JPH0294607A - Oxide garnet single crystal and manufacture thereof - Google Patents

Oxide garnet single crystal and manufacture thereof

Info

Publication number
JPH0294607A
JPH0294607A JP63246832A JP24683288A JPH0294607A JP H0294607 A JPH0294607 A JP H0294607A JP 63246832 A JP63246832 A JP 63246832A JP 24683288 A JP24683288 A JP 24683288A JP H0294607 A JPH0294607 A JP H0294607A
Authority
JP
Japan
Prior art keywords
single crystal
garnet single
film
oxide garnet
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63246832A
Other languages
Japanese (ja)
Other versions
JP2800973B2 (en
Inventor
Toshihiko Riyuuou
俊彦 流王
Masayuki Tanno
雅行 丹野
Tatsuo Mori
達生 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP63246832A priority Critical patent/JP2800973B2/en
Publication of JPH0294607A publication Critical patent/JPH0294607A/en
Application granted granted Critical
Publication of JP2800973B2 publication Critical patent/JP2800973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To remove the generation of a pit of an epitaxial film while making the thickness uniform and reducing the magnetic resonnance half value width DELTAH to less than 2.00e by removing a transition phase on the surface of an oxide garnet single crystal grown up on a substrate by a liquid phase epitaxial method. CONSTITUTION:A transition phase on the surface of an oxide garnet single crystal film grown up on a substrate by a liquid phase epitaxial method is removed. That is, as to bringing up of the oxide garnet single crystal, the substrate consisting of a rare earth metal, garium and garnet is dipped into the molten liquid of the oxide garnet single crystal in order to bring up the oxide garnet single crystal into a film shape by a known liquid phase epitaxial method. The film obtained in this way is eteched or polished by mineral acid such as phosphoric acid, sulphuric acid, nitric acid and hydrofluoric acid, or these are combined. Thereby, this film has no transition phase on the surface while having little unevenness of the thickness and a defect on the film surface is gone further making the magnetic resonnance half value width DELTAH less than 2.00e.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化物ガーネット単結晶およびその製造方法、
特には周波数100MI(zから数10G−のマイクロ
波帯で使用されるマイクロ波素子、例えばアイソレータ
ー、サーキュレータ−用の新規な磁性膜や磁気光学素子
用磁性膜として有用とされる厚膜状の酸化物ガーネット
単結晶およびその製進方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an oxide garnet single crystal and a method for producing the same,
In particular, thick oxide films are useful as new magnetic films for microwave devices such as isolators and circulators, and magnetic films for magneto-optical devices, which are used in the microwave band from 100 MI (z to several tens of G). This invention relates to a garnet single crystal and a method for producing the same.

(従来の技術とその問題点) 従来、マイクロ波素子用の磁性材料としてはフラックス
法で育成されたYIG結晶が使われていたが、フラック
ス法で作られたマイクロ波素子は製造コストが高いとい
う不利があるためにこれについては半導体工業で開発さ
れたウェーハプロセス技術を応用した液相エピタキシャ
ル法で育成したYIG結晶や(Y  B i  F e
)eoxz結品を使用することが提案されている。
(Conventional technology and its problems) Conventionally, YIG crystals grown by the flux method have been used as magnetic materials for microwave devices, but microwave devices made by the flux method are said to be expensive to manufacture. Due to this disadvantage, YIG crystals grown by liquid phase epitaxial method applying wafer process technology developed in the semiconductor industry and (YB i Fe
) has been proposed to use eoxz products.

しかし、この方法で得られる酸化物ガーネット単結晶は
膜厚が100μm以上のものも得られるけれども、厚み
にバラ付きがあるし、膜表面に無数の欠陥があり、さら
には磁気共鳴半値巾△Hが一定でなく、しかも高い値を
示すという欠点があるために実用に供することができな
いという不利がある。
However, although the oxide garnet single crystal obtained by this method can have a film thickness of 100 μm or more, the thickness varies, there are countless defects on the film surface, and the magnetic resonance half-width △H It has the disadvantage that it is not constant and exhibits a high value, so it cannot be put to practical use.

(発明の構成) 本発明はこのような不利を解決した高品質のマイクロ波
素子用材料や磁気光学素子用材料とじて有用とされる厚
膜状の酸化物ガーネット単結晶およびその製造方法に関
するもので、これは液相エピタキシャル法で基板上に育
成された酸化物ガーネット単結晶膜の表面の遷移相を除
去することにより、上記の欠点が除去されることを見出
したので、これは該膜をエツチングする工程、または研
磨する工程あるいはこれを組合せる工程により表面の遷
移相を除去することを特徴とするものである。
(Structure of the Invention) The present invention relates to a thick film-like oxide garnet single crystal that is useful as a high-quality material for microwave elements and a material for magneto-optical elements, and a method for producing the same, which solves the above-mentioned disadvantages. We discovered that the above drawbacks can be removed by removing the transition phase on the surface of a garnet oxide single crystal film grown on a substrate using the liquid phase epitaxial method. It is characterized in that the transition phase on the surface is removed by an etching process, a polishing process, or a combination thereof.

すなわち、本発明者らは前記したような不利を伴わない
酸化物ガーネット単結晶の製造方法について種々検討し
た結果、酸化物ガーネット単結晶の育成を希土類金属・
ガリウム・ガーネットからなる基板を酸化物ガーネット
単結晶の融液中に浸漬し、この基板上に公知の液相エピ
タキシャル法で酸化物ガーネット単結晶を膜状に育成さ
せたのち、得られた膜をリン酸、硫酸、硝酸、フッ酸な
どの鉱酸でエツチングまたは研磨し、もしくはこれらを
組合せると、この膜は表面の遷移相が除去され厚みのバ
ラツキも少なく、膜表面の欠陥もなくなり、さらには磁
気共鳴半値巾ΔHも2.00e以下に小さくなることを
見出すと共に、こシに得られた酸化物ガーネット単結晶
はマイクロ波素子用材料や磁気光学素子用材料として有
用とされることを確認して本発明を完成させた。
In other words, the present inventors have studied various methods for producing oxide garnet single crystals that do not involve the disadvantages mentioned above, and have found that the growth of oxide garnet single crystals can be carried out using rare earth metals.
A substrate made of gallium garnet is immersed in a melt of oxide garnet single crystal, and an oxide garnet single crystal is grown in the form of a film on this substrate by a known liquid phase epitaxial method. Etching or polishing with mineral acids such as phosphoric acid, sulfuric acid, nitric acid, or hydrofluoric acid, or a combination of these, removes the transition phase on the surface of the film, reduces thickness variation, and eliminates defects on the film surface. found that the magnetic resonance half-value width ΔH was also small to less than 2.00e, and confirmed that the oxide garnet single crystal obtained in this way is useful as a material for microwave devices and magneto-optical devices. The present invention was completed.

以下にこれをさらに詳述する。This will be explained in further detail below.

本発明の酸化物ガーネット単結晶を育成するために使用
するガーネット基板単結晶はガドリニウム・ガリウム・
ガーネット(以下GGGと略記する)、サマリウム・ガ
リウム・ガーネット(以下SGGと略記する)、ネオジ
ム・ガリウム・ガーネット(以下NGOと略記する)、
上記したGGGにCa、Mg、ZrまたはYを置換した
GGG系のSOG、NOG、YOG [いずれも信越化
学工業■商品名]とすればよく、これらはGd、O,。
The garnet substrate single crystal used to grow the oxide garnet single crystal of the present invention includes gadolinium, gallium,
Garnet (hereinafter abbreviated as GGG), samarium gallium garnet (hereinafter abbreviated as SGG), neodymium gallium garnet (hereinafter abbreviated as NGO),
GGG-based SOG, NOG, and YOG [all trade names of Shin-Etsu Chemical Co., Ltd.] in which Ca, Mg, Zr, or Y is substituted for the above-mentioned GGG may be used, and these may be Gd, O, or GGG.

Sm、0.、Nd、O,または必要に応じCaO,Mg
o、ZrO,Y、○、などの置換材をそれぞれGa2O
3の所定量と共にルツボに仕込み、高周波誘導でそれぞ
れの融点以上に加熱して溶融したのち。
Sm, 0. , Nd, O, or as necessary CaO, Mg
Replacement materials such as o, ZrO, Y, ○, etc. with Ga2O
After placing them in a crucible together with the prescribed amounts of 3 and heating them above their respective melting points using high-frequency induction, they are melted.

この融液からチョクラルスキー法で単結晶を引上げるこ
とによって得ることができる。
It can be obtained by pulling a single crystal from this melt using the Czochralski method.

また、この基板単結晶上に液相エピタキシャル法でエピ
タキシャル成長させる酸化物ガーネット単結晶膜は組成
式がY、 F e、01□または(YM)aFe、−a
012または(Y M)a(F e N)、−BOl、
で示され、このMがLa、Bi、Gd、Luで、NがG
a、Al、Sc、Inの少なくとも1種の元素から選択
され、aが3.・1≧a≧3.0であるものとされる。
Further, the oxide garnet single crystal film epitaxially grown on this substrate single crystal by the liquid phase epitaxial method has a composition formula of Y, Fe, 01□ or (YM)aFe, -a.
012 or (YM)a(FeN), -BOI,
, where M is La, Bi, Gd, Lu, and N is G.
selected from at least one element of a, Al, Sc, and In, and a is 3. - It is assumed that 1≧a≧3.0.

この式Y、Fe8O12、(Y M)aF f3a−a
ox*または(YM)B(FeN)、−BO□、で示さ
れる単結晶は白金ルツボ中に必要に応じY2O3、Fe
、O,、M2O,またはN、O,をフラックスとしての
PbO1820g ト共に仕込み、900〜1,300
℃に加熱してこれを融解させたのち、この融液からLP
E法で単結晶を引き上げることによって得ることができ
る。
This formula Y, Fe8O12, (Y M)aF f3a-a
The single crystal represented by ox* or (YM)B(FeN), -BO□ is placed in a platinum crucible with Y2O3, Fe
, O, , M2O, or N, O, and 1820 g of PbO as a flux were charged, and the amount of 900 to 1,300
After melting this by heating to ℃, LP is extracted from this melt.
It can be obtained by pulling a single crystal using the E method.

本発明の方法はこのようにして得た酸化物ガーネット単
結晶厚膜をついでエツチングまたは研磨し、あるいはこ
れらを組合せるのであるが、このエツチングはリン酸、
硫酸、硝酸、フッ酸などの鉱酸を用いて行なえばよく、
これは例えばこのような鉱酸液を100〜250℃に加
熱し、この液中に酸化物ガーネット単結晶を浸漬すれば
よい。
In the method of the present invention, the oxide garnet single crystal thick film thus obtained is then etched or polished, or a combination of these is performed.
This can be done using mineral acids such as sulfuric acid, nitric acid, or hydrofluoric acid.
This can be done, for example, by heating such a mineral acid solution to 100 to 250°C and immersing the oxide garnet single crystal in this solution.

また、研磨はガーネット単結晶を研磨材を用いて研磨す
るのであるが、この研磨剤としてはこの種の研磨に一般
に使用されているA1□o3、SiC、ダイヤモンド粉
などの硬質微粉末を使用すればよい。なお、このあとの
洗浄は公知の方法で行なえばよい。
In addition, the garnet single crystal is polished using an abrasive, and the abrasive is hard fine powder such as A1□O3, SiC, or diamond powder, which is commonly used for this type of polishing. Bye. Note that subsequent cleaning may be performed by a known method.

上記したような方法で得られる酸化物ガーネット単結晶
厚膜は育成されたエピタキシャル膜にピットを生じるこ
とがなく、厚みも均一で、しかも磁気共鳴半値巾ΔI(
も2.OOe以下と小さいのでマイクロ波素子用材料や
磁気光学素子用材料としてすぐれた物性をもつものとな
り、このものは例えば周波数100M)Izから数10
0I(zのマイクロ波帯で使用されるマイクロ波素子と
して有用とされるほか、光アイソレータ−、サーキュレ
ータ−用の磁気光学素子用磁性膜としても有用とされる
The oxide garnet single crystal thick film obtained by the method described above does not produce pits in the grown epitaxial film, has a uniform thickness, and has a magnetic resonance half-value width ΔI (
Also 2. Because it is small (less than OOe), it has excellent physical properties as a material for microwave devices or magneto-optical devices.
In addition to being useful as a microwave element used in the microwave band of 0I(z), it is also useful as a magnetic film for magneto-optical elements for optical isolators and circulators.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例1 基板としてGGG単結晶ウェーハを用い、エピタキシャ
ル膜を形成させる成分として所定量のY2O,、Fe、
03、Bi、O,をフラックス成分としてのPbO,B
、O,と共に白金ルツボに仕込み、1.100℃に加熱
してこれを溶融させ、この融液からLPE法でGGG単
結晶ウェーハの(111)方向に式Y、、B i、LL
F e、O,、で示されるエピタキシャル膜を厚さ11
0μmに成長させて酸化物ガーネット単結晶を作り、つ
いでこれを180℃のリン酸液中でエツチングしたのち
、砥粒FO#1200を用いて70分×6回の研磨を行
い、洗浄したところ、膜厚が110μmで厚みのバラツ
キが2.6μsであり、ΔHが1.60eである酸化物
ガーネットウェーハが得られ、このものはその表面を顕
微鏡で観察したところ第1図に示したようにこれにはク
ラック、ヒビという欠陥はみられなかった。
Example 1 A GGG single crystal wafer was used as a substrate, and a predetermined amount of Y2O, Fe,
03, PbO, B with Bi, O, as flux components
, O, in a platinum crucible and heated to 1.100°C to melt it, and from this melt, use the LPE method to form the formula Y, , B i, LL in the (111) direction of the GGG single crystal wafer.
The epitaxial film denoted by Fe,O,, has a thickness of 11
An oxide garnet single crystal was grown to 0 μm, then etched in a phosphoric acid solution at 180°C, and then polished 6 times for 70 minutes using abrasive FO#1200 and washed. An oxide garnet wafer with a film thickness of 110 μm, a thickness variation of 2.6 μs, and a ΔH of 1.60e was obtained, and the surface of this wafer was observed under a microscope, as shown in Figure 1. No defects such as cracks or cracks were observed.

しかし、比較のために上記で得たエツチング、研磨工程
前のウェーハ表面を顕微鏡でしらべたところ、このもの
は第2図に示したように無数のピットが認められ、この
ものはΔHも2.60eと高い値を示した。
However, for comparison, when the surface of the wafer obtained above before the etching and polishing process was examined under a microscope, numerous pits were observed as shown in FIG. 2, and the ΔH was 2. It showed a high value of 60e.

実施例2 所定量のY2O,、F e、O,を用いて実施例1と同
一の方法でGGGウェーハの(111)方向にY、Fe
、○、2で示されるエピタキシャル膜を得たが、これは
膜厚のバラツキ、ΔH値共、実施例1と同様、良好な結
果を示した。
Example 2 Y, Fe was deposited in the (111) direction of the GGG wafer using the same method as in Example 1 using a predetermined amount of Y2O,, Fe, O,
Epitaxial films indicated by .

実施例3 所定量のY2O3、Bi2O,、Fe、O,、Ga。Example 3 Predetermined amounts of Y2O3, Bi2O,, Fe, O,, Ga.

0、を用いて実施例1と同一の方法でGGGウェーハの
(111)方向にY2IIBia1Fe4□Gaa!0
12で示されるエピタキシャル膜を得たが、これは膜厚
のバラツキ、ΔH値共、実施例1と同様、良好な結果を
示した。
0, Y2IIBia1Fe4□Gaa! in the (111) direction of the GGG wafer in the same manner as in Example 1 using 0
An epitaxial film designated by No. 12 was obtained, which showed good results in terms of film thickness variation and ΔH value, similar to Example 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例で得られた酸化物ガーネット単結晶厚膜
の[微鏡写真を示したものであり、第2図は比較例とし
てのエツチング、研磨工程前の酸化物ガーネット単結晶
厚膜の顕微鏡写真を示したものである。
Figure 1 shows a microscopic photograph of the oxide garnet single crystal thick film obtained in the example, and Figure 2 shows the oxide garnet single crystal thick film before the etching and polishing process as a comparative example. This is a microscopic photograph of .

Claims (5)

【特許請求の範囲】[Claims] 1. 液相エピタキシャル法で基板上に育成された酸化
物ガーネット単結晶において、表面の遷移相が除去され
ていることを特徴とする酸化物ガーネット単結晶。
1. An oxide garnet single crystal grown on a substrate by a liquid phase epitaxial method, characterized in that a transition phase on the surface has been removed.
2. 液相エピタキシャル法で基板上に酸化物ガーネッ
ト単結晶厚膜を育成する工程、該厚膜をエッチングする
工程または研磨する工程あるいはこれらを組合せる工程
とよりなることを特徴とする酸化物ガーネット単結晶の
製造方法。
2. An oxide garnet single crystal comprising the steps of growing a thick oxide garnet single crystal film on a substrate by liquid phase epitaxial method, etching or polishing the thick film, or a combination thereof. manufacturing method.
3. 酸化物ガーネット単結晶の膜厚が1μm以上であ
る請求項1に記載の酸化物ガーネット単結晶膜の製造方
法。
3. The method for producing an oxide garnet single crystal film according to claim 1, wherein the oxide garnet single crystal film has a thickness of 1 μm or more.
4. リン酸でエッチングしたのち研磨する請求項2に
記載の酸化物ガーネット単結晶膜の製造方法。
4. 3. The method for producing an oxide garnet single crystal film according to claim 2, wherein the oxide garnet single crystal film is etched with phosphoric acid and then polished.
5. 基板がガドリニウム・ガリウム・ガーネット(G
GG)、一部をCa,Zr,Mg又はYの1種又は2種
以上で置換したGGG系、サマリウム・ガリウム・ガー
ネット(SGG)またはネオジム・ガリウム・ガーネッ
ト(NGG)のいずれかであり、酸化物ガーネット単結
晶膜が式Y_3Fe_5O_1_2、(YM)_aFe
_8O_1_2または(YM)_a(FeN)_a_−
_aO_1_2(こゝにMはLa、Gd、Bi、Luか
ら、NはGa、Al、Sc、Inから選択される少なく
とも1つの元素、aは3.1≧a≧3.0)で示される
ものである請求項1に記載の酸化物ガーネット単結晶膜
の製造方法。
5. The substrate is gadolinium gallium garnet (G
GG), GGG series partially substituted with one or more of Ca, Zr, Mg or Y, samarium gallium garnet (SGG) or neodymium gallium garnet (NGG), and is oxidized. The monocrystalline garnet film has the formula Y_3Fe_5O_1_2, (YM)_aFe
_8O_1_2 or (YM)_a(FeN)_a_-
_aO_1_2 (where M is at least one element selected from La, Gd, Bi, and Lu, N is at least one element selected from Ga, Al, Sc, and In, and a is 3.1≧a≧3.0) The method for producing an oxide garnet single crystal film according to claim 1.
JP63246832A 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal Expired - Fee Related JP2800973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63246832A JP2800973B2 (en) 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63246832A JP2800973B2 (en) 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal

Publications (2)

Publication Number Publication Date
JPH0294607A true JPH0294607A (en) 1990-04-05
JP2800973B2 JP2800973B2 (en) 1998-09-21

Family

ID=17154356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63246832A Expired - Fee Related JP2800973B2 (en) 1988-09-30 1988-09-30 Method for producing oxide garnet single crystal

Country Status (1)

Country Link
JP (1) JP2800973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434101A (en) * 1992-03-02 1995-07-18 Tdk Corporation Process for producing thin film by epitaxial growth
JP2017044770A (en) * 2015-08-25 2017-03-02 住友金属鉱山株式会社 Method for manufacturing Faraday rotator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022294A (en) * 1973-07-02 1975-03-10
JPS6016900A (en) * 1983-07-04 1985-01-28 Nec Corp Preparation of magnetic thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5022294A (en) * 1973-07-02 1975-03-10
JPS6016900A (en) * 1983-07-04 1985-01-28 Nec Corp Preparation of magnetic thin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434101A (en) * 1992-03-02 1995-07-18 Tdk Corporation Process for producing thin film by epitaxial growth
US5662740A (en) * 1992-03-02 1997-09-02 Tdk Corporation Process for producing thin film by epitaxial growth
JP2017044770A (en) * 2015-08-25 2017-03-02 住友金属鉱山株式会社 Method for manufacturing Faraday rotator

Also Published As

Publication number Publication date
JP2800973B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US4544438A (en) Liquid phase epitaxial growth of bismuth-containing garnet films
JPH0294607A (en) Oxide garnet single crystal and manufacture thereof
JPWO2003000963A1 (en) Substrate for forming magnetic garnet single crystal film, optical element and method for manufacturing the same
JPWO2004070091A1 (en) Magnetic garnet single crystal film forming substrate, manufacturing method thereof, optical element and manufacturing method thereof
US4400445A (en) Liquid phase epitaxial growth of garnet films
JPS6199318A (en) Fabrication of magnetic garnet film
JPH09202697A (en) Production of bismuth-substituted type garnet
US4273609A (en) Rinse melt for LPE crystals
JPH0475879B2 (en)
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
JPH0549638B2 (en)
JPS6335496A (en) Production of single crystal garnet
JP4253220B2 (en) Method for producing magnetic garnet single crystal film
JP2818343B2 (en) Substrate holder for single crystal growth
JPH02248398A (en) Oxide garnet single crystal film and its production
JP2794673B2 (en) Oxide garnet single crystal magnetic film and method of manufacturing the same
JP2004269283A (en) Substrate for forming magnetic garnet single crystal film, its manufacturing method, optical element, and its manufacturing method
JP2000357622A (en) Method for manufacturing magnetic garnet single crystal film, and the magnetic garnet single crystal film
WO2019193950A1 (en) Magnetic garnet single crystal and production method for magnetic garnet single crystal
JPS61151090A (en) Crystal growth of garnet film
JPS5849520B2 (en) garnet
JPH11100300A (en) Bismuth-substituted garnet material and its production
JP4253221B2 (en) Method for producing magnetic garnet single crystal film
JP2002308696A (en) Garnet single crystal substrate and method for producing bismuth-substituted rare earth garnet single crystal film using the same
JP2003002792A (en) Method for producing magnetic garnet single crystal film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees