JP2013158676A - Method for producing saturated gas-containing nano-bubble water - Google Patents

Method for producing saturated gas-containing nano-bubble water Download PDF

Info

Publication number
JP2013158676A
JP2013158676A JP2012021496A JP2012021496A JP2013158676A JP 2013158676 A JP2013158676 A JP 2013158676A JP 2012021496 A JP2012021496 A JP 2012021496A JP 2012021496 A JP2012021496 A JP 2012021496A JP 2013158676 A JP2013158676 A JP 2013158676A
Authority
JP
Japan
Prior art keywords
gas
water
pure water
nanobubble
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012021496A
Other languages
Japanese (ja)
Other versions
JP5912603B2 (en
Inventor
Isao Sawamoto
勲 澤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Technology KK
Original Assignee
Core Technology KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Core Technology KK filed Critical Core Technology KK
Priority to JP2012021496A priority Critical patent/JP5912603B2/en
Publication of JP2013158676A publication Critical patent/JP2013158676A/en
Application granted granted Critical
Publication of JP5912603B2 publication Critical patent/JP5912603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing saturated gas-containing nano-bubble water, allowing continuous acquisition of constantly stable gaseous saturation nano-bubble water over a long period capable of being used for an electronic industry field such as a semiconductor or a liquid crystal by more stably producing particle-free and metal-free nano-bubble water and controlling a nano-bubble amount.SOLUTION: Pure water is deaerated to generate deaerated pure water, the deaerated pure water is led to a positive electrode chamber and/or a negative electrode chamber of an electrolytic bath electrolyzing pure water to generate gas generation pure water, the current of the electrolytic bath is controlled in a gas generation pure water process, and the pressure of the gas generation pure water having passed through the gas generation pure water process is reduced to generate saturated gas-containing nano-bubble water.

Description

この発明は、ガス含有純水からナノバブル水を生成する飽和ガス含有ナノバブル水の製造方法に関し、より詳細には、パーテイクルフリーでメタルフリーなナノバブル水を、より安定に製造し、又、ナノバブル量を制御することにより、又、ガス含有純水の圧力をコントロールすることにより、半導体、液晶をはじめとする電子産業分野に使用可能な飽和ガス含有ナノバブル水の製造方法に関する。   The present invention relates to a method of producing saturated gas-containing nanobubble water that generates nanobubble water from gas-containing pure water, and more specifically, particle-free and metal-free nanobubble water is more stably produced, and the amount of nanobubbles Further, the present invention relates to a method for producing saturated gas-containing nanobubble water that can be used in the electronic industry field including semiconductors and liquid crystals by controlling the pressure of the gas-containing pure water.

電子産業におけるパーテイクル除去は、従来からAPM(アンモニア、過酸化水素)が使用されていた。しかし、近年、純水に水素ガスを溶解させた水素水を使用し、それにメガソニックをかけることで洗浄が行われてきている。   Conventionally, APM (ammonia, hydrogen peroxide) has been used for particle removal in the electronics industry. However, in recent years, cleaning has been performed by using hydrogen water obtained by dissolving hydrogen gas in pure water and applying megasonic to it.

しかしながら、近年、例えば半導体の製造では、回路パターンの線幅が狭まり、アスペクト比が大きくなるにつれ、メガソニックによる回路パターンだおれが発生するようになった。   However, in recent years, for example, in the manufacture of semiconductors, as the line width of a circuit pattern is narrowed and the aspect ratio is increased, the circuit pattern is distorted by megasonics.

そのため、救急対応として、メガソニックの出力を小さくして対応しているのが現状である。   Therefore, the current situation is that the output of Megasonic is reduced as an emergency response.

また、他の方法として、例えば2流体ジェット等を用いて洗浄することが試験的に行われているが、ガスと水の2流体が安定にジェットノズルから出力されることがなかなか難しい。   As another method, for example, cleaning using a two-fluid jet or the like is experimentally performed, but it is difficult to stably output two fluids of gas and water from a jet nozzle.

また、洗浄効果が、従来の水素水とメガソニックに比べ、パーテイクル除去の効果がなかなか得られない状況である。   In addition, it is difficult to obtain a particle removal effect compared to conventional hydrogen water and megasonic.

このため、ナノバブル水を用いて洗浄することが考えられ、ナノバブル水の製造として例えば、超音波のエネルギも必要でなく、水素を含む微小気泡等が安定して分散する水を製造する技術(特許文献1)、また加圧ポンプを使用し物理的障害物を設定した配管内に水流と気体を送り、強制的に加圧混入を行うことでマイクロバブルを発生させる技術などがある(特許文献2〜5)。   For this reason, it is conceivable to wash using nanobubble water. For example, a technology for producing water in which microbubbles containing hydrogen are stably dispersed without the need for ultrasonic energy as a production of nanobubble water (patent) Document 1), and a technique for generating microbubbles by sending a water flow and gas into a pipe in which a physical obstacle is set using a pressure pump and forcibly mixing the pressure (Patent Document 2) ~ 5).

特開2009−195889号公報JP 2009-195889 A 特許第3043315号公報Japanese Patent No. 3043315 特開2001−300522号公報Japanese Patent Laid-Open No. 2001-300522 特開2004−073953号公報JP 2004-073953 A 特開2005−245817号公報JP 2005-245817 A

この発明は、前述の従来技術の問題点を解消し、パーテイクル除去の効果を得ることが可能で、かつ長期間にわたり連続的で、また常に安定なガス飽和ナノバブル水を得ることが可能な飽和ガス含有ナノバブル水の製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, can obtain the effect of particle removal, and is a saturated gas capable of obtaining gas-saturated nanobubble water that is continuous for a long period of time and always stable. It aims at providing the manufacturing method of containing nano bubble water.

前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。   In order to solve the above-described problems and achieve the object, the present invention is configured as follows.

請求項1に記載の発明は、純水を脱気して脱気純水を生成する脱気工程と、前記脱気純水を、純水を電気分解してなる電解槽の陽極室、及び/または陰極室に導き、ガス生成純水とするガス生成純水工程と、前記ガス生成純水工程において電解槽の電流を制御する電流制御工程と、前記ガス生成純水工程を経た前記ガス生成純水の圧力を減圧して飽和ガス含有ナノバブル水を生成するナノバブル発生工程と、を有することを特徴とする飽和ガス含有ナノバブル水の製造方法である。   The invention described in claim 1 includes a degassing step of degassing pure water to produce degassed pure water, an anode chamber of an electrolytic cell obtained by electrolyzing the degassed pure water, and / Or a gas generation pure water step which leads to the cathode chamber to be a gas generation pure water, a current control step for controlling an electric current of an electrolytic cell in the gas generation pure water step, and the gas generation through the gas generation pure water step And a nanobubble generating step of generating saturated gas-containing nanobubble water by reducing the pressure of pure water.

請求項2に記載の発明は、前記ナノバブル発生工程の前に前記ガス生成純水の比抵抗を減少させることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   The invention according to claim 2 is the method for producing saturated gas-containing nanobubble water according to claim 1, wherein the specific resistance of the gas-generated pure water is reduced before the nanobubble generation step.

請求項3に記載の発明は、前記ガス生成純水の比抵抗の減少は、少なくとも酸またはアルカリを注入することにより比抵抗を低減し、かつ比抵抗の低減の程度を制御することを特徴とする請求項2に記載の飽和ガス含有ナノバブル水の製造方法である。   The invention according to claim 3 is characterized in that the specific resistance of the gas-generated pure water is reduced by reducing the specific resistance by injecting at least acid or alkali and controlling the degree of reduction of the specific resistance. The method for producing saturated gas-containing nanobubble water according to claim 2.

請求項4に記載の発明は、前記脱気工程は、膜を介することにより一方に純水を、他方に脱気状態にすることにより、純水中の気体成分を純水より除去し、
前記膜を介して、脱気状態の空間に導きだすことを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。
Invention of Claim 4 removes the gaseous component in pure water from the pure water by making the said deaeration process into a deaeration state in one side and a deaeration state in the other through a film | membrane,
It is led to the space of a deaeration state through the said film | membrane, It is a manufacturing method of saturated gas containing nano bubble water of Claim 1 characterized by the above-mentioned.

請求項5に記載の発明は、前記ガス生成純水工程における電解槽は、陽極から酸素ガス、及び/またはオゾンガスを、陰極から水素ガスを発生させる電解槽であり、前記ナノバブル発生工程に導く極室の水圧より前記ナノバブル発生工程に導かれない極室の水圧を低くすることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   According to a fifth aspect of the present invention, the electrolytic cell in the gas generation pure water step is an electrolytic cell that generates oxygen gas and / or ozone gas from the anode and hydrogen gas from the cathode, and is an electrode that leads to the nanobubble generation step. The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the water pressure in the polar chamber that is not led to the nanobubble generation step is made lower than the water pressure in the chamber.

請求項6に記載の発明は、前記ガス生成純水工程における電解槽は、前記ナノバブル発生工程に導かれない極室にも通水することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   The invention according to claim 6 is the saturated gas-containing nanobubble according to claim 1, wherein the electrolytic cell in the gas generation pure water step also passes through the polar chamber not led to the nanobubble generation step. It is a manufacturing method of water.

請求項7に記載の発明は、前記電流制御工程は、前記ガス生成純水中のガス圧力が正圧であり、また、少なくとも前記脱気純水の水圧または前記ガス生成純水の水圧よりも低いガス圧力になるように電解槽の電流を制御にすることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   In the invention according to claim 7, in the current control step, the gas pressure in the gas-generated pure water is a positive pressure, and at least the water pressure of the degassed pure water or the water pressure of the gas-generated pure water 2. The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the electric current in the electrolytic cell is controlled so as to obtain a low gas pressure.

請求項8に記載の発明は、前記電流制御工程は、前記ガス生成純水中のガス圧力を、一度、少なくとも前記脱気純水の水圧または前記ガス生成純水の水圧までの間に上昇させた後に、下げることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   According to an eighth aspect of the present invention, in the current control step, the gas pressure in the gas generation pure water is increased once at least to the water pressure of the degassed pure water or the water pressure of the gas generation pure water. 2. The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the lowering is performed later.

請求項9に記載の発明は、前記ナノバブル発生工程は、1ミクロン以下の空孔を経由して、前記ガス生成純水工程を経た前記ガス生成純水の圧力が減圧されることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   The invention according to claim 9 is characterized in that, in the nanobubble generation step, the pressure of the gas generation pure water that has passed through the gas generation pure water step is reduced via pores of 1 micron or less. It is a manufacturing method of the saturated gas containing nano bubble water of Claim 1.

請求項10に記載の発明は、前記ガス生成純水工程と前記ナノバブル発生工程との間に、1ミクロン以下の空孔を経由して、前記ガス生成純水を整流する整流工程を有することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   The invention according to claim 10 has a rectifying step of rectifying the gas-generated pure water via a pore of 1 micron or less between the gas-generated pure water step and the nanobubble generating step. It is a manufacturing method of the saturated gas containing nano bubble water of Claim 1 characterized by the above-mentioned.

請求項11に記載の発明は、前記ガス生成純水工程と前記ナノバブル発生工程との間に、前記ガス生成純水の圧力を前記電解槽の電流で制御されたガス圧力以上で、該ガス圧力に近づけるように制御する水圧調整工程を有することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   The invention according to claim 11 is characterized in that, between the gas generation pure water step and the nanobubble generation step, the pressure of the gas generation pure water is equal to or higher than the gas pressure controlled by the current of the electrolytic cell. 2. The method for producing saturated gas-containing nanobubble water according to claim 1, further comprising a water pressure adjusting step of controlling the gas so as to approach the water.

請求項12に記載の発明は、前記ガス生成純水工程の前段に、前記脱気純水の圧力を前記電解槽の電流で制御されたガス圧力以上で、前記電解槽の電流で制御されたガス圧力に近づけるように制御する水圧調整工程を有することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   In the invention of claim 12, the pressure of the degassed pure water is controlled by the current of the electrolytic cell at a pressure equal to or higher than the gas pressure controlled by the current of the electrolytic cell before the gas generation pure water step. The method for producing saturated gas-containing nanobubble water according to claim 1, further comprising a water pressure adjusting step for controlling the gas pressure so as to approach the gas pressure.

請求項13に記載の発明は、前記飽和ガス含有ナノバブル水は、半導体、液晶をはじめとする電子産業分野に使用することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   The invention according to claim 13 is the method of producing saturated gas-containing nanobubble water according to claim 1, wherein the saturated gas-containing nanobubble water is used in the field of electronic industry including semiconductors and liquid crystals. is there.

前記構成により、この発明は、以下のような効果を有する。   With the above configuration, the present invention has the following effects.

請求項1に記載の発明では、純水を脱気して脱気純水を生成し、この脱気純水を、純水を電気分解してなる電解槽の陽極室、及び/または陰極室に導き、ガス生成純水とし、このガス生成純水の圧力を減圧して飽和ガス含有ナノバブル水を生成することで、パーテイクル除去の効果を得ることが可能で、かつ長期間にわたり連続的で、また常に安定なガス飽和ナノバブル水を得ることが可能である。   According to the first aspect of the present invention, pure water is degassed to produce degassed pure water, and the degassed pure water is electrolyzed with pure water. It is possible to obtain the effect of particle removal by reducing the pressure of this gas generation pure water and generating saturated gas-containing nanobubble water, and continuously for a long period of time. Moreover, it is possible to obtain gas stable nanobubble water which is always stable.

請求項2に記載の発明では、さらにナノバブル発生工程の前にガス生成純水の比抵抗を減少させて飽和ガス含有ナノバブル水を生成することで、例えばアルカリ等を注入して、純水の比抵抗を落とす(pHを上げる)ことにより、長期間にわたり連続的で、また常に安定なガス飽和ナノバブル水を得ることが可能である。   In the invention according to claim 2, by further reducing the specific resistance of gas generating pure water before the nano bubble generating step to generate saturated gas-containing nano bubble water, for example, by injecting alkali or the like, the ratio of pure water By reducing the resistance (increasing the pH), it is possible to obtain gas-saturated nanobubble water that is continuous for a long period of time and is always stable.

請求項3に記載の発明では、ガス生成純水の比抵抗の減少は、少なくとも酸またはアルカリを注入することにより比抵抗を低減し、かつ比抵抗の低減の程度を制御することで、飽和ガス含有ナノバブル水を増加し、常に安定させることができる。   In the invention according to claim 3, the specific resistance of the gas-generating pure water is reduced by reducing the specific resistance by injecting at least an acid or an alkali, and controlling the degree of reduction of the specific resistance. The contained nanobubble water can be increased and always stabilized.

請求項4に記載の発明では、膜を介することにより一方に純水を、他方に脱気状態にすることにより、純水中の気体成分を純水より除去し、膜を介して、簡単な構造でかつ確実に脱気状態の空間に導きだすことができる。   In the invention of claim 4, pure water is removed from one side through the membrane, and the gas component in the pure water is removed from the pure water through the other side. It can be led to a deaerated space with a certain structure.

請求項5に記載の発明では、電解槽は、水圧として、ナノバブル水として使用する極室と、ナノバブル水として使用しない極室にし、ナノバブル発生工程に導く極室の水圧よりナノバブル発生工程に導かれない極室の水圧を低くすることで、ナノバブル水として使用しない極室で発生したガスが、対極のナノバブル水として使用する極室に混入することを防ぐことができる。   In the invention according to claim 5, the electrolytic cell is led to the nanobubble generation step from the water pressure of the polar chamber that leads to the nanobubble generation step by making the water pressure into an extreme chamber that is used as nanobubble water and an extreme chamber that is not used as nanobubble water. By reducing the water pressure in the non-polar chamber, it is possible to prevent gas generated in the polar chamber that is not used as nanobubble water from entering the polar chamber that is used as the nanobubble water of the counter electrode.

請求項6に記載の発明では、電解槽は、ナノバブル発生工程に導かれない極室にも通水し、ナノバブル水として使用しない極室にも通水することで、ナノバブル水として使用しない極室で発生したガスが通水された水(純水)でキャリーオーバーされ、対極のナノバブル水として使用する極室に混入することを防ぐことができる。   In the invention according to claim 6, the electrolytic cell passes through the polar chamber that is not led to the nanobubble generation step, and also passes through the polar chamber that is not used as nanobubble water, so that it is not used as nanobubble water. It is possible to prevent the gas generated in step 1 from being carried over by the water (pure water) that has been passed through and mixing into the polar chamber used as the nanobubble water of the counter electrode.

請求項7に記載の発明では、ガス生成純水中のガス圧力が正圧であり、また、少なくとも脱気純水の水圧またはガス生成純水の水圧よりも低いガス圧力になるように電解槽の電流を制御にすることで、確実に脱気純水をガス生成純水にすることができる。   In the invention according to claim 7, the electrolytic cell is configured so that the gas pressure in the gas-generated pure water is a positive pressure and at least a gas pressure lower than the water pressure of the degassed pure water or the water pressure of the gas-generated pure water. By controlling this current, degassed pure water can be reliably made into gas-generated pure water.

請求項8に記載の発明では、ガス生成純水中のガス圧力を、一度、少なくとも脱気純水の水圧または前記ガス生成純水の水圧までの間に上昇させた後に、下げることで、飽和ガス含有ナノバブル水がかえって増加し、常に安定になる。   In the invention according to claim 8, the gas pressure in the gas-generated pure water is once increased by at least the water pressure of the degassed pure water or the water pressure of the gas-generated pure water, and then decreased. Gas-containing nanobubble water increases on the contrary, and it is always stable.

請求項9に記載の発明では、1ミクロン以下の空孔を経由して、ガス生成純水工程を経たガス生成純水の圧力が減圧され、飽和ガス含有ナノバブル水が発生する。   In the ninth aspect of the present invention, the pressure of the gas-generated pure water that has passed through the gas-generated pure water step is reduced through pores of 1 micron or less, and saturated gas-containing nanobubble water is generated.

請求項10に記載の発明では、ガス生成純水工程とナノバブル発生工程との間に、1ミクロン以下の空孔を経由して、ガス生成純水を整流する整流工程を有することで、簡単かつ確実に飽和ガス含有ナノバブル水の製造することができる。   In the invention according to claim 10, it is simple and easy by having a rectifying step for rectifying the gas-generated pure water via the pores of 1 micron or less between the gas-generated pure water step and the nanobubble generation step. Saturated gas-containing nanobubble water can be produced reliably.

請求項11に記載の発明では、ガス生成純水工程とナノバブル発生工程との間に、ガス生成純水の圧力を電解槽の電流で制御されたガス圧力以上で、該ガス圧力に近づけるように制御することで、簡単かつ確実に飽和ガス含有ナノバブル水の製造することができる。   In the invention according to claim 11, between the gas generation pure water step and the nano bubble generation step, the pressure of the gas generation pure water is set to be close to the gas pressure at a gas pressure controlled by the current of the electrolytic cell. By controlling, saturated bubble-containing nanobubble water can be produced easily and reliably.

請求項12に記載の発明では、ガス生成純水工程の前段に、脱気純水の圧力を電解槽の電流で制御されたガス圧力以上で、電解槽の電流で制御されたガス圧力に近づけるように制御することで、簡単かつ確実に飽和ガス含有ナノバブル水の製造することができる。   In the twelfth aspect of the present invention, before the gas generation pure water step, the pressure of the degassed pure water is equal to or higher than the gas pressure controlled by the electrolyzer current and close to the gas pressure controlled by the electrolyzer current. By controlling in this way, saturated gas-containing nanobubble water can be produced easily and reliably.

請求項13に記載の発明では、飽和ガス含有ナノバブル水は、半導体、液晶をはじめとする電子産業分野に使用することができる。   In the invention described in claim 13, the saturated gas-containing nanobubble water can be used in the electronic industry field including semiconductors and liquid crystals.

飽和ガス含有ナノバブル水の製造方法の第1の実施の形態の概念図である。It is a conceptual diagram of 1st Embodiment of the manufacturing method of saturated gas containing nano bubble water. 飽和ガス含有ナノバブル水の製造方法の第2の実施の形態の概念図である。It is a conceptual diagram of 2nd Embodiment of the manufacturing method of saturated gas containing nano bubble water. 飽和ガス含有ナノバブル水の製造方法の第3の実施の形態の概念図である。It is a conceptual diagram of 3rd Embodiment of the manufacturing method of saturated gas containing nano bubble water.

以下、この発明の飽和ガス含有ナノバブル水の製造方法の実施の形態について説明する。この発明の実施の形態は、発明の最も好ましい形態を示すものであり、この発明はこれに限定されない。   Hereinafter, an embodiment of a method for producing saturated gas-containing nanobubble water of the present invention will be described. The embodiment of the present invention shows the most preferable mode of the present invention, and the present invention is not limited to this.

[第1の実施の形態]
図1は飽和ガス含有ナノバブル水の製造方法の第1の実施の形態の概念図である。この第1の実施の形態では、脱気工程A、ガス生成純水工程B、電流制御工程C、ナノバブル発生工程Dを有し、パーテイクルフリーでメタルフリーなナノバブル水を、より安定に製造し、半導体、液晶をはじめとする電子産業分野に使用可能な飽和ガス含有ナノバブル水を製造する。
[First Embodiment]
FIG. 1 is a conceptual diagram of a first embodiment of a method for producing saturated gas-containing nanobubble water. In the first embodiment, a degassing process A, a gas generation pure water process B, a current control process C, and a nanobubble generation process D are provided, and particle-free and metal-free nanobubble water is manufactured more stably. Manufactures nanobubble water containing saturated gas that can be used in the electronics industry including semiconductors and liquid crystals.

すなわち、純水は脱気工程Aを経由して脱気され脱気純水となり、脱気純水はガス生成純水工程Bにて脱気純水を、純水を電気分解してなる電解槽に導き、ガス生成純水とする。このガス生成純水工程Bにおいては、電流制御工程Cにおいて電解槽の電流を制御する電解槽の電流を制御する。   That is, pure water is degassed via degassing step A to become degassed pure water, and degassed pure water is an electrolysis obtained by electrolyzing pure water in degassed pure water step B. It is led to a tank and used as gas generation pure water. In the gas generation pure water process B, the current of the electrolytic cell that controls the current of the electrolytic cell in the current control process C is controlled.

このようにして生成されたガス生成純水は、ナノバブル発生工程Dにて減圧され、過飽和ガスがナノバブルとなった飽和ガス含有ナノバブル水として生成される。   The gas-generated pure water thus generated is decompressed in the nanobubble generation step D, and is generated as saturated gas-containing nanobubble water in which the supersaturated gas has become nanobubbles.

(脱気工程A)
この脱気工程Aでは、脱気手段10によって純水を脱気して脱気純水を生成する。脱気手段10は、脱気ケース11内に膜12が配置され、さらに迷路13を形成する堰板14が配置されている。脱気ケース11には、入口15と出口16が形成され、純水が入口15から迷路13を流れ、出口16から脱気純水が排出される。脱気手段10は、膜12を介することにより一方に純水を、他方に脱気状態にすることにより、純水中の気体成分を純水より除去し、膜12を介して、脱気状態の空間17に導きだす構成であり、純水を脱気して脱気純水を生成する。膜12を介することにより一方に純水を、他方に脱気状態にすることにより、純水中の気体成分を純水より除去し、膜12を介して、簡単な構造でかつ確実に脱気状態の空間に導きだすことができる。
(Deaeration process A)
In the deaeration step A, the deaeration unit 10 generates pure water by deaeration of pure water. In the deaeration means 10, a membrane 12 is disposed in a deaeration case 11, and a weir plate 14 that forms a maze 13 is further disposed. In the deaeration case 11, an inlet 15 and an outlet 16 are formed. Pure water flows through the maze 13 from the inlet 15, and degassed pure water is discharged from the outlet 16. The deaeration means 10 removes the pure water from the pure water by placing the pure water on one side through the membrane 12 and the deaerated state on the other side. In this configuration, the pure water is degassed to generate degassed pure water. The pure water is removed from the pure water through the membrane 12 and the pure water is removed from the pure water through the membrane 12. It can be led to the state space.

通常の電解槽では、例えば水素の場合、純水に溶解する濃度が0.6ppm程度である。飽和が1.6ppm、ナノバブル生成では過飽和にする条件が必要であるために、電解槽に導く純水を脱気する。これはヘンリーの法則に従い、ガスの分圧に従って溶解するため、電解槽に導く純水の既存ガスの分圧を下げる。   In a normal electrolytic cell, for example, in the case of hydrogen, the concentration dissolved in pure water is about 0.6 ppm. Saturation is 1.6 ppm, and nanobubble generation requires conditions for supersaturation, so the pure water introduced to the electrolytic cell is degassed. This is in accordance with Henry's law and dissolves according to the partial pressure of the gas, so the partial pressure of the existing gas of pure water led to the electrolytic cell is lowered.

(ガス生成純水工程B)
ガス生成純水工程Bでは、脱気純水を、純水を電気分解してなる電解槽20の陽極室21、及び/または陰極室22に導き、ガス生成純水とする。すなわち、脱気純水を、陽極室21に導く、または陰極室22に導く、または陽極室21及び陰極室22に導く。電解槽20には電源23が接続され、このガス生成純水工程Bにおいては、電流制御工程Cにおいて電流制御装置24により電解槽20の電流を制御する。
(Gas production pure water process B)
In the gas generation pure water process B, the degassed pure water is led to the anode chamber 21 and / or the cathode chamber 22 of the electrolytic cell 20 obtained by electrolyzing the pure water, and used as gas generation pure water. That is, the degassed pure water is led to the anode chamber 21, led to the cathode chamber 22, or led to the anode chamber 21 and the cathode chamber 22. A power source 23 is connected to the electrolytic cell 20, and in the gas generation pure water process B, the current control device 24 controls the current of the electrolytic cell 20 in the current control process C.

ガス生成純水工程Bにおける電解槽20は、陽極室21の陽極から酸素ガス、及び/またはオゾンガスを、陰極室22の陰極から水素ガスを発生させる電解槽であり、ナノバブル発生工程Dに導く極室の水圧よりナノバブル発生工程Dに導かれない極室の水圧を低くする。電解槽20は、水圧として、ナノバブル水として使用する極室と、ナノバブル水として使用しない極室にし、ナノバブル発生工程Dに導く極室の水圧よりナノバブル発生工程Dに導かれない極室の水圧を低くすることで、ナノバブル水として使用しない極室で発生したガスが、対極のナノバブル水として使用する極室に混入することを防ぐことができる。   The electrolytic cell 20 in the gas generation pure water process B is an electrolytic cell that generates oxygen gas and / or ozone gas from the anode of the anode chamber 21 and hydrogen gas from the cathode of the cathode chamber 22. The water pressure in the polar chamber that is not led to the nanobubble generation step D is made lower than the water pressure in the chamber. The electrolyzer 20 has a polar chamber that is not used as nanobubble water and a polar chamber that is not used as nanobubble water as water pressure. By making it low, it can prevent that the gas generated in the polar chamber which is not used as nanobubble water mixes in the polar chamber used as the nanobubble water of the counter electrode.

ガス生成純水工程Bにおける電解槽20は、ナノバブル発生工程Dに導かれない極室にも通水する。電解槽20は、ナノバブル発生工程Dに導かれない極室にも通水し、ナノバブル水として使用しない極室にも通水することで、ナノバブル水として使用しない極室で発生したガスが通水された水(純水)でキャリーオーバーされ、対極のナノバブル水として使用する極室に混入することを防ぐことができる。   The electrolytic cell 20 in the gas generation pure water process B also passes through the polar chamber that is not led to the nanobubble generation process D. The electrolytic cell 20 also passes through the polar chamber that is not guided to the nanobubble generation step D, and also passes through the polar chamber that is not used as nanobubble water. Can be prevented from being mixed in the polar chamber used as the nanobubble water of the counter electrode.

電流制御工程Cは、ガス生成純水中のガス圧力が正圧であり、また、少なくとも脱気純水の水圧またはガス生成純水の水圧よりも低いガス圧力になるように電解槽20の電流を制御にする。このように、電解槽20の電流を電流制御装置24により制御にすることで、確実に脱気純水をガス生成純水にすることができる。   In the current control step C, the current in the electrolytic cell 20 is such that the gas pressure in the gas-generated pure water is positive and at least the gas pressure is lower than the water pressure of the degassed pure water or the water pressure of the gas-generated pure water. To control. In this way, by controlling the current in the electrolytic cell 20 by the current control device 24, the degassed pure water can be reliably converted into the gas-generated pure water.

また、電流制御工程Cは、ガス生成純水中のガス圧力を、一度、少なくとも脱気純水の水圧またはガス生成純水の水圧までの間に上昇させた後に、下げる。このように、ガス生成純水中のガス圧力を制御することで、飽和ガス含有ナノバブル水がかえって増加し、常に安定になる。   In the current control step C, the gas pressure in the gas-generated pure water is increased at least once until the water pressure of the degassed pure water or the water pressure of the gas-generated pure water is lowered. In this way, by controlling the gas pressure in the gas-generated pure water, the saturated gas-containing nanobubble water increases on the contrary and is always stable.

(ナノバブル発生工程D)
このナノバブル発生工程Dでは、ナノバブル発生手段40によってガス生成純水工程Bを経たガス生成純水の圧力を減圧して飽和ガス含有ナノバブル水を生成する。ナノバブル発生手段40は、フィルタ41を有し、このフィルタ41の1ミクロン以下の空孔を経由して、ガス生成純水の圧力を減圧し、ガス生成純水工程Bを経たガス生成純水の圧力を減圧して飽和ガス含有ナノバブル水を生成する。このナノバブル発生手段40の減圧構造は、フィルタ41の1ミクロン以下の空孔を経由して、減圧されることを特徴とし、できれば0.5ミクロン以下の空孔を経由して減圧される。
(Nano bubble generation process D)
In this nanobubble generation step D, the nanobubble generation means 40 reduces the pressure of the gas generation pure water that has passed through the gas generation pure water step B to generate saturated gas-containing nanobubble water. The nano-bubble generating means 40 has a filter 41, and the pressure of the gas-generated pure water is reduced through the pores of 1 micron or less of the filter 41, and the gas-generated pure water subjected to the gas-generated pure water step B is used. The pressure is reduced to produce saturated gas-containing nanobubble water. The pressure reducing structure of the nanobubble generating means 40 is characterized in that the pressure is reduced via the pores of 1 micron or less of the filter 41, and the pressure is reduced via the pores of 0.5 micron or less if possible.

[第2の実施の形態]
図2は飽和ガス含有ナノバブル水の製造方法で整流工程、水圧調整工程を経由した概念図である。この第2の実施の形態では、第1の実施の形態と同様に、脱気工程A、ガス生成純水工程B、電流制御工程C、ナノバブル発生工程Dを有し、さらに整流工程E、水圧調整工程Fを有する。
[Second Embodiment]
FIG. 2 is a conceptual diagram through a rectification step and a water pressure adjustment step in the method for producing saturated gas-containing nanobubble water. As in the first embodiment, the second embodiment includes a deaeration process A, a gas generation pure water process B, a current control process C, and a nanobubble generation process D, and further includes a rectification process E, a water pressure It has adjustment process F.

この第2の実施の形態では、さらに安定な飽和ガス含有ナノバブル水を生成するために、図1の実施の形態に対して、ガス生成純水を整流工程Eに導き、整流して整流純水を生成した後、水圧調整工程Fにて前もって純水の水圧を調整し水圧調整純水とした後、ナノバブル発生工程Dにて減圧され、過飽和ガスがナノバブルとなった飽和ガス含有ナノバブル水として生成される。   In the second embodiment, in order to generate more stable saturated gas-containing nanobubble water, the gas generation pure water is guided to the rectification step E and rectified by the rectification pure water with respect to the embodiment of FIG. Then, after adjusting the water pressure of the pure water in the water pressure adjusting step F to make the water pressure adjusted pure water, the pressure is reduced in the nano bubble generating step D, and the supersaturated gas is generated as nanobubble water containing saturated gas that has become nano bubbles. Is done.

(整流工程E)
この整流工程Eは、ガス生成純水工程Bとナノバブル発生工程Dとの間に有し、整流手段50によって1ミクロン以下の空孔を経由して、ガス生成純水を整流する。純水が加圧されている状態では、ガス生成純水はバブルとはなっていないため、ナノバブル発生工程で均一にナノバブルを発生させるためには、その前で整流することで、容易にかつ確実に均一なナノバブルが生成できるようになる。
(Rectification process E)
This rectification process E is provided between the gas generation pure water process B and the nanobubble generation process D, and the gas generation pure water is rectified by the rectification means 50 through holes of 1 micron or less. In the state where pure water is pressurized, the gas-generated pure water is not a bubble, so in order to generate nanobubbles uniformly in the nanobubble generation process, rectification is performed easily and reliably before that. Uniform nanobubbles can be generated.

(水圧調整工程F)
この水圧調整工程Fは、ガス生成純水工程Bとナノバブル発生工程Dとの間に有し、水圧調整手段60によってガス生成純水の圧力を電解槽20の電流で制御されたガス圧力以上で、このガス圧力に近づけるように制御する。この水圧調整手段60には、圧力センサ61を用いて制御している。
(Water pressure adjustment process F)
This water pressure adjustment step F is provided between the gas generation pure water step B and the nanobubble generation step D, and the pressure of the gas generation pure water is controlled by the water pressure adjusting means 60 to be equal to or higher than the gas pressure controlled by the current in the electrolytic cell 20. Then, control is performed so as to approach this gas pressure. The water pressure adjusting means 60 is controlled using a pressure sensor 61.

(飽和ガス含有ナノバブル水)
製造された飽和ガス含有ナノバブル水は、半導体、液晶をはじめとする電子産業分野に使用することができる。この飽和ガス含有ナノバブル水は、直径が1μm(1マイクロメートル:100万分の1メートル)以下の超微細な気泡を含有した水であり、従って、直径1μm以上のマイクロバブルの気泡も含有している。
(Saturated gas-containing nanobubble water)
The produced saturated gas-containing nanobubble water can be used in the electronic industry field including semiconductors and liquid crystals. This saturated gas-containing nanobubble water is water containing ultrafine bubbles having a diameter of 1 μm (1 micrometer: one millionth of a meter) or less, and therefore also contains microbubbles having a diameter of 1 μm or more. .

飽和ガス含有ナノバブル水は、同体積を有する単一の気泡に比べて大きな比表面積を有し、また水中への気体の溶解や液中の不純物の吸着、科学的な触媒効果が大きく、また浮力が殆ど効かないため液中に滞在する時間が長いなどの特徴を有している。   Saturated gas-containing nanobubble water has a large specific surface area compared to a single bubble with the same volume, and it has a high solubility of gas in water, adsorption of impurities in the liquid, scientific catalytic effect, and buoyancy. Has a feature such as a long time for staying in the liquid because it is hardly effective.

また、ナノバブルは、直径100nm程度の気泡は気液界面の表面張力により、気泡内部の圧力が30気圧程度まで増加しており、また気泡表面は活性が高く、汚れ成分を界面に吸着させる。また、100nm程度の気泡は数mm程度の気泡と比べ、同じ体積に比べ表面積が数万倍大きい、さらに分子動力学の解析結果より、数nmの気泡では気液界面の極性が揃うなどの特徴を有している。   Nanobubbles have a diameter of about 100 nm and the pressure inside the bubbles is increased to about 30 atm due to the surface tension of the gas-liquid interface, and the surface of the bubbles is highly active and adsorbs dirt components to the interface. In addition, bubbles of about 100 nm have a surface area that is tens of thousands of times larger than bubbles of about several mm compared to bubbles of about several millimeters, and molecular dynamics analysis results show that the polarity of the gas-liquid interface is uniform for bubbles of several nm. have.

したがって、飽和ガス含有ナノバブル水は、ナノバブルが物体に接触する際に破壊すると数十気圧のジェットが生じし、浄化速度が大きく、物体表面の洗浄効果があり、さらに静電気による殺菌効果を有する。   Therefore, saturated gas-containing nanobubble water generates a jet of several tens of atmospheres when broken when nanobubbles come into contact with an object, has a high purification rate, has a cleaning effect on the surface of the object, and has a sterilizing effect due to static electricity.

そして、特に半導体の洗浄に用いる飽和ガス含有ナノバブル水に必要な条件、例えばパーテイクルフリーであること、メタルフリーであること、ガス量が制御できること、ノズルから連続的に供給できること、常に一定のパーテイクル除去性能があることなどを有する。   And especially the conditions necessary for saturated gas-containing nanobubble water used for semiconductor cleaning, such as being particle-free, being metal-free, being able to control the amount of gas, being able to be continuously supplied from a nozzle, always a constant particle It has a removal performance.

したがって、飽和ガス含有ナノバブル水は、洗浄においては、主として破壊時の数十気圧といわれるジェットによるため、ナノバブルが被洗浄物上において、均一に供給され、破壊することができる。   Therefore, since the saturated bubble-containing nanobubble water is mainly due to a jet that is said to be several tens of atmospheres at the time of destruction, the nanobubbles can be uniformly supplied and destroyed on the object to be cleaned.

次に、この発明に係わる飽和ガス含有ナノバブル水の製造の実施例を記載するが、この実施例はこの発明を限定するものではない。水圧250kPaで飽和ガス含有ナノバブル水の生成を行った。生成したナノバブル水の発生バブルを測定したところ、0.1〜0.5ミクロンの粒径で2400個、0.5ミクロン以上が30個測定された。   Next, although the Example of manufacture of the saturated gas containing nano bubble water concerning this invention is described, this Example does not limit this invention. Saturated gas-containing nanobubble water was generated at a water pressure of 250 kPa. When the generated bubbles of the nanobubble water were measured, 2400 particles having a particle diameter of 0.1 to 0.5 microns and 30 particles of 0.5 microns or more were measured.

[第3の実施の形態]
図3は飽和ガス含有ナノバブル水の製造方法の第3の実施の形態の概念図である。この第3の実施の形態では、第1及び第2の実施の形態と同様に、脱気工程A、ガス生成純水工程B、圧力制御工程C、ナノバブル発生工程Dを有し、さらに整流工程E、比抵抗減少工程Gを有する。
[Third Embodiment]
FIG. 3 is a conceptual diagram of a third embodiment of a method for producing saturated gas-containing nanobubble water. In the third embodiment, similarly to the first and second embodiments, the degassing step A, the gas generation pure water step B, the pressure control step C, and the nanobubble generation step D are provided, and the rectification step is further performed. E, specific resistance reduction process G.

この実施の形態では、脱気工程A、ガス生成純水工程B、電流制御工程C、整流工程E、比抵抗減少工程G、ナノバブル発生工程Dを有し、長期間にわたり連続的で、また常に安定なガス飽和ナノバブル水を得ることが可能であり、半導体、液晶をはじめとする電子産業分野に使用可能な飽和ガス含有ナノバブル水を製造する。   In this embodiment, it has a deaeration process A, a gas generation pure water process B, a current control process C, a rectification process E, a specific resistance reduction process G, and a nanobubble generation process D, and is continuous over a long period of time. It is possible to obtain stable gas-saturated nanobubble water, and to produce saturated gas-containing nanobubble water that can be used in the electronic industry field including semiconductors and liquid crystals.

すなわち、純水は脱気工程Aを経由して脱気され脱気純水となり、脱気純水はガス生成純水工程Bにて脱気純水を、純水を電気分解してなる電解槽に導き、ガス生成純水とする。また、電流制御工程Cは、ガス生成純水中のガス圧力が正圧であり、また、少なくとも脱気純水の水圧またはガス生成純水の水圧よりも低いガス圧力になるように電解槽の電流を制御にする。また、電流制御工程Cは、ガス生成純水中のガス圧力を、一度、少なくとも脱気純水の水圧またはガス生成純水の水圧までの間に上昇させた後に、下げる。   That is, pure water is degassed via degassing step A to become degassed pure water, and degassed pure water is an electrolysis obtained by electrolyzing pure water in degassed pure water step B. It is led to a tank and used as gas generation pure water. Further, in the current control step C, the gas pressure in the gas generation pure water is a positive pressure, and at least the water pressure of the degassing pure water or the gas pressure of the gas generation pure water is lower than the water pressure of the electrolytic cell. Control the current. In the current control step C, the gas pressure in the gas-generated pure water is increased at least once until the water pressure of the degassed pure water or the water pressure of the gas-generated pure water is lowered.

さらに安定な飽和ガス含有ナノバブル水を生成するために、ガス生成純水を整流工程Eに導き、整流して整流純水を生成した後、比抵抗減少工程Gによりガス生成純水の比抵抗を減少させ、この比抵抗減少純水はナノバブル発生工程Dにて減圧され、過飽和ガスがナノバブルとなった飽和ガス含有ナノバブル水として生成される。   In order to generate more stable saturated gas-containing nanobubble water, the gas-generated pure water is guided to the rectifying step E, rectified to generate rectified pure water, and then the specific resistance reduction step G is used to reduce the specific resistance of the gas-generated pure water. The specific resistance-decreased pure water is reduced in the nanobubble generation step D, and is generated as saturated gas-containing nanobubble water in which the supersaturated gas becomes nanobubbles.

この脱気工程A、ガス生成純水工程B及び電流制御工程Cは、第1の実施の形態と同様に構成され、整流工程Eは、第2の実施の形態と同様に構成されるから説明を省略し、比抵抗減少工程G、ナノバブル発生工程Dについて説明する。   The deaeration process A, the gas generation pure water process B, and the current control process C are configured in the same manner as in the first embodiment, and the rectification process E is configured in the same manner as in the second embodiment. Will be omitted, and the specific resistance reduction process G and nanobubble generation process D will be described.

(比抵抗減少工程G)
この比抵抗減少工程Gは、脱気工程Aとナノバブル発生工程Dとの間であればよいが、多くはナノバブル発生工程Dの前に配置され、整流工程Eより得たガス生成純水の比抵抗を減少させる。この実施の形態の比抵抗減少工程Gは、比抵抗低減手段70と、比抵抗減少純水の比抵抗61とを備え、比抵抗低減手段70により少なくとも酸またはアルカリを注入し、比抵抗減少純水の比抵抗71により比抵抗を低減し、および比抵抗の低減の程度を制御する。すなわち、比抵抗が高い状態だと、ナノバブル生成工程Dで生成されたナノバブルがすぐに一緒になって大きなバブルに成りやすくなるが、比抵抗が下がることで、ナノバブル生成工程Dにおいて、生成されたナノバブルが各々そのままの状態で存在するため、少なくとも酸またはアルカリを注入することにより比抵抗を低減し、および比抵抗の低減の程度をコントロールし、例えば1MΩcm以下にする。
(Resistivity reduction process G)
The specific resistance reduction process G may be between the deaeration process A and the nanobubble generation process D, but most of them are arranged before the nanobubble generation process D, and the ratio of the gas-generated pure water obtained from the rectification process E Reduce resistance. The specific resistance decreasing step G of this embodiment includes specific resistance reducing means 70 and specific resistance reduced pure water specific resistance 61, and at least acid or alkali is injected by the specific resistance reducing means 70 to reduce specific resistance reduced pure water. The specific resistance is reduced by the specific resistance 71 of water, and the degree of reduction of the specific resistance is controlled. That is, when the specific resistance is high, the nanobubbles generated in the nanobubble generation process D are easily combined together to become a large bubble, but the specific resistance is decreased, and thus the nanobubbles are generated in the nanobubble generation process D. Since the nanobubbles exist as they are, the specific resistance is reduced by injecting at least acid or alkali, and the degree of reduction of the specific resistance is controlled, for example, 1 MΩcm or less.

(ナノバブル発生工程D)
このナノバブル発生工程Dでは、ナノバブル発生手段40によって比抵抗減少機構Fによって整流工程Eより得た比抵抗を減少させた比抵抗純水の圧力を減圧して飽和ガス含有ナノバブル水を生成する。ナノバブル発生手段40は、フィルタ41を有し、このフィルタ41の1ミクロン以下の空孔を経由して、ガス生成純水工程Bを経たガス生成純水の圧力を減圧して飽和ガス含有ナノバブル水を生成する。このナノバブル発生手段40の減圧構造は、フィルタ41の1ミクロン以下の空孔を経由して、減圧されることを特徴とし、できれば0.5ミクロン以下の空孔を経由して減圧される。
(Nano bubble generation process D)
In this nanobubble generation step D, the nanobubble generation unit 40 generates saturated gas-containing nanobubble water by reducing the pressure of the specific resistance pure water obtained by reducing the specific resistance obtained from the rectification step E by the specific resistance reduction mechanism F. The nanobubble generating means 40 has a filter 41, and the pressure of the gas generation pure water that has passed through the gas generation pure water step B is reduced through the pores of 1 micron or less of the filter 41 to contain saturated gas-containing nanobubble water. Is generated. The pressure reducing structure of the nanobubble generating means 40 is characterized in that the pressure is reduced via the pores of 1 micron or less of the filter 41, and the pressure is reduced via the pores of 0.5 micron or less if possible.

このように、ナノバブル発生工程の前にガス生成純水の比抵抗を減少させて飽和ガス含有ナノバブル水を生成することで、例えばアルカリ等を注入して、純水の比抵抗を落とす(pHを上げる)ことにより、長期間にわたり連続的で、また常に安定なガス飽和ナノバブル水を得ることが可能である。   In this manner, by reducing the specific resistance of the gas-generating pure water before the nanobubble generation step to generate saturated gas-containing nanobubble water, for example, alkali or the like is injected to lower the specific resistance of pure water (pH is reduced). It is possible to obtain gas-saturated nanobubble water that is continuous and always stable over a long period of time.

(飽和ガス含有ナノバブル水)
製造された飽和ガス含有ナノバブル水は、半導体、液晶をはじめとする電子産業分野に使用することができる。この飽和ガス含有ナノバブル水は、直径が1μm(1マイクロメートル:100万分の1メートル)以下の超微細な気泡を含有した水であり、従って、直径1μm以上のマイクロバブルの気泡も含有している。
(Saturated gas-containing nanobubble water)
The produced saturated gas-containing nanobubble water can be used in the electronic industry field including semiconductors and liquid crystals. This saturated gas-containing nanobubble water is water containing ultrafine bubbles having a diameter of 1 μm (1 micrometer: one millionth of a meter) or less, and therefore also contains microbubbles having a diameter of 1 μm or more. .

飽和ガス含有ナノバブル水は、同体積を有する単一の気泡に比べて大きな比表面積を有し、また水中への気体の溶解や液中の不純物の吸着、科学的な触媒効果が大きく、また浮力が殆ど効かないため液中に滞在する時間が長いなどの特徴を有している。   Saturated gas-containing nanobubble water has a large specific surface area compared to a single bubble with the same volume, and it has a high solubility of gas in water, adsorption of impurities in the liquid, scientific catalytic effect, and buoyancy. Has a feature such as a long time for staying in the liquid because it is hardly effective.

また、ナノバブルは、直径100nm程度の気泡は気液界面の表面張力により、気泡内部の圧力が30気圧程度まで増加しており、また気泡表面は活性が高く、汚れ成分を界面に吸着させる。また、100nm程度の気泡は数mm程度の気泡と比べ、同じ体積に比べ表面積が数万倍大きい、さらに分子動力学の解析結果より、数nmの気泡では気液界面の極性が揃うなどの特徴を有している。   Nanobubbles have a diameter of about 100 nm and the pressure inside the bubbles is increased to about 30 atm due to the surface tension of the gas-liquid interface, and the surface of the bubbles is highly active and adsorbs dirt components to the interface. In addition, bubbles of about 100 nm have a surface area that is tens of thousands of times larger than bubbles of about several mm compared to bubbles of about several millimeters, and molecular dynamics analysis results show that the polarity of the gas-liquid interface is uniform for bubbles of several nm. have.

したがって、飽和ガス含有ナノバブル水は、ナノバブルが物体に接触する際に破壊すると数十気圧のジェットが生じし、浄化速度が大きく、物体表面の洗浄効果があり、さらに静電気による殺菌効果を有する。   Therefore, saturated gas-containing nanobubble water generates a jet of several tens of atmospheres when broken when nanobubbles come into contact with an object, has a high purification rate, has a cleaning effect on the surface of the object, and has a sterilizing effect due to static electricity.

このように、飽和ガス含有ナノバブル水の生成方法は、水圧、ガス圧を制御して生成したガス生成純水を整流手段(フィルタ)を経由して均一なナノバブル水のみ取り出す。   As described above, the method for producing saturated gas-containing nanobubble water takes out only the uniform nanobubble water through the rectifying means (filter) from the pure water produced by controlling the water pressure and the gas pressure.

そして、特に半導体の洗浄に用いる飽和ガス含有ナノバブル水に必要な条件、例えばパーテイクルフリーであること、メタルフリーであること、ガス量が制御できること、ノズルから連続的に供給できること、常に一定のパーテイクル除去性能があることなどを有する。   And especially the conditions necessary for saturated gas-containing nanobubble water used for semiconductor cleaning, such as being particle-free, being metal-free, being able to control the amount of gas, being able to be continuously supplied from a nozzle, always a constant particle It has a removal performance.

したがって、飽和ガス含有ナノバブル水は、洗浄においては、主として破壊時の数十気圧といわれるジェットによるため、ナノバブルが被洗浄物上において、均一に供給され、破壊することができる。   Therefore, since the saturated bubble-containing nanobubble water is mainly due to a jet that is said to be several tens of atmospheres at the time of destruction, the nanobubbles can be uniformly supplied and destroyed on the object to be cleaned.

次に、この発明に係わる飽和ガス含有ナノバブル水製造の実施例を記載する。水圧250kPaで飽和ガス含有ナノバブル水の生成を行った。ナノバブル発生工程での空孔は0.05ミクロンのフィルタを用いた。また、比抵抗は0.3MΩcmになるようにNH4OHで調整した。生成したナノバブル水の発生バブルを測定したところ、0.1〜0.15ミクロンの粒径で46443個測定された。   Next, examples of the production of saturated gas-containing nanobubble water according to the present invention will be described. Saturated gas-containing nanobubble water was generated at a water pressure of 250 kPa. A 0.05 micron filter was used for the pores in the nanobubble generation process. The specific resistance was adjusted with NH 4 OH so as to be 0.3 MΩcm. When the generated bubbles of nanobubble water were measured, 46443 particles with a particle size of 0.1 to 0.15 microns were measured.

この発明は、ガス含有純水からナノバブル水を生成する飽和ガス含有ナノバブル水の製造方法に適用可能であり、パーテイクルフリーでメタルフリーなナノバブル水を、より安定に製造し、又、ナノバブル量を制御することにより、半導体、液晶をはじめとする電子産業分野に使用可能である。   The present invention can be applied to a saturated gas-containing nanobubble water production method that generates nanobubble water from gas-containing pure water, and more stably produces particle-free and metal-free nanobubble water, and reduces the amount of nanobubbles. By controlling, it can be used in the electronic industry field including semiconductors and liquid crystals.

また、パーテイクルフリーでメタルフリーなナノバブル水を、より安定に製造することにより、半導体、液晶をはじめとする電子産業分野に使用可能な飽和ガス含有ナノバブル水の製造方法に適用可能であり、長期間にわたり連続的で、また常に安定なガス飽和ナノバブル水を得ることが可能である。   In addition, it is applicable to a method for producing saturated gas-containing nanobubble water that can be used in the electronic industry field, including semiconductors and liquid crystals, by making particle-free and metal-free nanobubble water more stable. It is possible to obtain gas-saturated nanobubble water that is continuous over time and always stable.

A 脱気工程
B ガス生成純水工程
C 電流制御工程
D ナノバブル発生工程
E 整流工程
F 水圧調整工程
G 比抵抗減少工程
10 脱気手段
11 脱気ケース
12 膜
13 迷路
14 堰板
15 入口
16 出口
20 電解槽
21 陽極室
22 陰極室
23 電源
24 電流制御装置
40 ナノバブル発生手段
41 フィルタ
50 整流手段
60 水圧調整手段
61 圧力センサ
70 比抵抗減少手段
71 比抵抗減少純水の比抵抗

A Deaeration process B Gas generation pure water process C Current control process D Nano bubble generation process E Rectification process F Water pressure adjustment process G Resistivity reduction process 10 Deaeration means 11 Deaeration case 12 Membrane 13 Maze 14 Dam plate 15 Inlet 16 Outlet 20 Electrolytic cell 21 Anode chamber 22 Cathode chamber 23 Power supply 24 Current control device 40 Nano bubble generating means 41 Filter 50 Rectifying means 60 Water pressure adjusting means 61 Pressure sensor 70 Specific resistance decreasing means 71 Specific resistance decreasing Pure water specific resistance

Claims (13)

純水を脱気して脱気純水を生成する脱気工程と、
前記脱気純水を、純水を電気分解してなる電解槽の陽極室、及び/または陰極室に導き、ガス生成純水とするガス生成純水工程と、
前記ガス生成純水工程において電解槽の電流を制御する電流制御工程と、
前記ガス生成純水工程を経た前記ガス生成純水の圧力を減圧して飽和ガス含有ナノバブル水を生成するナノバブル発生工程と、
を有することを特徴とする飽和ガス含有ナノバブル水の製造方法。
A degassing step of degassing pure water to produce degassed pure water;
A gas generation pure water step of introducing the degassed pure water into an anode chamber and / or a cathode chamber of an electrolytic cell obtained by electrolyzing the pure water to obtain gas generation pure water;
A current control step of controlling the current of the electrolytic cell in the gas generation pure water step;
A nanobubble generation step of generating saturated gas-containing nanobubble water by reducing the pressure of the gas generation pure water that has undergone the gas generation pure water step;
A method for producing saturated gas-containing nanobubble water, comprising:
前記ナノバブル発生工程の前に前記ガス生成純水の比抵抗を減少させることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。   2. The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the specific resistance of the gas-generated pure water is reduced before the nanobubble generation step. 前記ガス生成純水の比抵抗の減少は、少なくとも酸またはアルカリを注入することにより比抵抗を低減し、かつ比抵抗の低減の程度を制御することを特徴とする請求項2に記載の飽和ガス含有ナノバブル水の製造方法。   3. The saturated gas according to claim 2, wherein the specific resistance of the gas-generating pure water is reduced by reducing the specific resistance by injecting at least an acid or an alkali and controlling the degree of reduction of the specific resistance. Method for producing contained nano bubble water. 前記脱気工程は、膜を介することにより一方に純水を、他方に脱気状態にすることにより、純水中の気体成分を純水より除去し、
前記膜を介して、脱気状態の空間に導きだすことを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。
The degassing step is to remove pure water from pure water from the pure water by putting pure water on one side and degassing the other side through the membrane,
2. The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the saturated gas-containing nanobubble water is led to a degassed space through the membrane.
前記ガス生成純水工程における電解槽は、陽極から酸素ガス、及び/またはオゾンガスを、陰極から水素ガスを発生させる電解槽であり、
前記ナノバブル発生工程に導く極室の水圧より前記ナノバブル発生工程に導かれない極室の水圧を低くすることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。
The electrolytic cell in the gas generation pure water step is an electrolytic cell that generates oxygen gas and / or ozone gas from the anode and hydrogen gas from the cathode,
The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the water pressure in the polar chamber not led to the nanobubble generation step is made lower than the water pressure in the polar chamber led to the nanobubble generation step.
前記ガス生成純水工程における電解槽は、前記ナノバブル発生工程に導かれない極室にも通水することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。   2. The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the electrolytic cell in the gas generation pure water process also passes through an electrode chamber that is not led to the nanobubble generation process. 前記電流制御工程は、前記ガス生成純水中のガス圧力が正圧であり、また、少なくとも前記脱気純水の水圧または前記ガス生成純水の水圧よりも低いガス圧力になるように電解槽の電流を制御にすることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。   In the current control step, the electrolytic cell is configured so that the gas pressure in the gas-generated pure water is a positive pressure and at least a gas pressure lower than the water pressure of the degassed pure water or the water pressure of the gas-generated pure water. The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the current is controlled. 前記電流制御工程は、前記ガス生成純水中のガス圧力を、一度、少なくとも前記脱気純水の水圧または前記ガス生成純水の水圧までの間に上昇させた後に、下げることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。   The current control step is characterized in that the gas pressure in the gas generation pure water is once increased at least during a period of time until the water pressure of the degassed pure water or the water pressure of the gas generation pure water is reduced. The method for producing saturated gas-containing nanobubble water according to claim 1. 前記ナノバブル発生工程は、1ミクロン以下の空孔を経由して、前記ガス生成純水工程を経た前記ガス生成純水の圧力が減圧されることを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。   2. The saturated gas-containing composition according to claim 1, wherein in the nanobubble generation step, the pressure of the gas generation pure water that has passed through the gas generation pure water step is reduced through pores of 1 micron or less. Production method of nano bubble water. 前記ガス生成純水工程と前記ナノバブル発生工程との間に、1ミクロン以下の空孔を経由して、前記ガス生成純水を整流する整流工程を有することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法である。   The rectifying step of rectifying the gas-generated pure water via a pore of 1 micron or less is provided between the gas-generated pure water step and the nanobubble generation step. This is a method for producing saturated gas-containing nanobubble water. 前記ガス生成純水工程と前記ナノバブル発生工程との間に、前記ガス生成純水の圧力を前記電解槽の電流で制御されたガス圧力以上で、該ガス圧力に近づけるように制御する水圧調整工程を有することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。   A water pressure adjustment step for controlling the pressure of the gas generation pure water between the gas generation pure water step and the nanobubble generation step to be close to the gas pressure at or above the gas pressure controlled by the current of the electrolytic cell. The method for producing saturated gas-containing nanobubble water according to claim 1, comprising: 前記ガス生成純水工程の前段に、前記脱気純水の圧力を前記電解槽の電流で制御されたガス圧力以上で、前記電解槽の電流で制御されたガス圧力に近づけるように制御する水圧調整工程を有することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。   Before the gas generation pure water step, the water pressure is controlled so that the pressure of the degassed pure water is equal to or higher than the gas pressure controlled by the current of the electrolytic cell and approaches the gas pressure controlled by the current of the electrolytic cell. It has an adjustment process, The manufacturing method of the saturated gas containing nano bubble water of Claim 1 characterized by the above-mentioned. 前記飽和ガス含有ナノバブル水は、半導体、液晶をはじめとする電子産業分野に使用することを特徴とする請求項1に記載の飽和ガス含有ナノバブル水の製造方法。
The method for producing saturated gas-containing nanobubble water according to claim 1, wherein the saturated gas-containing nanobubble water is used in the field of electronic industries including semiconductors and liquid crystals.
JP2012021496A 2012-02-03 2012-02-03 Method for producing saturated gas-containing nanobubble water Active JP5912603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021496A JP5912603B2 (en) 2012-02-03 2012-02-03 Method for producing saturated gas-containing nanobubble water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021496A JP5912603B2 (en) 2012-02-03 2012-02-03 Method for producing saturated gas-containing nanobubble water

Publications (2)

Publication Number Publication Date
JP2013158676A true JP2013158676A (en) 2013-08-19
JP5912603B2 JP5912603B2 (en) 2016-04-27

Family

ID=49171405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021496A Active JP5912603B2 (en) 2012-02-03 2012-02-03 Method for producing saturated gas-containing nanobubble water

Country Status (1)

Country Link
JP (1) JP5912603B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103535247A (en) * 2013-10-11 2014-01-29 北京中农天陆微纳米气泡水科技有限公司 Oxygen enriching and sterilizing device and oxygen enriching and sterilizing method for soilless culture nutrient solution
WO2017082305A1 (en) * 2015-11-10 2017-05-18 江藤酸素株式会社 Hydrogen-containing ice and method for manufacturing same
JP6336234B1 (en) * 2016-10-18 2018-06-06 雨宮 克治 Package
JP6352577B1 (en) * 2016-10-18 2018-07-04 雨宮 克治 Package
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
US20220217832A1 (en) * 2016-06-09 2022-07-07 Charlles Bohdy Methods for Generating Nanoplasmoid Suspensions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335883A (en) * 1998-05-20 1999-12-07 Tadahiro Omi Ozone and hydrogen generation and generator
JP2005052787A (en) * 2003-08-07 2005-03-03 Amano Corp Electrolytic water for cleaning, and preparation method and preparation apparatus therefor
JP2011120994A (en) * 2009-12-10 2011-06-23 Core Technology:Kk Method for manufacturing nano-bubble water containing saturated gas and device for manufacturing nano-bubble water containing saturated gas
JP2011245408A (en) * 2010-05-26 2011-12-08 Core Technology:Kk Method for producing saturated gas-containing nano-bubble water and device for producing the saturated gas-containing nano-bubble water

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335883A (en) * 1998-05-20 1999-12-07 Tadahiro Omi Ozone and hydrogen generation and generator
JP2005052787A (en) * 2003-08-07 2005-03-03 Amano Corp Electrolytic water for cleaning, and preparation method and preparation apparatus therefor
JP2011120994A (en) * 2009-12-10 2011-06-23 Core Technology:Kk Method for manufacturing nano-bubble water containing saturated gas and device for manufacturing nano-bubble water containing saturated gas
JP2011245408A (en) * 2010-05-26 2011-12-08 Core Technology:Kk Method for producing saturated gas-containing nano-bubble water and device for producing the saturated gas-containing nano-bubble water

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103535247A (en) * 2013-10-11 2014-01-29 北京中农天陆微纳米气泡水科技有限公司 Oxygen enriching and sterilizing device and oxygen enriching and sterilizing method for soilless culture nutrient solution
US10219670B2 (en) 2014-09-05 2019-03-05 Tennant Company Systems and methods for supplying treatment liquids having nanobubbles
WO2017082305A1 (en) * 2015-11-10 2017-05-18 江藤酸素株式会社 Hydrogen-containing ice and method for manufacturing same
US20220217832A1 (en) * 2016-06-09 2022-07-07 Charlles Bohdy Methods for Generating Nanoplasmoid Suspensions
US12002650B2 (en) * 2016-06-09 2024-06-04 Charlles Bohdy Methods for generating nanoplasmoid suspensions
JP6336234B1 (en) * 2016-10-18 2018-06-06 雨宮 克治 Package
JP6352577B1 (en) * 2016-10-18 2018-07-04 雨宮 克治 Package
JP6352568B1 (en) * 2016-10-18 2018-07-04 雨宮 克治 Package
JP6352567B1 (en) * 2016-10-18 2018-07-04 雨宮 克治 Package
JP2018165173A (en) * 2016-10-18 2018-10-25 雨宮 克治 Packaging body
JP2018165172A (en) * 2016-10-18 2018-10-25 雨宮 克治 Packaging body

Also Published As

Publication number Publication date
JP5912603B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5912603B2 (en) Method for producing saturated gas-containing nanobubble water
JP2830733B2 (en) Electrolytic water generation method and electrolysis water generation mechanism
JP5072062B2 (en) Method, apparatus and apparatus for producing hydrogen gas-dissolved cleaning water
JP3662111B2 (en) Cleaning liquid manufacturing method and apparatus therefor
KR102616663B1 (en) Reduced water production device and reduced water production method
WO2014069203A1 (en) Method for manufacturing ozone-gas-dissolved water and cleaning method for electronic materials
JP3201781B2 (en) Ozone production method
US5114549A (en) Method and apparatus for treating water using electrolytic ozone
JP2010017633A (en) Apparatus for producing hydrogen-dissolved water and method for producing hydrogen-dissolved water using the apparatus, and washing device for electronic component or for instrument for manufacturing electronic component
JP5740549B2 (en) Production method of nanobubble water containing saturated gas and production device of nanobubble water containing saturated gas
US7074316B2 (en) Functional water, method and apparatus of producing the same, and method and apparatus of rinsing electronic parts therewith
JP2008063648A (en) Apparatus for producing rinse water containing hydrogen peroxide, and method for producing rinse water containing hydrogen peroxide
JPWO2016047257A1 (en) Electrolyzed water generating apparatus and dialysate preparation water production apparatus provided with the same
KR20150017566A (en) Electrolysis Apparatus for generating Dissolved hydrogen water
JP5617081B2 (en) Method for producing saturated gas-containing nanobubble water and apparatus for producing saturated gas-containing nanobubble water
JP3720292B2 (en) Production method and production apparatus for ozone water
JP2004346390A (en) Method and device for generating gas by electrolysis
JP3732330B2 (en) Gas dissolved water production equipment
KR101195294B1 (en) Apparatus for generating electrolyzed functional water having high concentration hydrogen
KR101255895B1 (en) Method for manufacturing nano-bubble water containing saturated gas
KR101856854B1 (en) Apparatus for hydrogen-dissolving water
JP5119557B2 (en) Production method of carbonated water
JPH108282A (en) Water electrolysis device
JP2007283300A (en) Method for forming nano-bubble
KR101654715B1 (en) Apparatus and Method for generating Dissolved hydrogen water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250