JPH11244677A - Apparatus for producing gas-dissolved water - Google Patents

Apparatus for producing gas-dissolved water

Info

Publication number
JPH11244677A
JPH11244677A JP10063990A JP6399098A JPH11244677A JP H11244677 A JPH11244677 A JP H11244677A JP 10063990 A JP10063990 A JP 10063990A JP 6399098 A JP6399098 A JP 6399098A JP H11244677 A JPH11244677 A JP H11244677A
Authority
JP
Japan
Prior art keywords
gas
water
hydrogen
dissolved
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10063990A
Other languages
Japanese (ja)
Other versions
JP3732330B2 (en
Inventor
Michio Yoshizawa
道雄 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP06399098A priority Critical patent/JP3732330B2/en
Publication of JPH11244677A publication Critical patent/JPH11244677A/en
Application granted granted Critical
Publication of JP3732330B2 publication Critical patent/JP3732330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce hydrogen-dissolved water having a specified dissolved hydrogen concn. without the fluctuation in the dissolved hydrogen concn. in spite of a fluctuation in the supply flow rate of ultra-pure water with an apparatus for producing the hydrogen-dissolved water by dissolving gaseous hydrogen into the ultra-pure water. SOLUTION: A pressure controller 19 is mounted at a gas supply passage 16 of a gas dissolution device 2 and a current controller 21 is electrically connected to the pressure controller 19. The gaseous hydrogen generated by electrolysis of water is supplied to the gas supply passage 16 of the device 2 and the ultra-pure water is supplied to a water supply passage 17 of the device 2. When the supply flow rate of the ultra-pure water fluctuates, the electrolytic current value is changed by the action of the pressure controller 19 and the current controller 21, by which the generating amt. of the gaseous hydrogen is regulated and the gaseous hydrogen pressure in the gas supply passage 16 is kept constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば半導体製造工
程において洗浄水として用いられる水素溶解水の如き一
定量のガスを溶解してなるガス溶解水を製造するための
ガス溶解水製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-dissolved water producing apparatus for producing gas-dissolved water by dissolving a fixed amount of gas such as hydrogen-dissolved water used as cleaning water in a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】半導体製造工程において、シリコンウエ
ハ表面に付着している微粒子、有機物、金属、自然酸化
膜等の除去を行うための洗浄が行われるが、この洗浄処
理に当って、硫酸・過酸化水素水混合溶液、フッ酸溶液
等の洗浄液及びすすぎのための超純水が用いられてい
る。しかし、超純水によるすすぎも全く問題がない訳で
はなく、超純水中の溶存酸素によりシリコンウエハ表面
に薄い酸化膜が形成されるという問題点があり、この点
を解決するため、超純水に水素ガスを溶解せしめた水素
溶解水を用いてすすぎ等の洗浄を行う方法が既に幾つか
提案されている。
2. Description of the Related Art In a semiconductor manufacturing process, cleaning is performed to remove fine particles, organic substances, metals, natural oxide films and the like adhering to the surface of a silicon wafer. A cleaning solution such as a mixed solution of a hydrogen oxide solution and a hydrofluoric acid solution and ultrapure water for rinsing are used. However, rinsing with ultrapure water is not without any problem, and there is a problem that dissolved oxygen in ultrapure water forms a thin oxide film on the silicon wafer surface. Several methods for cleaning such as rinsing using hydrogen-dissolved water obtained by dissolving hydrogen gas in water have already been proposed.

【0003】超純水に水素ガスを溶解させる方法とし
て、ガスボンベより水素ガスを供給して超純水に水素ガ
スを溶解させる方法や、水の電気分解により発生した水
素ガスを供給して超純水に水素ガスを溶解させる方法が
ある。
As a method of dissolving hydrogen gas in ultrapure water, a method of supplying hydrogen gas from a gas cylinder to dissolve hydrogen gas in ultrapure water or a method of supplying hydrogen gas generated by electrolysis of water to ultrapure water There is a method of dissolving hydrogen gas in water.

【0004】ガスボンベより水素ガスを供給する方法は
図2に示すように、水素ガスを充填したガスボンベ30
よりガス供給管31を通してガス溶解装置32内に水素
ガスを供給するものである。ガス溶解装置32はガス透
過膜33を介してガス供給通路34と水供給通路35と
に区画されており、水素ガスはガス供給通路34内に供
給される。一方、超純水は水供給管36を通してガス溶
解装置32の水供給通路35内に供給される。レギュレ
ーター37によって水素ガスは一定のガス圧力に保持さ
れると共に、ガス透過膜33を通過して水供給通路35
側に入り込み、超純水に溶解する。
As shown in FIG. 2, a method of supplying hydrogen gas from a gas cylinder is a gas cylinder 30 filled with hydrogen gas.
The hydrogen gas is supplied into the gas dissolving device 32 through the gas supply pipe 31. The gas dissolving device 32 is divided into a gas supply passage 34 and a water supply passage 35 via a gas permeable membrane 33, and hydrogen gas is supplied into the gas supply passage 34. On the other hand, the ultrapure water is supplied through the water supply pipe 36 into the water supply passage 35 of the gas dissolving device 32. The hydrogen gas is maintained at a constant gas pressure by the regulator 37 and passes through the gas permeable membrane 33 to the water supply passage 35.
Get into the side and dissolve in ultrapure water.

【0005】而して、水素ガスを溶解した超純水即ち、
水素溶解水はガス溶解装置32より流出し、水流出管3
8を通して例えば半導体製造工場における洗浄工程に送
られる。
Thus, ultrapure water in which hydrogen gas is dissolved, that is,
The hydrogen-dissolved water flows out of the gas dissolving device 32, and the water outflow pipe 3
For example, it is sent to a cleaning process in a semiconductor manufacturing factory through 8.

【0006】上記の方法による場合は、常時、予備を含
めて複数本のガスボンベを用意しなければならない上、
定期的にガスボンベを交換する必要があり、取り扱い上
不便なものであった。また、水素ガスの配管を長く引き
回すので設備費がかかると共に、水素ガス漏洩の危険性
や水素ガス純度の低下を伴う虞れがあった。
In the case of the above method, a plurality of gas cylinders including a spare must be prepared at all times.
Gas cylinders had to be replaced regularly, which was inconvenient to handle. In addition, since the piping for the hydrogen gas is extended for a long time, equipment costs are increased, and there is a risk of hydrogen gas leaking and a reduction in hydrogen gas purity.

【0007】また、水の電気分解により発生した水素ガ
スを供給する方法は図3に示すように、電解装置39内
で発生した水素ガスを気液分離器40、ガス供給管41
を通してガス溶解装置42のガス供給通路43に供給す
るものである。この場合、ガス供給通路43には過剰の
水素ガスが供給され、ガス透過膜44を通して水素ガス
が超純水に溶解すると共に、超純水に溶解しきれなかっ
た余剰の水素ガスはガス流出管45より流出し、水素ガ
ス燃焼装置46に導かれる。ここで水素ガスは空気又は
酸素供給雰囲気下において加熱されると共に、パラジウ
ム等の水素燃焼触媒と接触し、以て余剰の水素ガスを燃
焼処理して安全且つ無害な状態にする。47は余剰の水
素ガス量を調節する圧力調節弁、48は水供給管であ
る。
As shown in FIG. 3, a method of supplying hydrogen gas generated by the electrolysis of water is as follows. The hydrogen gas generated in the electrolytic device 39 is supplied to a gas-liquid separator 40 and a gas supply pipe 41.
The gas is supplied to the gas supply passage 43 of the gas dissolving device 42 through the passage. In this case, an excessive amount of hydrogen gas is supplied to the gas supply passage 43, the hydrogen gas is dissolved in the ultrapure water through the gas permeable membrane 44, and the excess hydrogen gas that has not been completely dissolved in the ultrapure water is supplied to the gas outlet pipe. It flows out of the fuel cell 45 and is led to the hydrogen gas combustion device 46. Here, the hydrogen gas is heated in an atmosphere of air or oxygen supply, and at the same time, is brought into contact with a hydrogen combustion catalyst such as palladium, so that the surplus hydrogen gas is burned to make it safe and harmless. 47 is a pressure control valve for adjusting the amount of excess hydrogen gas, and 48 is a water supply pipe.

【0008】かくして水素溶解水が得られ、この水素溶
解水は水流出管49より流出する。
[0008] Thus, hydrogen-dissolved water is obtained, and this hydrogen-dissolved water flows out of the water outflow pipe 49.

【0009】[0009]

【発明が解決しようとする課題】この電解装置39を用
いる方法によれば、ガスボンベの用意及び交換という手
間は不要になるが、一方において、ガス溶解装置42へ
の超純水の供給流量が変動すると該装置42内の水素ガ
ス圧も変動し、その結果、超純水における溶存水素濃度
を一定に保持できないという欠点がある。例えば、超純
水の供給流量が増大した場合、水素ガスの溶解量が増
え、これに伴いガス溶解装置42内の水素ガス圧が低減
する。水素ガス圧の低減により超純水への水素ガス溶解
量が低減し、その結果、得られる水素溶解水の溶存水素
濃度は所定の濃度よりも低いものとなる。このように、
上記方法においては、超純水供給流量の変動があったと
きに、水素溶解水における溶存水素濃度を一定に保持で
きないという問題点がある。
According to the method using the electrolytic device 39, the trouble of preparing and replacing the gas cylinder is not required, but the supply flow rate of the ultrapure water to the gas dissolving device 42 varies. Then, the hydrogen gas pressure in the device 42 also fluctuates, and as a result, there is a disadvantage that the concentration of dissolved hydrogen in ultrapure water cannot be kept constant. For example, when the supply flow rate of ultrapure water increases, the amount of dissolved hydrogen gas increases, and the hydrogen gas pressure in the gas dissolving device 42 decreases accordingly. By reducing the hydrogen gas pressure, the amount of hydrogen gas dissolved in ultrapure water is reduced, and as a result, the dissolved hydrogen concentration of the obtained hydrogen-dissolved water becomes lower than a predetermined concentration. in this way,
The above method has a problem that the concentration of dissolved hydrogen in the hydrogen-dissolved water cannot be kept constant when the supply flow rate of the ultrapure water changes.

【0010】また上記方法は余剰水素ガスを発生させる
ので、余分な電解電力を必要とし、エネルギー消費が過
多となるばかりか、余剰水素ガスを燃焼するための燃焼
設備も必要となり、全体として製造コストが高騰し、経
済的に不利なものであった。
In addition, the above-mentioned method generates excess hydrogen gas, so that it requires extra electrolysis power, not only consumes excessive energy, but also requires a combustion facility for burning the excess hydrogen gas. Were soaring and economically disadvantaged.

【0011】本発明は上記の点に鑑みなされたもので、
純水の供給流量に変動があった場合でも、常に一定の溶
存水素濃度を有するガス溶解水を製造することができる
ガス溶解水製造装置を提供することを目的とする。
[0011] The present invention has been made in view of the above points,
It is an object of the present invention to provide a gas-dissolved water producing apparatus that can always produce gas-dissolved water having a constant dissolved hydrogen concentration even when the supply flow rate of pure water fluctuates.

【0012】また本発明の他の目的は、エネルギー消費
の無駄がなく、製造コストを低減できる経済的に有利な
ガス溶解水製造装置を提供することにある。
Another object of the present invention is to provide an economically advantageous gas-dissolved water producing apparatus capable of reducing production costs without wasting energy consumption.

【0013】[0013]

【課題を解決するための手段】本発明は、(1) 水の
電気分解を行なう電解装置と、水の電気分解により生じ
たガスを純水に溶解するためのガス溶解装置と、ガス溶
解装置内のガス圧力を検知して、電解装置の電解電流値
を制御し、一定のガス圧力に調節するガス圧力調節手段
とからなることを特徴とするガス溶解水製造装置、
(2) ガス圧力調節手段が、ガス溶解装置に取り付け
られた圧力調節計と、該圧力調節計と電気的に接続され
電解装置の電解電流値を調節する電流制御装置とからな
るものである上記(1)記載のガス溶解水製造装置、
(3) ガス溶解装置は、ガス透過膜を介してガス供給
通路と水供給通路とを設けてなるものである上記(1)
記載のガス溶解水製造装置、(4) ガスが水素ガスで
ある上記(1)記載のガス溶解水製造装置を要旨とする
ものである。
SUMMARY OF THE INVENTION The present invention relates to (1) an electrolytic device for electrolyzing water, a gas dissolving device for dissolving gas generated by the electrolysis of water in pure water, and a gas dissolving device. A gas pressure adjusting means for detecting the gas pressure in the gas, controlling the electrolysis current value of the electrolysis device, and adjusting the gas pressure to a constant gas pressure.
(2) The gas pressure adjusting means includes a pressure controller attached to the gas dissolving device, and a current controller electrically connected to the pressure controller and adjusting an electrolytic current value of the electrolytic device. (1) The gas-dissolved water producing apparatus according to (1),
(3) The gas dissolving device is provided with a gas supply passage and a water supply passage through a gas permeable membrane.
(4) The gas-dissolved water producing apparatus according to (1), wherein the gas is hydrogen gas.

【0014】[0014]

【発明の実施の形態】以下、図面に基き本発明を詳細に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings.

【0015】図1には本発明のガス溶解水製造装置の実
施例が示されている。同図において、1は電解装置、2
はガス溶解装置であり、電解装置1はイオン交換膜3を
介して区画された陽極室4と陰極室5を有する。6は陽
極、7は陰極である。この電解装置1には純水を供給す
る流入管8と、水の電気分解により生じた水素ガスを流
出する流出管9と、同様に水の電気分解により生じた酸
素ガスを流出する流出管10とが配管され、流出管9は
気液分離器11に連結され、該気液分離器11とガス溶
解装置2との間にはガス供給管12が配管されている。
13は気液分離器11に取り付けられたレベルスイッ
チ、14はバルブである。
FIG. 1 shows an embodiment of a gas-dissolved water producing apparatus according to the present invention. In the figure, 1 is an electrolysis device, 2
Denotes a gas dissolving device, and the electrolytic device 1 has an anode chamber 4 and a cathode chamber 5 partitioned by an ion exchange membrane 3. 6 is an anode and 7 is a cathode. The electrolysis apparatus 1 has an inflow pipe 8 for supplying pure water, an outflow pipe 9 for flowing out hydrogen gas generated by water electrolysis, and an outflow pipe 10 for flowing out oxygen gas similarly generated by water electrolysis. The outlet pipe 9 is connected to a gas-liquid separator 11, and a gas supply pipe 12 is provided between the gas-liquid separator 11 and the gas dissolving device 2.
13 is a level switch attached to the gas-liquid separator 11, and 14 is a valve.

【0016】ガス溶解装置2はガス透過膜15を介して
区画されたガス供給通路16と水供給通路17を有し、
ガス供給通路16には前記ガス供給管12が連結され、
水供給通路17には水供給管18が連結されている。電
解装置1に配管された上記流入管8は、水供給管18か
ら分岐した状態で設けられている。ガス溶解装置2のガ
ス供給通路16側には圧力調節計19が取り付けられて
いる。この圧力調節計19の取付位置はガス供給通路1
6の入口でも、該通路16の内部でもよく、その取付位
置は任意である。また圧力調節計19はガス溶解装置2
に直接取り付けることに限定されず、例えばガス供給管
12の任意の位置に取り付けてもよい。
The gas dissolving device 2 has a gas supply passage 16 and a water supply passage 17 partitioned by a gas permeable membrane 15.
The gas supply pipe 16 is connected to the gas supply pipe 16,
A water supply pipe 18 is connected to the water supply passage 17. The inflow pipe 8 provided in the electrolysis apparatus 1 is provided in a state of branching from the water supply pipe 18. A pressure controller 19 is mounted on the gas supply passage 16 side of the gas melting device 2. The mounting position of the pressure controller 19 is the gas supply passage 1
6 or the inside of the passage 16, and its mounting position is arbitrary. The pressure controller 19 is a gas dissolving device 2
The gas supply pipe 12 may be attached to any position, for example.

【0017】電解装置1と直流電源20との間には、電
流制御装置21が電気的に接続され、且つ該電流制御装
置21には上記圧力調節計19が電気的に接続されてい
る。22はガス溶解装置2により得られた水素溶解水を
流出するための水流出管である。
A current controller 21 is electrically connected between the electrolyzer 1 and the DC power supply 20, and the pressure controller 19 is electrically connected to the current controller 21. Reference numeral 22 denotes a water outflow pipe for flowing out the hydrogen-dissolved water obtained by the gas dissolving device 2.

【0018】ガス溶解装置2におけるガス透過膜15と
しては、シリコン等の親ガス性素材からなるものや、フ
ッ素系樹脂等の撥水性素材からなる膜にガスの透過でき
る多数の微細孔を設け、ガスは透過するが水は透過しな
いように構成したもの等が用いられる。ガス透過膜15
は例えば中空糸状構造として構成することができ、ガス
透過膜15を中空糸状構造に形成した場合、ガス溶解の
方法として中空糸の内空部側から外側にガスを透過させ
る方法、中空糸の外側から内空部側にガスを透過させる
方法のいずれの方法も採用することができる。
As the gas permeable film 15 in the gas dissolving apparatus 2, a film made of a gas-philic material such as silicon or a film made of a water-repellent material such as a fluorine resin is provided with a large number of fine holes through which gas can pass. For example, one configured to transmit gas but not water can be used. Gas permeable membrane 15
For example, when the gas permeable membrane 15 is formed in a hollow fiber structure, a method of dissolving gas from the inner space side of the hollow fiber to the outside is used as a gas dissolving method. Any of the methods of allowing gas to permeate into the inner space side can be adopted.

【0019】本発明は純水に水素ガスを溶解するもので
あるが、ここにおいて純水の中で特に超純水を用いるこ
とが本発明を適用する上で好ましい。
Although the present invention dissolves hydrogen gas in pure water, it is particularly preferable to use ultrapure water among the pure water in applying the present invention.

【0020】本発明において、超純水とは、工業用水、
上水、井水、河川水、湖沼水等の原水を凝集沈殿、ろ
過、凝集ろ過、活性炭処理等の前処理装置で処理するこ
とにより、原水中の粗大な懸濁物質、有機物等を除去
し、次いでイオン交換装置、逆浸透膜装置等の脱塩装置
を主体とする一次純水製造装置で処理することにより、
微粒子、コロイド物質、有機物、金属イオン、陰イオン
等の不純物の大部分を除去し、更にこの一次純水を紫外
線照射装置、混床式ポリッシャー、限外ろ過膜や逆浸透
膜を装着した膜処理装置からなる二次純水製造装置で循
環処理することにより、残留する微粒子、コロイド物
質、有機物、金属イオン、陰イオン等の不純物を可及的
に除去した高純度純水を指し、その水質としては、例え
ば電気抵抗率が17.0MΩ・cm以上、全有機炭素が
100μgC/リットル以下、微粒子数(粒径0.07
μm以上のもの)が50ケ/ミリリットル以下、生菌数
が50ケ/リットル以下、シリカが10μgSiO2
リットル以下、ナトリウム0.1μgNa/リットル以
下のものを指す。
In the present invention, ultrapure water is industrial water,
Raw water such as tap water, well water, river water, lake water, etc. is treated with a pre-treatment device such as coagulation sedimentation, filtration, coagulation filtration, activated carbon treatment, etc. to remove coarse suspended substances and organic matter in the raw water. Then, by processing in a primary pure water producing apparatus mainly comprising a desalination apparatus such as an ion exchange apparatus and a reverse osmosis membrane apparatus,
Removal of most of impurities such as fine particles, colloidal substances, organic substances, metal ions and anions, and treatment of this primary pure water with an ultraviolet irradiation device, mixed-bed polisher, ultrafiltration membrane and reverse osmosis membrane It refers to high-purity pure water in which impurities such as fine particles, colloidal substances, organic substances, metal ions, and anions have been removed as much as possible by circulating in a secondary pure water production system. Is, for example, an electric resistivity of 17.0 MΩ · cm or more, a total organic carbon of 100 μgC / liter or less, and a number of fine particles (particle size 0.07
μm or less), the number of viable bacteria is 50 or less, silica is 10 μg SiO 2 /
Liter or less, sodium 0.1 μg Na / liter or less.

【0021】上記の如く構成される本発明装置の作用に
ついて以下、説明する。尚、以下の説明においては、純
水として超純水を用いた場合について述べる。
The operation of the apparatus of the present invention configured as described above will be described below. In the following description, a case where ultrapure water is used as pure water will be described.

【0022】水供給管18より超純水を供給し、流入管
8を介して電解装置1に超純水を流入し、ここで水の電
気分解を行う。水の電気分解により陰極7側に水素ガス
が生じる。陰極室5より流出するのは水素ガスと水との
気液混合物であり、この気液混合物は流出管9を経て気
液分離器11に流入する。
Ultrapure water is supplied from a water supply pipe 18, and the ultrapure water flows into the electrolysis apparatus 1 via the inflow pipe 8, where the water is electrolyzed. Hydrogen gas is generated on the cathode 7 side by the electrolysis of water. What flows out of the cathode chamber 5 is a gas-liquid mixture of hydrogen gas and water, and this gas-liquid mixture flows into the gas-liquid separator 11 through the outflow pipe 9.

【0023】この気液分離器11において水素ガスと水
とが分離し、水素ガスはガス供給管12を通ってガス溶
解装置2に導かれる。一方、水は気液分離器11内に滞
留し、その水位が所定位置を超えることとなる場合には
レベルスイッチ13が作動して電気信号によりバルブ1
4を開き、気液分離器11内の水を所定量排出し、滞留
水の水位が一定となるようコントロールする。
In the gas-liquid separator 11, hydrogen gas and water are separated, and the hydrogen gas is led to the gas dissolving device 2 through the gas supply pipe 12. On the other hand, the water stays in the gas-liquid separator 11, and when the water level exceeds a predetermined position, the level switch 13 is operated and the valve 1 is activated by an electric signal.
4 is opened, a predetermined amount of water in the gas-liquid separator 11 is discharged, and control is performed so that the level of the retained water becomes constant.

【0024】電解装置1において、陽極6側には酸素ガ
スが発生し、この酸素ガスは陽極室4より、流出管10
を経て系外に排出される。尚、電解装置1内の残留水も
この流出管10を通して排出される。
In the electrolysis apparatus 1, oxygen gas is generated on the anode 6 side, and this oxygen gas flows from the anode chamber 4 to the outlet pipe 10.
Is discharged out of the system. Incidentally, residual water in the electrolysis apparatus 1 is also discharged through the outflow pipe 10.

【0025】上記の如くガス供給管12よりガス溶解装
置2に導かれた水素ガスは、該装置2のガス供給通路1
6に流入する。一方、該装置2の水供給通路17には水
供給管18より超純水が供給される。水素ガスはガス透
過膜15を通過して水供給通路17内に入り込み、ここ
で超純水に溶解して水素溶解水が得られる。
As described above, the hydrogen gas introduced from the gas supply pipe 12 to the gas dissolving device 2 is supplied to the gas supply passage 1 of the device 2.
Flow into 6. On the other hand, ultrapure water is supplied to a water supply passage 17 of the device 2 from a water supply pipe 18. The hydrogen gas passes through the gas permeable membrane 15 and enters the water supply passage 17, where it is dissolved in ultrapure water to obtain hydrogen-dissolved water.

【0026】ここにおいて、圧力調節計19は、ガス溶
解装置2内の(より詳しくは該装置のガス供給通路16
内の)水素ガス圧力が一定の圧力となるように予め設定
調整されている。そのため、水供給通路17内において
水と水素ガスが接触した際、上記設定圧に基づいた水素
ガス溶解量が得られ、所定の溶存水素濃度を有する水素
溶解水が製造される。この水素溶解水は水流出管22を
経て系外に流出し、例えば半導体製造工場における洗浄
工程に送られ、シリコンウエハ等の半導体基板に対する
洗浄水として用いられる。
Here, the pressure controller 19 is provided in the gas dissolving apparatus 2 (more specifically, in the gas supply passage 16 of the apparatus).
The hydrogen gas pressure is adjusted in advance so as to be constant. Therefore, when water and hydrogen gas come into contact with each other in the water supply passage 17, an amount of dissolved hydrogen gas is obtained based on the set pressure, and hydrogen-dissolved water having a predetermined dissolved hydrogen concentration is produced. The hydrogen-dissolved water flows out of the system through the water outflow pipe 22, is sent to a cleaning process in a semiconductor manufacturing plant, for example, and is used as cleaning water for a semiconductor substrate such as a silicon wafer.

【0027】圧力調節計19によって設定される水素ガ
ス圧力は0〜5kgf/cm2 Gが好ましい。0kgf
/cm2 G未満では水素ガスの水に対する溶解量が少な
く、目的とする溶存水素濃度の水素溶解水が得られな
い。また5kgf/cm2 Gを超えると水供給通路17
内において水素ガスの気泡が発生し、水素溶解水中に気
泡が存在することとなって所定の溶存水素濃度が得られ
ず、また取り扱い上の面からも好ましくない。
The hydrogen gas pressure set by the pressure controller 19 is preferably 0 to 5 kgf / cm 2 G. 0kgf
If the concentration is less than / cm 2 G, the dissolved amount of hydrogen gas in water is small, and hydrogen-dissolved water having a target dissolved hydrogen concentration cannot be obtained. When the pressure exceeds 5 kgf / cm 2 G, the water supply passage 17
Gas bubbles of hydrogen gas are generated in the gas, and the bubbles are present in the hydrogen-dissolved water, so that a predetermined dissolved hydrogen concentration cannot be obtained, and this is not preferable in terms of handling.

【0028】水供給管18を通してガス溶解装置2に送
られる超純水の供給流量に変動が生じると、水素ガスの
溶解量に変動が生じ、それによりガス供給通路16内の
水素ガス圧にも変動が生じるが、圧調節計19の働きで
速やかに所定の設定圧に復帰する。
When the supply flow rate of the ultrapure water sent to the gas dissolving apparatus 2 through the water supply pipe 18 fluctuates, the amount of dissolved hydrogen gas fluctuates, and as a result, the hydrogen gas pressure in the gas supply passage 16 also increases. Although the pressure fluctuates, the pressure controller 19 promptly returns to the predetermined set pressure.

【0029】例えば、超純水の供給流量が増大した場
合、水素ガスの溶解量も増え、そのためガス供給通路1
6内の水素ガス圧は低下する。この水素ガス圧が設定圧
(例えば0〜5kgf/cm2 G)未満になると、その
圧力低下を圧力調節計19のセンサーが検知して電気信
号を出力し、電流制御装置21を電気的に制御して電解
電流値を増大させるよう調節する。このような電流制御
により電解電流値が増大すると、水の電気分解による水
素ガスの発生量が増大し、ガス溶解装置2のガス供給通
路16に供給される水素ガスのガス圧が増大し、速やか
に設定圧に復帰する。従って、設定圧に基づいた所定の
水素ガス溶解量が得られる。
For example, when the supply flow rate of ultrapure water increases, the amount of dissolved hydrogen gas also increases.
The hydrogen gas pressure in 6 decreases. When the hydrogen gas pressure becomes lower than a set pressure (for example, 0 to 5 kgf / cm 2 G), the sensor of the pressure controller 19 detects the pressure drop and outputs an electric signal to electrically control the current control device 21. To make the electrolytic current value larger. When the electrolysis current value increases due to such current control, the amount of hydrogen gas generated by the electrolysis of water increases, and the gas pressure of the hydrogen gas supplied to the gas supply passage 16 of the gas dissolving apparatus 2 increases. To the set pressure. Therefore, a predetermined amount of dissolved hydrogen gas is obtained based on the set pressure.

【0030】このように、本発明によれば、ガス供給通
路16内の水素ガス圧は一定圧力に制御されるので、超
純水の供給流量が上記の如く増大しても水素ガス圧に相
応した所定の水素ガス溶解量が得られ、溶解水素濃度が
一定である水素溶解水が得られるのであって、超純水の
供給流量が増大すると所定の濃度よりも低い溶存水素濃
度の水素溶解水しか得られないという従来技術の欠点を
確実に解決できるものである。
As described above, according to the present invention, the hydrogen gas pressure in the gas supply passage 16 is controlled to a constant pressure. Therefore, even if the supply flow rate of the ultrapure water increases as described above, it corresponds to the hydrogen gas pressure. A predetermined amount of dissolved hydrogen gas is obtained, and hydrogen dissolved water having a constant dissolved hydrogen concentration is obtained. When the supply flow rate of the ultrapure water increases, the hydrogen dissolved water having a dissolved hydrogen concentration lower than the predetermined concentration is obtained. The disadvantage of the prior art that can only be obtained can be surely solved.

【0031】尚、反対に、超純水の供給流量が減少した
場合には、水素ガスの溶解量が低下し、そのためガス供
給通路16内の水素ガス圧が設定圧よりも高くなるが、
この場合にはその圧力上昇を圧力調節計19のセンサー
が検知して電気信号を出力し電流制御装置21は該電気
信号を入力して電解電流値を低減させるよう電流制御を
行う。
On the contrary, when the supply flow rate of the ultrapure water decreases, the amount of dissolved hydrogen gas decreases, and the hydrogen gas pressure in the gas supply passage 16 becomes higher than the set pressure.
In this case, the sensor of the pressure controller 19 detects the pressure increase and outputs an electric signal, and the current control device 21 inputs the electric signal and performs current control so as to reduce the electrolytic current value.

【0032】かかる電流制御により水の電気分解による
水素ガスの発生量が減少し、ガス供給通路16内の水素
ガス圧が低下し、速やかに設定圧に復帰するので、上記
したと同様、所定の溶存水素濃度を有する水素溶解水が
得られる。
As a result of the current control, the amount of hydrogen gas generated by the electrolysis of water is reduced, the hydrogen gas pressure in the gas supply passage 16 is reduced, and the pressure is quickly returned to the set pressure. Hydrogen dissolved water having a dissolved hydrogen concentration is obtained.

【0033】上記した本発明の実施例では、超純水に水
素ガスを溶解する場合について述べたが、本発明はこれ
に限定されるものではない。即ち、本発明の他の実施例
として、電解装置1によって作られる酸素ガスをガス溶
解装置2に供給し、この酸素ガスを超純水に溶解して酸
素溶解水を製造することもでき、この場合、前記実施例
で説明したと同様、圧力調節計19によって酸素ガス圧
を常時一定圧に制御し、超純水の供給流量に変動があっ
ても常に一定の溶存酸素濃度を有する酸素溶解水を得る
ことができる。この酸素溶解水もまた、半導体製造工場
において、洗浄工程用の洗浄水として用いることができ
る。
In the above-described embodiment of the present invention, the case where hydrogen gas is dissolved in ultrapure water has been described, but the present invention is not limited to this. That is, as another embodiment of the present invention, the oxygen gas produced by the electrolysis device 1 is supplied to the gas dissolving device 2 and this oxygen gas can be dissolved in ultrapure water to produce oxygen dissolved water. In this case, as described in the above embodiment, the oxygen gas pressure is always controlled to be constant by the pressure controller 19, and the oxygen-dissolved water having a constant dissolved oxygen concentration is always maintained even when the supply flow rate of the ultrapure water varies. Can be obtained. This oxygen-dissolved water can also be used as cleaning water for a cleaning step in a semiconductor manufacturing plant.

【0034】[0034]

【発明の効果】本発明は水の電気分解により生じたガス
をガス溶解装置にて純水に溶解するように構成したガス
溶解装置において、ガス溶解装置内のガス圧力を検知し
て、電解装置の電解電流値を制御し、一定のガス圧力に
調節するガス圧力調節手段を設けたものであるから、純
水の供給流量が変動した場合でもガス溶解装置内のガス
圧力を一定に調節することができ、その結果、純水供給
流量の変動に係りなく、一定のガス圧力に基づく所定の
ガス溶解量が得られる。従って、本発明によれば純水供
給流量の変動があっても、ガス溶解水の溶存ガス濃度を
常に一定に保持できる効果がある。
The present invention relates to a gas dissolving apparatus configured to dissolve a gas generated by electrolysis of water into pure water by a gas dissolving apparatus. Since the gas pressure adjusting means for controlling the electrolytic current value of the gas and adjusting the gas pressure to a constant gas pressure is provided, the gas pressure in the gas dissolving apparatus is adjusted to be constant even when the supply flow rate of pure water fluctuates. As a result, a predetermined gas dissolution amount based on a constant gas pressure can be obtained irrespective of fluctuations in the pure water supply flow rate. Therefore, according to the present invention, there is an effect that the dissolved gas concentration of the gas-dissolved water can always be kept constant even if the pure water supply flow rate fluctuates.

【0035】また本発明によれば、設定圧に応じたガス
の発生及びガスの溶解が行なわれるので、余分な電解電
力を消費することがなく、そのため製造コストを低減で
き、経済的にも有利なものとなる効果がある。
Further, according to the present invention, since gas is generated and gas is dissolved in accordance with the set pressure, unnecessary electrolytic power is not consumed, so that the production cost can be reduced and the cost is economically advantageous. There is an effect that becomes something.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガス溶解水製造装置の実施例を示す略
図である。
FIG. 1 is a schematic view showing an embodiment of an apparatus for producing gas-dissolved water of the present invention.

【図2】従来のガス溶解水製造装置を示す略図である。FIG. 2 is a schematic view showing a conventional apparatus for producing gas-dissolved water.

【図3】従来のガス溶解水製造装置を示す略図である。FIG. 3 is a schematic view showing a conventional gas-dissolved water producing apparatus.

【符号の説明】[Explanation of symbols]

1 電解装置 2 ガス溶解装置 19 圧力調節計 21 電流制御装置 DESCRIPTION OF SYMBOLS 1 Electrolysis apparatus 2 Gas dissolution apparatus 19 Pressure controller 21 Current control apparatus

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水の電気分解を行なう電解装置と、水の
電気分解により生じたガスを純水に溶解するためのガス
溶解装置と、ガス溶解装置内のガス圧力を検知して、電
解装置の電解電流値を制御し、一定のガス圧力に調節す
るガス圧力調節手段とからなることを特徴とするガス溶
解水製造装置。
An electrolysis apparatus for electrolyzing water, a gas dissolving apparatus for dissolving a gas generated by the electrolysis of water in pure water, and a gas pressure in the gas dissolving apparatus for detecting the gas pressure in the gas dissolving apparatus. A gas pressure adjusting means for controlling an electrolytic current value of the gas to adjust the gas pressure to a constant gas pressure.
【請求項2】 ガス圧力調節手段が、ガス溶解装置に取
り付けられた圧力調節計と、該圧力調節計と電気的に接
続され電解装置の電解電流値を調節する電流制御装置と
からなるものである請求項1記載のガス溶解水製造装
置。
2. A gas pressure adjusting means comprising: a pressure controller attached to a gas dissolving device; and a current controller electrically connected to the pressure controller and adjusting an electrolytic current value of the electrolytic device. The apparatus for producing gas-dissolved water according to claim 1.
【請求項3】 ガス溶解装置は、ガス透過膜を介してガ
ス供給通路と水供給通路とを設けてなるものである請求
項1記載のガス溶解水製造装置。
3. The gas-dissolved water producing apparatus according to claim 1, wherein the gas-dissolving apparatus is provided with a gas supply passage and a water supply passage via a gas permeable membrane.
【請求項4】 ガスが水素ガスである請求項1記載のガ
ス溶解水製造装置。
4. The apparatus according to claim 1, wherein the gas is hydrogen gas.
JP06399098A 1998-02-27 1998-02-27 Gas dissolved water production equipment Expired - Lifetime JP3732330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06399098A JP3732330B2 (en) 1998-02-27 1998-02-27 Gas dissolved water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06399098A JP3732330B2 (en) 1998-02-27 1998-02-27 Gas dissolved water production equipment

Publications (2)

Publication Number Publication Date
JPH11244677A true JPH11244677A (en) 1999-09-14
JP3732330B2 JP3732330B2 (en) 2006-01-05

Family

ID=13245239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06399098A Expired - Lifetime JP3732330B2 (en) 1998-02-27 1998-02-27 Gas dissolved water production equipment

Country Status (1)

Country Link
JP (1) JP3732330B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3190824U (en) * 2014-03-12 2014-05-29 株式会社光未来 Gas dissolving device
JP2016077987A (en) * 2014-10-20 2016-05-16 株式会社ドクターズ・マン Hydrogen water feeding device
JP2019013873A (en) * 2017-07-05 2019-01-31 株式会社日本トリム Electrolytic water generator
WO2019235473A1 (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolving device
JP2019209283A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
CN112978865A (en) * 2019-12-13 2021-06-18 青岛经济技术开发区海尔热水器有限公司 Control method for hydrogen production of water heater and water heater
JP2022002846A (en) * 2018-06-06 2022-01-11 株式会社日本トリム Hydrogen gas dissolution device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3190824U (en) * 2014-03-12 2014-05-29 株式会社光未来 Gas dissolving device
JP2016077987A (en) * 2014-10-20 2016-05-16 株式会社ドクターズ・マン Hydrogen water feeding device
JP2019013873A (en) * 2017-07-05 2019-01-31 株式会社日本トリム Electrolytic water generator
WO2019235473A1 (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolving device
JP2019209284A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
JP2019209283A (en) * 2018-06-06 2019-12-12 株式会社日本トリム Hydrogen gas dissolution device
CN112203751A (en) * 2018-06-06 2021-01-08 日本多宁股份有限公司 Hydrogen dissolving device
JP2022002846A (en) * 2018-06-06 2022-01-11 株式会社日本トリム Hydrogen gas dissolution device
CN112978865A (en) * 2019-12-13 2021-06-18 青岛经济技术开发区海尔热水器有限公司 Control method for hydrogen production of water heater and water heater
CN112978865B (en) * 2019-12-13 2024-02-13 青岛经济技术开发区海尔热水器有限公司 Control method for hydrogen production of water heater and water heater

Also Published As

Publication number Publication date
JP3732330B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP2830733B2 (en) Electrolytic water generation method and electrolysis water generation mechanism
KR100447692B1 (en) Electrolytes for Acid and Alkaline Water Production
JP4867182B2 (en) Pure water production equipment
KR101436138B1 (en) A seawater electrolysi and fuel cell complex system
JP4978592B2 (en) Pure water production equipment
JP2007069199A (en) Apparatus for treating water
KR19990023400A (en) Water electrolysis method
JPH11244677A (en) Apparatus for producing gas-dissolved water
KR20130077164A (en) Water treatment apparatus for fuel cell
JP2013158676A (en) Method for producing saturated gas-containing nano-bubble water
JP2007266477A (en) Semiconductor substrate cleaning system
JP6400918B2 (en) Hydrogen dissolved water production apparatus and pure water production system
JPH07180076A (en) Process and apparatus for electrolytic formation of arsine
JP3432136B2 (en) Ozone and hydrogen generation method and generator
JP3768027B2 (en) Gas dissolved water production equipment
KR20140076540A (en) A seawater electrolysi and fuel cell complex system
JP2006278915A (en) Sulfuric acid recycling type cleaning system
CN213416590U (en) System for recycling urban reclaimed water by using full membrane method
JPH101794A (en) Electrolytic cell and electrolyzing method
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JPH07284772A (en) Apparatus for producing electrolytic water
CN218969032U (en) Reverse osmosis device of converter valve cooling system
NL2032604B1 (en) Method for flushing in an electromembrane process, a device, a membrane stack, and a system to perform said method.
US20240092666A1 (en) Method and system for wastewater treatment by membrane filtration and electrochemical oxidation
CN108473344A (en) Electrolytic water generating device and the manufacturing device and electrolyzed water producing method for using its dialyzate preparation water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term