JP2004323300A - Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method - Google Patents

Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method Download PDF

Info

Publication number
JP2004323300A
JP2004323300A JP2003120330A JP2003120330A JP2004323300A JP 2004323300 A JP2004323300 A JP 2004323300A JP 2003120330 A JP2003120330 A JP 2003120330A JP 2003120330 A JP2003120330 A JP 2003120330A JP 2004323300 A JP2004323300 A JP 2004323300A
Authority
JP
Japan
Prior art keywords
melt
rare earth
iron garnet
film
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003120330A
Other languages
Japanese (ja)
Inventor
Yosuke Asahara
陽介 浅原
Shuji Osumi
修司 大住
Nobuo Nakamura
宣夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003120330A priority Critical patent/JP2004323300A/en
Publication of JP2004323300A publication Critical patent/JP2004323300A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Thin Magnetic Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a rare earth-iron garnet film by a liquid phase epitaxial method, by which crystal failures, such as cracks generated during crystal growth or cracks generated at room temperature after crystal growth, can be easily reduced. <P>SOLUTION: The method for manufacturing the rare earth-iron garnet film by the liquid phase epitaxial method comprises bringing a garnet substrate 4 into contact with a melt 3 in a crucible 2, which melt is obtained by melting the components of a rare earth-iron garnet into a lead oxide-based flux, and then growing the crystal of the rare earth-iron garnet film on the substrate. In the method, the temperature distribution in the depth direction of the melt at the central part of the horizontal cross section of the crucible is controlled to be within ±1.5°C except a region from the melt surface to a depth of ≤5 mm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気光学デバイスに用いる希土類−鉄ガーネット膜に係り、特に、光通信に用いられる光アイソレータ用の希土類−鉄ガーネット膜の製造方法に関するものである。
【0002】
【従来の技術】
【0003】
【特許文献1】
特開昭59−57990号公報(2頁左下欄11行〜同右下欄3行)
【特許文献2】
特開平1−72996号公報(特許請求の範囲第1項)
【特許文献3】
特開平7−206594号公報(段落番号0013、0015、0019)
【0004】
希土類−鉄ガーネット膜(以下、RIG膜と記す)のファラデー効果を利用した磁気光学デバイスが精力的に開発されている。その中でも特に光通信における光源への戻り光を遮断する光アイソレータ、あるいは、発電所から消費者までの電力輸送経路である変電所、送電線、配電線に流れる電流により生じる磁界の大きさを測定して異常を発見する光磁界センサなどは既に実用化段階に入り、磁気光学デバイスに用いられるRIG膜もより安価なものが求められてきている。
【0005】
このRIG膜は、通常、液相エピタキシャル法(以下、LPE法と示す)によって結晶育成されている。すなわち、LPE法によるRIG膜の結晶育成は、例えば、フラックス成分である酸化鉛、酸化ビスマス、酸化ホウ素と、希土類−鉄ガーネット成分である希土類酸化物、酸化鉄、場合によって非磁性元素の酸化物などを白金ルツボ内に充填し、約950℃で融解させた後、ルツボ内の融液に、Ca、Mg、Zrで置換しその格子定数を大きくしたガドリニウム・ガリウム・ガーネット基板(以下、高格子定数GGG基板と記す)を接触させ、この基板上にRIG膜を約850℃でエピタキシャル成長させて行われる。
【0006】
そして、育成されたRIG膜は、この後、各磁気光学デバイスに合わせて所望の膜厚に研磨加工されて適用される。尚、酸化ビスマスはフラックス成分として説明したが、ビスマスは上記RIG膜を構成する元素でもあり、希土類−鉄ガーネット成分でもある。
【0007】
ところで、上述した従来のLPE法では、ガーネット基板とRIG膜の熱膨張係数差に起因する結晶育成中のクラック、あるいは、室温におけるガーネット基板とRIG膜の格子定数差に起因するクラックが頻繁に発生し、結晶の歩留まりを悪化させる問題があった。
【0008】
このため、前者の熱膨張係数差に起因するクラックの低減については、例えば特許文献1においてエピタキシャル成長を途中で中断して熱膨張係数が小さいガーネット基板の部分のみを研磨により削り落とし、後に残ったエピタキシャル膜を基板としてさらにエピタキシャル成長する方法が提案され、また、特許文献2において、RIG膜とガーネット基板の間に、熱膨張係数がRIG膜とガーネット基板の中間にあるような別の組成のRIG膜を中間層として成長させる方法等が提案されている。
【0009】
また、後者の格子定数差に起因するクラックの低減については、特許文献3において、ガーネット基板とRIG膜の室温における格子定数差の範囲を±0.001Åに限定して育成する方法が提案され、かつ、ガーネット基板とRIG膜の格子定数差を±0.001Å以内にするための手順も幾つか提案されている。
【0010】
【発明が解決しようとする課題】
しかし、特許文献1や特許文献2に記載された方法は、研磨や育成を繰り返す等その手順が多く、多くの時間をRIG膜育成に必要とする問題点があった。
【0011】
また、特許文献3に記載された方法も、過冷却温度ΔTを明確にするための実験が必要となり、また、RIG膜育成を繰り返していく中で、融液の組成変動のためにΔTが変化する等の問題が発生し、頻繁にΔTを測定する必要があり、結局多くの時間をRIG膜育成に必要とする問題点があった。
【0012】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、結晶育成中のクラック、また、結晶育成後の室温におけるクラックといった結晶不良を簡単に低減できる液相エピタキシャル法による希土類−鉄ガーネット膜の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明者等はルツボ内における融液の温度分布とクラックとの関係に着目し、鋭意研究したところ、融液の深さ方向の温度分布とクラックとの間に密接な関係があることを発見し本発明を完成するに至った。
【0014】
すなわち、請求項1に係る発明は、
酸化鉛系フラックスに希土類−鉄ガーネット成分を溶かしたルツボ内の融液にガーネット基板を接触させ、この基板上に希土類−鉄ガーネット膜を結晶育成させる液相エピタキシャル法による希土類−鉄ガーネット膜の製造方法を前提とし、
上記ルツボの横断面中心部における融液の深さ方向の温度分布が、融液面下5mmまでの領域を除いて(±1.5)℃以内に制御されていることを特徴とするものである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0016】
まず、希土類−鉄ガーネット膜(RIG膜)は、一般に縦型LPE炉と呼ばれる電気炉で結晶育成される。
【0017】
この縦型LPE炉は、図1に示すように、3ゾーンヒータで構成されるヒータ部1、白金ルツボ2、白金ルツボ2内にある融液3、ガーネット基板4、および、ガーネット基板保持治具5から成る。尚、6は耐火物である。
【0018】
本発明者等は、上述したように白金ルツボ2内における融液3の深さ方向の温度分布に着目して、育成中のクラック、および、育成後の室温におけるクラックとの関係を明確化させるために実験を試みた。
【0019】
上記ヒータ部1には、各々独立に温度を制御できる3ゾーンヒータを用意し、各ヒータの温度を制御することで、融液の深さ方向の温度分布が、(±1)℃、(±1.5)℃、(±2)℃、(±2.5)℃、(±3)℃の5つの状態を実現させた。また、温度分布はR熱電対を用い、RIG膜の育成温度において、ガーネット基板の中心が位置するルツボの横断面中心部における融液の底から、融液表面まで等間隔に10点測定して求めた。但し、融液表面の温度は液面の揺らぎ等の問題で正確に測定することは難しいため、融液の底から液面下5mmまでの温度分布を融液の温度分布とした。
【0020】
上記5種類の温度分布を有する融液で、育成温度を所望の温度Tに対して(±1)℃以内に制御して、厚さ500μmのRIG膜を各10枚育成した。
【0021】
尚、融液の温度分布以外に、育成温度自体を所望の温度Tに対してほぼ1℃の精度で制御したのは、育成温度によってRIG膜の組成が微妙に変化し、組成変化に伴い、RIG膜の格子定数が変化するためであり、ガーネット基板とRIG膜の室温における格子定数差が±0.001Åとなるよう育成温度を(±1)℃の精度で制御しないと、室温においてRIG膜にクラックが発生してしまう場合があるからである。
【0022】
そして、育成した各10枚のRIG膜における製品化できた面積と、結晶育成に使用したガーネット基板の面積比率を収率として、各温度分布の異なる融液との関係を図2に示す。図2から確認されるように、温度分布が(±1)℃、(±1.5)℃の融液では収率が90%を超えているが、温度分布が大きくなるに従いクラックの発生により収率が悪化し、(±2)℃では50%程度の収率しかない。従って、融液の深さ方向の温度分布を(±1.5)℃以内にすることが有効であることが分かった。
【0023】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0024】
[実施例1]
白金ルツボ中に、PbO、Bi、Bをフラックスとし、RIG成分としてGd、Fe、Al、Gaを溶かし込んだ融液を調製した。
【0025】
次に、この融液を950℃に加熱し、攪拌した後、育成温度810℃に降温し、保持した。そして、ヒータ温度を調節した後、融液の深さ方向の温度分布を測定し、(±1.5)℃であることを確認した。
【0026】
その後、再び融液を電気炉内で950℃に加熱し、所望の育成温度810℃に対し(±1)℃以内に制御しながら、Ca、Mg、Zrで置換した直径3インチのガドリニウム・ガリウム・ガーネット基板(高格子定数GGG基板)を上記融液表面に接触させると共に、上記基板を100rpmで回転させて基板の片面に厚さ550μmでかつ組成(GdBi)(FeAlGa)12のRIG膜を5枚育成した。
【0027】
育成後、RIG膜を光アイソレータとして使用する厚さに研磨して、光アイソレータ用RIG膜として使用可能の面積を測定し、結晶育成に使用したガーネット基板の面積との比率を収率とした。
【0028】
そして、90%以上の収率で使用可能であることが確認された。
【0029】
[実施例2]
RIG成分としてTb、Yb、Feを用い、かつ、結晶育成温度を830℃とした以外は実施例1と同様にして、高格子定数GGG基板の片面に厚さ500μmでかつ組成(YbTbBi)Fe12のRIG膜を5枚育成した。
【0030】
育成後、実施例1と同様にして収率を求めたところ、90%以上の収率で使用可能であることが確認された。
【0031】
[実施例3]
RIG成分としてGd、Al、Feを用い、かつ、結晶育成温度を860℃とした以外は実施例1と同様にして、高格子定数GGG基板の片面に厚さ550μmでかつ組成(GdBi)(FeAl)12のRIG膜を5枚育成した。
【0032】
育成後、実施例1と同様にして収率を求めたところ、90%以上の収率で使用可能であることが確認された。
【0033】
[比較例1]
融液の深さ方向の温度分布を(±3)℃とした以外は実施例1と同様にして、厚さ550μmでかつ組成(GdBi)(FeAlGa)12のRIG膜を5枚育成した。
【0034】
育成後、実施例1と同様にして収率を求めたところ、各実施例より劣る50%以下の収率で使用可能であることが確認された。
【0035】
[比較例2]
融液の深さ方向の温度分布を(±3)℃とした以外は実施例1と同様にして、厚さ500μmでかつ組成(YbTbBi)Fe12のRIG膜を5枚育成した。
【0036】
育成後、実施例1と同様にして収率を求めたところ、各実施例より劣る50%以下の収率で使用可能であることが確認された。
【0037】
[比較例3]
融液の深さ方向の温度分布を(±3)℃とした以外は実施例1と同様にして、厚さ550μmでかつ組成(GdBi)(FeAl)12のRIG膜を5枚育成した。
【0038】
育成後、実施例1と同様にして収率を求めたところ、各実施例より劣る50%以下の収率で使用可能であることが確認された。
【0039】
【発明の効果】
請求項1記載の発明に係る液相エピタキシャル法による希土類−鉄ガーネット膜の製造方法によれば、ルツボの横断面中心部における融液の深さ方向の温度分布が融液面下5mmまでの領域を除いて(±1.5)℃以内に制御されているため、クラックと呼ばれる結晶欠陥が少なく、光アイソレータや光磁界センサ等に適用される希土類−鉄ガーネット膜を簡単に製造することができる効果を有している。
【図面の簡単な説明】
【図1】RIG膜を育成する育成炉の概略断面図。
【図2】ルツボ内融液の温度分布とRIG膜の収率との関係を示すグラフ図。
【符号の説明】
1 ヒータ部
2 白金ルツボ
3 融液
4 ガーネット基板
5 ガーネット基板保持具
6 耐火物
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rare earth-iron garnet film used for a magneto-optical device, and more particularly to a method for manufacturing a rare earth-iron garnet film for an optical isolator used for optical communication.
[0002]
[Prior art]
[0003]
[Patent Document 1]
JP-A-59-57990 (page 11, lower left column, line 11 to lower right column, line 3)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 1-72996 (Claim 1)
[Patent Document 3]
JP-A-7-206594 (paragraph numbers 0013, 0015, 0019)
[0004]
Magneto-optical devices utilizing the Faraday effect of a rare earth-iron garnet film (hereinafter referred to as an RIG film) have been vigorously developed. In particular, it measures the magnitude of the magnetic field generated by the current flowing through the optical isolator that blocks the return light to the light source in optical communication, or the substation, transmission line, and distribution line that is the power transport route from the power plant to the consumer. Optical magnetic field sensors that detect abnormalities have entered the stage of practical use, and RIG films used in magneto-optical devices are also required to be cheaper.
[0005]
This RIG film is usually grown by a liquid phase epitaxial method (hereinafter, referred to as an LPE method). That is, the crystal growth of the RIG film by the LPE method includes, for example, lead oxide, bismuth oxide, and boron oxide as flux components, rare earth oxide and iron oxide as rare earth-iron garnet components, and oxides of nonmagnetic elements in some cases. Is filled in a platinum crucible and melted at about 950 ° C., and then the melt in the crucible is replaced with Ca, Mg, and Zr to increase the lattice constant of a gadolinium-gallium-garnet substrate (hereinafter referred to as a high lattice). (Referred to as a constant GGG substrate), and an RIG film is epitaxially grown on the substrate at about 850 ° C.
[0006]
Then, the grown RIG film is thereafter polished to a desired film thickness in accordance with each magneto-optical device and applied. Although bismuth oxide has been described as a flux component, bismuth is also an element constituting the RIG film, and is also a rare earth-iron garnet component.
[0007]
In the above-described conventional LPE method, cracks frequently occur during crystal growth due to a difference in thermal expansion coefficient between the garnet substrate and the RIG film, or cracks due to a lattice constant difference between the garnet substrate and the RIG film at room temperature. However, there is a problem that the yield of crystals is deteriorated.
[0008]
For this reason, regarding the former reduction of cracks due to the difference in thermal expansion coefficient, for example, in Patent Document 1, epitaxial growth is interrupted in the middle and only the garnet substrate portion having a small thermal expansion coefficient is ground off by polishing, and the remaining epitaxial growth is removed. A method of further epitaxially growing a film as a substrate has been proposed. In Patent Document 2, a RIG film having another composition such that the thermal expansion coefficient is between the RIG film and the garnet substrate is provided between the RIG film and the garnet substrate. A method of growing an intermediate layer has been proposed.
[0009]
Regarding the latter method of reducing cracks caused by the lattice constant difference, Patent Document 3 proposes a method of growing the garnet substrate and the RIG film by limiting the range of the lattice constant difference at room temperature to ± 0.001 °. Also, several procedures have been proposed for making the lattice constant difference between the garnet substrate and the RIG film within ± 0.001 °.
[0010]
[Problems to be solved by the invention]
However, the methods described in Patent Literature 1 and Patent Literature 2 involve many procedures such as repetition of polishing and growth, and have a problem that much time is required for growing the RIG film.
[0011]
Further, the method described in Patent Document 3 also requires an experiment to clarify the supercooling temperature ΔT, and changes in ΔT due to a change in the composition of the melt during repeated growth of the RIG film. In such a case, ΔT needs to be measured frequently, and as a result, there is a problem that much time is required for growing the RIG film.
[0012]
The present invention has been made in view of such problems, and it is an object of the present invention to provide a liquid phase epitaxial method that can easily reduce crystal defects such as cracks during crystal growth and cracks at room temperature after crystal growth. It is an object of the present invention to provide a method for producing a rare earth-iron garnet film by a method.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have focused on the relationship between the temperature distribution of the melt in the crucible and the cracks, and have conducted intensive research, and have found that the temperature distribution in the depth direction of the melt and the cracks are closely related. The present inventors have discovered that there is an important relationship, and have completed the present invention.
[0014]
That is, the invention according to claim 1 is
Production of a rare earth-iron garnet film by a liquid phase epitaxy method in which a garnet substrate is brought into contact with a melt in a crucible in which a rare earth-iron garnet component is dissolved in a lead oxide-based flux, and a rare earth-iron garnet film is grown on the substrate. Given the method,
The temperature distribution in the depth direction of the melt at the center of the cross section of the crucible is controlled within (± 1.5) ° C. except for a region up to 5 mm below the melt surface. is there.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0016]
First, a rare earth-iron garnet film (RIG film) is crystal-grown in an electric furnace generally called a vertical LPE furnace.
[0017]
As shown in FIG. 1, this vertical LPE furnace includes a heater unit 1 composed of a three-zone heater, a platinum crucible 2, a melt 3 in the platinum crucible 2, a garnet substrate 4, and a garnet substrate holding jig. Consists of five. Reference numeral 6 denotes a refractory.
[0018]
The present inventors pay attention to the temperature distribution in the depth direction of the melt 3 in the platinum crucible 2 as described above, and clarify the relationship between the crack during growth and the crack at room temperature after growth. Tried the experiment for.
[0019]
The heater unit 1 is provided with a three-zone heater capable of independently controlling the temperature, and by controlling the temperature of each heater, the temperature distribution in the depth direction of the melt is (± 1) ° C., (± 1). Five states of 1.5) ° C, (± 2) ° C, (± 2.5) ° C, and (± 3) ° C were realized. The temperature distribution was measured at equal intervals from the bottom of the melt at the center of the cross section of the crucible where the center of the garnet substrate was located to the surface of the melt using the R thermocouple at the growth temperature of the RIG film. I asked. However, since it is difficult to accurately measure the temperature of the melt surface due to problems such as fluctuations of the liquid surface, the temperature distribution from the bottom of the melt to 5 mm below the liquid surface was taken as the temperature distribution of the melt.
[0020]
With the melt having the above five types of temperature distributions, the growth temperature was controlled within (± 1) ° C. with respect to a desired temperature T, and 10 RIG films each having a thickness of 500 μm were grown.
[0021]
In addition to the temperature distribution of the melt, the growth temperature itself was controlled with a precision of approximately 1 ° C. with respect to the desired temperature T because the composition of the RIG film slightly changed depending on the growth temperature. This is because the lattice constant of the RIG film changes. If the growth temperature is not controlled with an accuracy of (± 1) ° C. so that the lattice constant difference between the garnet substrate and the RIG film at room temperature becomes ± 0.001 °, the RIG film at room temperature. This is because a crack may be generated in the case.
[0022]
FIG. 2 shows the relationship between the area of each of the ten grown RIG films that could be commercialized and the area ratio of the garnet substrate used for crystal growth as a yield and the melts having different temperature distributions. As can be seen from FIG. 2, the yield exceeds 90% in the case of a melt having a temperature distribution of (± 1) ° C. and (± 1.5) ° C. However, as the temperature distribution increases, cracks are generated. The yield deteriorates, and is only about 50% at (± 2) ° C. Therefore, it was found that it is effective to keep the temperature distribution in the depth direction of the melt within (± 1.5) ° C.
[0023]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
[0024]
[Example 1]
A melt is prepared by dissolving PbO, Bi 2 O 3 and B 2 O 3 in a platinum crucible and dissolving Gd 2 O 3 , Fe 2 O 3 , Al 2 O 3 and Ga 2 O 3 as RIG components. did.
[0025]
Next, the melt was heated to 950 ° C. and stirred, then cooled to a growth temperature of 810 ° C. and held. After adjusting the heater temperature, the temperature distribution in the depth direction of the melt was measured, and it was confirmed that the temperature was (± 1.5) ° C.
[0026]
Thereafter, the melt is again heated to 950 ° C. in an electric furnace, and while maintaining the desired growth temperature at 810 ° C. within (± 1) ° C., gadolinium gallium with a diameter of 3 inches replaced with Ca, Mg, and Zr. A garnet substrate (high lattice constant GGG substrate) is brought into contact with the surface of the melt, and the substrate is rotated at 100 rpm to form a RIG having a thickness of 550 μm and a composition (GdBi) 3 (FeAlGa) 5 O 12 on one surface of the substrate. Five films were grown.
[0027]
After the growth, the RIG film was polished to a thickness to be used as an optical isolator, the area usable as the RIG film for the optical isolator was measured, and the ratio to the area of the garnet substrate used for crystal growth was defined as the yield.
[0028]
And it was confirmed that it can be used with a yield of 90% or more.
[0029]
[Example 2]
The same procedure as in Example 1 was carried out except that Tb 2 O 3 , Yb 2 O 3 , and Fe 2 O 3 were used as RIG components, and the crystal growth temperature was 830 ° C. Five RIG films of 500 μm and having the composition (YbTbBi) 3 Fe 5 O 12 were grown.
[0030]
After the growth, the yield was determined in the same manner as in Example 1, and it was confirmed that the product could be used at a yield of 90% or more.
[0031]
[Example 3]
Gd 2 O 3 , Al 2 O 3 , and Fe 2 O 3 were used as the RIG components, and the thickness was formed on one surface of the high lattice constant GGG substrate in the same manner as in Example 1 except that the crystal growth temperature was 860 ° C. Five RIG films of 550 μm and having the composition (GdBi) 3 (FeAl) 5 O 12 were grown.
[0032]
After the growth, the yield was determined in the same manner as in Example 1, and it was confirmed that the product could be used at a yield of 90% or more.
[0033]
[Comparative Example 1]
Five RIG films having a thickness of 550 μm and a composition of (GdBi) 3 (FeAlGa) 5 O 12 were grown in the same manner as in Example 1 except that the temperature distribution in the depth direction of the melt was (± 3) ° C. did.
[0034]
After the growth, the yield was determined in the same manner as in Example 1. As a result, it was confirmed that the product could be used at a yield of 50% or less, which was inferior to that of each example.
[0035]
[Comparative Example 2]
Five RIG films having a thickness of 500 μm and a composition (YbTbBi) 3 Fe 5 O 12 were grown in the same manner as in Example 1 except that the temperature distribution in the depth direction of the melt was (± 3) ° C.
[0036]
After the growth, the yield was determined in the same manner as in Example 1. As a result, it was confirmed that the product could be used at a yield of 50% or less, which was inferior to that of each example.
[0037]
[Comparative Example 3]
Five RIG films having a thickness of 550 μm and a composition of (GdBi) 3 (FeAl) 5 O 12 were grown in the same manner as in Example 1 except that the temperature distribution in the depth direction of the melt was (± 3) ° C. did.
[0038]
After the growth, the yield was determined in the same manner as in Example 1. As a result, it was confirmed that the product could be used at a yield of 50% or less, which was inferior to that of each example.
[0039]
【The invention's effect】
According to the method for producing a rare earth-iron garnet film by the liquid phase epitaxial method according to the invention of claim 1, the temperature distribution in the depth direction of the melt at the center of the cross section of the crucible is up to 5 mm below the melt surface. The temperature is controlled within (± 1.5) ° C. except for the above, so that there are few crystal defects called cracks, and it is possible to easily manufacture a rare earth-iron garnet film applied to an optical isolator, an optical magnetic field sensor, and the like. Has an effect.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a growth furnace for growing a RIG film.
FIG. 2 is a graph showing the relationship between the temperature distribution of the melt in the crucible and the yield of the RIG film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heater part 2 Platinum crucible 3 Melt 4 Garnet board 5 Garnet board holder 6 Refractory

Claims (1)

酸化鉛系フラックスに希土類−鉄ガーネット成分を溶かしたルツボ内の融液にガーネット基板を接触させ、この基板上に希土類−鉄ガーネット膜を結晶育成させる液相エピタキシャル法による希土類−鉄ガーネット膜の製造方法において、上記ルツボの横断面中心部における融液の深さ方向の温度分布が、融液面下5mmまでの領域を除いて(±1.5)℃以内に制御されていることを特徴とする液相エピタキシャル法による希土類−鉄ガーネット膜の製造方法。Production of a rare earth-iron garnet film by a liquid phase epitaxial method in which a garnet substrate is brought into contact with a melt in a crucible in which a rare earth-iron garnet component is dissolved in a lead oxide-based flux, and a rare earth-iron garnet film is grown on the substrate. In the method, the temperature distribution in the depth direction of the melt at the center of the cross section of the crucible is controlled within (± 1.5) ° C. except for a region up to 5 mm below the melt surface. Of a rare earth-iron garnet film by a liquid phase epitaxial method.
JP2003120330A 2003-04-24 2003-04-24 Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method Pending JP2004323300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120330A JP2004323300A (en) 2003-04-24 2003-04-24 Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003120330A JP2004323300A (en) 2003-04-24 2003-04-24 Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method

Publications (1)

Publication Number Publication Date
JP2004323300A true JP2004323300A (en) 2004-11-18

Family

ID=33499281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120330A Pending JP2004323300A (en) 2003-04-24 2003-04-24 Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method

Country Status (1)

Country Link
JP (1) JP2004323300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007873A (en) * 2015-06-17 2017-01-12 住友金属鉱山株式会社 Production method of oxide single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007873A (en) * 2015-06-17 2017-01-12 住友金属鉱山株式会社 Production method of oxide single crystal

Similar Documents

Publication Publication Date Title
JP5377785B1 (en) Bismuth-substituted rare earth iron garnet single crystal and method for producing the same
JPWO2002022920A1 (en) Rare earth-iron garnet single crystal and method for producing the same
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
JPWO2002022920A6 (en) Rare earth-iron garnet single crystal, method for producing the same, and device using rare earth-iron garnet single crystal
JP5416041B2 (en) Single crystal substrate and method for manufacturing single crystal substrate
US4293371A (en) Method of making magnetic film-substrate composites
JP2001226196A (en) Terbium aluminum garnet single crystal and its producing method
JP2004323300A (en) Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method
US6165263A (en) Method for growing single crystal
JP6172013B2 (en) Method for producing GSGG single crystal and method for producing oxide garnet single crystal film
Blank et al. Single Crystal Growth of Yttrium Orthoferrite by a Seeded Bridgman Technique
JPH0557239B2 (en)
JP2007165668A (en) Bismuth substituted rare earth iron garnet single crystal and method of manufacturing same
JP2004323299A (en) Method for manufacturing rare earth-iron garnet-film by liquid phase epitaxial method
JP3624918B2 (en) Production method of bismuth-substituted rare earth iron garnet single crystals for short wavelengths
CN1622409A (en) Zinc oxide bluish violet light semiconductor growth using liquid phase epitaxial method
JP2005089223A (en) Single crystal and its manufacturing method
JP4253220B2 (en) Method for producing magnetic garnet single crystal film
JPH11246296A (en) Liquid phase epitaxial growth method of rare earth-iron garnet film
JP6819862B2 (en) Method for growing bismuth-substituted rare earth iron garnet single crystal film and bismuth-substituted rare earth iron garnet single crystal film
JP3806966B2 (en) Method for producing magnetic garnet single crystal
JPH05134221A (en) Magneto-optical material and production thereof and optical element formed by using this process
JP2004323298A (en) Method for manufacturing rare earth-iron garnet film by liquid phase epitaxial method
JP2763040B2 (en) Oxide garnet single crystal
JPH0930897A (en) Production of bismuth-substituted rare earth iron garnet single crystal thick film

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051024

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051025