JPH11244867A - Treatment of silica-containing geothermal hot water - Google Patents

Treatment of silica-containing geothermal hot water

Info

Publication number
JPH11244867A
JPH11244867A JP10048201A JP4820198A JPH11244867A JP H11244867 A JPH11244867 A JP H11244867A JP 10048201 A JP10048201 A JP 10048201A JP 4820198 A JP4820198 A JP 4820198A JP H11244867 A JPH11244867 A JP H11244867A
Authority
JP
Japan
Prior art keywords
silica
hot water
geothermal hot
water
geothermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10048201A
Other languages
Japanese (ja)
Other versions
JP3401179B2 (en
Inventor
Akira Ueda
晃 上田
Takafumi Furukawa
孝文 古川
Kazuo Iwami
一雄 石見
Shigeru Sugiyama
茂 杉山
Hideji Ajima
秀司 阿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Daido Chemical Industry Co Ltd
Mitsubishi Materials Corp
Original Assignee
Electric Power Development Co Ltd
Daido Chemical Industry Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Daido Chemical Industry Co Ltd, Mitsubishi Materials Corp filed Critical Electric Power Development Co Ltd
Priority to JP04820198A priority Critical patent/JP3401179B2/en
Publication of JPH11244867A publication Critical patent/JPH11244867A/en
Application granted granted Critical
Publication of JP3401179B2 publication Critical patent/JP3401179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently treat silica-contg. geothermal hot water and to obtain treated water with a low silica concn. by adding an aryl-based nitrogen-contg. cation compd. to a silica-contg. geothermal water to aggregate the silica in the geothermal hot water and separating and removing the aggregate. SOLUTION: In the process of producing treated water with a low silica concn. from silica-contg. geothermal hot water, first, an aryl-based nitrogen- contg. cation compd. is added to the silica-cong. geothermal hot water to flocculate the silica in the geothermal hot water, and then the flocculated material is separated and removed. The aryl-based nitrogen-contg. cation compd. to be used is expressed by the formula, wherein X is a counter ion such as Cl. The aryl-based nitrogen-contg. cation compd. expressed by the formula has 500 to 3,000,000 mol.wt., preferably 150,000 to 2,000,000 mol.wt., and its amt. to be added is >=50 mg/kg to the silica contg. geothermal hot water. Before the aryl-based nitrogen-contg. cation compd. is added, the silica-contg. geothermal hot water is retained for >=10 min in a retaining tank to increase the treatment efficiency.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリカ含有地熱熱
水を処理する方法に関し、さらに詳しくは、シリカ含有
地熱熱水を効率よく処理し、シリカ濃度の低い処理水を
得ることができ、かつ処理コスト低減が可能な方法に関
する。
[0001] The present invention relates to a method for treating silica-containing geothermal water, and more particularly, to a method for efficiently treating silica-containing geothermal water to obtain treated water having a low silica concentration. The present invention relates to a method capable of reducing processing costs.

【0002】[0002]

【従来の技術】地熱発電においては、排出される地熱熱
水中に、高濃度のシリカが過飽和の状態で含まれる場合
が多く、これが配管や還元井の内壁にシリカスケールと
して多量に付着する問題が発生することがある。従来、
上記シリカ含有地熱熱水を処理し、シリカ濃度を低減さ
せる方法としては、例えば特開昭63−1496号公報
に開示された方法が知られている。この公報に開示され
た方法は、地熱発電において排出されるシリカ含有地熱
熱水にシリカシードを添加し、地熱熱水中のシリカをシ
リカシード上に析出させ、析出物を膜分離により熱水中
から除去するものである。またこの他、シリカ含有地熱
熱水に多価陽イオン、例えばアルミニウムイオンを添加
して熱水中のシリカを凝集させ、この凝集物を核として
シリカコロイドを生成させた後、このシリカコロイドを
浮上分離により除去する方法も知られている。
2. Description of the Related Art In geothermal power generation, a high concentration of silica is often contained in a supersaturated state in discharged geothermal hot water, and a large amount of silica adheres to the inner walls of pipes and reduction wells as silica scale. May occur. Conventionally,
As a method for treating the above-mentioned silica-containing geothermal hot water to reduce the silica concentration, for example, a method disclosed in JP-A-63-1496 is known. In the method disclosed in this publication, a silica seed is added to silica-containing geothermal hot water discharged in geothermal power generation, silica in the geothermal hot water is precipitated on the silica seed, and the precipitate is separated from the hot water by membrane separation. Is to be removed. In addition, a polyvalent cation, for example, an aluminum ion is added to the silica-containing geothermal hot water to aggregate the silica in the hot water, and a silica colloid is generated using the aggregate as a nucleus. A method of removing by separation is also known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
シリカシードや多価陽イオンを地熱熱水に添加する方法
では、処理効率が低く、処理水中のシリカ濃度を十分な
レベルまで低下させることができない問題があった。特
に多価陽イオンを添加する方法では、多量の多価陽イオ
ンの添加が必要となるため、処理コストが嵩む不都合が
あった。本発明は、上記事情に鑑みてなされたもので、
シリカ含有地熱熱水を効率よく処理し、シリカ濃度の低
い処理水を得ることができ、かつ処理コスト低減が可能
なシリカ含有地熱熱水処理方法を提供することを目的と
する。
However, in the above-mentioned method of adding silica seeds or polyvalent cations to geothermal hot water, the treatment efficiency is low and the silica concentration in the treated water cannot be reduced to a sufficient level. There was a problem. In particular, in the method of adding a polyvalent cation, a large amount of the polyvalent cation needs to be added, so that there is an inconvenience that the processing cost increases. The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a silica-containing geothermal water treatment method capable of efficiently treating silica-containing geothermal water, obtaining treated water having a low silica concentration, and reducing the treatment cost.

【0004】[0004]

【課題を解決するための手段】本発明のシリカ含有地熱
熱水処理方法は、シリカ含有地熱熱水にアリル系含窒素
カチオン化合物を添加し、地熱熱水中のシリカを凝集さ
せ、凝集物を分離除去するものである。ここで用いるア
リル系含窒素カチオン化合物としては、シリカ処理効率
の観点から、下記化学式(1)で示されるものを用いる
のが好適である。
The silica-containing geothermal hot water treatment method of the present invention comprises adding an allylic nitrogen-containing cationic compound to a silica-containing geothermal hot water, aggregating the silica in the geothermal hot water, and removing the agglomerate. It is to be separated and removed. As the allyl-based nitrogen-containing cation compound used here, it is preferable to use a compound represented by the following chemical formula (1) from the viewpoint of silica treatment efficiency.

【化2】 (化学式(1)中、XはCl等の対イオンを示すもので
ある。) 上記化学式(1)で示すアリル系含窒素カチオン化合物
としては、分子量が500〜3000000、好ましく
は150000〜2000000であるものを用いるの
が望ましい。またアリル系含窒素カチオン化合物の添加
量は、シリカ含有地熱熱水に対して50mg/kg以
上、さらに好ましくは50〜150mg/kgとするの
が望ましい。また、アリル系含窒素カチオン化合物を添
加するに先立ち、シリカ含有地熱熱水を滞留槽中で10
分間以上滞留させると、処理効率を高めることができる
ため好ましい。
Embedded image (In the chemical formula (1), X represents a counter ion such as Cl.) The allyl-based nitrogen-containing cation compound represented by the chemical formula (1) has a molecular weight of 500 to 3,000,000, preferably 150,000 to 2,000,000. It is desirable to use one. The addition amount of the allyl-based nitrogen-containing cation compound is preferably 50 mg / kg or more, more preferably 50 to 150 mg / kg, based on the silica-containing geothermal hot water. Prior to the addition of the allylic nitrogen-containing cation compound, silica-containing geothermal hot water is placed in a retention tank for 10 minutes.
It is preferable that the retention time is longer than one minute because the treatment efficiency can be increased.

【0005】[0005]

【発明の実施の形態】図1は、本発明のシリカ含有地熱
熱水処理方法の一実施形態を実施するために用いられる
装置を示す流れ図である。この装置は、滞留槽1と、混
合・反応槽2と、沈殿槽3を備えて構成され、混合・反
応槽2には、アリル系含窒素カチオン化合物を被処理水
に添加する添加ライン4が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a flow chart showing an apparatus used for carrying out one embodiment of the silica-containing geothermal hot water treatment method of the present invention. This apparatus includes a retention tank 1, a mixing / reaction tank 2, and a precipitation tank 3. The mixing / reaction tank 2 has an addition line 4 for adding an allylic nitrogen-containing cation compound to the water to be treated. It is connected.

【0006】滞留槽1としては、被処理水の滞留時間が
10分以上となる容量のものを用いるのが好ましい。こ
れは、この滞留時間が10分未満であると、滞留槽1中
での被処理水中シリカの重合反応が不十分となり混合・
反応槽2中でのシリカ凝集反応の効率が低下するためで
ある。また混合・反応槽2、沈殿槽3としては、被処理
水滞留時間がそれぞれ5〜10分、30分程度となる容
量のものを用いるのが好ましい。
It is preferable to use the storage tank 1 having a capacity such that the retention time of the water to be treated is 10 minutes or more. If the residence time is less than 10 minutes, the polymerization reaction of the silica in the water to be treated in the retention tank 1 becomes insufficient, and
This is because the efficiency of the silica aggregation reaction in the reaction tank 2 decreases. As the mixing / reaction tank 2 and the sedimentation tank 3, it is preferable to use those having capacities such that the retention time of the water to be treated is about 5 to 10 minutes and about 30 minutes, respectively.

【0007】以下、図1を参照して本発明のシリカ含有
地熱熱水処理方法の一実施形態について詳しく説明す
る。まず、シリカ含有地熱熱水、例えばシリカを過飽和
状態で含有する地熱熱水を被処理水として管路5を通し
て滞留槽1に導入する。滞留槽1においては、被処理水
中のシリカの重合反応が進行する。なお、水溶液中のシ
リカは、通常、その一部がH3SiO4 -等の負電荷を帯
びた形態となることが知られている。
Hereinafter, an embodiment of the silica-containing geothermal hot water treatment method of the present invention will be described in detail with reference to FIG. First, geothermal hot water containing silica, for example, geothermal hot water containing silica in a supersaturated state is introduced into the retention tank 1 through the pipe 5 as water to be treated. In the residence tank 1, the polymerization reaction of the silica in the water to be treated proceeds. Incidentally, the silica in the aqueous solution is usually a part of H 3 SiO 4 - It is known that the form of the negatively charged, such as.

【0008】次いで、滞留槽1を経た被処理水を混合・
反応槽2に導入し、混合・反応槽2中の被処理水に、添
加ライン4を通してアリル系含窒素カチオン化合物を添
加し、十分に攪拌、混合する。ここで用いるアリル系含
窒素カチオン化合物としては、シリカ処理効率の観点か
ら、下記化学式(1)で示されるものを用いるのが好適
である。
Next, the water to be treated that has passed through the residence tank 1 is mixed and mixed.
The allylic nitrogen-containing cation compound is introduced into the reaction tank 2 and added to the water to be treated in the mixing / reaction tank 2 through the addition line 4 and sufficiently stirred and mixed. As the allyl-based nitrogen-containing cation compound used here, it is preferable to use a compound represented by the following chemical formula (1) from the viewpoint of silica treatment efficiency.

【0009】[0009]

【化3】 (化学式(1)中、XはCl等の対イオンを示すもので
ある。)
Embedded image (In the chemical formula (1), X represents a counter ion such as Cl.)

【0010】上記化学式(1)で示されるアリル系含窒
素カチオン化合物としては、分子量が500〜3000
000、好ましくは150000〜2000000であ
るものを用いるのが望ましい。この分子量が500未満
である場合、または3000000を越える場合にはシ
リカ処理効率が低下する。なおここでいう分子量とは、
光散乱法によって求めた重量平均分子量を指す。
The allylic nitrogen-containing cation compound represented by the above chemical formula (1) has a molecular weight of 500 to 3,000.
000, preferably 150,000 to 2,000,000. If the molecular weight is less than 500, or if it exceeds 3,000,000, the silica treatment efficiency will decrease. The molecular weight referred to here is
Refers to the weight average molecular weight determined by the light scattering method.

【0011】アリル系含窒素カチオン化合物の添加量
は、被処理水に対して50mg/kg以上とするのが好
ましい。これは、上記添加量を50mg/kg未満とす
ると、シリカ処理効率が不十分となるおそれがあるため
である。また上記添加率は、処理コストが嵩むのを防ぐ
ため150mg/kg以下とするのがさらに好ましい。
混合・反応槽2内において、被処理水中シリカの一部は
アリル系含窒素カチオン化合物によって荷電中和される
と共に架橋され、凝集しフロック化する。アリル系含窒
素カチオン化合物を添加する際の被処理水の温度は、特
に限定されないが、70℃以上とすることができる。
The addition amount of the allyl-based nitrogen-containing cation compound is preferably at least 50 mg / kg with respect to the water to be treated. This is because if the amount is less than 50 mg / kg, the silica treatment efficiency may be insufficient. Further, the addition rate is more preferably 150 mg / kg or less in order to prevent the processing cost from increasing.
In the mixing / reaction tank 2, a part of the silica in the water to be treated is charge-neutralized and crosslinked by the allylic nitrogen-containing cation compound, and coagulates and flocs. The temperature of the water to be treated when adding the allylic nitrogen-containing cation compound is not particularly limited, but may be 70 ° C. or higher.

【0012】次いで、混合・反応槽2を経た被処理水
を、沈殿槽3に導入する。沈殿槽3において、混合・反
応槽2中で凝集したシリカは凝集物として沈降分離さ
れ、シリカ濃度が溶解度近くまで減少した処理水が得ら
れる。
Next, the water to be treated that has passed through the mixing / reaction tank 2 is introduced into the precipitation tank 3. In the sedimentation tank 3, the silica aggregated in the mixing / reaction tank 2 is settled and separated as an aggregate to obtain treated water whose silica concentration has decreased to near the solubility.

【0013】上記シリカ含有地熱熱水処理方法にあって
は、シリカ含有地熱熱水にアリル系含窒素カチオン化合
物を添加するので、シリカ含有地熱熱水中のシリカを効
率よく凝集させ、除去することができる。従って、シリ
カ濃度を十分なレベルまで低下させた処理水を得ること
ができ、配管などへのシリカスケール付着を未然に防ぐ
ことができる。
In the above-mentioned silica-containing geothermal hot water treatment method, since the allylic nitrogen-containing cationic compound is added to the silica-containing geothermal hot water, the silica in the silica-containing geothermal hot water is efficiently aggregated and removed. Can be. Therefore, it is possible to obtain treated water in which the silica concentration is reduced to a sufficient level, and it is possible to prevent silica scale from adhering to a pipe or the like.

【0014】また、沈殿槽3において得られた凝集物
は、従来の多価陽イオンを用いた処理方法により得られ
たものに比べ、凝集剤に由来する金属イオンなどの不純
物を多量に含むものでなく、セメント材料などへの再資
源化が可能なものとなる。従って、凝集物処理コストの
削減をも可能とすることができる。
The aggregate obtained in the sedimentation tank 3 contains a larger amount of impurities such as metal ions derived from the flocculant than those obtained by a conventional treatment method using polyvalent cations. Instead, it can be recycled into cement materials. Therefore, it is possible to reduce the cost of treating the aggregate.

【0015】また、上記方法にあっては、従来の多価陽
イオンを用いた処理方法に比べ、少量の薬剤添加で十分
な凝集効果を得ることができ、処理コスト低減を図るこ
とができる。なお、上記実施形態の方法では、凝集物を
分離除去する方法として沈降分離を採用したが、これに
限らず、膜分離、遠心分離等の方法を採用することも可
能である。
Further, in the above method, a sufficient coagulation effect can be obtained by adding a small amount of drug, and the processing cost can be reduced, as compared with a conventional processing method using polyvalent cations. In the method of the above embodiment, sedimentation is used as a method for separating and removing aggregates. However, the present invention is not limited to this, and methods such as membrane separation and centrifugation can also be used.

【0016】[0016]

【実施例】以下、具体例を示し、本発明の効果を明確化
する。 (試験例1〜14)図1に示す装置を用い、次のように
してシリカ含有地熱熱水(シリカ濃度840mg/k
g)の処理を行った。滞留槽1、混合・反応槽2、沈殿
槽3としては、被処理水滞留時間がそれぞれ15分、5
分、30分となる容量のものを用いた。混合・反応槽2
は、攪拌羽根を備え、槽内の被処理水を完全混合させる
ことができるものとした。
EXAMPLES The effects of the present invention will be clarified by showing specific examples below. (Test Examples 1 to 14) Using the apparatus shown in FIG. 1, the silica-containing geothermal hot water (silica concentration 840 mg / k
g) was performed. The retention time of the water to be treated is 15 minutes,
And a capacity of 30 minutes. Mixing / reaction tank 2
Was equipped with a stirring blade so that the water to be treated in the tank could be completely mixed.

【0017】上記シリカ含有地熱熱水を滞留槽1を経て
混合・反応槽2に導入し、混合・反応槽2中に上記化学
式(1)で示すアリル系含窒素カチオン化合物を被処理
水に対して10〜150mg/kgとなるよう添加し十
分に混合した。アリル系含窒素カチオン化合物として
は、次に示す4種類のものを用いた。薬剤A(分子量5
00)、薬剤B(分子量150000)、薬剤C(分子
量2000000)、薬剤D(分子量3000000)
(いずれも対イオンXはClとした)。
The above-mentioned silica-containing geothermal hot water is introduced into a mixing / reaction tank 2 through a retention tank 1, and an allylic nitrogen-containing cation compound represented by the above chemical formula (1) is added to the water to be treated in the mixing / reaction tank 2. To 10 to 150 mg / kg. The following four kinds of allyl-based nitrogen-containing cation compounds were used. Drug A (molecular weight 5
00), drug B (molecular weight 150,000), drug C (molecular weight 2,000,000), drug D (molecular weight 300000)
(In each case, the counter ion X was Cl).

【0018】上記アリル系含窒素カチオン化合物を添加
して5分経過後、被処理水をフィルター(孔径0.22
μm)を用いてろ過することにより凝集物を分離し、ろ
過水中のコロイダルシリカを解重合した後、全シリカ濃
度をモリブデン黄法により測定した。また同時に、対照
試験として、アリル系含窒素カチオン化合物の添加を行
わない試験も行った。上記各試験中の被処理水温度は9
0℃とした。結果を図2に示す。図2は、被処理水に対
するアリル系含窒素カチオン化合物添加量(mg/k
g)と、ろ過水中の全シリカ濃度(mg/kg)との関
係を示すものである。
After 5 minutes from the addition of the allyl-based nitrogen-containing cation compound, the water to be treated is filtered (with a pore size of 0.22).
Aggregate was separated by filtration using μμm), colloidal silica in the filtered water was depolymerized, and the total silica concentration was measured by a molybdenum yellow method. At the same time, as a control test, a test in which an allyl-based nitrogen-containing cation compound was not added was also performed. The temperature of the water to be treated during each of the above tests was 9
0 ° C. The results are shown in FIG. FIG. 2 shows the amount of the allylic nitrogen-containing cationic compound added to the water to be treated (mg / k).
2 shows the relationship between g) and the total silica concentration (mg / kg) in the filtered water.

【0019】(試験例15)上記シリカ含有地熱熱水を
滞留槽1を経て混合・反応槽2に導入し、混合・反応槽
2中に上記薬剤Cを、添加量が100mg/kgとなる
よう添加し十分に混合した。混合・反応槽2内の被処理
水を採取し、採取した被処理水をろ過して得たろ過水中
の全シリカ濃度の経時変化を測定した。
(Test Example 15) The above-mentioned silica-containing geothermal hot water was introduced into the mixing / reaction tank 2 through the retention tank 1 and the above-mentioned agent C was added to the mixing / reaction tank 2 so that the added amount was 100 mg / kg. Add and mix well. The water to be treated in the mixing / reaction tank 2 was collected, and the change with time in the total silica concentration in the filtered water obtained by filtering the collected water to be treated was measured.

【0020】(試験例16)被処理水を、滞留槽1を通
さずに直接混合・反応槽2内に導入すること以外は試験
例15と同様にして試験を行った。結果を図3に示す。
図3は、アリル系含窒素カチオン化合物添加時からの経
過時間と、被処理水ろ過水中の全シリカ濃度(mg/k
g)との関係を示すものである。図3中には、試験例1
5の結果を「滞留あり」、試験例16の結果を「滞留な
し」と記載した。
Test Example 16 A test was performed in the same manner as in Test Example 15 except that the water to be treated was directly introduced into the mixing / reaction tank 2 without passing through the residence tank 1. The results are shown in FIG.
FIG. 3 shows the elapsed time from the addition of the allylic nitrogen-containing cation compound and the total silica concentration (mg / k) in the filtered water.
g). FIG. 3 shows Test Example 1
The result of No. 5 was described as “with retention”, and the result of Test Example 16 was described as “without retention”.

【0021】図2より、被処理水ろ過水中の全シリカ濃
度はアリル系含窒素カチオン化合物の添加により大幅に
減少することがわかる。また上記アリル系含窒素カチオ
ン化合物の添加率を50mg/kg以上とすることによ
って、上記ろ過水中の全シリカ濃度を、シリカスケール
の生成が起こりにくいレベル(500mg/kg以下)
まで低下させることができたことがわかる。また、図3
より、被処理水を滞留槽1中で15分間滞留させた上で
混合・反応槽2に導入することにより効率よくシリカ除
去を行うことができたことがわかる。
FIG. 2 shows that the total silica concentration in the filtered water to be treated is greatly reduced by the addition of the allylic nitrogen-containing cation compound. Further, by setting the addition rate of the allyl-based nitrogen-containing cation compound to 50 mg / kg or more, the total silica concentration in the filtered water is reduced to a level at which formation of silica scale hardly occurs (500 mg / kg or less).
It can be seen that it was able to be lowered to. FIG.
It can be seen from the above that silica was efficiently removed by retaining the water to be treated in the retention tank 1 for 15 minutes and then introducing the water into the mixing / reaction tank 2.

【0022】[0022]

【発明の効果】本発明のシリカ含有地熱熱水処理方法に
あっては、地熱熱水にアリル系含窒素カチオン化合物を
添加するので、シリカ含有地熱熱水中のシリカを効率よ
く凝集させ、除去することができる。従って、シリカ濃
度を十分なレベルまで低下させた処理水を得ることがで
き、シリカスケールの生成を未然に防ぐことができる。
また少量の薬剤添加で十分な凝集効果を得ることがで
き、処理コスト低減を図ることができる。
According to the method of treating silica-containing geothermal hot water of the present invention, an allyl-based nitrogen-containing cationic compound is added to geothermal hot water, so that silica in the silica-containing geothermal hot water is efficiently aggregated and removed. can do. Therefore, it is possible to obtain treated water in which the silica concentration is reduced to a sufficient level, and it is possible to prevent the formation of silica scale.
In addition, a sufficient coagulation effect can be obtained by adding a small amount of a drug, and the processing cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のシリカ含有地熱熱水処理方法の一実
施形態を実施するために用いられる装置を示す流れ図で
ある。
FIG. 1 is a flow chart showing an apparatus used for carrying out one embodiment of the silica-containing geothermal hot water treatment method of the present invention.

【図2】 試験結果を示すグラフである。FIG. 2 is a graph showing test results.

【図3】 試験結果を示すグラフである。FIG. 3 is a graph showing test results.

【符号の説明】[Explanation of symbols]

1・・・滞留槽、2・・・混合・反応槽、3・・・沈殿槽 1 ... Retention tank, 2 ... Mixing / reaction tank, 3 ... Settling tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 孝文 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 (72)発明者 石見 一雄 東京都千代田区内神田2−1−14 大同化 成工業株式会社内 (72)発明者 杉山 茂 東京都千代田区内神田2−1−14 大同化 成工業株式会社内 (72)発明者 阿島 秀司 東京都中央区銀座6−15−1 電源開発株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takafumi Furukawa 1-297 Kitabukuro-cho, Omiya-shi, Saitama Mitsubishi Materia Real Research Institute (72) Inventor Kazuo Iwami 2-1-14 Uchikanda, Chiyoda-ku, Tokyo Daido Kasei Kogyo Co., Ltd. (72) Inventor Shigeru Sugiyama 2-1-14 Uchikanda, Chiyoda-ku, Tokyo Daido Kasei Kogyo Co., Ltd. (72) Hideshi Ashima 6-15-1, Ginza, Chuo-ku, Tokyo Within a stock company

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 シリカ含有地熱熱水にアリル系含窒素カ
チオン化合物を添加し、地熱熱水中のシリカを凝集さ
せ、凝集物を分離除去することを特徴とするシリカ含有
地熱熱水処理方法。
1. A method for treating silica-containing geothermal hot water, comprising adding an allyl-based nitrogen-containing cation compound to silica-containing geothermal hot water, coagulating silica in the geothermal hot water, and separating and removing aggregates.
【請求項2】 請求項1記載のシリカ含有地熱熱水処理
方法において、アリル系含窒素カチオン化合物として、
下記化学式(1)に示すものを用いることを特徴とする
シリカ含有地熱熱水処理方法。 【化1】
2. The method of claim 1, wherein the allylic nitrogen-containing cation compound comprises:
A method for treating silica-containing geothermal hot water, characterized by using one represented by the following chemical formula (1). Embedded image
【請求項3】 請求項2記載のシリカ含有地熱熱水処理
方法において、アリル系含窒素カチオン化合物として、
分子量が500〜3000000であるものを用いるこ
とを特徴とするシリカ含有地熱熱水処理方法。
3. The silica-containing geothermal hydrothermal treatment method according to claim 2, wherein the allylic nitrogen-containing cation compound is
A method for treating silica-containing geothermal hot water, comprising using a material having a molecular weight of 500 to 3,000,000.
【請求項4】 請求項3記載のシリカ含有地熱熱水処理
方法において、アリル系含窒素カチオン化合物として、
分子量が150000〜2000000であるものを用
いることを特徴とするシリカ含有地熱熱水処理方法。
4. The method for treating silica-containing geothermal hot water according to claim 3, wherein the allylic nitrogen-containing cation compound is
A method for treating silica-containing geothermal hot water, comprising using a material having a molecular weight of 150,000 to 2,000,000.
【請求項5】 請求項1〜4のうちいずれか1項記載の
シリカ含有地熱熱水処理方法において、アリル系含窒素
カチオン化合物の添加量を、地熱熱水に対して50mg
/kg以上とすることを特徴とするシリカ含有地熱熱水
処理方法。
5. The method of treating silica-containing geothermal water according to claim 1, wherein the amount of the allylic nitrogen-containing cation compound is 50 mg with respect to the geothermal water.
/ Kg or more, a silica-containing geothermal hydrothermal treatment method.
【請求項6】 請求項1〜5のうちいずれか1項記載の
シリカ含有地熱熱水処理方法において、アリル系含窒素
カチオン化合物を添加するに先立ち、地熱熱水を滞留槽
中で10分間以上滞留させることを特徴とするシリカ含
有地熱熱水処理方法。
6. The method of treating silica-containing geothermal water according to claim 1, wherein the geothermal hot water is kept in a retention tank for at least 10 minutes prior to the addition of the allylic nitrogen-containing cationic compound. A method for treating silica-containing geothermal hot water, wherein the method is carried out by retaining.
JP04820198A 1998-02-27 1998-02-27 Silica-containing geothermal hydrothermal treatment method Expired - Fee Related JP3401179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04820198A JP3401179B2 (en) 1998-02-27 1998-02-27 Silica-containing geothermal hydrothermal treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04820198A JP3401179B2 (en) 1998-02-27 1998-02-27 Silica-containing geothermal hydrothermal treatment method

Publications (2)

Publication Number Publication Date
JPH11244867A true JPH11244867A (en) 1999-09-14
JP3401179B2 JP3401179B2 (en) 2003-04-28

Family

ID=12796779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04820198A Expired - Fee Related JP3401179B2 (en) 1998-02-27 1998-02-27 Silica-containing geothermal hydrothermal treatment method

Country Status (1)

Country Link
JP (1) JP3401179B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167213A (en) * 2000-11-28 2002-06-11 Mitsubishi Heavy Ind Ltd Silica recovering method and silica recovering apparatus
CN101863543A (en) * 2010-06-13 2010-10-20 武汉理工大学 Papermaking wastewater adsorption treatment agent

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986864A (en) * 1982-11-09 1984-05-19 Mitsubishi Heavy Ind Ltd Treatment of geothermal water
JPS60114391A (en) * 1983-11-22 1985-06-20 Idemitsu Kosan Co Ltd Removing method of silica in water
JPS60209672A (en) * 1984-04-04 1985-10-22 Mitsubishi Heavy Ind Ltd Restoring device for geothermic water
JPS61293597A (en) * 1985-06-24 1986-12-24 Mitsubishi Heavy Ind Ltd Method for suppressing polymerization of silica present in geothermal hot water
JPS62158111A (en) * 1985-09-25 1987-07-14 Nippon Steel Corp Recoverying method for silica from geothermal water
JPS63291657A (en) * 1987-05-22 1988-11-29 Nippon Shokubai Kagaku Kogyo Co Ltd Treatment of geothermal water
JPH0557285A (en) * 1991-06-27 1993-03-09 Mitsubishi Materials Corp Method for removing silica in aqueous solution and recovering valuable element
JPH05263387A (en) * 1992-03-17 1993-10-12 Katayama Chem Works Co Ltd Dehydration-accelerating agent for pulp slurry
JPH06304595A (en) * 1993-04-21 1994-11-01 Mitsubishi Heavy Ind Ltd Method for preventing deposition of silica scale from geothermal water
JPH06320169A (en) * 1993-05-13 1994-11-22 Mitsubishi Materials Corp Method and apparatus for recovering silica in aqueous solution
JPH0724475A (en) * 1993-05-13 1995-01-27 Mitsubishi Materials Corp Method for recovering silica in aqueous solution
JPH0751681A (en) * 1993-08-12 1995-02-28 Nittetsu Mining Co Ltd Treatment of silica-containing solution
JPH0824640A (en) * 1994-07-22 1996-01-30 Nippon Shokubai Co Ltd Treatment of sewage and additive therefor
JPH08276191A (en) * 1995-02-06 1996-10-22 Mitsubishi Materials Corp Recovery of silica in aqueous solution and seeds used therein
JPH10195132A (en) * 1997-01-14 1998-07-28 Hymo Corp Water-soluble polymer and its use
JP2000005507A (en) * 1998-04-22 2000-01-11 Hymo Corp Emulsion and coagulant composition

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986864A (en) * 1982-11-09 1984-05-19 Mitsubishi Heavy Ind Ltd Treatment of geothermal water
JPS60114391A (en) * 1983-11-22 1985-06-20 Idemitsu Kosan Co Ltd Removing method of silica in water
JPS60209672A (en) * 1984-04-04 1985-10-22 Mitsubishi Heavy Ind Ltd Restoring device for geothermic water
JPS61293597A (en) * 1985-06-24 1986-12-24 Mitsubishi Heavy Ind Ltd Method for suppressing polymerization of silica present in geothermal hot water
JPS62158111A (en) * 1985-09-25 1987-07-14 Nippon Steel Corp Recoverying method for silica from geothermal water
JPS63291657A (en) * 1987-05-22 1988-11-29 Nippon Shokubai Kagaku Kogyo Co Ltd Treatment of geothermal water
JPH0557285A (en) * 1991-06-27 1993-03-09 Mitsubishi Materials Corp Method for removing silica in aqueous solution and recovering valuable element
JPH05263387A (en) * 1992-03-17 1993-10-12 Katayama Chem Works Co Ltd Dehydration-accelerating agent for pulp slurry
JPH06304595A (en) * 1993-04-21 1994-11-01 Mitsubishi Heavy Ind Ltd Method for preventing deposition of silica scale from geothermal water
JPH06320169A (en) * 1993-05-13 1994-11-22 Mitsubishi Materials Corp Method and apparatus for recovering silica in aqueous solution
JPH0724475A (en) * 1993-05-13 1995-01-27 Mitsubishi Materials Corp Method for recovering silica in aqueous solution
JPH0751681A (en) * 1993-08-12 1995-02-28 Nittetsu Mining Co Ltd Treatment of silica-containing solution
JPH0824640A (en) * 1994-07-22 1996-01-30 Nippon Shokubai Co Ltd Treatment of sewage and additive therefor
JPH08276191A (en) * 1995-02-06 1996-10-22 Mitsubishi Materials Corp Recovery of silica in aqueous solution and seeds used therein
JPH10195132A (en) * 1997-01-14 1998-07-28 Hymo Corp Water-soluble polymer and its use
JP2000005507A (en) * 1998-04-22 2000-01-11 Hymo Corp Emulsion and coagulant composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167213A (en) * 2000-11-28 2002-06-11 Mitsubishi Heavy Ind Ltd Silica recovering method and silica recovering apparatus
JP4625177B2 (en) * 2000-11-28 2011-02-02 三菱重工業株式会社 Silica recovery method and silica recovery device
CN101863543A (en) * 2010-06-13 2010-10-20 武汉理工大学 Papermaking wastewater adsorption treatment agent

Also Published As

Publication number Publication date
JP3401179B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
JP3169899B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPWO2008120704A1 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP2004512937A (en) Method and apparatus for treating water and sewage
WO2018092365A1 (en) Waste water treatment method and waste water treatment apparatus
JP2003507032A (en) Aggregation of cell material
JP2001508697A (en) Physicochemical treatment of runoff for consumption, especially surface water
JP5440199B2 (en) Silicon wafer etching wastewater treatment method and treatment apparatus
JP2013078730A (en) Method and apparatus for treatment of coagulation precipitation
JP4004854B2 (en) Water purification method and apparatus
JP4508600B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH11124640A (en) Method for decreasing amount of water included in ore mud of nickel-containing oxide ore
JP4272122B2 (en) Coagulated water treatment method and apparatus
JP2000317220A (en) Flocculating and settling device
JPH11244867A (en) Treatment of silica-containing geothermal hot water
JP7083274B2 (en) Water treatment method and water treatment equipment
JP4353584B2 (en) Sand-added coagulating sedimentation equipment
JP2006000715A (en) Equipment and method for flocculation precipitation treatment
JP2930594B2 (en) Coagulation settling equipment
JP3700892B2 (en) Method for producing flocculant
JP4347096B2 (en) Fluorine removal apparatus and method for removing fluorine in waste water
JP3412641B2 (en) Coagulation treatment of low turbidity wastewater from power plants
JPH0424689B2 (en)
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
CA1337879C (en) Process for purifying water with an extended coagulation phase
JP2002336605A (en) Water treatment system and floc forming pipe

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees