JPH06320169A - Method and apparatus for recovering silica in aqueous solution - Google Patents

Method and apparatus for recovering silica in aqueous solution

Info

Publication number
JPH06320169A
JPH06320169A JP11192393A JP11192393A JPH06320169A JP H06320169 A JPH06320169 A JP H06320169A JP 11192393 A JP11192393 A JP 11192393A JP 11192393 A JP11192393 A JP 11192393A JP H06320169 A JPH06320169 A JP H06320169A
Authority
JP
Japan
Prior art keywords
silica
aqueous solution
container
substance
modified product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11192393A
Other languages
Japanese (ja)
Inventor
Katayuki Takahashi
堅之 高橋
Hideyuki Kadowaki
秀行 門脇
Yuko Tenkai
優子 天海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP11192393A priority Critical patent/JPH06320169A/en
Publication of JPH06320169A publication Critical patent/JPH06320169A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To recover efficiently dissolved silica in aqueous solutions such as geothermal hot water. CONSTITUTION:Geothermal hot water supplied from a passage 3 is introduced by a valve 4 to either of the branched passages 3a, 3b which are opened at the upper ends of containers 1, 1a filled with modified material 2. Branched passages 5a, 5b are connected to the lower ends of the containers 1, 1a, and the passages 5a, 5b is combined into a passage 5. A chemical containing multivalent cations which is supplied from a chemical tank 6 through a circulating passage 7 is introduced by a valve 8 to either of the branched passages 7a, 7b which are opened at the upper ends of the container 1, 1a. Branched circulating passages 11a, 11b are connected to the branched passages 5a, 5b through valves 9, 10, and the geothermal hot water or the chemical in the containers 1, 1a is introduced by the valves 9, 10 to the passages 5 or either of the branched circulating passages 11a, 11b. The branched circulating passages 11a, 11b are combined into a circulating passage 11 connected to the chemical tank 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地熱熱水を始めとする
シリカ(珪酸イオン)含有水溶液中におけるシリカを吸
着、回収し、前記水溶液の流路に対するシリカスケール
の生成を防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of adsorbing and recovering silica in an aqueous solution containing silica (silicate ions) such as geothermal hot water to prevent the formation of silica scale in the flow path of the aqueous solution.

【0002】[0002]

【従来の技術】地熱発電は、地中の高温地熱流体を噴出
させ、分離された水蒸気を用いて発電を行うものである
が、この場合、水蒸気とともにシリカを数百ppmの濃度
で含む地熱熱水が噴出する。噴出した地熱熱水は、地下
還元井を経て地中に還流されるが、地熱流体の温度が2
50℃〜350℃であるのに対し、還流される地熱熱水
の温度が97℃〜98℃と低温であるため、地熱熱水に
おけるシリカの溶解度が相対的に低下する。しかも、水
蒸気との分離に伴いシリカが濃縮されることから、地熱
熱水に含まれるシリカの一部は過飽和状態となる。
2. Description of the Related Art Geothermal power generation is a method in which a high-temperature geothermal fluid in the ground is ejected and power is generated using separated steam. In this case, geothermal heat containing silica at a concentration of several hundred ppm together with steam. Water gushes. The ejected geothermal hot water is returned to the ground through an underground reduction well, but the temperature of the geothermal fluid is 2
While the temperature of the refluxed geothermal hot water is as low as 97 ° C to 98 ° C while the temperature is 50 ° C to 350 ° C, the solubility of silica in the geothermal hot water is relatively reduced. Moreover, since silica is concentrated as it is separated from water vapor, some of the silica contained in the geothermal hot water becomes supersaturated.

【0003】この過飽和シリカはコロイド状をなし、シ
リカスケールとして地熱発電所内の熱水経路や前記地下
還元井の内壁等に析出、付着しやすいため、熱交換器の
熱効率低下や前記熱水経路の閉塞、あるいは前記地下還
元井の容量減少等の原因となっている。しかも、このシ
リカスケールは前記内壁等に強固に付着して除去が困難
であるため、シリカスケールの付着が進行した場合に
は、前記熱水経路あるいは地下還元井の使用を中断し、
スケールを除去しなければならない。このように、地熱
熱水中におけるシリカの存在は、地熱熱水の利用上大き
な障害となっている。
This supersaturated silica is in the form of colloid and easily deposits and adheres to the hot water path in the geothermal power plant, the inner wall of the above-mentioned underground reduction well, etc. as silica scale, so that the thermal efficiency of the heat exchanger is reduced and the hot water path This is a cause of blockage or reduction of the capacity of the above-mentioned underground reduction well. Moreover, since this silica scale is firmly attached to the inner wall or the like and is difficult to remove, when the silica scale is attached, the use of the hot water passage or the underground reduction well is stopped,
The scale must be removed. As described above, the presence of silica in the geothermal hot water is a major obstacle to the utilization of the geothermal hot water.

【0004】そこで、地熱熱水中に含有されるシリカを
除去し、前記熱水経路や前記地下還元井に対するシリカ
スケールの付着を防止する方法が従来より開発されてい
る。具体的には、コロイド状シリカを更に凝集させた
後、浮上分離または限外濾過により回収する方法、地熱
熱水に沈降性シードを添加し、この沈降性シードに過飽
和シリカを析出させて沈降性シードとともに除去した
後、上清中に残存するコロイド状シリカを限外濾過によ
り回収する方法等が挙げられる。また、コロイド状シリ
カを凝集させる方法としては、アルミニウムや鉄等の陽
イオンを添加したり、鉄粉等を添加後前記地熱熱水を曝
気し、その結果生じた水酸化物にコロイド状シリカを吸
着、凝集させる方法等がある。
Therefore, there has been conventionally developed a method of removing silica contained in geothermal hot water to prevent silica scale from adhering to the hot water path or the underground reduction well. Specifically, a method in which colloidal silica is further flocculated and then recovered by flotation or ultrafiltration, a sedimentable seed is added to geothermal hot water, and supersaturated silica is deposited on the sedimentable seed to precipitate sedimentation. Examples include a method in which colloidal silica remaining in the supernatant after being removed together with the seed is recovered by ultrafiltration. Further, as a method of aggregating colloidal silica, cations such as aluminum and iron are added, or the geothermal hot water is aerated after addition of iron powder or the like, and the resulting hydroxide is treated with colloidal silica. There are methods such as adsorption and aggregation.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記従来の
方法のうち、浮上分離による方法では、凝集したシリカ
を浮上させるために浮選剤等の薬剤を投入する必要があ
り、かつ回収のための動力設備が必要となるためコスト
が増大するという問題があった。また、限外濾過法によ
る方法では、濾過膜が容易に目詰まりを起こし、その都
度洗浄もしくは交換する必要があるため回収効率が低
く、かつ濾過膜の交換に伴いコストが増大するという問
題があった。
However, among the above-mentioned conventional methods, in the method by floatation separation, it is necessary to add a chemical such as a flotation agent in order to float the aggregated silica, and the recovery method There is a problem that the cost increases because a power facility is required. Further, in the method using the ultrafiltration method, there is a problem that the filtration membrane is easily clogged, and it is necessary to wash or replace it each time, so that the recovery efficiency is low, and the cost increases with the replacement of the filtration membrane. It was

【0006】しかも、コロイド状シリカを凝集させるた
めに陽イオンや鉄粉等を添加すると、余剰の陽イオンが
地熱熱水に残留し、その作用により逆にシリカスケール
の析出が促進される懸念があった。本発明は上記事情に
鑑みてなされたもので、陽イオンを用いた水溶液中のシ
リカの回収方法において、シリカの回収効率を向上させ
るとともに、シリカ除去後の地熱熱水における陽イオン
の残留量を低下させることをその目的としている。
Moreover, if cations, iron powder, etc. are added to agglomerate the colloidal silica, surplus cations remain in the geothermal hot water, which may adversely accelerate the precipitation of silica scale. there were. The present invention has been made in view of the above circumstances, in a method of recovering silica in an aqueous solution using cations, while improving the recovery efficiency of silica, the residual amount of cations in geothermal hot water after silica removal Its purpose is to reduce.

【0007】[0007]

【課題を解決するための手段】本発明は、中性pH域に
て負に帯電する物質を多価陽イオンと接触させて前記物
質の表面を改質し、得られた正に帯電する改質物を地熱
熱水等シリカを含有する水溶液と接触させ、前記水溶液
中に溶存するシリカを前記改質物の表面に吸着させる水
溶液中のシリカ回収法および該回収法に適用されるシリ
カ回収装置である。
According to the present invention, a substance that is negatively charged in a neutral pH range is contacted with a polyvalent cation to modify the surface of the substance, and the obtained positively charged substance is modified. A method for recovering silica in an aqueous solution in which a substance is brought into contact with an aqueous solution containing silica such as geothermal hot water, and the silica dissolved in the aqueous solution is adsorbed on the surface of the modified product, and a silica recovery device applied to the recovery method. .

【0008】特に、表面に吸着したシリカにより前記改
質物のシリカ吸着能力が低下した場合には、前記改質物
を前記多価陽イオンと接触させて前記改質物の表面に吸
着したシリカを改質し、得られた正に帯電する再改質物
を再度前記水溶液と接触させ、前記水溶液中に溶存する
シリカを前記再改質物の表面に吸着させることもでき
る。
[0008] In particular, when the silica adsorbing ability of the modified product is lowered by the silica adsorbed on the surface, the modified product is brought into contact with the polyvalent cation to modify the silica adsorbed on the surface of the modified product. Then, the obtained positively-charged re-modified product may be brought into contact with the aqueous solution again, and silica dissolved in the aqueous solution may be adsorbed on the surface of the re-modified product.

【0009】より具体的には、まず、中性pH域にて負
に帯電する物質が充填された複数の容器と、前記容器に
前記多価陽イオンを循環させる陽イオン循環手段と、前
記容器に前記水溶液を通水させる通水手段と、前記容器
への前記多価陽イオンの循環と前記水溶液の通水とを個
々の容器毎に切り換える切り替え手段とを具備する装置
を用意する。
More specifically, first, a plurality of containers filled with a substance that is negatively charged in a neutral pH range, cation circulation means for circulating the polyvalent cations in the container, and the container. First, an apparatus is provided which is provided with a water-passing means for passing the aqueous solution, and a switching means for switching the circulation of the polyvalent cations to the vessel and the water-flowing of the aqueous solution for each individual vessel.

【0010】そして、前記容器に前記多価陽イオンを循
環させ、前記物質の表面を改質して正に帯電する改質物
とした後、前記切り替え手段を切り換えて前記容器に前
記水溶液を通水し、前記水溶液中に溶存するシリカを前
記改質物の表面に吸着させて回収する回収行程と、前記
切り替え手段を再度切り換えて前記容器に前記多価陽イ
オンを循環させ、前記改質物の表面に吸着したシリカを
改質して正に帯電する再改質物とする再改質行程とを個
々の容器毎に繰り返し行なう。この場合、前記回収行程
と前記再改質行程とは、前記複数の容器のうち少なくと
も2つの容器で並行して行なう。
Then, the polyvalent cations are circulated in the container to modify the surface of the substance to obtain a positively charged modified product, and then the switching means is switched to pass the aqueous solution through the container. Then, the recovery step of adsorbing silica dissolved in the aqueous solution onto the surface of the modified product to recover it, and switching the switching means again to circulate the polyvalent cation in the container, The re-reforming process of reforming the adsorbed silica to obtain a positively-charged re-reforming product is repeated for each container. In this case, the recovery process and the re-reforming process are performed in parallel in at least two containers of the plurality of containers.

【0011】[0011]

【作用】水溶液中の溶存シリカはその表面に水酸基を有
し、常時負に帯電している。一方、本発明に用いられる
改質物は正に帯電している。従って、前記シリカはイオ
ン結合により前記改質物に吸着、回収される。また、回
収行程と再改質行程とを個々の容器毎に繰り返し行な
い、かつ前記回収行程と前記再改質行程とを、複数の容
器のうち少なくとも2つの容器で並行して行なうことに
より、シリカの回収が前記複数の容器のうちいずれかの
容器で常時行われる。更に、陽イオンは中性pH域にて
負に帯電する物質との接触にのみ用いられるため、前記
水溶液への前記陽イオンの添加が不要となり、シリカ回
収後の前記水溶液中における前記陽イオンの残留量が低
下する。
The dissolved silica in the aqueous solution has hydroxyl groups on its surface and is always negatively charged. On the other hand, the modified product used in the present invention is positively charged. Therefore, the silica is adsorbed and recovered by the reformate by ionic bond. Further, by repeating the recovery process and the re-reforming process for each individual container, and performing the recovery process and the re-reforming process in parallel in at least two containers out of a plurality of containers, silica can be obtained. Is always collected in any one of the plurality of containers. Furthermore, since the cation is used only for contact with a substance that is negatively charged in the neutral pH range, it is not necessary to add the cation to the aqueous solution, and the cation of the cation in the aqueous solution after silica recovery is eliminated. The residual amount decreases.

【0012】[0012]

【実施例】以下、図面に基づき、本発明の実施例につい
て更に詳しく説明する。図1は、本発明に係る水溶液中
のシリカ回収装置の例を示すものである。図中符号1,
1aは有底円筒状をなす容器で、これら容器1,1a内
には、正に帯電する改質物2が充填されている。容器
1,1aの上端には、地熱熱水の流路3からバルブ(切
り替え手段)4を介して分岐した分岐流路3a,3bの
端部がそれぞれ開口している。ここで、地熱熱水は、バ
ルブ4の切り替えにより流路3から分岐流路3a,3b
のいずれか一方にのみ流下可能となっている。
Embodiments of the present invention will now be described in more detail with reference to the drawings. FIG. 1 shows an example of an apparatus for recovering silica in an aqueous solution according to the present invention. Reference numeral 1 in the figure
Reference numeral 1a is a container having a cylindrical shape with a bottom. The containers 1 and 1a are filled with a positively charged reformate 2. At the upper ends of the vessels 1 and 1a, ends of branch flow paths 3a and 3b branched from the flow path 3 of geothermal heat water via a valve (switching means) 4 are opened. Here, the geothermal hot water flows from the flow path 3 into the branch flow paths 3a and 3b by switching the valve 4.
It is possible to flow down to only one of them.

【0013】また、容器1,1aの下端には開口部が形
成され、この開口部には分岐流路5a,5bがそれぞれ
接続されている。分岐流路5a,5bは更に地熱熱水を
地熱発電設備等に流下させるための流路5にまとめられ
る。
An opening is formed at the lower end of each of the containers 1 and 1a, and branch channels 5a and 5b are connected to the opening. The branch flow paths 5a and 5b are further combined into a flow path 5 for allowing geothermal water to flow down to a geothermal power generation facility or the like.

【0014】一方、符号6は、多価陽イオンを含有する
薬液が貯留された薬液タンクで、薬液タンク6から循環
路7およびバルブ(切り替え手段)8を介して分岐した
分岐流路7a,7bの端部が、容器1,1aの上端には
それぞれ開口している。ここで、前記薬液は、バルブ8
の切り替えにより循環路7から分岐循環路7a,7bの
いずれか一方にのみ流下可能となっている。なお、前記
多価陽イオンとしては、例えばアルミニウム、鉄、カル
シウム、マグネシウムから選択される物質のイオンが使
用される。
On the other hand, reference numeral 6 is a chemical liquid tank in which a chemical liquid containing polyvalent cations is stored, and branched flow paths 7a, 7b branched from the chemical liquid tank 6 via a circulation path 7 and a valve (switching means) 8. Ends of the container open at the upper ends of the containers 1 and 1a. Here, the chemical solution is used in the valve 8
It is possible to flow down from the circulation path 7 to only one of the branch circulation paths 7a and 7b by switching. As the polyvalent cation, for example, an ion of a substance selected from aluminum, iron, calcium and magnesium is used.

【0015】また、分岐流路5a,5bにはバルブ(切
り替え手段)9,10を介してそれぞれ分岐循環路11
a,11bが接続されている。ここで、容器1,1a内
の前記地熱熱水または前記薬液は、バルブ9,10の切
り替えによりそれぞれ流路5または分岐循環路11a,
11bのいずれか一方にのみ流下可能となっている。分
岐循環路11a,11bは循環路11にまとめられ、循
環路11は更に薬液タンク6に接続されている。なお、
符号12は循環路7中に設けられたポンプ、符号13は
薬液タンク6に薬液を供給する薬液供給部である。
In addition, branch circulation paths 11 are provided in the branch flow paths 5a and 5b via valves (switching means) 9 and 10, respectively.
a and 11b are connected. Here, the geothermal hot water or the chemical liquid in the containers 1 and 1a is switched by switching the valves 9 and 10, respectively, and the flow path 5 or the branch circulation path 11a,
Only one of 11b can flow down. The branch circulation paths 11 a and 11 b are integrated into the circulation path 11, and the circulation path 11 is further connected to the chemical liquid tank 6. In addition,
Reference numeral 12 is a pump provided in the circulation path 7, and reference numeral 13 is a chemical liquid supply unit for supplying the chemical liquid to the chemical liquid tank 6.

【0016】次ぎに、上記構成を有するシリカ回収装置
を用いた水溶液中のシリカ回収方法について説明する。
まず、後述する水溶液中に析出したシリカスケール、石
英砂、籾殻焼却灰、硅藻土等、中性pH域にて負に帯電
する物質(以下、シードと称する。)を容器1,1a内
に充填する。次いで、バルブ8,9を切り替えるととも
にポンプ12を作動させ、前記薬液を、薬液タンク6か
ら、循環路7、バルブ8、分岐循環路7a、容器1、バ
ルブ9、分岐循環路11aおよび循環路11を経て再度
薬液タンク6へと循環させる。すると、容器1内に充填
された前記シードの表面が前記薬液中の前記多価陽イオ
ンの作用により改質され、正に帯電する改質物2が得ら
れる。
Next, a method for recovering silica in an aqueous solution using the silica recovering apparatus having the above-mentioned structure will be described.
First, substances (hereinafter referred to as seeds) that are negatively charged in a neutral pH range, such as silica scale, quartz sand, rice husk incinerated ash, and diatomaceous earth, which are precipitated in an aqueous solution described below, are placed in the containers 1 and 1a. Fill. Next, the valves 8 and 9 are switched and the pump 12 is operated to supply the chemical liquid from the chemical liquid tank 6 to the circulation passage 7, the valve 8, the branch circulation passage 7a, the container 1, the valve 9, the branch circulation passage 11a and the circulation passage 11. After that, it is circulated again to the chemical liquid tank 6. Then, the surface of the seed filled in the container 1 is modified by the action of the polyvalent cation in the chemical liquid, and the modified product 2 that is positively charged is obtained.

【0017】容器1内に充填された前記シードが改質物
2へと改質されたら、バルブ4,9を切り替え、シリカ
を高濃度で含有する地熱熱水を、流路3から、バルブ
4、分岐流路3a、容器1、バルブ9および分岐流路5
aを経て流路5へと流下させる。
When the seed filled in the container 1 is reformed into the reformed product 2, the valves 4 and 9 are switched to supply geothermal hot water containing a high concentration of silica from the passage 3 to the valve 4, Branch channel 3a, container 1, valve 9 and branch channel 5
It is made to flow down to the flow path 5 via a.

【0018】この場合、地熱熱水は容器1内にて改質物
2と接触するが、地熱熱水中のシリカがその表面に水酸
基を有し、常時負に帯電しているのに対し、改質物2が
正に帯電しているため、前記シリカはイオン結合により
改質物2に吸着、回収される。従って、流路5からは、
シリカ含有量の非常に小さい地熱熱水が流出し、その結
果、以降の熱水経路あるいは地下還元井におけるシリカ
スケールの析出、付着が防止される。これが回収行程で
ある。
In this case, the geothermal hot water comes into contact with the reformate 2 in the container 1, but silica in the geothermal hot water has hydroxyl groups on its surface and is always negatively charged. Since the substance 2 is positively charged, the silica is adsorbed on and recovered by the reformate 2 by an ionic bond. Therefore, from the flow path 5,
Geothermal hot water with a very low silica content flows out, and as a result, precipitation and adhesion of silica scale in the subsequent hot water path or underground reduction well is prevented. This is the recovery process.

【0019】また、前記回収行程中、バルブ8,10を
切り換えるとともにポンプ12を作動させ、前記薬液
を、薬液タンク6から、循環路7、バルブ8、分岐循環
路7b、容器1a、バルブ10、分岐循環路11bおよ
び循環路11を経て再度薬液タンク6へと循環させるこ
とにより、容器1a内に充填された前記シードの表面
を、前記薬液中の前記多価陽イオンの作用により改質
し、改質物2としておく。
Further, during the recovery process, the valves 8 and 10 are switched and the pump 12 is operated to supply the chemical liquid from the chemical liquid tank 6 to the circulation path 7, valve 8, branch circulation path 7b, container 1a, valve 10, By circulating again to the chemical liquid tank 6 via the branched circulation path 11b and the circulation path 11, the surface of the seed filled in the container 1a is modified by the action of the polyvalent cation in the chemical solution, It is referred to as modified product 2.

【0020】容器1内の改質物2を用いて長時間前記回
収行程を行うと、改質物2の表面に吸着したシリカによ
り改質物2の表面が被覆され、改質物2のシリカ吸着能
力が徐々に低下する。この場合には、バルブ8,9を切
り換えるとともにポンプ12を作動させ、前記薬液を、
薬液タンク6から、循環路7、バルブ8、分岐循環路7
a、容器1、バルブ9、分岐循環路11aおよび循環路
11を経て再度薬液タンク6へと循環させる。すると、
改質物2の表面を覆うシリカが前記薬液中の前記多価陽
イオンの作用により改質されて正に帯電し、シリカ回収
能力を有する再改質物が得られる。これが再改質行程で
ある。
When the recovery process is carried out for a long time using the reformate 2 in the container 1, the surface of the reformate 2 is covered with the silica adsorbed on the surface of the reformate 2, and the silica adsorbing ability of the reformate 2 gradually increases. Fall to. In this case, the valves 8 and 9 are switched, and the pump 12 is operated to remove the chemical solution.
From the chemical liquid tank 6, the circulation path 7, the valve 8, the branch circulation path 7
The liquid is circulated again to the chemical liquid tank 6 through a, the container 1, the valve 9, the branch circulation path 11a and the circulation path 11. Then,
The silica covering the surface of the modified product 2 is modified by the action of the polyvalent cation in the chemical solution and is positively charged, and a remodified product having a silica recovery capability is obtained. This is the re-reforming process.

【0021】一方、容器1における再改質行程の開始と
ともに、バルブ4,10を切り替え、シリカを高濃度で
含有する地熱熱水を、流路3から、バルブ4、分岐流路
3b、容器1a、バルブ10および分岐流路5bを経て
流路5へと流下させる。その結果、今度は容器1a内に
充填された改質物2により前記回収行程が行われる。
On the other hand, with the start of the re-reforming process in the container 1, the valves 4 and 10 are switched to supply geothermal hot water containing a high concentration of silica from the flow path 3 to the valve 4, the branch flow path 3b and the container 1a. , Through the valve 10 and the branch channel 5b to flow down to the channel 5. As a result, this time, the recovery process is performed by the reformate 2 filled in the container 1a.

【0022】更に、容器1a内に充填された改質物2の
シリカ吸着能力が低下した場合には、バルブ4,9を切
り替え、地熱熱水が流路3から、バルブ4、分岐流路3
a、容器1、バルブ9および分岐流路5aを経て流路5
へと流下させる。その結果、前記再改質行程によって得
られた容器1内の再改質物により再度前記回収行程が行
われる。
Further, when the silica adsorbing ability of the reformate 2 filled in the container 1a is lowered, the valves 4 and 9 are switched so that the geothermal hot water flows from the flow path 3 to the valve 4 and the branch flow path 3.
a, the container 1, the valve 9, and the branch channel 5a
Let it flow down. As a result, the recovery step is performed again by the re-reformed product in the container 1 obtained by the re-reforming step.

【0023】同時に、バルブ8,10を切り換えるとと
もにポンプ12を作動させ、前記薬液を、薬液タンク6
から、循環路7、バルブ8、分岐循環路7b、容器1
a、分岐流路5b、バルブ10、分岐循環路11bおよ
び循環路11を経て再度薬液タンク6へと循環させるこ
とにより、容器1aにて再改質行程を行い、容器1a内
に充填された改質物2を再改質させる。
At the same time, the valves 8 and 10 are switched and the pump 12 is operated to supply the chemical liquid to the chemical liquid tank 6
From the circulation path 7, valve 8, branch circulation path 7b, container 1
a, the branch flow path 5b, the valve 10, the branch circulation path 11b, and the circulation path 11 to circulate again to the chemical liquid tank 6 to perform the re-reforming process in the container 1a, and the modified container filled in the container 1a. The substance 2 is reformed again.

【0024】そして、前記回収行程と、前記再改質行程
とを容器1,1a毎に交互に行なうことにより、前記再
改質物による地熱熱水からのシリカの回収と、再改質に
よる前記再改質物のシリカ回収機能の回復とが同時に行
われるとともに、前記回収行程を休止することなく行う
ことが可能となり、シリカの回収効率が向上する。ここ
で、前記シードの表面が多孔質とされていると、その表
面積が増大するため、改質物2とした場合におけるシリ
カの回収効率を更に向上させることができる。
By alternately performing the recovery process and the re-reforming process for each of the vessels 1 and 1a, silica is recovered from the geothermal hot water by the re-reformed product and the re-reforming by the re-reforming is performed. The silica recovery function of the reformate can be restored at the same time, and the recovery process can be performed without interruption, thereby improving the silica recovery efficiency. Here, if the surface of the seed is made porous, the surface area thereof is increased, so that the recovery efficiency of silica in the case of the modified product 2 can be further improved.

【0025】更に、前記薬液を循環させるだけで前記シ
ードまたは改質物2が改質されるため、シリカの回収に
際して地熱熱水に前記陽イオンを直接添加する必要はな
い。従って、シリカ回収後の地熱熱水中における残留陽
イオンが最小で済む。なお、薬液タンク6内の前記薬液
は、薬液供給部13より随時補給される。
Further, since the seed or the modified product 2 is modified only by circulating the chemical solution, it is not necessary to directly add the cation to the geothermal hot water when recovering silica. Therefore, the residual cations in the geothermal hot water after silica recovery can be minimized. The chemical liquid in the chemical liquid tank 6 is replenished from the chemical liquid supply unit 13 at any time.

【0026】また、前記回収行程と前記再改質行程の繰
り返しに伴い前記再改質物の粒径は次第に増大するが、
粒径が増大した前記改質物は、回収行程終了後定期的に
容器1,1aから抜き取り、一部は粉砕して再度前記シ
ードとして利用し、残りはセメント原料等に利用され
る。
Further, the particle size of the re-reformed product gradually increases with the repetition of the recovery process and the re-reforming process.
The reformed product having an increased particle size is periodically withdrawn from the containers 1 and 1a after the recovery process, partially crushed and used again as the seed, and the rest is used as a cement raw material or the like.

【0027】一方、図2に示すように、容器1,1aの
上端に分岐流路3a,3bの端部をそれぞれ開口させる
とともに、分岐流路3a,3bに、循環路7から分岐し
た分岐流路7a,7bの端部をそれぞれバルブ(切り替
え手段)14,15を介して接続してもよい。この場
合、バルブ14,15を切り替えることにより、容器
1,1aには、地熱熱水または前記薬液のいずれか一方
のみが流入可能となっている。
On the other hand, as shown in FIG. 2, the ends of the branch flow passages 3a and 3b are opened at the upper ends of the containers 1 and 1a, respectively, and the branch flow passages 3a and 3b are branched from the circulation passage 7. The ends of the paths 7a and 7b may be connected via valves (switching means) 14 and 15, respectively. In this case, by switching the valves 14 and 15, only one of the geothermal hot water and the chemical liquid can flow into the containers 1 and 1a.

【0028】図2に示す装置においては、バルブ9,1
4を切り替え、地熱熱水を流路3から、バルブ14、分
岐流路3a、容器1、バルブ9および分岐流路5aを経
て流路5へと流下させることにより、容器1にて回収行
程を行うとともに、バルブ10,15を切り替え、かつ
ポンプ12を作動させて、前記薬液を薬液タンク6か
ら、分岐循環路7b、バルブ15、容器1a、バルブ1
0、分岐循環路11bおよび循環路11を経て再度薬液
タンク6へと循環させることにより、容器1aにて前記
シードの改質または再改質行程を行う。
In the device shown in FIG. 2, the valves 9, 1
4 to switch the geothermal hot water from the flow path 3 to the flow path 5 through the valve 14, the branch flow path 3a, the container 1, the valve 9 and the branch flow path 5a, thereby performing the recovery process in the container 1. At the same time, the valves 10 and 15 are switched, and the pump 12 is operated to move the chemical liquid from the chemical liquid tank 6 to the branch circulation path 7b, the valve 15, the container 1a, the valve 1
0, the branched circulation path 11b and the circulation path 11 are circulated again to the chemical liquid tank 6 to perform the reforming or re-reforming process of the seed in the container 1a.

【0029】また、容器1aにて回収行程を行う場合に
は、バルブ10,15を切り替え、地熱熱水を流路3か
ら、分岐流路3b、バルブ15、容器1a、バルブ10
および分岐流路5bを経て流路5へと流下させるととも
に、バルブ9,14を切り替え、かつポンプ12を作動
させて、前記薬液を薬液タンク6から、分岐循環路7
a、バルブ14、容器1、バルブ9、分岐循環路11a
および循環路11を経て再度薬液タンク6へと循環させ
ることにより、容器1にて前記シードの改質または再改
質行程を行う。
When carrying out the recovery process in the container 1a, the valves 10 and 15 are switched so that the geothermal hot water flows from the flow path 3 into the branch flow path 3b, the valve 15, the container 1a and the valve 10.
And the flow path 5b through the branch flow path 5b, the valves 9 and 14 are switched, and the pump 12 is operated to move the chemical solution from the chemical solution tank 6 to the branch circulation path 7
a, valve 14, container 1, valve 9, branch circuit 11a
By recirculating through the circulation path 11 to the chemical liquid tank 6 again, the reforming or re-reforming process of the seed in the container 1 is performed.

【0030】すなわち、図2に示す装置においては、バ
ルブ9,10,14,15を切り替え、容器1,1a間
で、回収行程と再改質行程とを交互に行うことにより、
前記再改質物による地熱熱水からのシリカの回収と、再
改質による前記再改質物のシリカ回収機能の回復とが同
時に行われるとともに、前記回収行程を休止することな
く行うことが可能となる。
That is, in the apparatus shown in FIG. 2, the valves 9, 10, 14 and 15 are switched, and the recovery process and the re-reforming process are alternately performed between the containers 1 and 1a.
It is possible to simultaneously recover silica from geothermal hot water by the re-reformed product and recover the silica recovery function of the re-reformed product by re-reforming, and to perform the recovery process without stopping the recovery process. .

【0031】更に、図3に示すように、図2の装置では
循環路7中にあったポンプ12を循環路11中に移動
し、かつ容器1,1aの上端を塞ぐとともに分岐流路3
a,3bを接続することにより、容器1,1a内におい
て、その下端から上端に向かう流れを形成可能としても
よい。
Further, as shown in FIG. 3, in the apparatus of FIG. 2, the pump 12 in the circulation passage 7 is moved into the circulation passage 11 and the upper ends of the containers 1 and 1a are closed and the branch passage 3 is formed.
By connecting a and 3b, a flow from the lower end to the upper end may be formed in the containers 1 and 1a.

【0032】この場合には、バルブ9,14を切り替
え、地熱熱水を流路5から、分岐流路5a、バルブ9、
容器1、バルブ14および分岐流路3aを経て流路3へ
と送水させることにより、容器1にて回収行程を行うと
ともに、バルブ10,15を切り替え、かつポンプ12
を作動させて、前記薬液を薬液タンク6から、循環路1
1、分岐循環路11b、バルブ10、容器1a、バルブ
15、分岐循環路7bおよび循環路7を経て再度薬液タ
ンク6へと循環させることにより、容器1aにて前記シ
ードの改質または再改質行程を行う。
In this case, the valves 9 and 14 are switched, and the geothermal hot water is supplied from the flow path 5 to the branch flow path 5a, the valve 9,
By supplying water to the flow path 3 through the container 1, the valve 14 and the branch flow path 3a, a recovery process is performed in the container 1, the valves 10 and 15 are switched, and the pump 12 is used.
To operate the chemical solution from the chemical solution tank 6 to the circulation path 1
1. Recirculation or re-reforming of the seed in the container 1a by circulating again to the chemical liquid tank 6 through the branch circulation path 11b, the valve 10, the container 1a, the valve 15, the branch circulation path 7b and the circulation path 7. Do the process.

【0033】また、容器1aにて回収行程を行う場合に
は、バルブ10,15を切り替え、地熱熱水を流路5か
ら、分岐流路5b、バルブ10、容器1a、バルブ15
および分岐流路3bを経て流路3へと送水させる。この
場合、容器1においては、バルブ9,14を切り替える
とともにポンプ12を作動させることにより、前記薬液
が薬液タンク6から循環路11、分岐循環路11a、バ
ルブ9、容器1、バルブ14、分岐循環路7aおよび循
環路7を経て再度薬液タンク6へと循環され、その結
果、前記シードの改質または再改質行程が行われること
はいうまでもない。
When the recovery process is performed in the container 1a, the valves 10 and 15 are switched so that the geothermal hot water flows from the flow path 5 into the branch flow path 5b, the valve 10, the container 1a and the valve 15.
And water is sent to the flow path 3 through the branch flow path 3b. In this case, in the container 1, by switching the valves 9 and 14 and operating the pump 12, the chemical liquid flows from the chemical liquid tank 6 to the circulation passage 11, the branch circulation passage 11a, the valve 9, the container 1, the valve 14, the branch circulation. It goes without saying that the chemical solution is circulated again to the chemical liquid tank 6 via the path 7a and the circulation path 7, and as a result, the reforming or re-reforming step of the seed is performed.

【0034】図3に示す装置では、上記各行程中におい
て、地熱熱水および前記薬液がいずれも容器1,1aの
下端から上端に向かう流れを形成するため、上記各行程
中、容器1,1a内に充填された改質物2が容器1,1
aの下端側に高密度で詰まり、それに伴い改質物2に対
する地熱熱水または前記薬液の透過性が低下することは
ない。また、改質物2の表面における夾雑物の蓄積等が
防止されるという効果もある。
In the apparatus shown in FIG. 3, the geothermal hot water and the chemical liquid form a flow from the lower end to the upper end of the vessels 1 and 1a during each of the above steps, so that the vessels 1 and 1a during each of the above steps. The reformate 2 filled in the container is the container 1, 1.
The lower end side of “a” is clogged with high density, and accordingly, the permeability of the geothermal hot water or the chemical liquid to the reformed product 2 does not decrease. In addition, there is also an effect that the accumulation of impurities on the surface of the modified product 2 is prevented.

【0035】なお、上記各実施例の場合、バルブ4,
8,9,10,14,15の切り替えおよびポンプ12
の作動はいずれもタイマー制御等による自動制御により
行うものとするが、これらバルブ4,8,9,10,1
4,15の切り替えやポンプ12の作動を、前記シリカ
回収装置から排出された地熱熱水中におけるシリカ濃度
を測定するセンサと連動させたり、または手動とするこ
とももちろん可能である。
In each of the above embodiments, the valve 4
8, 9, 10, 14, 15 switching and pump 12
The operation of each of these valves is automatically controlled by timer control, etc., but these valves 4, 8, 9, 10, 1
It is of course possible to switch between 4, 15 and the operation of the pump 12 by interlocking with a sensor for measuring the silica concentration in the geothermal hot water discharged from the silica recovery device, or manually.

【0036】[0036]

【発明の効果】以上説明した通り、本発明に係る水溶液
中のシリカ回収法およびシリカ回収装置においては、シ
リカがイオン結合により改質物に吸着、回収されるた
め、シリカの回収効率が高いという効果がある。しか
も、回収行程と再改質行程とを個々の容器毎に繰り返し
行ない、かつ前記回収行程と前記再改質行程とを、複数
の容器のうち少なくとも2つの容器で並行して行なうた
め、シリカの回収が前記複数の容器のうちいずれかの容
器で常時行われ、その結果、シリカの回収効率が更に高
められる。
As described above, in the method for recovering silica in an aqueous solution and the apparatus for recovering silica according to the present invention, since silica is adsorbed and recovered by the reformate by ionic bond, the silica recovery efficiency is high. There is. Moreover, since the recovery process and the re-reforming process are repeated for each individual container, and the recovery process and the re-reforming process are performed in parallel in at least two of the plurality of containers, silica Recovery is always performed in any one of the plurality of containers, and as a result, the silica recovery efficiency is further enhanced.

【0037】また、陽イオンは中性pH域にて負に帯電
する物質との接触にのみ用いられるため、前記水溶液へ
の前記陽イオンの添加が不要となる。その結果、シリカ
回収後の前記水溶液中における前記陽イオンの残留量が
低下する。
Further, since the cation is used only for contact with a substance that is negatively charged in the neutral pH range, it is not necessary to add the cation to the aqueous solution. As a result, the residual amount of the cations in the aqueous solution after silica recovery is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るシリカ回収装置の構造を示す図で
ある。
FIG. 1 is a diagram showing a structure of a silica recovery device according to the present invention.

【図2】本発明に係るシリカ回収装置の構造を示す図で
ある。
FIG. 2 is a diagram showing a structure of a silica recovery device according to the present invention.

【図3】本発明に係るシリカ回収装置の構造を示す図で
ある。
FIG. 3 is a diagram showing a structure of a silica recovery device according to the present invention.

【符号の説明】[Explanation of symbols]

1,1a 容器 2 改質物 3,5 流路 3a,3b,5a,5b 分岐流路 4,8,9,10,14,15 バルブ(切り替え手
段) 6 薬液タンク 7,11 循環路 7a,7b,11a,11b 分岐循環路 12 ポンプ 13 薬液供給部
1, 1a Container 2 Reformate 3,5 Flow path 3a, 3b, 5a, 5b Branch flow path 4, 8, 9, 10, 14, 15 Valve (switching means) 6 Chemical liquid tank 7, 11 Circulation path 7a, 7b, 11a, 11b Branch circuit 12 Pump 13 Chemical supply unit

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 中性pH域にて負に帯電する物質を多価
陽イオンと接触させて前記物質の表面を改質し、得られ
た正に帯電する改質物をシリカを含有する水溶液と接触
させ、前記水溶液中に溶存するシリカを前記改質物の表
面に吸着させることを特徴とする水溶液中のシリカ回収
法。
1. A substance which is negatively charged in a neutral pH range is contacted with a polyvalent cation to modify the surface of the substance, and the obtained positively charged modified product is an aqueous solution containing silica. A method for recovering silica in an aqueous solution, which comprises bringing the silica dissolved in the aqueous solution into contact with the surface of the modified product to be adsorbed.
【請求項2】 前記物質として、前記水溶液中に析出す
るシリカスケール、石英砂、籾殻焼却灰、硅藻土から選
択される物質が使用されることを特徴とする請求項1記
載の水溶液中のシリカ回収法。
2. The aqueous solution according to claim 1, wherein a substance selected from silica scale, quartz sand, rice husk incineration ash, and diatomaceous earth that precipitates in the aqueous solution is used as the substance. Silica recovery method.
【請求項3】 前記物質の表面が多孔質とされているこ
とを特徴とする請求項1または2記載の水溶液中のシリ
カ回収法。
3. The method for recovering silica in an aqueous solution according to claim 1, wherein the surface of the substance is porous.
【請求項4】 表面に吸着したシリカによりシリカ吸着
能力が低下した前記改質物を前記多価陽イオンと接触さ
せて前記改質物の表面に吸着したシリカを改質し、得ら
れた正に帯電する再改質物をシリカを含有する水溶液と
接触させ、前記水溶液中に溶存するシリカを前記再改質
物の表面に吸着させることを特徴とする請求項1,2ま
たは3記載の水溶液中のシリカ回収法。
4. The positively-charged product obtained by contacting the modified product having a reduced silica adsorption ability with silica adsorbed on the surface with the polyvalent cation to modify the silica adsorbed on the surface of the modified product. The silica recovery in the aqueous solution according to claim 1, wherein the re-modified product is brought into contact with an aqueous solution containing silica to adsorb the silica dissolved in the aqueous solution onto the surface of the re-modified product. Law.
【請求項5】 前記多価陽イオンとして、アルミニウ
ム、鉄、カルシウム、マグネシウムから選択される物質
のイオンが使用されることを特徴とする請求項1,2,
3または4記載の水溶液中のシリカ回収法。
5. The ion of a substance selected from aluminum, iron, calcium and magnesium is used as the polyvalent cation.
A method for recovering silica in an aqueous solution according to 3 or 4.
【請求項6】 中性pH域にて負に帯電する物質が充填
された複数の容器と、前記容器に前記多価陽イオンを循
環させる陽イオン循環手段と、前記容器に前記水溶液を
通水させる通水手段と、前記容器への前記多価陽イオン
の循環と前記水溶液の通水とを個々の容器毎に切り換え
る切り替え手段とを具備することを特徴とする水溶液中
のシリカ回収装置。
6. A plurality of containers filled with a substance that is negatively charged in a neutral pH range, a cation circulation means for circulating the polyvalent cations in the container, and the aqueous solution passing through the container. An apparatus for recovering silica in an aqueous solution, comprising: a water-passing means for allowing the water to flow; and a switching means for switching the circulation of the polyvalent cation to the vessel and the water-flowing of the aqueous solution for each individual vessel.
【請求項7】 中性pH域にて負に帯電する物質が充填
された複数の容器と、前記容器に前記多価陽イオンを循
環させる陽イオン循環手段と、前記容器に前記水溶液を
通水させる通水手段と、前記容器への前記多価陽イオン
の循環と前記水溶液の通水とを個々の容器毎に切り換え
る切り替え手段とを具備する装置を用いる水溶液中のシ
リカ回収法であって、 前記容器に前記多価陽イオンを循環させ、前記物質の表
面を改質して正に帯電する改質物とした後、前記切り替
え手段を切り換えて前記容器にシリカを含有する水溶液
を通水し、前記水溶液中に溶存するシリカを前記改質物
の表面に吸着させて回収する回収行程と、前記切り替え
手段を再度切り換えて前記容器に前記多価陽イオンを循
環させ、前記改質物の表面に吸着したシリカを改質して
正に帯電する再改質物とする再改質行程とが個々の容器
毎に繰り返し行われるとともに、前記複数の容器のうち
少なくとも2つの容器で、前記回収行程と前記再改質行
程とが並行して行われることを特徴とする水溶液中のシ
リカ回収法。
7. A plurality of containers filled with a substance that is negatively charged in a neutral pH range, a cation circulation means for circulating the polyvalent cations in the container, and water flow of the aqueous solution through the container. A method for recovering silica in an aqueous solution using an apparatus comprising: a water-passing means for allowing the water to flow; and a means for switching the circulation of the polyvalent cation to the vessel and the water flow of the aqueous solution for each individual vessel, After circulating the polyvalent cations in the container to modify the surface of the substance to form a positively charged modified product, the switching means is switched to pass an aqueous solution containing silica into the container, A recovery process of adsorbing and recovering silica dissolved in the aqueous solution on the surface of the modified product, and switching the switching means again to circulate the polyvalent cation in the container and adsorb it on the surface of the modified product. Modified silica The re-reforming process of positively charged re-reforming product is repeatedly performed for each individual container, and the recovery process and the re-reforming process are performed in parallel in at least two of the plurality of containers. A method for recovering silica in an aqueous solution, which is performed by
JP11192393A 1993-05-13 1993-05-13 Method and apparatus for recovering silica in aqueous solution Withdrawn JPH06320169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11192393A JPH06320169A (en) 1993-05-13 1993-05-13 Method and apparatus for recovering silica in aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11192393A JPH06320169A (en) 1993-05-13 1993-05-13 Method and apparatus for recovering silica in aqueous solution

Publications (1)

Publication Number Publication Date
JPH06320169A true JPH06320169A (en) 1994-11-22

Family

ID=14573510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11192393A Withdrawn JPH06320169A (en) 1993-05-13 1993-05-13 Method and apparatus for recovering silica in aqueous solution

Country Status (1)

Country Link
JP (1) JPH06320169A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239702A (en) * 1998-02-25 1999-09-07 Mitsubishi Materials Corp Method and device for recovering suspended solid from geothermal hot water and geothermal power generation installation using the same
JPH11244867A (en) * 1998-02-27 1999-09-14 Mitsubishi Materials Corp Treatment of silica-containing geothermal hot water
JPH11285602A (en) * 1998-04-02 1999-10-19 Mitsubishi Materials Corp Device and method for recovering suspended matter from geothermal hot water
JP2001324296A (en) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd Open circulation type cooling equipment
JP2002167213A (en) * 2000-11-28 2002-06-11 Mitsubishi Heavy Ind Ltd Silica recovering method and silica recovering apparatus
JP2018126723A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
CN110745832A (en) * 2019-11-29 2020-02-04 河南骏化发展股份有限公司 Water-saving device and process for producing white carbon black by precipitation method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11239702A (en) * 1998-02-25 1999-09-07 Mitsubishi Materials Corp Method and device for recovering suspended solid from geothermal hot water and geothermal power generation installation using the same
JPH11244867A (en) * 1998-02-27 1999-09-14 Mitsubishi Materials Corp Treatment of silica-containing geothermal hot water
JPH11285602A (en) * 1998-04-02 1999-10-19 Mitsubishi Materials Corp Device and method for recovering suspended matter from geothermal hot water
JP2001324296A (en) * 2000-05-18 2001-11-22 Kurita Water Ind Ltd Open circulation type cooling equipment
JP2002167213A (en) * 2000-11-28 2002-06-11 Mitsubishi Heavy Ind Ltd Silica recovering method and silica recovering apparatus
JP4625177B2 (en) * 2000-11-28 2011-02-02 三菱重工業株式会社 Silica recovery method and silica recovery device
JP2018126723A (en) * 2017-02-10 2018-08-16 株式会社クラレ Processing method and processing equipment for silica-containing water
CN110745832A (en) * 2019-11-29 2020-02-04 河南骏化发展股份有限公司 Water-saving device and process for producing white carbon black by precipitation method

Similar Documents

Publication Publication Date Title
RU2541357C2 (en) System for concentrate purification
US4207397A (en) Method for recovering and treating brine from water softener regeneration
JPS60132693A (en) Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water
US20220274100A1 (en) Water softener
JPH06320169A (en) Method and apparatus for recovering silica in aqueous solution
US5851372A (en) Process for demineralizing a liquid containing organic matter and salts in solution
USRE15618E (en) Xzthod of and appabatus fob softening wateb
JP2014128764A (en) Device and method for treating oil-containing wastewater
JP5413587B2 (en) Ultrapure water production method and production apparatus for ion exchange resin purification equipment
JPH0478344B2 (en)
JPS595015B2 (en) How to clean ion exchange resin
RU2206520C1 (en) Method of cleaning water to remove dissolved and undissolved impurities
JP5443059B2 (en) Water treatment equipment
JPS5833005B2 (en) How to recover and reuse backwash liquid
JPH10192718A (en) Resin regenerator for condensate desalter
JPH08155447A (en) Water softener
JP3963025B2 (en) Ion exchange resin separation and regeneration method
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP3837762B2 (en) Ion exchange resin separation and regeneration method
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
US4163717A (en) Removal of silica from mixed bed demineralizer
GB2063094A (en) Water purification by ion exchange
KR900001370B1 (en) Method and apparatus for desalting of water by ion-excanhge
JPS6219898B2 (en)
US20240035117A1 (en) Apparatus and method for versatile ion-exchange extraction of lithium from natural or technological lithium-containing brine by using a lithium-selective inorganic sorbent

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801