JPH0557285A - Method for removing silica in aqueous solution and recovering valuable element - Google Patents

Method for removing silica in aqueous solution and recovering valuable element

Info

Publication number
JPH0557285A
JPH0557285A JP33731491A JP33731491A JPH0557285A JP H0557285 A JPH0557285 A JP H0557285A JP 33731491 A JP33731491 A JP 33731491A JP 33731491 A JP33731491 A JP 33731491A JP H0557285 A JPH0557285 A JP H0557285A
Authority
JP
Japan
Prior art keywords
silica
hot water
hydroxide
aqueous solution
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33731491A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kubota
康宏 窪田
Yukimitsu Sugawara
幸光 菅原
Akira Ueda
晃 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JPH0557285A publication Critical patent/JPH0557285A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continuously remove silica (SiO2) from an aq. soln. contg. silica such as geothermal hot water, to prevent the formation of silica scales in the soln. passage and to separate and recover various valuable elements dissolved in the soln. CONSTITUTION:The geothermal hot water 1 separated from steam in a separation tank 3 is passed through a reaction passage 4, a current is intermittently applied between the electrodes 5A and 5B set in the passage 4 at regular time intervals, and the hydroxide of the metal constituting the anode between the electrodes 5A and 5B is repeatedly formed and removed. Since silica and various valuable elements are occluded in the hydroxide, the hydroxide is recovered by a filter 11, and the valuable elements are recovered from the hydroxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地熱熱水を始めとす
る、シリカ(SiO2)を含有する水溶液からシリカを
分離し、前記水溶液の流路におけるシリカスケールの生
成を防止するとともに、前記水溶液中に溶存する各種有
価元素を分離、回収する水溶液中のシリカ除去法および
有価元素回収法に関する。
BACKGROUND OF THE INVENTION The present invention separates silica from an aqueous solution containing silica (SiO 2 ) such as geothermal hot water to prevent the formation of silica scale in the flow path of the aqueous solution, and The present invention relates to a method for removing silica from an aqueous solution for separating and recovering various valuable elements dissolved in the aqueous solution, and a method for recovering the valuable element.

【0002】[0002]

【従来の技術】地熱発電は、地中の高温地熱流体を噴出
させ、分離された水蒸気を用いて発電を行うものである
が、この場合、水蒸気とともにシリカを500〜100
0mg/lの濃度で含む地熱熱水が噴出する。噴出した地
熱熱水は、地下還元弁を経て地中に還流されるが、前記
地熱流体の温度が250℃〜350℃であるのに対し前
記地熱熱水の温度が97℃〜98℃と低温であるため、
前記地熱熱水におけるシリカの溶解度が相対的に低下
し、しかも前記水蒸気との分離に伴いシリカが濃縮され
ることから、前記地熱熱水に含まれるシリカの一部は過
飽和状態となる。
2. Description of the Related Art In geothermal power generation, high-temperature geothermal fluid in the ground is jetted to generate electric power using separated steam.
Geothermal hot water containing 0 mg / l is emitted. The ejected geothermal hot water is returned to the ground through an underground reduction valve, but the temperature of the geothermal fluid is 250 ° C to 350 ° C, whereas the temperature of the geothermal hot water is as low as 97 ° C to 98 ° C. Because
Since the solubility of silica in the geothermal hot water is relatively reduced and the silica is concentrated as it is separated from the steam, a part of the silica contained in the geothermal hot water becomes supersaturated.

【0003】この過飽和シリカはシリカスケールとして
地熱発電所内の熱水経路や地下還元井の内壁等に析出し
やすく、その結果熱交換器の熱効率低下や前記熱水経路
の閉塞、あるいは前記地下還元井の容量減少等の原因と
なっている。しかも、析出したシリカは前記内壁等に強
固に付着して除去が困難であることから、シリカの析出
が進行した場合には、発電所の運転を停止して前記熱水
経路あるいは地下還元井を交換しなければならない。こ
のように、前記地熱熱水中におけるシリカの存在は、前
記地熱熱水の利用上大きな障害となっている。
This supersaturated silica is likely to be deposited as silica scale on the hot water passage in the geothermal power plant, the inner wall of the underground reduction well, etc., and as a result, the thermal efficiency of the heat exchanger is reduced, the hot water passage is blocked, or the underground reduction well is formed. Is causing the decrease in capacity. Moreover, since the deposited silica adheres strongly to the inner wall and the like and is difficult to remove, when the silica deposition proceeds, the operation of the power plant is stopped and the hot water path or the underground reduction well is removed. Must be replaced. As described above, the presence of silica in the geothermal hot water is a major obstacle in using the geothermal hot water.

【0004】そこで、前記地熱熱水中のシリカを予め除
去すれば、前記熱水経路や前記地下還元弁におけるシリ
カスケールの析出が防止されるため、従来より多くの研
究がなされている。
Therefore, if silica in the geothermal hot water is removed in advance, the precipitation of silica scale in the hot water passage and the underground reduction valve can be prevented.

【0005】ここで、これら従来のシリカ回収法は、ほ
ぼ以下の三種類に大別される。 (1) 限外濾過膜法:特開昭60−94198号公
報、特開昭63−1496号公報、および特開昭63−
2805号公報等に開示されている方法で、前記地熱熱
水中のシリカにシリカシード等の薬液を添加してコロイ
ド状とした後、ポリ塩化ビニル等からなる限外濾過膜を
用いて濾過し、濾過膜上の残渣を回収することによりシ
リカの除去を行うものである。
Here, these conventional silica recovery methods are roughly classified into the following three types. (1) Ultrafiltration membrane method: JP-A-60-94198, JP-A-63-1496, and JP-A-63-
According to the method disclosed in Japanese Patent No. 2805, etc., a chemical solution such as silica seed is added to silica in the geothermal hot water to form a colloidal form, which is then filtered using an ultrafiltration membrane made of polyvinyl chloride or the like. The silica is removed by collecting the residue on the filtration membrane.

【0006】(2) 吸着法:特開昭59−16588
号公報、特開昭60−114391号公報、および特公
昭59−13919号公報等に開示されている方法で、
前記地熱熱水に吸着剤(チオエーテル重合体等の有機溶
媒、または、カルシウム、マグネシウム等を含有する金
属化合物や活性アルミナ等)を添加するものである。同
方法においては、添加物とシリカと重合させるか、上記
添加物の加水分解の結果生じた二次生成物の水酸化物と
ともに沈澱したシリカを除去する。
(2) Adsorption method: JP-A-59-16588
Japanese Patent Publication No. 60-114391 and Japanese Patent Publication No. 59-13919.
An adsorbent (an organic solvent such as a thioether polymer, or a metal compound containing calcium, magnesium, etc., activated alumina, etc.) is added to the geothermal hot water. In this method, the additive and the silica are polymerized or the precipitated silica is removed together with the hydroxide of the secondary product resulting from the hydrolysis of the additive.

【0007】(3) 浮上分離法:前記地熱熱水にシリ
カ捕収剤を含む発泡性液剤を添加し、発生した気泡の表
面に微細なシリカ粒子を吸着させて、泡層として除去す
る方法である。
(3) Floating separation method: a method in which a foaming liquid agent containing a silica collector is added to the geothermal hot water, fine silica particles are adsorbed on the surface of the generated bubbles, and removed as a foam layer. is there.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記各
方法のうち限外濾過法においては、濾過膜が容易に目詰
まりを起こすためその都度洗浄もしくは交換する必要が
あり、除去率も数%にすぎないことから、除去効率が低
く、除去に必要な経費が増大するという問題があった。
However, among the above-mentioned methods, in the ultrafiltration method, since the filtration membrane is easily clogged, it is necessary to wash or replace it each time, and the removal rate is only a few percent. Therefore, there is a problem that the removal efficiency is low and the cost required for the removal increases.

【0009】また、吸着法は、シリカの除去率は高いも
のの、特殊な薬剤を使用する必要があり、特に、有機溶
媒を用いた場合には添加する有機溶媒が高価であるため
経済性の点で問題があった。更に、浮上分離法では、除
去効率を高めるために、pH調整その他の方法により、
予めシリカの重合および凝集を促進させておく必要があ
り、工程が複雑となっていた。
In addition, although the adsorption method has a high removal rate of silica, it requires the use of a special chemical agent. Particularly, when an organic solvent is used, the organic solvent to be added is expensive, which is economical. I had a problem with. Furthermore, in the flotation method, in order to improve the removal efficiency, pH adjustment and other methods
It is necessary to promote the polymerization and aggregation of silica in advance, which complicates the process.

【0010】一方、シリカを含有する水溶液に電極を接
触させ、この電極間に数百mA程度の電流を通電する
と、前記電極のうち陽極が溶解して水酸化物が形成さ
れ、しかも、この水酸化物とともに前記水溶液中のシリ
カが凝集することが知られている。この方法によれば前
記水溶液中のシリカ濃度を比較的容易に低下させること
が可能であるが、通電に伴い前記陽極の表面が前記水酸
化物で覆われて除去効率が次第に低下し、最終的には前
記電極間の導通が不可能となる場合があることから、前
記陽極表面を覆う前記水酸化物を定期的に除去しなけれ
ばならず、シリカの除去を連続的に行うことができない
という問題があった。
On the other hand, when an electrode is brought into contact with an aqueous solution containing silica and a current of about several hundred mA is applied between the electrodes, the anode among the electrodes is dissolved to form a hydroxide, and this water It is known that silica in the aqueous solution coagulates together with the oxide. According to this method, the concentration of silica in the aqueous solution can be lowered relatively easily, but the surface of the anode is covered with the hydroxide along with the energization, and the removal efficiency is gradually lowered. Since there is a case where the conduction between the electrodes becomes impossible, it is necessary to periodically remove the hydroxide covering the surface of the anode, and silica cannot be continuously removed. There was a problem.

【0011】[0011]

【課題を解決するための手段】本発明は、上記地熱熱水
等シリカを含有する水溶液に電極を接触させ、当該電極
間に一定の間隔で断続的に通電することにより、前記電
極のうち陽極を溶解させ、前記電極をなす物質の水酸化
物とともにシリカおよびI族、III族、V族およびV
I族元素から選択される前記水溶液中の有価元素を凝集
させ、更に前記水酸化物より当該有価元素を回収する前
記水溶液中のシリカ除去法および有価元素回収法であ
る。
Means for Solving the Problems The present invention provides an anode of the electrodes by bringing the electrodes into contact with an aqueous solution containing silica such as geothermal hot water and intermittently energizing the electrodes at regular intervals. Silica, and a hydroxide of the substance forming the electrode together with silica and a group I, III, V or V
A method of removing silica from the aqueous solution and a method of recovering valuable element, in which the valuable element in the aqueous solution selected from Group I elements is aggregated and the valuable element is further recovered from the hydroxide.

【0012】[0012]

【作用】本発明によれば、地熱熱水を始めとするシリカ
含有水溶液に電極を接触させ、この電極に通電すること
により、二次的に生成された水酸化物にシリカが凝集
し、その結果、前記水溶液中のシリカが効率よく除去さ
れる。
According to the present invention, when an electrode is brought into contact with a silica-containing aqueous solution such as geothermal hot water, and the electrode is energized, silica is aggregated in the secondary generated hydroxide, As a result, silica in the aqueous solution is efficiently removed.

【0013】[0013]

【実施例】以下、図面に基づき本発明の実施例について
更に詳しく説明する。本発明におけるシリカ除去設備の
基本的な構成を図1ないし図3に示す。図1ないし図3
において、符号3は円筒状をなす分離槽で、その側面に
は導入管2が接続されている。また、分離槽3の下端を
なす円形部の中心には下方から上方に向けて蒸気移送管
10が挿入され、その一端は分離槽3内において地熱熱
水1が混入しない位置に開口している。また、蒸気移送
管10の他端は発電設備(図示せず)に接続されてい
る。
Embodiments of the present invention will now be described in more detail with reference to the drawings. The basic structure of the silica removing equipment according to the present invention is shown in FIGS. 1 to 3
In FIG. 3, reference numeral 3 is a cylindrical separation tank, and the introduction pipe 2 is connected to the side surface thereof. Further, a vapor transfer pipe 10 is inserted from the lower side to the upper side in the center of a circular portion forming the lower end of the separation tank 3, and one end of the steam transfer tube 10 is opened in the separation tank 3 at a position where the geothermal water 1 is not mixed. .. The other end of the vapor transfer pipe 10 is connected to a power generation facility (not shown).

【0014】分離槽3はU字溝状をなす反応流路4の先
端に接続され、反応流路4内には各々長方形平板状をな
す陽極と陰極からなる一対の電極5A,5Bが配設され
ている。また、電極5A,5Bの位置は、反応流路4に
地熱熱水1を流した場合電極5A,5Bの下部が地熱熱
水1に浸漬されるような位置となっている。
The separation tank 3 is connected to the tip of a reaction channel 4 having a U-shaped groove, and in the reaction channel 4, a pair of electrodes 5A and 5B each having a rectangular flat plate-shaped anode and cathode are provided. Has been done. Further, the positions of the electrodes 5A and 5B are such that the lower portions of the electrodes 5A and 5B are immersed in the geothermal hot water 1 when the geothermal hot water 1 flows into the reaction channel 4.

【0015】電極5A,5Bの上端にはスイッチ7を経
て電源8が接続されており、スイッチ7には自動開閉機
構(図示せず)が備えられている。この自動開閉機構は
一定の間隔で自動的に通電を行うもので、通電および通
電停止の時間は任意に設定可能となっている。そして、
反応流路4の後端には還元管9が接続され、還元管9は
更に濾過装置11を経て地下還元井(図示せず)に接続
されている。
A power source 8 is connected to the upper ends of the electrodes 5A and 5B via a switch 7, and the switch 7 is provided with an automatic opening / closing mechanism (not shown). This automatic opening / closing mechanism automatically energizes at regular intervals, and the energization and de-energization times can be set arbitrarily. And
A reduction pipe 9 is connected to the rear end of the reaction channel 4, and the reduction pipe 9 is further connected to an underground reduction well (not shown) via a filtration device 11.

【0016】地中より噴出した地熱熱水1は導入管2を
経て分離槽3内に貯留された後、渦流となって反応流路
4に流入し、反応流路4において電極5A,5Bと接触
しつつ還元管9へと向かう流れを形成する。この状態で
スイッチ7をONにすると、電源8より供給された電流
により、地熱熱水1を介して電極5A,5B間が導通
し、電源8と電極5A,5B間に回路が形成されるとと
もに、電極5A,5Bのうち陽極が溶解し、前記陽極の
表面に、前記電極をなす物質の水酸化物からなる澱物が
生成する。また、この澱物には、前記水酸化物とともに
地熱熱水1中に含まれるシリカおよび他の有価元素が凝
集する。
The geothermal hot water 1 ejected from the ground is stored in the separation tank 3 through the introduction pipe 2 and then becomes a vortex flow into the reaction flow path 4 to form electrodes 5A and 5B in the reaction flow path 4. A flow toward the reduction tube 9 is formed while making contact. When the switch 7 is turned on in this state, the current supplied from the power source 8 causes conduction between the electrodes 5A and 5B via the geothermal hot water 1 to form a circuit between the power source 8 and the electrodes 5A and 5B. Of the electrodes 5A and 5B, the anode is dissolved, and a precipitate made of a hydroxide of a substance forming the electrode is formed on the surface of the anode. In addition, silica and other valuable elements contained in the geothermal hot water 1 coagulate with this hydroxide together with the hydroxide.

【0017】ところで、上記の通りスイッチ7には自動
開閉機構が備えられているため、スイッチ7をONにし
た後一定時間が経過すると、前記自動開閉機構の作用に
より通電が自動的に停止される。すると、通電の停止に
伴い、前記陽極の表面に生成した前記殿物が反応流路4
内における地熱熱水1の流れにより前記陽極の表面から
離脱し、更に地熱熱水1とともに反応流路を通って還元
管9に流入し、濾過装置11において地熱熱水1と分離
される。
By the way, since the switch 7 is provided with the automatic opening / closing mechanism as described above, the energization is automatically stopped by the action of the automatic opening / closing mechanism after a lapse of a certain time after the switch 7 is turned on. .. Then, the entrapment generated on the surface of the anode causes the reaction flow path 4 to stop when electricity is stopped.
It is separated from the surface of the anode by the flow of the geothermal hot water 1 therein, and further flows into the reduction pipe 9 through the reaction flow path together with the geothermal hot water 1 and is separated from the geothermal hot water 1 in the filtering device 11.

【0018】そして通電停止後一定時間が経過すると、
前記自動開閉機構の作用により通電が再開され、前記陽
極の周囲に、再度前記電極をなす物質の水酸化物からな
る澱物が形成される。このように、スイッチ7をONに
すると、電極5A,5Bへの通電が一定間隔で断続的に
繰り返され、それに伴い前記陽極の表面では水酸化物の
生成と離脱とが繰り返される。
When a certain period of time elapses after the power supply is stopped,
Energization is restarted by the action of the automatic opening / closing mechanism, and a precipitate made of a hydroxide of the substance forming the electrode is formed around the anode again. In this way, when the switch 7 is turned on, the energization of the electrodes 5A and 5B is repeated intermittently at regular intervals, and accordingly, the generation and removal of hydroxide is repeated on the surface of the anode.

【0019】その結果、地熱熱水1中に溶存するシリカ
の大部分は前記殿物に凝集されて濾過装置11において
分離されるため、濾過装置11から排出された地熱熱水
1は、シリカをほとんど含まない状態で還元管9を経て
前記地下還元井から地中に還元される。従って、熱水経
路や前記地下還元井においてシリカスケールが生成する
ことはない。一方、前記の通り、回収された澱物にはシ
リカ以外にも種々の有価元素が凝集しているため、溶融
電解法等の方法を用い、前記澱物よりこれらの元素を回
収して利用することができる。
As a result, most of the silica dissolved in the geothermal hot water 1 is agglomerated by the impurities and separated in the filtering device 11, so that the geothermal hot water 1 discharged from the filtering device 11 contains silica. It is returned to the ground from the above-mentioned underground reduction well through the reduction pipe 9 in a state where it is hardly contained. Therefore, silica scale is not generated in the hot water path or the underground reduction well. On the other hand, as described above, various valuable elements other than silica are agglomerated in the recovered starch, and thus a method such as a melt electrolysis method is used to recover and utilize these elements from the starch. be able to.

【0020】しかも、通電が断続的に行われ、それに伴
い前記陽極の表面において前記水酸化物の生成と離脱が
繰り返されるため、前記陽極の表面が前記水酸化物で被
覆されることはなく、従って、上記のシリカ除去設備を
長時間連続的に稼働させた場合でも、電極5A,5B間
の導通が不可能となることはない。
Moreover, since the energization is intermittently performed and the formation and removal of the hydroxide is repeated on the surface of the anode, the surface of the anode is not covered with the hydroxide. Therefore, even if the silica removing equipment is continuously operated for a long time, the conduction between the electrodes 5A and 5B does not become impossible.

【0021】なお、地熱熱水1とともに噴出した水蒸気
は、分離槽3で地熱熱水1と分離された後、蒸気移送管
9を経て前記発電設備に移送され、発電に利用される。
The steam ejected together with the geothermal hot water 1 is separated from the geothermal hot water 1 in the separation tank 3 and then transferred to the power generation facility through the steam transfer pipe 9 and used for power generation.

【0022】ここで、電極5A,5Bに用いられる材質
としては、アルミニウム、銅、鉄、亜鉛、鉛、ニッケ
ル、コバルト、チタン、カルシウム、およびマグネシウ
ムから選択される金属またはその合金が用いられるが、
必要に応じ、それ以外の素材を用いてもよい。
The material used for the electrodes 5A and 5B is a metal selected from aluminum, copper, iron, zinc, lead, nickel, cobalt, titanium, calcium, and magnesium, or an alloy thereof.
Other materials may be used if necessary.

【0023】また、通電時における電流の大きさならび
に通電/通電停止の間隔は、上記殿物が生成されるよう
な条件とする他、電極5A,5Bの形状および大きさ、
電極5A,5B間の距離、反応流路4の容積、等の条件
は、反応流路4内における地熱熱水1の流速、地熱熱水
1の温度、および地熱熱水1中のシリカの濃度ならびに
他の金属イオンを始めとする混合物の有無等の条件によ
り任意に設定される。
In addition, the magnitude of the current during energization and the interval between energization / non-energization are set so that the above-mentioned substance is generated, and the shapes and sizes of the electrodes 5A and 5B are set as follows.
The conditions such as the distance between the electrodes 5A and 5B, the volume of the reaction channel 4 and the like are determined by the flow velocity of the geothermal hot water 1 in the reaction channel 4, the temperature of the geothermal hot water 1, and the concentration of silica in the geothermal hot water 1. In addition, it is arbitrarily set depending on conditions such as the presence or absence of a mixture including other metal ions.

【0024】なお、図1のシリカ除去設備においては、
反応流路4の断面形状を、図2に示すようなU字溝状と
したが、図3に示すように、流路の断面形状を管状と
し、この反応流路4A内に電極5A,5Bを設置しても
よい。更に、除去部6を複数個設け、地熱熱水1が各除
去部6を順次通過するに従い、地熱熱水1中のシリカが
段階的に除去されるような構成としてもよく、分離槽3
に直接電極5A,5Bを設置し、分離槽3内で通電を行
ってもよい。更に、前記澱物の生成を促進するため、大
型の沈降槽を設けたり、沈降促進剤を併用することも可
能である。
In the silica removing equipment shown in FIG. 1,
Although the cross-sectional shape of the reaction channel 4 is U-shaped as shown in FIG. 2, the cross-sectional shape of the channel is tubular as shown in FIG. 3, and the electrodes 5A and 5B are provided in the reaction channel 4A. May be installed. Further, a plurality of removing parts 6 may be provided, and the silica in the geothermal hot water 1 may be removed stepwise as the geothermal hot water 1 sequentially passes through the removing parts 6.
The electrodes 5A and 5B may be directly installed in the column to energize in the separation tank 3. Further, in order to accelerate the production of the above-mentioned starch, it is possible to provide a large settling tank or to use a settling accelerator together.

【0025】一方、前記陽極の溶解に伴い電極5A,5
B間の導通が不可能となった場合には、電極5A,5B
の交換により、再度の導通が可能となっている。
On the other hand, as the anode is melted, the electrodes 5A, 5
When the conduction between B becomes impossible, the electrodes 5A and 5B
By replacing the, it is possible to conduct again.

【0026】[0026]

【発明の効果】以上説明した通り、本発明によれば、地
熱熱水を始めとするシリカ含有水溶液に電極を接触さ
せ、この電極に通電するだけで、二次的に生成された水
酸化物にシリカが凝集し、その結果、前記水溶液中のシ
リカが効率よく除去される。そのため、回収の操作が簡
単で、回収に要するコストも大幅に低減され、しかも、
特殊な薬剤等を使用することがないので、経済性と安全
性が高められる。すなわち、本発明を利用すれば、地熱
発電等における地熱熱水中のシリカスケールの生成を、
簡単かつ安価に、しかも確実に防止することができる。
As described above, according to the present invention, a secondary hydroxide is formed by simply contacting an electrode with a silica-containing aqueous solution such as geothermal hot water and energizing this electrode. Silica aggregates in the solution, and as a result, silica in the aqueous solution is efficiently removed. Therefore, the operation of collection is simple, the cost required for collection is greatly reduced, and moreover,
Since no special chemicals are used, economic efficiency and safety are improved. That is, by utilizing the present invention, the production of silica scale in geothermal water in geothermal power generation,
It can be easily and inexpensively and reliably prevented.

【0027】特に、通電を断続的に行うことにより、前
記電極が前記水酸化物により被覆されることに伴うシリ
カ除去効率の低下が防止されるため、前記水溶液中のシ
リカを長時間にわたり効率的に除去することが可能であ
る。
In particular, by intermittently energizing the electrode, it is possible to prevent the reduction of silica removal efficiency due to the coating of the electrode with the hydroxide, so that the silica in the aqueous solution can be efficiently treated for a long time. Can be removed.

【0028】更に、前記水溶液に、シリカとともに、I
族、III族、V族および六族元素から選択される各種
有価元素が溶存する場合には、これら各種有価元素をも
前記水酸化物中に凝集することができる。しかも、これ
らの有価元素はいずれも前記水酸化物より回収し、有効
に利用することができる。
Further, in the aqueous solution, together with silica, I
In the case where various valuable elements selected from Group III, Group III, Group V and Group VI elements are dissolved, these various valuable elements can also be aggregated in the hydroxide. Moreover, any of these valuable elements can be recovered from the hydroxide and effectively utilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるシリカ除去設備の基本的な構成
を示す概念図である。
FIG. 1 is a conceptual diagram showing a basic configuration of silica removal equipment in the present invention.

【図2】本発明における反応流路の形状の例を示すシリ
カ除去部の横断面図である。
FIG. 2 is a transverse cross-sectional view of a silica removal portion showing an example of the shape of a reaction channel in the present invention.

【図3】本発明における反応流路の形状の例を示すシリ
カ除去部の横断面図である。
FIG. 3 is a transverse cross-sectional view of a silica removing portion showing an example of the shape of a reaction channel in the present invention.

【符号の説明】[Explanation of symbols]

1 地熱熱水 2 導入管 3 分離槽 4,4A 反応流路 5A,5B 電極 7 スイッチ 8 電源 9 還元管 10 蒸気移送管 11 濾過装置 1 Geothermal hot water 2 Introducing pipe 3 Separation tank 4, 4A Reaction channel 5A, 5B Electrode 7 Switch 8 Power supply 9 Reduction pipe 10 Steam transfer pipe 11 Filtration device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シリカを含有する水溶液に少なくとも一
対の電極を接触させ、更にこの電極間に一定間隔で断続
的に通電して、前記電極をなす物質の水酸化物とともに
凝集させることを特徴とする水溶液中のシリカ除去法。
1. At least a pair of electrodes are brought into contact with an aqueous solution containing silica, and the electrodes are intermittently energized at regular intervals to coagulate with a hydroxide of a substance forming the electrodes. Method for removing silica in aqueous solution.
【請求項2】 上記電極に用いられる材質として、アル
ミニウム、銅、鉄、亜鉛、鉛、チタン、ニッケル、およ
びコバルトから選択される金属またはその合金を用いる
ことを特徴とする請求項1記載の水溶液中のシリカ除去
法。
2. The aqueous solution according to claim 1, wherein a metal selected from aluminum, copper, iron, zinc, lead, titanium, nickel, and cobalt or an alloy thereof is used as a material used for the electrode. Method of removing silica in.
【請求項3】 前記水酸化物とともに、シリカに加え、
I族、III族、V族およびVI族元素から選択される
前記水溶液中の有価元素を凝集させることを特徴とする
水溶液中の有価元素回収法。
3. Along with the hydroxide, in addition to silica,
A method for recovering a valuable element in an aqueous solution, which comprises aggregating the valuable element in the aqueous solution selected from Group I, Group III, Group V and Group VI elements.
JP33731491A 1991-06-27 1991-12-19 Method for removing silica in aqueous solution and recovering valuable element Pending JPH0557285A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15718091 1991-06-27
JP3-157180 1991-06-27

Publications (1)

Publication Number Publication Date
JPH0557285A true JPH0557285A (en) 1993-03-09

Family

ID=15643940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33731491A Pending JPH0557285A (en) 1991-06-27 1991-12-19 Method for removing silica in aqueous solution and recovering valuable element

Country Status (1)

Country Link
JP (1) JPH0557285A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244867A (en) * 1998-02-27 1999-09-14 Mitsubishi Materials Corp Treatment of silica-containing geothermal hot water
JPH11285602A (en) * 1998-04-02 1999-10-19 Mitsubishi Materials Corp Device and method for recovering suspended matter from geothermal hot water
US7157012B2 (en) 2003-03-26 2007-01-02 Sanyo Electric Co., Ltd. Water treatment device and water treatment method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11244867A (en) * 1998-02-27 1999-09-14 Mitsubishi Materials Corp Treatment of silica-containing geothermal hot water
JPH11285602A (en) * 1998-04-02 1999-10-19 Mitsubishi Materials Corp Device and method for recovering suspended matter from geothermal hot water
US7157012B2 (en) 2003-03-26 2007-01-02 Sanyo Electric Co., Ltd. Water treatment device and water treatment method using the same

Similar Documents

Publication Publication Date Title
EP1997782B1 (en) An apparatus, a system and a treatment method for organic compounds included in waste water
US5292412A (en) Removal of mercury from waste streams
CN103539283B (en) Comprehensive treatment method for removing Sb and Bi impurities in Cu electrolyte
JPWO2005035149A1 (en) Method and apparatus for purifying contaminated objects by heavy metals
JP2009114520A (en) Method and apparatus for removing nickel from copper-removed electrolyte
JPWO2005123606A1 (en) Liquid processing equipment
JPH07505443A (en) Electrochemical system for recovery of metals from metal compounds
JP4146078B2 (en) Method for separating and recovering nickel and zinc from wastewater or sludge containing nickel and zinc
JPH0557285A (en) Method for removing silica in aqueous solution and recovering valuable element
CN105693024A (en) System for conducting purification treatment on petrochemical engineering waste water
CN103274550A (en) Brine impurity removal method in sodium chlorate production technology
JP2701284B2 (en) Treatment method for metal-containing water
US5047126A (en) Method for recovering metal from waste stream
JPH0523672A (en) Recovering method for silica in water solution
CN106116029B (en) A kind of processing system of industrial wastewater
JPH05131194A (en) Recovery of silica from aqueous solution
CN211367185U (en) Processing system of coal gasifier buck
JPH05131192A (en) Removal of silica from aqueous solution and recovery of valued element
CN104445731B (en) System and process for comprehensively recovering and purifying supernatant wastewater after nickel carbonate is prepared by nickel electrolysis liquid purification system
CN108911354A (en) Portable water purification processing unit
JPH0699191A (en) Preventing method for sticking of silica scale in aqueous solution
RU2049156C1 (en) Method and apparatus for extraction of iod or bromine from aqueous solutions
JPS61245888A (en) Removal of impurities in liquid
NL2022919B1 (en) Method, device and wastewater treatment system for phosphorus, such as phosphate, removal from a feed solution
US2223832A (en) Process for the recovery of precious metals present in sea water

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000718