯材として用いたのである。
【0047】
そして、この銀粉1kgと無機酸化物である酸化マグネシウム粉0.05kgとを、ハイブリタイザーを用いて、回転数6000rpmで、5分間のメカノケミカルな固着処理を行い、酸化マグネシウムコート銀粉を製造した。この段階の酸化マグネシウムコート銀粉の表面に被覆された酸化マグネシウムの被覆量は、5質量%であった。この加熱前の酸化マグネシウムコート銀粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は1.21μmであり、工程変動指数CV値は0.28であり、結晶子径は6.5nmであった。そして、熱膨張係数の測定を行った結果、900℃での収縮率が7.1%であった。即ち、銀粉がメカノケミカルな加工を受けることで、本来の湿式製造法で得られた銀粉に比べ、結晶子径は小さくなるが、酸化物被覆層が存在している事から、熱膨張時の収縮率も小さくなるが、市場で要求されている範囲内に収まる収縮率までは及ばないものであった。
【0048】
そこで、以上のようにして得られた酸化マグネシウムコート銀粉を、大気雰囲気中で、450℃の温度で1時間の加熱を行い結晶子径を調整した。この結果、加熱後の酸化マグネシウムコート銀粉のレーザー回折散乱式粒度分布測定法の重量累積粒径D50は1.23μmであり、結晶子径は60.6nm、工程変動指数CV値は、0.33であった。この結晶子径は、乾式製造法で得られる銀粉以上の大きさの結晶子径が得られている事が分かるのである。また、加熱後においても、加熱前の無機酸化物層を形成した後の銀粉のCV値から見て、むしろ良好な値となっていることが分かるのである。更に、上述の酸化マグネシウムコート銀粉を用いて、上述したと同様の方法で熱膨張係数の測定を行った結果、900℃での収縮率が2.0%であり、5%以内の収縮率に収まっていた。
【0049】
【発明の効果】
本件発明に係る無機酸化物コート金属粉は、湿式製造法で得られた金属粉の長所である均一微細性、優れた分散性を維持したまま、大きな結晶子径を備えることから高温加熱を受けたときの耐収縮性に優れた品質を備えている。この無機酸化物コート金属粉を用いることで、低温焼成セラミック等の金属粉を含む焼結体の寸法安定性を向上させることが可能であり、製品歩留まりを飛躍的に向上させることが可能となる。また、無機酸化物コート金属粉は、芯材に銅粉、銀粉等を用い、その表層に無機酸化物層を備える構成を持つことで、芯材の金属粉の凝集を進行させることなく、高温加熱が可能であるため芯材の金属粉の結晶子径の調整を行いやすく、上述した独特の製造方法を採用することが可能となるのである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention according to the present application relates to an inorganic oxide-coated metal powder and a method for producing the inorganic oxide-coated metal powder. It is an object of the present invention to provide an inorganic oxide-coated metal powder particularly suitable for ceramic material applications.
[0002]
[Prior art]
Conventionally, copper powder and silver powder have been widely used as raw materials for copper paste and silver paste and as raw materials for low-temperature fired ceramic substrates. Because of the ease of handling, the former metal paste has been used to easily form a conductor circuit in a wide range from use for experimental purposes to use in the electronics industry. For example, there are a method of adjusting a sample of an electron microscope, a routing of a conductor circuit of a printed wiring board, a formation of an interlayer conduction conductor as a substitute for a through hole for obtaining an interlayer conduction of a multilayer printed wiring board, and an electrode formation of a ceramic capacitor. Among various uses, particularly when used for a low-temperature fired ceramic substrate, dimensional stability when processed into a green sheet and sintered is an important issue.
[0003]
The production of such metal powder for low-temperature firing ceramics can be roughly classified into a dry production method and a wet production method. It is reasonable to think that the latter wet manufacturing method is a method of manufacturing by directly depositing metal powder from a solution containing a target metal element. Therefore, the former dry manufacturing method includes not only a pulverization method using a completely mechanical method but also an atomizing method using a molten metal.
[0004]
As a feature of the metal powder obtained by these methods, the metal powder obtained by the former dry manufacturing method has a relatively large crystallite diameter of 40 to 50 nm, and the metal powder is fired at a low-temperature firing ceramic substrate. It has the advantage of excellent oxidation resistance and shrinkage resistance in such cases. On the other hand, metal powder produced by the wet production method generally has a crystallite diameter of 35 nm or less and is smaller than metal powder obtained by the dry production method, and is resistant to oxidation during firing of a low-temperature fired ceramic substrate. It has the drawback of poor heat resistance and shrink resistance. It is said that shrink resistance depends on the size of crystallites of the metal powder. That is, the larger the crystallite diameter, the smaller the shrinkage when heated at a high temperature and the more excellent the shrinkage resistance.
[0005]
The metal powder referred to in the present specification is used for producing a metal powder-containing slurry, and is mainly used for applications in which a green sheet of a low-temperature fired ceramic is processed and fired to obtain a low-temperature fired ceramic. Therefore, a metal powder that is easily oxidized and has poor oxidation resistance significantly alters the quality of a low-temperature fired ceramic. Furthermore, when the crystallite diameter is small, the shrinkage is large and the metal powder is inferior in shrinkage resistance. Is difficult to maintain satisfactorily. Considering these facts, it seems to be desirable to use metal powder produced by a dry production method.
[0006]
[Problems to be solved by the invention]
However, as a characteristic of the powder obtained by the dry production method, there is a defect that the particle size distribution is broad and it is difficult to produce a fine powder with high accuracy. In recent years, the demand for the finishing accuracy of the surface of low-temperature fired ceramics has become more and more severe, and the weight cumulative particle size D by the laser diffraction scattering type particle size distribution measuring method has been increasing. 50 The demand for metal powder having a narrow particle size distribution with a value of 10 μm or less and excellent in dispersibility is becoming remarkable.
[0007]
In addition, even in the case of such fine metal powder, it is desired in the market that the powder is excellent in oxidation resistance during firing of low-temperature fired ceramics and shrinkage resistance with small shrinkage behavior during firing. It has come. In order to satisfy this requirement, it is desirable to satisfy these requirements by using a metal powder having a fine particle size and a sharp particle size distribution obtained by a wet manufacturing method.
[0008]
When the crystallite diameter of the metal powder obtained by the wet method is to be increased in order to improve the shrinkage resistance, the metal powder is heated to grow the grain size inside the powder particle. Just fine. Therefore, it is considered that the metal powder obtained by the wet method may be simply heated.
[0009]
However, simply heating in the state of ordinary metal powder oxidizes the surface of the metal powder, forms an oxide film on the surface, and causes a remarkable agglomeration state. Properties will be significantly impaired. The use of such powders in the production of low-temperature fired ceramics results in a rough surface condition of the resulting low-temperature fired ceramic. Therefore, by simply heating ordinary copper powder, it is possible to provide metal powder having both excellent oxidation resistance and shrinkage resistance, sharp particle size distribution, and small particle size while securing the dispersibility of the powder particles. It was difficult.
[0010]
[Means for Solving the Problems]
Therefore, as a result of earnest research, the present inventors have found that it is possible to obtain a metal powder having a large crystallite diameter by pre-coating the metal powder obtained by the wet manufacturing method with an inorganic oxide layer. It came to mind. Hereinafter, the present invention will be described.
[0011]
In the claims, "an inorganic oxide-coated metal powder having an inorganic oxide layer on the surface of the metal powder particles, wherein the inorganic oxide layer comprises silicon oxide, aluminum oxide, magnesium oxide, zirconium oxide, zinc oxide. And an inorganic oxide-coated metal powder characterized in that the metal powder has a crystallite diameter of 50 nm or more. " That is, the structure is such that an inorganic oxide layer is provided on the surface of a metal powder particle having a crystallite diameter of 50 nm or more. By making the crystallite diameter larger than the crystallite diameter of the metal powder obtained by the conventional wet manufacturing method, it becomes possible to improve the shrink resistance.
[0012]
The metal powder at this stage is not particularly limited as long as it is a metal material that can be used for the low-temperature fired ceramic. However, in view of the powder characteristics required for metal powders used in the production of low-temperature fired ceramics in recent years, it is preferable to use either copper powder or silver powder obtained by a wet production method.
[0013]
The inorganic oxide layer uses any one of silicon oxide, aluminum oxide, magnesium oxide, zirconium oxide, and zinc oxide. Among them, it is preferable to use any of silicon oxide, aluminum oxide, and magnesium oxide. Zinc oxide is particularly preferable when silver powder is used for the core material. Silicon oxide, aluminum oxide, and magnesium oxide are easily fixed to the surface of the metal powder particles uniformly. In addition, at the same time, considering that the firing temperature of the low-temperature fired ceramic is generally 900 ° C. or higher, it functions most effectively as a barrier layer for preventing aggregation of metal powder as a core material.
[0014]
However, it is difficult to physically indicate the thickness of the inorganic oxide layer as a gauge thickness because of the nature of metal powder which is an aggregate of fine powder particles. Accordingly, the present inventors have determined that the thickness of the inorganic oxide layer is represented as a reduced mass thickness. The reduced mass thickness is expressed as a percentage by mass of the inorganic oxide layer in the weight of the inorganic oxide-coated metal powder. Strictly speaking, when applying the reduced mass thickness, it is necessary to consider the particle size of the metal powder. If the weight of the metal powder is constant and there is a metal powder with a small particle size and a metal powder with a large particle size, the former has a larger specific surface area, and the same amount of inorganic oxide covers the surface of the powder. This is because the former method makes the former inorganic oxide layer of metal powder thinner.
[0015]
Therefore, the present inventors consider the particle size of the metal powder required for the current low-temperature fired ceramics and consider the weight cumulative particle size D by a laser diffraction scattering type particle size distribution measuring method. 50 The thickness (converted mass thickness) of the inorganic oxide layer in the case of a metal powder having a value of 0.1 μm to 10 μm is 0.1 mass of the inorganic oxide coated metal powder. % To 10% by mass.
[0016]
When the coating amount is less than 0.1% by mass, it does not serve as a barrier layer for preventing the progress of agglomeration of powder particles due to heating during firing of the low-temperature fired ceramic. On the other hand, when the thickness exceeds 10% by mass, the dispersibility of the obtained inorganic oxide-coated metal powder becomes poor. By forming the inorganic oxide layer having such a uniform thickness, the inorganic oxide-coated metal powder according to the present invention does not have conductivity by itself. Further, in order to ensure stable non-conductivity by eliminating manufacturing variations and to stabilize the obtained shrink resistance, it is more preferable to employ 1% by mass to 10% by mass. By adopting the coating amount of the inorganic oxide as described above, sufficient heat treatment can be performed for the first time, so that the crystallite diameter can be adjusted.
[0017]
The production of the inorganic oxide-coated metal powder described above is performed by the following method. The method for producing an inorganic oxide-coated metal powder for forming a conductive circuit according to the present invention comprises the steps of: fixing an inorganic oxide to the surface of the metal powder by a mechanochemical method; The method is characterized in that a crystallite diameter of the metal powder is adjusted to 50 nm or more by forming an oxide layer and performing heat treatment. That is, by coating the surface of the metal powder with the inorganic oxide layer, the heat treatment temperature can be set high. As a result, the crystallite diameter can be made equal to or larger than the crystallite diameter of the metal powder obtained by the dry manufacturing method.
[0018]
In this manufacturing method, "to fix the inorganic oxide to the surface of the metal powder particles by a mechanochemical method" means that the metal powder and the inorganic oxide powder to be fixed to the surface thereof are: The inorganic oxide is fixed to the surface of the metal powder particles by stirring and mixing or using a ball mill type medium, and the metal powder particles and the inorganic oxide powder particles are mixed and collided. Any device capable of performing such operations is sufficient, and does not require special equipment. The inorganic oxide powder used at this time has a specific surface area of 50 m. 2 / G or more is preferably used. This specific surface area mainly depends on the particle diameter of the inorganic oxide powder, and it can be said that the larger the specific surface area, the smaller the particle diameter.
[0019]
The heat treatment is performed under the following conditions. Strictly speaking, the condition is changed according to the type of the metal powder. This heat treatment promotes so-called recrystallization and increases the crystallite diameter. However, this heat treatment must not promote aggregation of the surface of the metal powder itself so as not to deteriorate the quality of the inorganic oxide-coated metal powder.
[0020]
In consideration of these facts, when copper powder is used as the metal powder, the heat treatment is desirably performed in a reducing atmosphere or an inert gas atmosphere at 500 ° C. to 1000 ° C. Heating at a temperature lower than 500 ° C. makes it difficult to recrystallize crystals of the copper powder obtained by the wet production method. On the other hand, when the heating is performed at a temperature exceeding 1000 ° C., even if the inorganic oxide layer is present, the aggregation of the copper powder as the core material progresses, and the copper powder itself is softened to form a powder. Will worsen. Since copper itself tends to be very easily oxidized, it is preferable to employ a reducing atmosphere or an inert gas atmosphere as a heating atmosphere.
[0021]
When silver powder is used as the metal powder, the heat treatment is preferably performed at a temperature of 350 ° C. to 900 ° C. in any one of an air atmosphere, a reducing atmosphere, or an inert gas atmosphere. This heat treatment is performed for the purpose of adjusting the crystallite diameter and vaporizing and degassing organic impurities contained in the silver powder and causing thermal expansion. Therefore, when the heating is performed at a temperature lower than 350 ° C., the degassing treatment of impurities cannot be performed satisfactorily, and it becomes difficult to recrystallize silver powder crystals obtained by a wet production method. On the other hand, when heating is performed at a temperature exceeding 900 ° C., even if the inorganic oxide layer is present, the oxidation progresses significantly to the surface of the silver powder as the core material, and the silver powder itself is softened. The powder shape will be degraded. Since silver is harder to oxidize than copper, it is possible to use an air atmosphere for the heating atmosphere. Naturally, a reducing atmosphere or an inert gas atmosphere can also be used to increase the safety of quality. It is preferable if you think about it.
[0022]
By adopting such a manufacturing method, it is possible to prevent the agglomeration of the inorganic oxide-coated metal powder from progressing, and to obtain the “average particle diameter D by a laser diffraction scattering type particle size distribution measuring method”. 50 Formula SD / D between the particle size distribution and the standard deviation SD 50 The process variation index CV value represented by × 100 ”can be prevented from being deteriorated. The “standard deviation SD” is a standard deviation obtained from a particle size distribution of a powder obtained as a result of measurement using a laser diffraction scattering type particle size distribution measuring method, and the value of this CV value is small. This means that the powder particles have a uniform particle size, are excellent in dispersibility, and do not have a large variation.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to a comparative example through embodiments.
[0024]
First Embodiment First, a method for producing copper powder used as a core material will be described. 4 kg of copper sulfate (pentahydrate) and 120 g of aminoacetic acid were dissolved in water to prepare an 8 L (liter) aqueous solution of copper salt at a liquid temperature of 60 ° C. Then, while stirring the aqueous solution, 5.75 kg (1.15 equivalents) of a 25 wt% sodium hydroxide solution was quantitatively added over about 30 minutes, and the mixture was stirred at a liquid temperature of 60 ° C. for 60 minutes. Aged until the color was completely black to produce cupric oxide. Thereafter, the mixture was left for 30 minutes, 1.5 kg of glucose was added, and the mixture was aged for 1 hour to reduce cupric oxide to cuprous oxide. Further, 1 kg of hydrated hydrazine was quantitatively added over 5 minutes to reduce cuprous oxide to obtain metallic copper, thereby producing a copper powder slurry.
[0025]
Then, the obtained copper powder slurry was filtered, sufficiently washed with pure water, filtered again, and dried to obtain a copper powder. The weight cumulative particle size D of the copper powder measured by a laser diffraction scattering particle size distribution measuring method 50 Was 0.93 μm, the process variation index CV was 0.22, and the crystallite diameter was 32.2 nm. As a result of measuring the coefficient of thermal expansion, the shrinkage at 900 ° C. was 13.0%.
[0026]
The measurement of the crystallite diameter in the present specification is obtained by using RINT200V manufactured by RIGAKU and using an average crystallite diameter using crystallite analysis software. The crystallite diameter in the present specification means the average crystallite diameter. It is the diameter of the child. The shrinkage ratio is measured by putting 20 g of the powder used for the measurement in 20 g of a solution of 95 wt% of terpineol C and 5 wt% of ethyl cellulose, kneading with a three-roll mill, and then heating at 80 ° C. for 1 hour. It was dried and made into a powder again. Then, the obtained powder was continuously heated in a predetermined atmosphere using a thermomechanical analyzer (TMA / SS6000 manufactured by Seiko Denshi Kogyo KK) at a rate of temperature increase of 10 ° C./min while continuously measuring the coefficient of thermal expansion. Then, the thermal shrinkage when the ambient temperature was 900 ° C. was measured.
[0027]
Then, 1 kg of the copper powder and 0.05 kg of the silicon oxide powder, which is an inorganic oxide, are subjected to a mechanochemical fixing treatment at 6,000 rpm for 5 minutes using a hybridizer to produce silicon oxide-coated copper powder. did. At this stage, the coating amount of the silicon oxide coated on the surface of the silicon oxide-coated copper powder was 5% by mass. The weight-accumulated particle diameter D of the silicon oxide-coated copper powder before heating is measured by a laser diffraction scattering particle size distribution measuring method. 50 Was 0.94 μm, the process variation index CV was 0.25, and the crystallite diameter was 28.2 nm. As a result of measuring the thermal expansion coefficient, the shrinkage at 900 ° C. was 6.3%. In other words, the copper powder is subjected to mechanochemical processing, so that the crystallite diameter is smaller than that of the copper powder obtained by the original wet manufacturing method, but the thermal expansion is caused by the presence of the oxide coating layer. Although the shrinkage at the time was small, it did not reach the shrinkage within the range required by the market.
[0028]
Thus, the silicon oxide-coated copper powder obtained as described above is heated at 500 ° C., 700 ° C., and 900 ° C. for 1 hour in a nitrogen gas atmosphere having a hydrogen concentration of 1 wt% to reduce the crystallite diameter. Three types of adjusted silicon oxide-coated copper powder were obtained. As a result, (1) when a temperature of 500 ° C. was adopted, the weight cumulative particle diameter D of the heated silicon oxide-coated copper powder measured by a laser diffraction scattering particle size distribution method 50 Is 0.92 μm, the crystallite diameter is 52.6 nm, the process variation index CV value is 0.24, and (2) when a temperature of 700 ° C. is adopted, the silicon oxide-coated copper powder after heating is Weight cumulative particle size D by laser diffraction scattering type particle size distribution measurement method 50 Is 0.93 μm, the crystallite diameter is 58.4 nm, the process variation index CV value is 0.25, and (3) when the temperature of 900 ° C. is adopted, the silicon oxide-coated copper powder after heating is Weight cumulative particle size D by laser diffraction scattering type particle size distribution measurement method 50 Was 0.94 μm, the crystallite diameter was 66.8 nm, and the process variation index CV value was 0.24.
[0029]
From these results, when the crystallite diameter was 500 ° C. and 700 ° C., a crystallite diameter equivalent to that of copper powder obtained by the dry manufacturing method was obtained. It can be seen that a crystallite diameter larger than the copper powder obtained by the production method was obtained. In addition, it can be seen that the CV value of the copper powder before the formation of the inorganic oxide layer did not significantly deteriorate regardless of the heating temperature.
[0030]
Furthermore, the thermal expansion coefficient was measured in the same manner as described above using three types of silicon oxide-coated copper powder. As a result, the shrinkage at 900 ° C. was (1) the heating temperature of 500 ° C. In this case, the shrinkage ratio of the silicon oxide-coated copper powder after heating is 2.5%, and (2) the shrinkage ratio of the silicon oxide-coated copper powder after heating is 2.0% when a heating temperature of 700 ° C. is adopted. (3) When a heating temperature of 900 ° C. is employed, the shrinkage ratio of the silicon oxide-coated copper powder after heating is 1.2%, and all are within the ideal shrinkage ratio of 3% or less. .
[0031]
Second Embodiment: The copper powder used in this embodiment is obtained by the same manufacturing method as that used in the first embodiment, and therefore, description thereof is omitted here to avoid redundant description. That is, the weight cumulative particle diameter D of the laser diffraction scattering particle size distribution measuring method 50 Is 0.93 μm, the process variation index CV value is 0.22, the crystallite diameter is 32.2 nm, and the shrinkage ratio at 900 ° C. is 13.0%.
[0032]
Then, 1 kg of this copper powder and 0.03 kg of aluminum oxide powder, which is an inorganic oxide, are subjected to a mechanochemical fixing treatment at 6000 rpm for 5 minutes using a hybridizer to produce aluminum oxide-coated copper powder. did. The coating amount of aluminum oxide coated on the surface of the aluminum oxide-coated copper powder at this stage was 3% by mass. The weight cumulative particle size D of the aluminum oxide-coated copper powder before heating by the laser diffraction scattering particle size distribution measurement method 50 Was 0.92 μm, the process variation index CV was 0.25, and the crystallite diameter was 27.8 nm. As a result of measuring the thermal expansion coefficient, the shrinkage at 900 ° C. was 4.2%. In other words, the copper powder is subjected to mechanochemical processing, so that the crystallite diameter is smaller than that of the copper powder obtained by the original wet manufacturing method, but the thermal expansion is caused by the presence of the oxide coating layer. Although the shrinkage at the time was small, it did not reach the shrinkage within the range required by the market.
[0033]
Therefore, the aluminum oxide-coated copper powder obtained as described above was heated at 900 ° C. for 1 hour in a reducing atmosphere having a hydrogen concentration of 1 wt% to adjust the crystallite diameter. As a result, the weight-accumulated particle diameter D of the heated aluminum oxide-coated copper powder was measured by a laser diffraction scattering particle size distribution measuring method. 50 Was 0.93 μm, the crystallite diameter was 68.0 nm, and the process variation index CV value was 0.26. It can be seen that the crystallite diameter is larger than the copper powder obtained by the dry production method. Further, the coefficient of thermal expansion was measured using the above-described aluminum oxide-coated copper powder in the same manner as described above. As a result, the shrinkage at 900 ° C. was 0.6%, and the shrinkage was within 3%. It was in.
[0034]
Third Embodiment The copper powder used in this embodiment is obtained by the same manufacturing method as that used in the first embodiment, and therefore, description thereof will be omitted to avoid redundant description. That is, the weight cumulative particle diameter D of the laser diffraction scattering particle size distribution measuring method 50 Is 0.93 μm, the process variation index CV value is 0.22, the crystallite diameter is 32.2 nm, and the shrinkage ratio at 900 ° C. is 13.0%.
[0035]
Then, 1 kg of this copper powder and 0.03 kg of magnesium oxide powder, which is an inorganic oxide, are subjected to a mechanochemical fixing treatment at 6,000 rpm for 5 minutes using a hybridizer to produce a magnesium oxide-coated copper powder. did. The coating amount of magnesium oxide coated on the surface of the magnesium oxide-coated copper powder at this stage was 3% by mass. The weight-accumulated particle diameter D of the magnesium oxide-coated copper powder before heating was measured by a laser diffraction scattering particle size distribution measuring method. 50 Was 0.92 μm, the process variation index CV was 0.28, and the crystallite diameter was 28.2 nm. As a result of measuring the coefficient of thermal expansion, the shrinkage at 900 ° C. was 5.8%. In other words, the copper powder is subjected to mechanochemical processing, so that the crystallite diameter is smaller than that of the copper powder obtained by the original wet manufacturing method, but the thermal expansion is caused by the presence of the oxide coating layer. Although the shrinkage at the time was small, it did not reach the shrinkage within the range required by the market.
[0036]
Therefore, the magnesium oxide-coated copper powder obtained as described above was heated at 900 ° C. for 1 hour in a reducing atmosphere having a hydrogen concentration of 1 wt% to adjust the crystallite diameter. As a result, the weight cumulative particle diameter D of the heated magnesium oxide-coated copper powder measured by a laser diffraction scattering particle size distribution method was determined. 50 Was 0.93 μm, the crystallite diameter was 60.6 nm, and the process variation index CV value was 0.26. It can be seen that the crystallite diameter is larger than the copper powder obtained by the dry production method. Further, the coefficient of thermal expansion was measured using the above-described aluminum oxide-coated copper powder in the same manner as described above. As a result, the shrinkage at 900 ° C. was 1.1%, and the shrinkage was within 3%. It was in.
[0037]
Fourth Embodiment First, a method for producing silver powder used as a core material will be described. Here, 300 g of silver nitrate was added to 360 ml of ion-exchanged water in the reaction vessel and completely dissolved, and then 300 ml of 25 wt% ammonia water was added, followed by stirring to adjust the aqueous solution of the ammine silver complex. Temperature controlled. Then, the aqueous ammine silver complex solution was added in about 3 seconds, and stirred for about 3 minutes to complete the reductive precipitation of silver particles. Thereafter, silver particles were collected by filtration, washed sufficiently with pure water, and dried to obtain silver powder.
[0038]
The weight-accumulated particle diameter D of this silver powder measured by a laser diffraction scattering particle size distribution measuring method 50 Was 1.51 μm, the process variation index CV was 0.34, and the crystallite diameter was 7.7 nm. As a result of measuring the thermal expansion coefficient, the shrinkage at 900 ° C. was 16.0%. The measurement of the coefficient of thermal expansion was performed by the same method as described in the first embodiment.
[0039]
Then, 1 kg of the silver powder and 0.05 kg of the silicon oxide powder as an inorganic oxide were subjected to a mechanochemical fixing treatment at 6000 rpm for 5 minutes using a hybridizer to produce a silicon oxide-coated silver powder. At this stage, the coating amount of the silicon oxide coated on the surface of the silicon oxide-coated silver powder was 5% by mass. The weight-accumulated particle diameter D of the silicon oxide-coated silver powder before heating is measured by a laser diffraction scattering particle size distribution measuring method. 50 Was 1.30 μm, the process variation index CV was 0.27, and the crystallite diameter was 6.8 nm. As a result of measuring the thermal expansion coefficient, the shrinkage at 900 ° C. was 7.0%. In other words, the silver powder undergoes mechanochemical processing, the crystallite diameter becomes smaller than the silver powder obtained by the original wet manufacturing method, but the presence of the oxide coating layer causes Although the shrinkage was small, it did not reach the shrinkage within the range required by the market.
[0040]
Thus, the silicon oxide-coated silver powder obtained as described above was heated at 450 ° C. for 1 hour in an air atmosphere to obtain a silicon oxide-coated silver powder whose crystallite diameter was adjusted. As a result, the weight cumulative particle diameter D of the silicon oxide-coated silver powder after heating was measured by a laser diffraction scattering particle size distribution measuring method. 50 Was 1.32 μm, the crystallite diameter was 60.0 nm, and the process variation index CV value was 0.33.
[0041]
From these results, a crystallite diameter of silver powder obtained by the dry production method (the crystallite diameter of the silver powder obtained by the dry production method is generally 30 to 40 nm) or more is obtained. I can understand that. In addition, it can be seen that even after heating, the CV value of the silver powder before forming the inorganic oxide layer did not significantly deteriorate.
[0042]
Further, the coefficient of thermal expansion was measured using the silicon oxide-coated silver powder after heating in the same manner as described above. As a result, the shrinkage at 900 ° C. was 2.1%, which was 5% which is said to be ideal. Within the shrinkage rate.
[0043]
Fifth Embodiment: The silver powder used in this embodiment is obtained by the same manufacturing method as that used in the fourth embodiment, and therefore, description thereof is omitted here to avoid redundant description. That is, the weight cumulative particle diameter D of the laser diffraction scattering particle size distribution measuring method 50 Was 1.51 μm, the process variation index CV value was 0.34, the crystallite diameter was 7.7 nm, and the shrinkage ratio at 900 ° C. was 16.0%. Silver powder was used as the core material.
[0044]
Then, 1 kg of this silver powder and 0.05 kg of aluminum oxide powder, which is an inorganic oxide, were subjected to a mechanochemical fixing treatment at 6000 rpm for 5 minutes using a hybridizer to produce an aluminum oxide-coated silver powder. At this stage, the coating amount of aluminum oxide coated on the surface of the aluminum oxide-coated silver powder was 5% by mass. The weight cumulative particle size D of the aluminum oxide-coated silver powder before heating by the laser diffraction scattering type particle size distribution measurement method 50 Was 1.33 μm, the process variation index CV was 0.27, and the crystallite diameter was 6.3 nm. Then, as a result of measuring the coefficient of thermal expansion, the shrinkage at 900 ° C. was 6.5%. In other words, the silver powder undergoes mechanochemical processing, the crystallite diameter becomes smaller than the silver powder obtained by the original wet manufacturing method, but the presence of the oxide coating layer causes Although the shrinkage was small, it did not reach the shrinkage within the range required by the market.
[0045]
Therefore, the aluminum oxide-coated silver powder obtained as described above was heated at 450 ° C. for 1 hour in an air atmosphere to adjust the crystallite diameter. As a result, the weight cumulative particle size D of the heated aluminum oxide-coated silver powder measured by a laser diffraction scattering type particle size distribution measurement method was determined. 50 Was 1.31 μm, the crystallite diameter was 68.0 nm, and the process variation index CV value was 0.32. It can be seen that the crystallite diameter is larger than the silver powder obtained by the dry production method. Also, it can be seen that even after heating, the CV value of the silver powder after forming the inorganic oxide layer before heating is a rather good value. Further, the coefficient of thermal expansion was measured using the above-described aluminum oxide-coated silver powder in the same manner as described above. As a result, the shrinkage at 900 ° C. was 1.8%, which was within 5%. It was settled.
[0046]
Sixth Embodiment: The silver powder used in this embodiment is obtained by the same manufacturing method as that used in the fourth embodiment, and therefore, description thereof will be omitted to avoid redundant description. That is, the weight cumulative particle diameter D of the laser diffraction scattering particle size distribution measuring method 50 Was 1.51 μm, the process variation index CV value was 0.34, the crystallite diameter was 7.7 nm, and the shrinkage ratio at 900 ° C. was 16.0%. Silver powder was used as the core material.
[0047]
Then, 1 kg of the silver powder and 0.05 kg of magnesium oxide powder as an inorganic oxide were subjected to a mechanochemical fixing treatment at 6000 rpm for 5 minutes using a hybridizer to produce a magnesium oxide-coated silver powder. At this stage, the coating amount of magnesium oxide coated on the surface of the magnesium oxide-coated silver powder was 5% by mass. The weight-accumulated particle size D of the magnesium oxide-coated silver powder before heating is measured by a laser diffraction scattering particle size distribution measuring method. 50 Was 1.21 μm, the process variation index CV value was 0.28, and the crystallite diameter was 6.5 nm. Then, as a result of measuring the coefficient of thermal expansion, the shrinkage at 900 ° C. was 7.1%. In other words, the silver powder undergoes mechanochemical processing, the crystallite diameter becomes smaller than the silver powder obtained by the original wet manufacturing method, but the presence of the oxide coating layer causes Although the shrinkage was small, it did not reach the shrinkage within the range required by the market.
[0048]
Thus, the magnesium oxide-coated silver powder obtained as described above was heated at 450 ° C. for 1 hour in an air atmosphere to adjust the crystallite diameter. As a result, the weight cumulative particle diameter D of the heated magnesium oxide-coated silver powder was measured by a laser diffraction scattering particle size distribution measuring method. 50 Was 1.23 μm, the crystallite diameter was 60.6 nm, and the process variation index CV value was 0.33. It can be seen that the crystallite diameter is larger than the silver powder obtained by the dry production method. Further, it can be seen that even after the heating, the CV value of the silver powder after the formation of the inorganic oxide layer before the heating is rather good. Further, the coefficient of thermal expansion was measured using the above-described magnesium oxide-coated silver powder in the same manner as described above. As a result, the shrinkage at 900 ° C. was 2.0%, It was settled.
[0049]
【The invention's effect】
Since the inorganic oxide-coated metal powder according to the present invention has a large crystallite diameter while maintaining uniform fineness and excellent dispersibility, which are advantages of the metal powder obtained by the wet manufacturing method, it is subjected to high-temperature heating. It has a quality that is excellent in resistance to shrinkage when exposed. By using this inorganic oxide-coated metal powder, it is possible to improve the dimensional stability of a sintered body containing a metal powder such as a low-temperature fired ceramic, and it is possible to dramatically improve the product yield. . In addition, the inorganic oxide-coated metal powder has a structure in which copper powder, silver powder, or the like is used for the core material and an inorganic oxide layer is provided on the surface thereof, so that aggregation of the metal powder of the core material does not proceed, and Since heating is possible, it is easy to adjust the crystallite diameter of the metal powder of the core material, and the unique manufacturing method described above can be adopted.

Claims (6)

金属粉の粉粒表面に無機酸化物層を備える無機酸化物コート金属粉であって、
無機酸化物層は、酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛のいずれかで構成されており、且つ、金属粉の粉粒の持つ結晶子径が50nm以上であることを特徴とする無機酸化物コート金属粉。
An inorganic oxide-coated metal powder having an inorganic oxide layer on the surface of the metal powder particles,
The inorganic oxide layer is composed of any one of silicon oxide, aluminum oxide, magnesium oxide, zirconium oxide, and zinc oxide, and has a crystallite diameter of metal powder of 50 nm or more. Inorganic oxide coated metal powder.
金属粉は、銅粉若しくは銀粉である請求項1に記載の無機酸化物コート金属粉。The inorganic oxide-coated metal powder according to claim 1, wherein the metal powder is copper powder or silver powder. レーザー回折散乱式粒度分布測定法による重量累積粒径D50の値が0.1μm〜10μmの金属粉を用いる場合に於いて、無機酸化物層の厚さ(換算質量厚さ)は、無機酸化物コート金属粉重量の0.1質量%〜10質量%である請求項1又は請求項2に記載の無機酸化物コート金属粉。In the case where the value of weight-cumulative particle diameter D 50 by laser diffraction scattering particle size distribution measuring method using a metal powder of 0.1 m to 10 m, the thickness of the inorganic oxide layer (in terms of mass thickness), an inorganic oxide The inorganic oxide-coated metal powder according to claim 1, which is 0.1% by mass to 10% by mass of the weight of the substance-coated metal powder. 請求項1〜請求項3のいずれかに記載の無機酸化物コート金属粉の製造方法であって、
金属粉の粉粒の表面に、無機酸化物をメカノケミカル的な手法で固着させることで当該粉粒の表面に無機酸化物層を形成し、
その後、熱処理することで金属粉の結晶子径を50nm以上に調整することを特徴とした無機酸化物コート金属粉の製造方法。
A method for producing an inorganic oxide-coated metal powder according to any one of claims 1 to 3,
Forming an inorganic oxide layer on the surface of the metal particles by fixing the inorganic oxide to the surface of the particles by a mechanochemical method,
Thereafter, a heat treatment is performed to adjust the crystallite diameter of the metal powder to 50 nm or more.
金属粉に銅粉を用いる場合に於いて、熱処理は500℃〜1000℃の還元雰囲気若しくは不活性ガス雰囲気中で行うものである請求項4に記載の無機酸化物コート金属粉の製造方法。The method for producing an inorganic oxide-coated metal powder according to claim 4, wherein when the copper powder is used as the metal powder, the heat treatment is performed in a reducing atmosphere or an inert gas atmosphere at 500C to 1000C. 金属粉に銀粉を用いる場合に於いて、熱処理は350℃〜900℃の温度で、大気雰囲気、還元雰囲気若しくは不活性ガス雰囲気のいずれかの雰囲気中で行うものである請求項4に記載の無機酸化物コート金属粉の製造方法。5. The inorganic material according to claim 4, wherein when the silver powder is used as the metal powder, the heat treatment is performed at a temperature of 350 ° C. to 900 ° C. in any one of an air atmosphere, a reducing atmosphere, or an inert gas atmosphere. A method for producing an oxide-coated metal powder.
JP2003183688A 2002-06-28 2003-06-27 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder Expired - Lifetime JP4150638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183688A JP4150638B2 (en) 2002-06-28 2003-06-27 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002190996 2002-06-28
JP2003183688A JP4150638B2 (en) 2002-06-28 2003-06-27 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder

Publications (3)

Publication Number Publication Date
JP2004084069A true JP2004084069A (en) 2004-03-18
JP2004084069A5 JP2004084069A5 (en) 2005-05-12
JP4150638B2 JP4150638B2 (en) 2008-09-17

Family

ID=32071841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183688A Expired - Lifetime JP4150638B2 (en) 2002-06-28 2003-06-27 Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder

Country Status (1)

Country Link
JP (1) JP4150638B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070572A1 (en) * 2004-12-27 2006-07-06 Kyoto University Ordered alloy phase nanoparticle, process for producing the same, superdense magnetic recording medium and process for producing the same
JP2006183076A (en) * 2004-12-27 2006-07-13 Nippon Atomized Metal Powers Corp Atomizing gold powder, electrically conductive gold paste using the same and gold clay for decoration
JP2006299385A (en) * 2005-04-25 2006-11-02 Noritake Co Ltd Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
JP2014198893A (en) * 2013-03-30 2014-10-23 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method, paste, electronic circuit component, electrical product
JP2020531680A (en) * 2017-07-18 2020-11-05 納獅新材料有限公司Naxau New Materials Co., Ltd. Functional composite particles and their manufacturing methods
CN115815587A (en) * 2022-12-05 2023-03-21 深圳市众诚达应用材料科技有限公司 Modified silver powder for silver paste of laminated chip inductor inner electrode and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354126A (en) * 1989-07-20 1991-03-08 Hai Miller:Kk Production of powder coated with metallic oxide
JP2000345201A (en) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd Composite copper fine powder and its production
JP2001240901A (en) * 1999-12-22 2001-09-04 Mitsui Mining & Smelting Co Ltd Surface-decorated silver powder and its producing method
JP2002146401A (en) * 2000-11-09 2002-05-22 Mitsui Mining & Smelting Co Ltd Nickel powder and manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354126A (en) * 1989-07-20 1991-03-08 Hai Miller:Kk Production of powder coated with metallic oxide
JP2000345201A (en) * 1999-05-31 2000-12-12 Mitsui Mining & Smelting Co Ltd Composite copper fine powder and its production
JP2001240901A (en) * 1999-12-22 2001-09-04 Mitsui Mining & Smelting Co Ltd Surface-decorated silver powder and its producing method
JP2002146401A (en) * 2000-11-09 2002-05-22 Mitsui Mining & Smelting Co Ltd Nickel powder and manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070572A1 (en) * 2004-12-27 2006-07-06 Kyoto University Ordered alloy phase nanoparticle, process for producing the same, superdense magnetic recording medium and process for producing the same
JP2006183076A (en) * 2004-12-27 2006-07-13 Nippon Atomized Metal Powers Corp Atomizing gold powder, electrically conductive gold paste using the same and gold clay for decoration
JPWO2006070572A1 (en) * 2004-12-27 2008-06-12 国立大学法人京都大学 Ordered alloy phase nanoparticles and method for producing the same, ultra high density magnetic recording medium and method for producing the same
JP2006299385A (en) * 2005-04-25 2006-11-02 Noritake Co Ltd Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
JP2014198893A (en) * 2013-03-30 2014-10-23 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method, paste, electronic circuit component, electrical product
JP2020531680A (en) * 2017-07-18 2020-11-05 納獅新材料有限公司Naxau New Materials Co., Ltd. Functional composite particles and their manufacturing methods
CN115815587A (en) * 2022-12-05 2023-03-21 深圳市众诚达应用材料科技有限公司 Modified silver powder for silver paste of laminated chip inductor inner electrode and preparation method thereof
CN115815587B (en) * 2022-12-05 2023-11-28 深圳众诚达应用材料股份有限公司 Modified silver powder for laminated inductor inner electrode silver paste and preparation method thereof

Also Published As

Publication number Publication date
JP4150638B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
Songping et al. Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI
Wu Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC
Silvert et al. Synthesis of monodisperse submicronic gold particles by the polyol process
TWI778997B (en) Copper powder, method for producing the copper powder, conductive paste using the copper powder, and method for producing conductive film using the conductive paste
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
WO2007040195A1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
JP2006265585A (en) Method for producing copper powder and copper powder
JP4879762B2 (en) Silver powder manufacturing method and silver powder
US8834957B2 (en) Preparation method for an electroconductive patterned copper layer
KR101236246B1 (en) Copper powder
JP4149353B2 (en) Two-layer coated metal powder, method for producing the two-layer coated metal powder, and conductive paste using the two-layer coated metal powder
JP4197151B2 (en) Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP4150638B2 (en) Inorganic oxide-coated metal powder and method for producing the inorganic oxide-coated metal powder
JP3812359B2 (en) Method for producing metal powder
JPS6299406A (en) Production of copper powder
JP2004332055A (en) Nickel powder and its producing method
JP2004084069A5 (en)
JP4164010B2 (en) Inorganic ultrafine particle coated metal powder and method for producing the same
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP4957465B2 (en) Oxide-coated copper fine particles and method for producing the same
JP2000001706A (en) High crystal silver particle, its production and conductor paste consisting of high crystal silver particle
JP5003648B2 (en) Method for producing oxide-coated copper fine particles
JP5034796B2 (en) Oxide-coated nickel fine particles and method for producing the same
JP5003668B2 (en) Method for producing oxide-coated copper fine particles
TWI241227B (en) Nickel powder coated with titanium compound and conductive paste containing the nickel powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4150638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term