JPH11246296A - Liquid phase epitaxial growth method of rare earth-iron garnet film - Google Patents

Liquid phase epitaxial growth method of rare earth-iron garnet film

Info

Publication number
JPH11246296A
JPH11246296A JP4943498A JP4943498A JPH11246296A JP H11246296 A JPH11246296 A JP H11246296A JP 4943498 A JP4943498 A JP 4943498A JP 4943498 A JP4943498 A JP 4943498A JP H11246296 A JPH11246296 A JP H11246296A
Authority
JP
Japan
Prior art keywords
film
substrate
thickness
garnet
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4943498A
Other languages
Japanese (ja)
Inventor
Yosuke Asahara
陽介 浅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP4943498A priority Critical patent/JPH11246296A/en
Publication of JPH11246296A publication Critical patent/JPH11246296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the LEP(liquid phase epitaxial growth) method of a RIG (rare earth-iron garnet) film, which enables reduction in concentric-circular cracks in the film and improvement in productivity of the film. SOLUTION: This method comprises: bringing a garnet substrate that is a (GdCa)3 (GaMgZr)5 O12 substrate or Nd3 Ga5 O12 substrate, into contact with the liquid surface of a lead oxide based flux contg. a dissolved rare earth iron garnet component; and growing a rare earth-iron garnet film that has a 250 to 600 μm film thickness and a composition represented by the formula (YbTbBi)3 Fe5 O12 , on the garnet substrate so that correlation of the film thickness (t (μm)) of the rare eath-iron garnet film with the thickness (d (μm)) of the garnet substrate meets the relational expression, 6×10<-6> t<-2> -0.0068 t+3.4023>=d/t>=8×10<-6> t<2> -0.0091t+3.5768.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、希土類−鉄ガーネ
ット膜の液相エピタキシャル成長方法に関し、磁気光学
素子のファラデー効果を利用した磁気光学デバイス、特
に光通信に用いられる光アイソレータや、磁界強度を測
定する光磁界センサに用いられる希土類−鉄ガーネット
膜の液相エピタキシャル成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid phase epitaxial growth method for a rare earth-iron garnet film, and more particularly to a magneto-optical device utilizing the Faraday effect of a magneto-optical element, in particular, an optical isolator used for optical communication and a magnetic field intensity measurement. The present invention relates to a liquid phase epitaxial growth method of a rare earth-iron garnet film used in a photomagnetic field sensor that performs a process.

【0002】[0002]

【従来の技術】磁気光学素子のファラデー効果を利用し
た磁気光学デバイスが、精力的に開発されている。その
中でも、特に光通信における光源への戻り光を遮断する
光アイソレータや、発電所から消費者までの電力輸送経
路である変電所の送電線や配電線などに流れる電流の大
きさを測定し、異常を発見する光磁界センサ(光電流セ
ンサ)などは、研究段階からすでに実用段階に入り、こ
れらを含めた磁気光学デバイスに用いるために、より安
価な磁気光学素子が求められてきている。
2. Description of the Related Art Magneto-optical devices utilizing the Faraday effect of a magneto-optical element have been energetically developed. Among them, the magnitude of the current flowing in the transmission line or distribution line of the substation, which is an optical isolator that blocks return light to the light source in optical communication, and the power transport route from the power plant to the consumer, Optical magnetic field sensors (optical current sensors) for detecting abnormalities have already entered the practical stage from the research stage, and there is a need for cheaper magneto-optical elements for use in magneto-optical devices including these.

【0003】上記磁気光学素子は、希土類−鉄ガーネッ
ト膜(以下、RIG膜という)が主流であり、通常、液
相エピタキシャル成長法(以下、LPE法という)によ
って育成されている。
[0003] The above-mentioned magneto-optical element is mainly composed of a rare earth-iron garnet film (hereinafter referred to as RIG film), and is usually grown by a liquid phase epitaxial growth method (hereinafter referred to as LPE method).

【0004】LPE法によるRIG膜の育成は、フラッ
クス成分である酸化鉛、酸化ビスマス、酸化ホウ素と、
ガーネット成分である希土類酸化物、酸化鉄(場合によ
っては非磁性元素の酸化物も加える。)などとを、白金
るつぼ中で融解した約900℃の融液に、(GdCa)
3(GaMgZr)512基板あるいはNd3Ga512
板といったガーネット基板を接触させ、該ガーネット基
板上にRIG膜をエピタキシャル成長させることによっ
て行われる。
[0004] The growth of the RIG film by the LPE method involves the formation of flux components such as lead oxide, bismuth oxide, and boron oxide.
Garnet components such as rare earth oxides and iron oxides (in some cases, oxides of non-magnetic elements are also added) are added to a melt at about 900 ° C. which is melted in a platinum crucible to obtain (GdCa)
3 (GaMgZr) 5 O 12 substrate or Nd 3 Ga 5 O 12 substrate such contacting a garnet substrate, is performed by epitaxially growing the RIG film on the garnet substrate.

【0005】使用される光の波長および所望のファラデ
ー回転角に合わせて、育成されたRIG膜の膜厚を、研
磨加工により調整して、磁気光学デバイスに用いられ
る。
The thickness of the grown RIG film is adjusted by polishing in accordance with the wavelength of light to be used and a desired Faraday rotation angle, and is used for a magneto-optical device.

【0006】[0006]

【発明が解決しようとする課題】しかし、ガーネット基
板にRIG膜を育成すると、RIG膜の表面に、図2〜
3に示すような同心円状クラックが発生しやすい。同心
円状クラックは、ウエハ内全面に発生する場合もある
が、図2に示されるようにウエハ外周部に集中する場合
もある。ウエハ内全面に同心円状クラックが発生する場
合には、ウエハ全面が不良品となる。しかし、ウエハ外
周部のみにクラックが集中している場合には、RIG膜
を育成したガーネット基板が2インチ径、3インチ径で
あっても、最終的に加工されて使用される磁気光学デバ
イスの形状が数mm径であるため、ウエハ中心の同心円
状クラックの無い部分を良品として使用し、評価するこ
ともできる。その場合、半径rのウエハにおいて、外周
端部から同心円状クラック最内部までの距離をaとする
と、不良率が、2a/r−(a/r)2 となる。従来、
この同心円状クラックによる不良率は、40%程度であ
った。
However, when a RIG film is grown on a garnet substrate, the surface of the RIG film is formed as shown in FIG.
Concentric cracks as shown in FIG. The concentric cracks may occur on the entire surface of the wafer, but may also concentrate on the outer peripheral portion of the wafer as shown in FIG. If concentric cracks occur on the entire surface of the wafer, the entire surface of the wafer is defective. However, when cracks are concentrated only on the outer peripheral portion of the wafer, even if the garnet substrate on which the RIG film has been grown has a diameter of 2 inches or 3 inches, the magneto-optical device to be finally processed and used is used. Since the shape is several mm in diameter, a portion without concentric cracks at the center of the wafer can be used as a good product and evaluated. In this case, assuming that the distance from the outer peripheral end to the innermost portion of the concentric cracks in the wafer having the radius r is a, the defect rate is 2a / r- (a / r) 2 . Conventionally,
The defect rate due to the concentric cracks was about 40%.

【0007】この同心円状クラック部分のRIG膜を使
用した磁気光学デバイスは、挿入損失などの特性が劣化
しているため、全てが不良となる。このことが、RIG
膜の量産化を著しく低下させる。
The magneto-optical device using the concentric crack portion of the RIG film has deteriorated characteristics such as insertion loss, so that all the devices become defective. This is RIG
It significantly reduces the mass production of membranes.

【0008】本発明は、かかる実情に鑑み、同心円状ク
ラックを低減して、生産性を著しく向上させ得るRIG
膜を育成するLPE法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and the present invention provides a RIG capable of reducing concentric cracks and significantly improving productivity.
An object is to provide an LPE method for growing a film.

【0009】[0009]

【課題を解決するための手段】ガーネット基板と育成中
のRIG膜の熱膨張係数の違いによって反りが発生し、
その反りによってRIG膜表面に張力が発生すること
で、同心円状クラックが生成すると考えられる。そこで
同心円状クラックの発生状況とガーネット基板の基板厚
およびRIG膜の膜厚との関係を実験により詳細に検討
したところ、ガーネット基板の基板厚とRIG膜の膜厚
との関係をある範囲に収めることにより、同心円状クラ
ックを抑制することが分かった。
Means for Solving the Problems Warpage occurs due to the difference in the thermal expansion coefficient between the garnet substrate and the growing RIG film,
It is considered that concentric cracks are generated by the generation of tension on the RIG film surface due to the warpage. Therefore, the relationship between the occurrence of concentric cracks and the substrate thickness of the garnet substrate and the thickness of the RIG film was examined in detail by experiments, and the relationship between the substrate thickness of the garnet substrate and the thickness of the RIG film was kept within a certain range. Thus, it was found that concentric cracks were suppressed.

【0010】そこで、本発明は、上記課題を解決するた
め、本発明の液相エピタキシャル成長方法では、希土類
−鉄ガーネット成分を溶かしたフラックス液面に、ガー
ネット基板を接触させ、該ガーネット基板に、膜厚が2
50μm〜600μmのRIG膜を成長させ、該RIG
膜の膜厚をt(μm)とし、前記ガーネット基板の基板
厚をd(μm)としたとき、下式(数3)を満たす。
In order to solve the above problems, the present invention provides a liquid phase epitaxial growth method according to the present invention, in which a garnet substrate is brought into contact with a flux liquid surface in which a rare earth-iron garnet component is dissolved, and a film is formed on the garnet substrate. Thickness 2
A 50 μm to 600 μm RIG film is grown,
When the thickness of the film is t (μm) and the thickness of the garnet substrate is d (μm), the following expression (Equation 3) is satisfied.

【0011】[0011]

【数3】6×10-6t2−0.0068t+3.4023≧d/t≧8×10-6t2
−0.0091t+3.5768
[Equation 3] 6 × 10 −6 t 2 −0.0068t + 3.4023 ≧ d / t ≧ 8 × 10 −6 t 2
−0.0091t + 3.5768

【0012】さらに、RIG膜の膜厚をt(μm)と
し、前記ガーネット基板の基板厚をd(μm)としたと
き、下式(数4)を満たすと好ましい。
Further, when the thickness of the RIG film is t (μm) and the thickness of the garnet substrate is d (μm), it is preferable that the following expression (Equation 4) is satisfied.

【0013】[0013]

【数4】7×10-6t2−0.0082t+3.6220≧d/t≧9×10-6t2
−0.0095t+3.6437
[Equation 4] 7 × 10 −6 t 2 −0.0082 t + 3.6220 ≧ d / t ≧ 9 × 10 −6 t 2
−0.0095t + 3.6437

【0014】上記フラックスが酸化鉛系フラックスで、
上記ガーネット基板が(GdCa)3(GaMgZr)5
12基板あるいは、Nd3Ga512基板で、上記希土類
−鉄ガーネット膜が(YbTbBi)3Fe512である
ことが好ましい。
The above flux is a lead oxide type flux,
The garnet substrate is (GdCa) 3 (GaMgZr) 5
In the case of an O 12 substrate or an Nd 3 Ga 5 O 12 substrate, the rare earth-iron garnet film is preferably (YbTbBi) 3 Fe 5 O 12 .

【0015】[0015]

【発明の実施の形態】本発明者らが、ガーネット基板の
基板厚を一定として、RIG膜の膜厚を変えながらRI
G膜の育成実験を行ったところ、RIG膜の膜厚の増加
に伴い、外周端部から同心円状クラック最内部までの距
離a(図2〜3)は増加する傾向にあった。しかし、育
成する膜厚があまり薄いままのRIG膜では、同心円状
クラックが生じないものの、ガーネット基板とRIG膜
の界面に界面割れが発生することが分かった。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors assumed that the garnet substrate had a constant substrate thickness while changing the RIG film thickness.
When a growth experiment of the G film was performed, the distance a (FIGS. 2 and 3) from the outer peripheral end to the innermost portion of the concentric crack tended to increase as the thickness of the RIG film increased. However, it was found that in the case of the RIG film in which the film thickness to be grown is still too small, concentric cracks do not occur, but interface cracks occur at the interface between the garnet substrate and the RIG film.

【0016】そこで、同心円状クラックによる不良率お
よび界面割れによる不良率が、共に抑制されるガーネッ
ト基板の基板厚およびRIG膜の膜厚の関係を求めた。
Therefore, the relationship between the substrate thickness of the garnet substrate and the film thickness of the RIG film, in which the defect rate due to concentric cracks and the defect rate due to interface cracks are both suppressed, was determined.

【0017】ガーネット基板に(GdCa)3(GaM
gZr)512基板あるいは、Nd3Ga512基板を用
いて、RIG膜として(YbTbBi)3Fe512膜を
育成する場合について、ガーネット基板の基板厚および
RIG膜の膜厚を変えて育成実験を行い、それぞれの不
良率が20%以下となるガーネット基板の基板厚とRI
G膜の膜厚の関係、および、それぞれの不良率が5%以
下となるガーネット基板の基板厚とRIG膜の膜厚の関
係を実験的に求めた。いずれかの不良率が20%以下と
なる領域を図1に斜線で示す。
(GdCa) 3 (GaM)
In the case of growing a (YbTbBi) 3 Fe 5 O 12 film as a RIG film using a gZr) 5 O 12 substrate or an Nd 3 Ga 5 O 12 substrate, the substrate thickness of the garnet substrate and the film thickness of the RIG film were changed. The garnet substrate thickness and the RI that each defective rate is less than 20%
The relationship between the thickness of the G film and the relationship between the thickness of the RIG film and the thickness of the garnet substrate at which the respective defective rates are 5% or less were determined experimentally. A region where any of the defective rates is 20% or less is shown by oblique lines in FIG.

【0018】同心円状クラックによる不良率を、従来の
半分である20%以下に収めるには、ガーネット基板の
基板厚d(μm)とRIG膜の膜厚t(μm)とを
(1)式(数5)の関係にすればよいことが分かった。
In order to keep the defect rate due to concentric cracks at 20% or less, which is half of the conventional rate, the substrate thickness d (μm) of the garnet substrate and the film thickness t (μm) of the RIG film are expressed by the following equation (1). It has been found that the relationship of Expression 5) should be satisfied.

【0019】[0019]

【数5】d/t≧8×10-6t2−0.0091t+3.5768 (1)[Equation 5] d / t ≧ 8 × 10 −6 t 2 −0.0091t + 3.5768 (1)

【0020】さらに、不良率を小さい値、例えば5%以
下とするには、(2)式(数6)の関係にすればよい。
Further, in order to reduce the defect rate to a small value, for example, 5% or less, the relationship of equation (2) (formula 6) may be used.

【0021】[0021]

【数6】d/t≧9×10-6t2−0.0095t+3.6437 (2)[Equation 6] d / t ≧ 9 × 10 −6 t 2 −0.0095t + 3.6437 (2)

【0022】また、界面割れによる不良率を20%以下
に収めるには、ガーネット基板の基板厚d(μm)とR
IG膜の膜厚t(μm)とを(3)式(数7)の関係に
すればよいことが分かった。
Further, in order to keep the defect rate due to interface cracking at 20% or less, the substrate thickness d (μm) of the garnet substrate and R
It was found that the thickness t (μm) of the IG film should be in the relationship of the equation (3) (Equation 7).

【0023】[0023]

【数7】d/t≦6×10-6t2−0.0068t+3.4023 (3)[Equation 7] d / t ≦ 6 × 10 −6 t 2 −0.0068t + 3.4023 (3)

【0024】さらに、不良率を小さい値、例えば5%以
下とするには、(4)式(数8)の関係にすればよい。
Further, in order to reduce the defect rate to a small value, for example, 5% or less, the relationship of equation (4) (Equation 8) may be used.

【0025】[0025]

【数8】d/t≦7×10-6t2−0.0082t+3.6220 (4)[Equation 8] d / t ≦ 7 × 10 −6 t 2 −0.0082t + 3.6220 (4)

【0026】上記条件は、通常用いられるガーネット基
板およびRIG膜において、ガーネット基板の熱膨張係
数とRIG膜の熱膨張係数とがさほど変わらないため
か、ガーネット基板およびRIG膜の組成をそれぞれ変
えても同じ条件式が成り立った。
The above conditions may be because the thermal expansion coefficient of the garnet substrate and the thermal expansion coefficient of the RIG film do not change so much in the commonly used garnet substrate and RIG film, even if the compositions of the garnet substrate and the RIG film are respectively changed. The same condition holds.

【0027】なお、本発明において、RIG膜の膜厚を
250〜600μmの範囲と制限したのは、光通信用の
光アイソレータの一般的なRIG膜の膜厚が250〜6
00μm程度だからである。
In the present invention, the thickness of the RIG film is limited to the range of 250 to 600 μm because the thickness of the general RIG film of the optical isolator for optical communication is 250 to 600 μm.
This is because it is about 00 μm.

【0028】[0028]

【実施例】以下に実施例を用いて、本発明によるRIG
膜を育成するLPE法をさらに詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An RIG according to the present invention will be described below using examples.
The LPE method for growing a film will be described in more detail.

【0029】(実施例1)白金るつぼ中に、PbO、B
2 3 、B2 3 をフラックスとし、RIG成分とし
てYb2 3 、Tb2 3 、Fe2 3 を溶かし込んだ
融液を作製した。そして、該融液を電気炉内で830℃
に加熱しながら、その融液表面に2インチ径で、基板厚
が500μmのガーネット基板を接触させ、該ガーネッ
ト基板を100rpmで回転させて、片面に膜厚が45
0μmの組成(YbTbBi)3Fe512のRIG膜を
10枚育成した。
(Example 1) PbO, B in a platinum crucible
Using i 2 O 3 and B 2 O 3 as flux, a melt was prepared in which Yb 2 O 3 , Tb 2 O 3 and Fe 2 O 3 were dissolved as RIG components. Then, the melt is heated at 830 ° C. in an electric furnace.
A garnet substrate having a diameter of 2 inches and a substrate thickness of 500 μm is brought into contact with the surface of the melt while heating, and the garnet substrate is rotated at 100 rpm to form a film having a thickness of 45 μm on one surface.
Ten RIG films of 0 μm composition (YbTbBi) 3 Fe 5 O 12 were grown.

【0030】基板厚が500μmのガーネット基板上
に、膜厚が450μmのRIG膜を育成する本実施例の
LPE法では、(1)式(数5)および(3)式(数
7)の条件を満足し、同心円状クラックによる不良率と
界面割れによる不良率のいずれも20%以内であった。
In the LPE method of this embodiment for growing a RIG film having a thickness of 450 μm on a garnet substrate having a thickness of 500 μm, the conditions of Expressions (1) (5) and (3) are satisfied. Were satisfied, and both the defective rate due to concentric cracks and the defective rate due to interface cracking were within 20%.

【0031】(実施例2)ガーネット基板の基板厚を5
50μmとして、実施例1と同様にしてRIG膜を10
枚育成した。
(Embodiment 2) The thickness of the garnet substrate is set to 5
The RIG film was set to 10 μm in the same manner as
I raised it.

【0032】基板厚が550μmのガーネット基板上
に、膜厚が450μmのRIG膜を育成する本実施例の
LPE法では、(1)式(数5)および(3)式(数
7)の条件とともに、(2)式(数6)および(4)式
(数8)の条件も満足し、同心円状クラックによる不良
率と界面割れによる不良率のいずれも5%以下と、極め
て良好であった。
In the LPE method of this embodiment for growing a RIG film having a thickness of 450 μm on a garnet substrate having a thickness of 550 μm, the conditions of the equations (1) and (3) are satisfied. At the same time, the conditions of Expressions (2) (Equation 6) and (4) Expression (Equation 8) were satisfied, and both the defective rate due to concentric cracks and the defective rate due to interface cracking were extremely good at 5% or less. .

【0033】(実施例3)ガーネット基板の基板厚を6
00μmとして、実施例1と同様にしてRIG膜を10
枚育成した。
(Embodiment 3) The thickness of the garnet substrate is set to 6
The RIG film was set to 10 μm in the same manner as in Example 1.
I raised it.

【0034】基板厚が600μmのガーネット基板上
に、膜厚が450μmのRIG膜を育成する本実施例の
LPE法では、(1)式(数5)および(3)式(数
7)の条件とともに、(2)式(数6)および(4)式
(数8)の条件も満足し、同心円状クラックによる不良
率と界面割れによる不良率のいずれも5%以下と、極め
て良好であった。
In the LPE method of this embodiment for growing a RIG film having a thickness of 450 μm on a garnet substrate having a thickness of 600 μm, the conditions of Expressions (1) and (3) and (3) are satisfied. At the same time, the conditions of Expressions (2) (Equation 6) and (4) Expression (Equation 8) were satisfied, and both the defective rate due to concentric cracks and the defective rate due to interface cracking were extremely good at 5% or less. .

【0035】(実施例4)ガーネット基板の基板厚を6
50μmとして、実施例1と同様にしてRIG膜を10
枚育成した。
(Embodiment 4) The thickness of the garnet substrate is set to 6
The RIG film was set to 10 μm in the same manner as
I raised it.

【0036】基板厚が650μmのガーネット基板上
に、膜厚が450μmのRIG膜を育成する本実施例の
LPE法では、(1)式(数5)および(3)式(数
7)の条件を満足し、同心円状クラックによる不良率と
界面割れによる不良率のいずれも20%以内であった。
In the LPE method of this embodiment for growing a RIG film having a thickness of 450 μm on a garnet substrate having a thickness of 650 μm, the conditions of Expressions (1) and (3) and (3) are satisfied. Were satisfied, and both the defective rate due to concentric cracks and the defective rate due to interface cracking were within 20%.

【0037】(比較例1)ガーネット基板の基板厚を4
80μmとして、実施例1と同様にしてRIG膜を10
枚育成した。
Comparative Example 1 A garnet substrate having a thickness of 4
80 μm, and the RIG film was
I raised it.

【0038】基板厚が480μmのガーネット基板上
に、膜厚が450μmのRIG膜を育成する本比較例の
LPE法では、(1)式(数5)の条件を満足しない。
このLPE法では、同心円状クラックによる不良率が2
0%以上であった。
The LPE method of this comparative example, in which a RIG film having a thickness of 450 μm is grown on a garnet substrate having a thickness of 480 μm, does not satisfy the condition of the equation (1) (Equation 5).
In this LPE method, the defect rate due to concentric cracks is 2%.
0% or more.

【0039】(比較例2)ガーネット基板の基板厚を7
50μmとして、実施例1と同様にしてRIG膜を10
枚育成した。
Comparative Example 2 A garnet substrate having a thickness of 7
The RIG film was set to 10 μm in the same manner as
I raised it.

【0040】基板厚が750μmのガーネット基板上
に、膜厚が450μmのRIG膜を育成する本比較例の
LPE法では、(3)式(数7)の条件を満足しない。
このLPE法では、界面割れによる不良率が20%以上
であった。
The LPE method of this comparative example, in which a RIG film having a thickness of 450 μm is grown on a garnet substrate having a thickness of 750 μm, does not satisfy the condition of Expression (3) (Equation 7).
In this LPE method, the failure rate due to interface cracking was 20% or more.

【0041】[0041]

【発明の効果】以上述べたように、本発明の方法によれ
ば、同心円状クラックが少なく、ガーネット基板とRI
G膜との界面での界面割れが少ないRIG膜を得ること
ができる。よって、本発明の方法を用いれば、光アイソ
レータ用RIG膜や光磁界センサ用RIG膜を安価に生
産性よく作成することが可能となる。
As described above, according to the method of the present invention, concentric cracks are reduced and the garnet substrate and the RI
An RIG film with less interfacial cracking at the interface with the G film can be obtained. Therefore, by using the method of the present invention, it is possible to produce the RIG film for the optical isolator and the RIG film for the optical magnetic field sensor at low cost and with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】同心円状クラック不良率と界面割れ不良率がそ
れぞれ20%以内の、RIG膜の膜厚に対するガーネッ
ト基板の基板厚/RIG膜の膜厚の関係を示す関係図で
ある。
FIG. 1 is a relationship diagram showing the relationship between the thickness of a RIG film and the thickness of a garnet substrate / the thickness of a RIG film, in which the percentage of concentric crack defects and the percentage of interface crack defects are within 20%, respectively.

【図2】ガーネット基板上に育成したRIG膜の一実施
例を示す平面図である。
FIG. 2 is a plan view showing one embodiment of an RIG film grown on a garnet substrate.

【図3】図2のIII−III矢視図である。FIG. 3 is a view taken in the direction of arrows III-III in FIG. 2;

【符号の説明】[Explanation of symbols]

1 同心円状クラック 2 RIG膜 3 ガーネット基板 a 外周端部から同心円状クラック最内部までの距離 d ガーネット基板の基板厚 t RIG膜の膜厚 Reference Signs List 1 concentric crack 2 RIG film 3 garnet substrate a distance from outer edge to innermost concentric crack d substrate thickness of garnet substrate t film thickness of RIG film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類−鉄ガーネット成分を溶かしたフ
ラックス液面に、ガーネット基板を接触させ、該ガーネ
ット基板に、膜厚が250μm〜600μmの希土類−
鉄ガーネット膜を成長させる液相エピタキシャル成長方
法において、前記希土類−鉄ガーネット膜の膜厚をt
(μm)とし、前記ガーネット基板の基板厚をd(μ
m)としたとき、下式(数1)を満たすことを特徴とす
る液相エピタキシャル成長方法。 【数1】6×10-6t2−0.0068t+3.4023≧d/t≧8×10-6t2
−0.0091t+3.5768
A garnet substrate is brought into contact with a liquid surface of a flux in which an iron garnet component is dissolved, and a rare earth having a thickness of 250 μm to 600 μm is applied to the garnet substrate.
In the liquid phase epitaxial growth method for growing an iron garnet film, the rare earth-iron garnet film has a thickness of t.
(Μm), and the substrate thickness of the garnet substrate is d (μm).
m), the following equation (Equation 1) is satisfied. [Equation 1] 6 × 10 −6 t 2 −0.0068t + 3.4023 ≧ d / t ≧ 8 × 10 −6 t 2
−0.0091t + 3.5768
【請求項2】 希土類−鉄ガーネット膜の膜厚をt(μ
m)とし、前記ガーネット基板の基板厚をd(μm)と
したとき、下式(数2)を満たすことを特徴とする請求
項1に記載の液相エピタキシャル成長方法。 【数2】7×10-6t2−0.0082t+3.6220≧d/t≧9×10-6t2
−0.0095t+3.6437
2. The film thickness of the rare earth-iron garnet film is t (μ
The liquid-phase epitaxial growth method according to claim 1, wherein the following formula (Equation 2) is satisfied, where m) and the substrate thickness of the garnet substrate is d (μm). [Equation 2] 7 × 10 −6 t 2 −0.0082 t + 3.6220 ≧ d / t ≧ 9 × 10 −6 t 2
−0.0095t + 3.6437
【請求項3】 上記フラックスが酸化鉛系フラックス
で、上記ガーネット基板が(GdCa)3(GaMgZ
r)512基板あるいは、Nd3Ga512基板で、上記
希土類−鉄ガーネット膜が(YbTbBi)3Fe512
であることを特徴とする請求項1または2に記載の液相
エピタキシャル成長方法。
3. The flux is a lead oxide-based flux, and the garnet substrate is (GdCa) 3 (GaMgZ).
r) 5 O 12 substrate or Nd 3 Ga 5 O 12 substrate, wherein the rare earth-iron garnet film is (YbTbBi) 3 Fe 5 O 12
The liquid phase epitaxial growth method according to claim 1, wherein:
JP4943498A 1998-03-02 1998-03-02 Liquid phase epitaxial growth method of rare earth-iron garnet film Pending JPH11246296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4943498A JPH11246296A (en) 1998-03-02 1998-03-02 Liquid phase epitaxial growth method of rare earth-iron garnet film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4943498A JPH11246296A (en) 1998-03-02 1998-03-02 Liquid phase epitaxial growth method of rare earth-iron garnet film

Publications (1)

Publication Number Publication Date
JPH11246296A true JPH11246296A (en) 1999-09-14

Family

ID=12831011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4943498A Pending JPH11246296A (en) 1998-03-02 1998-03-02 Liquid phase epitaxial growth method of rare earth-iron garnet film

Country Status (1)

Country Link
JP (1) JPH11246296A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9897827B1 (en) 2016-07-27 2018-02-20 Intel Corporation Feedback controlled closed loop on-chip isolator
US10466515B2 (en) * 2016-03-15 2019-11-05 Intel Corporation On-chip optical isolator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10466515B2 (en) * 2016-03-15 2019-11-05 Intel Corporation On-chip optical isolator
US9897827B1 (en) 2016-07-27 2018-02-20 Intel Corporation Feedback controlled closed loop on-chip isolator

Similar Documents

Publication Publication Date Title
JPH09328398A (en) Faraday rotator exhibiting angular hysteresis
JPH11255600A (en) Production of bismuth-substituted rare earth iron garnet single crystal thick film
JPH11246296A (en) Liquid phase epitaxial growth method of rare earth-iron garnet film
JPH08290998A (en) Bismuth-substituted rare earth metal iron garnet single crystal
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
JP2874320B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JPH11100300A (en) Bismuth-substituted garnet material and its production
JP2867736B2 (en) Magneto-optical material, method of manufacturing the same, and optical element using the same
JP2004323300A (en) Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method
JPH0727823B2 (en) Magnetic material for magneto-optical element
JPH0817630A (en) Oxide garnet single crystal
JPH0930897A (en) Production of bismuth-substituted rare earth iron garnet single crystal thick film
JPS62138396A (en) Magnetic garnet material for magneto-optical element
JP2543997B2 (en) Bismuth-substituted oxide garnet single crystal and method for producing the same
JP3917859B2 (en) Faraday rotator
JP2004323299A (en) Method for manufacturing rare earth-iron garnet-film by liquid phase epitaxial method
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
JP2004331420A (en) PRODUCTION METHOD FOR Bi-SUBSTITUTED RARE-EARTH IRON GARNET SINGLE CRYSTAL MEMBRANE FOR MAGNETO-OPTICAL ELEMENT
JP2011256073A (en) Method for manufacturing bismuth-substituted type rare earth iron garnet crystal film
JP2003307716A (en) Method for manufacturing faraday rotator
JPH1192290A (en) Bismuth substituted type garnet thick film material and its production
JPH11116396A (en) Bismuth-substituted type garnet material and its production
JP2003252699A (en) Method for producing bismuth-substituted rare earth iron garnet single crystal
JPH0294607A (en) Oxide garnet single crystal and manufacture thereof
JP2003002792A (en) Method for producing magnetic garnet single crystal film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040713

A977 Report on retrieval

Effective date: 20050815

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051005

A521 Written amendment

Effective date: 20051028

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051007

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060502