JP2016077987A - Hydrogen water feeding device - Google Patents

Hydrogen water feeding device Download PDF

Info

Publication number
JP2016077987A
JP2016077987A JP2014213653A JP2014213653A JP2016077987A JP 2016077987 A JP2016077987 A JP 2016077987A JP 2014213653 A JP2014213653 A JP 2014213653A JP 2014213653 A JP2014213653 A JP 2014213653A JP 2016077987 A JP2016077987 A JP 2016077987A
Authority
JP
Japan
Prior art keywords
water
hydrogen
hydrogen gas
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014213653A
Other languages
Japanese (ja)
Other versions
JP6185445B2 (en
Inventor
総 橋本
So Hashimoto
総 橋本
西 善一
Zenichi Nishi
善一 西
昌之 川瀬
Masayuki Kawase
昌之 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichi Kogyo Co Ltd
Doctorsman Co Ltd
Original Assignee
Dainichi Kogyo Co Ltd
Doctorsman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichi Kogyo Co Ltd, Doctorsman Co Ltd filed Critical Dainichi Kogyo Co Ltd
Priority to JP2014213653A priority Critical patent/JP6185445B2/en
Publication of JP2016077987A publication Critical patent/JP2016077987A/en
Application granted granted Critical
Publication of JP6185445B2 publication Critical patent/JP6185445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/023Measuring, analysing or testing during electrolytic production
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Accessories For Mixers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen water feeding device capable of feeding hydrogen water of a prescribed concentration or more.SOLUTION: A hydrogen water feeding device 100 includes: hydrogen gas dissolution means 13 which supplies and dissolves hydrogen gas to tap water supplied via a gas separation hollow fiber membrane and generates hydrogen water; water temperature detection means 29 which detects a temperature of inflow tap water; hydrogen gas supply means 10 which can adjust a pressure of hydrogen gas; a tap water flow valve 19 which can control the opening and closing of a tap water inflow path; a hydrogen water take-out valve 16 which can control the opening and closing of a hydrogen water outflow path; water pressure adjusting means 20 of tap water; and control means 30 which controls the hydrogen gas supply means 10 in accordance with a water temperature detected by the water temperature detection means 29 and adjusts a gas pressure of supply hydrogen gas. Therein, in order that the water pressure adjusting means retains a concentration of hydrogen water taken out from a hydrogen water takeout valve in a prescribed concentration or more, a gas pressure of hydrogen gas supplied to the hydrogen gas dissolution means 13 and a water pressure of the tap water supplied to the hydrogen gas dissolution means 13 are controlled into substantially the same pressure with each other when the tap water flow valve 19 and the hydrogen water take-out valve 16 are closed.SELECTED DRAWING: Figure 1

Description

本発明は、水道水に水素ガスを溶解させて生成した所定濃度以上の水素水を常に供給できる水素水供給装置に関する。   The present invention relates to a hydrogen water supply apparatus that can always supply hydrogen water having a predetermined concentration or more generated by dissolving hydrogen gas in tap water.

水素水供給装置として、水道に直結して設置され、水素水を随時取り出しできるように構成された水素水サーバが存在する。この水素水サーバは、循環させた水道水に水素ガスを溶解させ、得られた水素水を水素水貯水タンク内に貯留しておき、この水素水貯水タンクから水素水を随時取り出すように構成されている。   As a hydrogen water supply apparatus, there is a hydrogen water server that is directly connected to a water supply and configured to be able to take out hydrogen water as needed. This hydrogen water server is configured to dissolve hydrogen gas in the circulated tap water, store the obtained hydrogen water in the hydrogen water storage tank, and take out the hydrogen water from this hydrogen water storage tank as needed. ing.

また、電子工業等で利用される洗浄用水素水を製造する装置として、ガス透過性中空糸膜を採用した水素水製造装置が存在する(例えば、特許文献1)。この特許文献1に記載された水素水製造装置は、ガス透過性中空糸膜を有する水素ガス溶解装置に超純水及び水素ガスを供給し、この水素ガス溶解装置において水素ガスを超純水中に溶解させて水素水を製造するものであり、水素ガス溶解装置内に供給される水素ガスの量が、ポーラドグラフ式溶存水素計を用いて検出される水素ガス濃度に基づいて制御される。この特許文献1に記載の水素水製造装置は、溶存水素濃度が比較的高い洗浄用の水素水を多量にかつ連続して供給するための工業用水素水製造装置である。   Moreover, there exists a hydrogen water production apparatus that employs a gas-permeable hollow fiber membrane as an apparatus for producing cleaning hydrogen water used in the electronics industry or the like (for example, Patent Document 1). The hydrogen water production apparatus described in Patent Document 1 supplies ultrapure water and hydrogen gas to a hydrogen gas dissolving apparatus having a gas permeable hollow fiber membrane, and the hydrogen gas is converted into ultrapure water in the hydrogen gas dissolving apparatus. The amount of hydrogen gas supplied into the hydrogen gas dissolving device is controlled based on the hydrogen gas concentration detected using a polarograph-type dissolved hydrogen meter. . The hydrogen water producing apparatus described in Patent Document 1 is an industrial hydrogen water producing apparatus for supplying a large amount and continuously hydrogen water for cleaning having a relatively high dissolved hydrogen concentration.

特開2004−89871号公報Japanese Patent Application Laid-Open No. 2004-89871

従来の水素水サーバのように、水素水貯水タンクから水素水を取り出す装置によると、水素水貯水タンクに通気口があって大気開放されているため、大気中の酸素が溶解したり大気圧以上の加圧がなされないことから、水素水の溶存水素濃度を大気圧における飽和濃度である1.6mg/Lを超える高い濃度に維持することが非常に難しかった。   According to the device that extracts hydrogen water from a hydrogen water storage tank like a conventional hydrogen water server, the hydrogen water storage tank has a vent and is open to the atmosphere, so oxygen in the atmosphere dissolves or exceeds atmospheric pressure Therefore, it was very difficult to maintain the dissolved hydrogen concentration of hydrogen water at a high concentration exceeding 1.6 mg / L, which is the saturated concentration at atmospheric pressure.

また、この種の水素水サーバにおいては、水道水自体は衛生管理上から塩素消毒等の殺菌処理がなされているものの、水素水貯水タンクが大気開放されていることから雑菌が入り込み、これが装置内を循環することによって細菌汚染が発生し易かった。   In this type of hydrogen water server, tap water itself has been sterilized such as chlorine disinfection from the viewpoint of hygiene. However, since the hydrogen water storage tank is open to the atmosphere, various germs enter the system. Bacteria contamination was easy to occur by circulating.

さらに、飲料用途で用いられる水素水を随時取り出しできる飲料用水素水サーバにおいては、水素ガスの間欠供給の調整が難しく、また、例えば12時間等の長時間に渡って水素水の取り出しが無かった後の立ち上げ時における溶存水素濃度を、大気圧における飽和濃度である1.6mg/Lを超える高い濃度とすることができなかった。なお、この種の飲料用水素水サーバでは、水素ガス溶解のためのガス分離中空糸膜(ガス分離膜)を使用していない。   Furthermore, in the hydrogen water server for drinks which can take out hydrogen water used for drinks at any time, it is difficult to adjust the intermittent supply of hydrogen gas, and for example, hydrogen water has not been taken out for a long time such as 12 hours. The dissolved hydrogen concentration at the subsequent start-up could not be higher than the saturated concentration at atmospheric pressure of 1.6 mg / L. In this type of drinking hydrogen water server, a gas separation hollow fiber membrane (gas separation membrane) for dissolving hydrogen gas is not used.

一方、特許文献1に記載の工業用水素水製造装置は、多量の水を連続的に製造して供給するために、専用のポーラドグラフ式溶存水素計を使用して水素ガス圧を調整するように構成されているが、この構成は、例えば水素水自動販売機等の水素水を随時取り出しできる水素水サーバに適用することは困難であった。その理由は、専用のポーラドグラフ式溶存水素計では水素ガスの隔膜透過から検知まで20秒が最短の感応速度となっているのに対し、水素水の自動販売機では20秒程度で1回の水素水販売が行われるためである。即ち、この種の溶存水素計によって溶存水素濃度を検出し水素ガス圧を調整することによって一定濃度の水素水を常に供給することはできない。   On the other hand, the industrial hydrogen water production apparatus described in Patent Document 1 adjusts the hydrogen gas pressure using a dedicated polarograph-type dissolved hydrogen meter in order to continuously produce and supply a large amount of water. However, it is difficult to apply this configuration to a hydrogen water server that can take out hydrogen water at any time, such as a hydrogen water vending machine. The reason is that a dedicated polarograph-type dissolved hydrogen meter has the shortest response speed of 20 seconds from hydrogen gas permeation to detection, whereas a hydrogen water vending machine once in 20 seconds. This is because of the sale of hydrogen water. That is, it is impossible to always supply hydrogen water having a constant concentration by detecting the dissolved hydrogen concentration with this type of dissolved hydrogen meter and adjusting the hydrogen gas pressure.

従って本発明の目的は、任意の時点で任意の量の水素水を取り出しても、所定濃度以上の水素水を常に得ることができる水素水供給装置を提供することにある。   Accordingly, an object of the present invention is to provide a hydrogen water supply apparatus that can always obtain hydrogen water having a predetermined concentration or higher even if an arbitrary amount of hydrogen water is taken out at an arbitrary time.

本発明の水素水供給装置は、水道に直結され、水道水が一過式で通水される水素水供給装置である。この水素水供給装置は、水道水及び水素ガスが供給されると共に、供給される水素ガスをガス分離中空糸膜を介して供給される水道水に溶解させて水素水を生成するように構成された水素ガス溶解手段と、水素ガス溶解手段の水流入路に設けられ供給される水道水の温度を検知する水温検知手段と、水素ガス溶解手段に水素ガスを供給すると共に供給される水素ガスのガス圧を可変調整可能な水素ガス供給手段と、水道からの水道水流入路を開閉制御可能な水道水通水弁と、水素ガス溶解手段の水素水流出路を開閉制御可能な水素水取出し弁と、水素ガス溶解手段に供給される水道水の水圧を調整するように構成された水圧力調整手段と、水温検知手段によって検出された水温に応じて水素ガス供給手段を制御し、供給される水素ガスのガス圧を調整するように構成された制御手段とを備えている。水圧力調整手段は、水素水取出し弁から取り出される水素水の濃度を所定濃度以上に保持するべく、水素ガス溶解手段に供給される水素ガスのガス圧と、水道水通水弁及び水素水取り出し弁を閉成した際に水素ガス溶解手段に供給される水道水の水圧とを略同圧に制御するように構成されている。   The hydrogen water supply apparatus of the present invention is a hydrogen water supply apparatus that is directly connected to water and through which tap water is passed. The hydrogen water supply device is configured to generate hydrogen water by supplying tap water and hydrogen gas and dissolving the supplied hydrogen gas in tap water supplied through a gas separation hollow fiber membrane. The hydrogen gas dissolving means, the water temperature detecting means for detecting the temperature of the tap water supplied in the water inflow passage of the hydrogen gas dissolving means, the hydrogen gas being supplied to the hydrogen gas dissolving means and the hydrogen gas supplied A hydrogen gas supply means capable of variably adjusting the gas pressure, a tap water flow valve capable of opening / closing a tap water inflow path from the water supply, and a hydrogen water extraction valve capable of opening / closing a hydrogen water outflow path of the hydrogen gas dissolving means; The water pressure adjusting means configured to adjust the water pressure of the tap water supplied to the hydrogen gas dissolving means, and the hydrogen supplied by controlling the hydrogen gas supplying means according to the water temperature detected by the water temperature detecting means Gas gas And a configured control means to adjust the. The water pressure adjusting means includes the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means, the tap water flow valve and the hydrogen water take-out so as to maintain the concentration of the hydrogen water taken out from the hydrogen water take-out valve above a predetermined concentration. When the valve is closed, the water pressure of the tap water supplied to the hydrogen gas dissolving means is controlled to be substantially the same pressure.

水素ガス溶解手段に供給される水素ガスのガス圧と、水道水通水弁及び水素水取り出し弁を閉成した際にこの水素ガス溶解手段に供給される水道水の水圧とが略同圧に制御される。これにより、任意の時点で任意の量の水素水を取り出しても、所定濃度以上の水素水を常に得ることができる。また、水温が変化すると水道水中への飽和溶存水素濃度が変化することはもちろんのこと、ガス分離中空糸膜における水素ガス透過量が大きく変化する。即ち、水温が低いと膜の収縮が起こってガス透過量が少なくなり、水温が高いと膜の膨潤によりガス透過量が多くなるのである。そこで、本発明のように、水温に応じて供給される水素ガスのガス圧を調整することにより、ガス分離中空糸膜における水素ガス透過量を一定に制御しているのである。これにより、水温の変化があっても、所定濃度以上の水素水を得ることができる。   The gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means and the water pressure of the tap water supplied to the hydrogen gas dissolving means when the tap water passage valve and the hydrogen water take-off valve are closed are substantially the same pressure. Be controlled. Thereby, even if an arbitrary amount of hydrogen water is taken out at an arbitrary time, hydrogen water having a predetermined concentration or more can always be obtained. Further, when the water temperature changes, the saturated dissolved hydrogen concentration in the tap water changes, as well as the hydrogen gas permeation amount in the gas separation hollow fiber membrane greatly changes. That is, when the water temperature is low, the membrane contracts and the gas permeation amount decreases, and when the water temperature is high, the gas permeation amount increases due to membrane swelling. Thus, as in the present invention, the hydrogen gas permeation amount in the gas separation hollow fiber membrane is controlled to be constant by adjusting the gas pressure of the hydrogen gas supplied according to the water temperature. Thereby, even if there exists a change of water temperature, hydrogen water more than predetermined concentration can be obtained.

水素ガス供給手段が電気分解により水素ガスを発生する水素ガス発生装置を備えており、制御手段は、水素ガス溶解手段に供給される水素ガスのガス圧が検出された水温によって規定される範囲内に収まるように水素ガス発生装置の電気分解を制御するように構成されていることが好ましい。このような電気分解による水素ガス発生装置とすることにより、水素ガスボンベの交換が不要となり、水素ガス溶解手段に安定した水素ガスを供給することができる。また、このように水素ガス発生装置の電気分解を(オンオフ)制御してガス圧を制御する構成は、装置構成が簡単であるため、製造コストが安価となる。   The hydrogen gas supply means includes a hydrogen gas generator that generates hydrogen gas by electrolysis, and the control means is within a range defined by the water temperature at which the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolution means is detected. It is preferable that the electrolysis of the hydrogen gas generator is controlled so as to be within the range. By using such a hydrogen gas generator by electrolysis, it is not necessary to replace the hydrogen gas cylinder, and stable hydrogen gas can be supplied to the hydrogen gas melting means. In addition, since the configuration in which the gas pressure is controlled by controlling the electrolysis of the hydrogen gas generator in this way is simple, the manufacturing cost is low.

水素ガス供給手段が電気分解により水素ガスを発生する水素ガス発生装置と、発生した水素ガスのガス圧を一定圧に維持する水素ガス貯留タンクと、水素ガス貯留タンクからの水素ガスのガス圧を制御するガス圧調整手段とを備えており、制御手段は、水素ガス溶解手段に供給される水素ガスのガス圧が検出された水温によって規定される範囲内に収まるようにガス圧調整手段を制御するように構成されていることも好ましい。このような電気分解による水素ガス発生装置とすることにより、水素ガスボンベの交換が不要となり、水素ガス溶解手段に安定した水素ガスを供給することができる。   A hydrogen gas generator in which hydrogen gas supply means generates hydrogen gas by electrolysis, a hydrogen gas storage tank that maintains the gas pressure of the generated hydrogen gas at a constant pressure, and a gas pressure of hydrogen gas from the hydrogen gas storage tank. Gas pressure adjusting means for controlling, and the control means controls the gas pressure adjusting means so that the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means falls within a range defined by the detected water temperature. It is also preferable to be configured to do so. By using such a hydrogen gas generator by electrolysis, it is not necessary to replace the hydrogen gas cylinder, and stable hydrogen gas can be supplied to the hydrogen gas melting means.

水素ガス供給手段が水素ガスボンベと、水素ガスボンベからの水素ガスのガス圧を制御するガス圧調整手段とを備えており、制御手段は、水素ガス溶解手段に供給される水素ガスのガス圧が検出された水温によって規定される範囲内に収まるようにガス圧調整手段を制御するように構成されていることも好ましい。水素ガスボンベを用いれば、電気分解装置が不要となるため、その分、装置構成が簡略化される。   The hydrogen gas supply means includes a hydrogen gas cylinder and a gas pressure adjusting means for controlling the gas pressure of the hydrogen gas from the hydrogen gas cylinder, and the control means detects the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means. It is also preferable that the gas pressure adjusting means is controlled so as to be within a range defined by the set water temperature. If a hydrogen gas cylinder is used, an electrolysis apparatus becomes unnecessary, and the apparatus configuration is simplified accordingly.

水圧力調整手段が水道からの水道水流入路に設けられた第1の停止圧調整弁及び/又は水素ガス溶解手段の水道水流入路からの排水路に設けられた第2の停止圧調整弁を備えており、第1の停止圧調整弁又は第2の停止圧調整弁を調整することにより、水素ガス溶解手段に供給される水素ガスのガス圧と、水道水通水弁及び水素水取り出し弁を閉成した際に水素ガス溶解手段に供給される水道水の水圧とが略同圧となるように制御するように構成されていることも好ましい。   A first stop pressure adjusting valve in which the water pressure adjusting means is provided in the tap water inflow path from the water supply and / or a second stop pressure adjusting valve provided in the drainage path from the tap water inflow path of the hydrogen gas dissolving means. And adjusting the first stop pressure adjusting valve or the second stop pressure adjusting valve to adjust the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means, the tap water flow valve, and the hydrogen water extraction. It is also preferable that the tap water supplied to the hydrogen gas dissolving means is controlled to have substantially the same pressure when the valve is closed.

この場合、制御手段は、水素ガス溶解手段に供給される水素ガスのガス圧と、水道水通水弁及び水素水取り出し弁を閉成した際に水素ガス溶解手段に供給される水道水の水圧とが略同圧となるように第1の停止圧調整弁及び/又は前記第2の停止圧調整弁を制御するように構成されていることも好ましい。   In this case, the control means includes the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means and the water pressure of the tap water supplied to the hydrogen gas dissolving means when the tap water passage valve and the hydrogen water take-off valve are closed. It is also preferable that the first stop pressure adjusting valve and / or the second stop pressure adjusting valve be controlled so that the pressures are substantially equal to each other.

水道水の溶存酸素を少なくとも一部除去する溶存酸素除去手段をさらに備えており、溶存酸素除去手段で溶存酸素が除去された水道水が水素ガス溶解手段に供給されるように構成されていることも好ましい。これにより、取り出す水素水の溶存水素濃度を高く保持することができる。   It is further provided with a dissolved oxygen removing means for removing at least a part of the dissolved oxygen of tap water, and configured to supply the tap water from which dissolved oxygen has been removed by the dissolved oxygen removing means to the hydrogen gas dissolving means. Is also preferable. Thereby, the dissolved hydrogen concentration of the hydrogen water to be taken out can be kept high.

水道水を所定温度に冷却させる冷却手段をさらに備えており、冷却手段で冷却された水道水が水素ガス溶解手段に供給されるように構成されていることも好ましい。これにより、水温が一定に制御されるため水温に関する圧力の制御が簡略化でき、常に溶存水素濃度の高い水素水を供給できると共に、飲料用として冷たい水素水を提供することができる。   It is also preferable that a cooling means for cooling the tap water to a predetermined temperature is further provided so that the tap water cooled by the cooling means is supplied to the hydrogen gas dissolving means. Thereby, since the water temperature is controlled to be constant, control of the pressure related to the water temperature can be simplified, hydrogen water with a high dissolved hydrogen concentration can be always supplied, and cold hydrogen water for beverages can be provided.

制御手段は、水素ガス溶解手段に供給される水道水の温度が所定温度に維持されるように検出された水温に応じて冷却手段を制御するように構成されていることも好ましい。供給される水温に応じて冷却手段を制御すれば、より正確な水温制御を行うことができる。   The control means is preferably configured to control the cooling means in accordance with the detected water temperature so that the temperature of the tap water supplied to the hydrogen gas dissolving means is maintained at a predetermined temperature. By controlling the cooling means according to the supplied water temperature, more accurate water temperature control can be performed.

本発明によれば、任意の時点で任意の量の水素水を取り出しても、所定濃度以上の水素水を常に供給できる。しかも、水温の変化があっても、所定濃度以上の水素水を得ることができる。   According to the present invention, even when an arbitrary amount of hydrogen water is taken out at an arbitrary time point, hydrogen water having a predetermined concentration or more can always be supplied. Moreover, even if there is a change in the water temperature, hydrogen water having a predetermined concentration or more can be obtained.

本発明の第1の実施形態に係る水素水供給装置の全体構成を概略的に示すブロック図である。It is a block diagram showing roughly the whole composition of the hydrogen water supply device concerning a 1st embodiment of the present invention. 図1の実施形態における制御回路のガス圧制御プログラムの一例の流れを示すフローチャートである。It is a flowchart which shows the flow of an example of the gas pressure control program of the control circuit in embodiment of FIG. 水温とガス圧上限値及びガス圧下限値との関係を示す図である。It is a figure which shows the relationship between water temperature, a gas pressure upper limit, and a gas pressure lower limit. 図1の実施形態における制御回路の水圧制御プログラムの一例の流れを示すフローチャートである。It is a flowchart which shows the flow of an example of the water pressure control program of the control circuit in embodiment of FIG. 本発明の第2の実施形態に係る水素水供給装置の全体構成を概略的に示すブロック図である。It is a block diagram which shows roughly the whole structure of the hydrogenous water supply apparatus which concerns on the 2nd Embodiment of this invention. 図5の実施形態における制御回路のガス圧制御プログラムの一例の流れを示すフローチャートである。It is a flowchart which shows the flow of an example of the gas pressure control program of the control circuit in embodiment of FIG. 本発明の第3の実施形態に係る水素水供給装置の全体構成を概略的に示すブロック図である。It is a block diagram which shows roughly the whole structure of the hydrogenous water supply apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る水素水供給装置の全体構成を概略的に示すブロック図である。It is a block diagram which shows roughly the whole structure of the hydrogenous water supply apparatus which concerns on the 4th Embodiment of this invention. 水温変化による水素ガス圧と溶存水素濃度との関係を示す図である。It is a figure which shows the relationship between the hydrogen gas pressure by a water temperature change, and dissolved hydrogen concentration. 溶存酸素除去手段ありとなしの場合、水素ガス圧と溶存水素濃度との関係を示す図である。It is a figure which shows the relationship between a hydrogen gas pressure and dissolved hydrogen concentration in the case of having dissolved oxygen removal means. 温度にて水素ガス圧を制御した場合の採水試験結果を示す図である。It is a figure which shows the water-collection test result at the time of controlling hydrogen gas pressure with temperature. 温度による水素ガス圧制御値から外れた場合の採水試験結果を示す図である。It is a figure which shows the water sampling test result at the time of having remove | deviated from the hydrogen gas pressure control value by temperature.

図1は本発明の第1の実施形態における水素水供給装置100の全体構成を概略的に示している。本実施形態の水素水供給装置100は、水道に直結されており、水道から供給される水道水に水素ガスを溶解させて水素水を製造するものであり、水素水の自動販売機に利用することができる。   FIG. 1 schematically shows the entire configuration of a hydrogen water supply apparatus 100 according to a first embodiment of the present invention. The hydrogen water supply apparatus 100 according to the present embodiment is directly connected to a water supply, and produces hydrogen water by dissolving hydrogen gas in tap water supplied from the water supply. The hydrogen water supply apparatus 100 is used in a hydrogen water vending machine. be able to.

同図に示すように、水素水供給装置100は、電気分解装置からなる水素ガス発生装置10と、この水素ガス発生装置10に逆止弁11及び流路12を介してガス入口が接続された水素ガス溶解手段13と、流路12に設けられた水素ガス入口圧力計14と、水素ガス溶解手段13の水素水出口に流路15を介して接続された水素水取り出し弁(電磁弁)16と、流路15に設けられた水素水出口圧力計17と、水道からの第1の水道水流入路である流路18に設けられ、この流路18を開閉制御する水道水通水弁(電磁弁)19と、この流路18の水道水通水弁19の下流に設けられた減圧弁20と、この流路18の減圧弁20の下流に設けられた流量調整弁21と、この流路18に設けられた水道水入口圧力計22と、この流路18の流量調整弁21の下流に設けられた水道水用フィルタFと、水道からの第2の水道水流入路である流路23に設けられ、この流路23を開閉制御する第1の停止圧調整弁(電磁弁)24と、この流路23の第1の停止圧調整弁24の下流に設けられた第1の定流量弁25と、第1の定流量弁25の下流の流路18に設けられた水道水用フィルタFと、この水道水用フィルタFの下流流路26に設けられた第2の定流量弁27と、この流路26の第2の定流量弁27の下流に設けられこの流路26を開閉制御する第2の停止圧調整弁(電磁弁)28と、水道水用フィルタFの出口及び水素ガス溶解手段13の水道水入口に接続された流路26に設けられた水温検知手段29と、水素ガス発生装置10、水素水取り出し弁16、水温検知手段29、水道水通水弁19、第1の停止圧調整弁24及び第2の停止圧調整弁28に電気的に接続された制御回路30(本発明の制御手段に対応する)とを備えている。なお、制御回路30は、水道水入口圧力計22、水素水出口圧力計17及び水素ガス入口圧力計14にも電気的に接続されている。   As shown in the figure, a hydrogen water supply device 100 includes a hydrogen gas generation device 10 composed of an electrolysis device, and a gas inlet connected to the hydrogen gas generation device 10 via a check valve 11 and a flow path 12. Hydrogen gas dissolving means 13, hydrogen gas inlet pressure gauge 14 provided in the flow path 12, and hydrogen water removal valve (electromagnetic valve) 16 connected to the hydrogen water outlet of the hydrogen gas dissolving means 13 via the flow path 15. And a hydrogen water outlet pressure gauge 17 provided in the flow passage 15 and a flow passage 18 which is provided in the flow passage 18 which is the first tap water inflow passage from the water supply and controls the opening and closing of the flow passage 18 ( Solenoid valve 19, a pressure reducing valve 20 provided downstream of the tap water flow valve 19 in the flow path 18, a flow rate adjusting valve 21 provided downstream of the pressure reducing valve 20 in the flow path 18, The tap water inlet pressure gauge 22 provided in the channel 18 and the flow of the channel 18 A tap water filter F provided downstream of the adjustment valve 21 and a first stop pressure adjustment valve provided in the flow path 23 which is a second tap water inflow path from the water supply and controls the opening and closing of the flow path 23. (Electromagnetic valve) 24, a first constant flow valve 25 provided downstream of the first stop pressure regulating valve 24 in the flow path 23, and a flow path 18 downstream of the first constant flow valve 25. The tap water filter F, the second constant flow valve 27 provided in the downstream flow path 26 of the tap water filter F, and the second constant flow valve 27 of the flow path 26 are provided downstream of the second constant flow valve 27. A second stop pressure adjusting valve (solenoid valve) 28 for controlling the opening and closing of the flow path 26 and a flow path 26 connected to the outlet of the tap water filter F and the tap water inlet of the hydrogen gas dissolving means 13 are provided. Water temperature detection means 29, hydrogen gas generator 10, hydrogen water take-off valve 16, water temperature detection means 29, Michisuidori water valve 19, and a first stop pressure regulating valve 24 and the second stop pressure regulating valve 28 is electrically connected the control circuit 30 (corresponding to the control means of the present invention). The control circuit 30 is also electrically connected to the tap water inlet pressure gauge 22, the hydrogen water outlet pressure gauge 17, and the hydrogen gas inlet pressure gauge 14.

水素ガス発生装置10は、水の電気分解により水素ガスを生成するように構成された電気分解装置である。この電気分解装置は、必要な時に必要なだけ水を電気分解し水素ガスを発生させることができ、簡単な操作で安全かつ便利に水素ガスを供給できる。制御回路30がこの水素ガス発生装置10による電気分解の開始及び停止(オンオフ)を制御することにより、水素ガス圧が調整される。   The hydrogen gas generation device 10 is an electrolysis device configured to generate hydrogen gas by electrolysis of water. This electrolysis apparatus can electrolyze water as much as necessary to generate hydrogen gas, and can supply hydrogen gas safely and conveniently with a simple operation. The control circuit 30 controls the start and stop (on / off) of the electrolysis by the hydrogen gas generator 10, whereby the hydrogen gas pressure is adjusted.

水素ガス溶解手段13は、供給される水素ガスをガス分離中空糸膜を介して水に溶解させるものであり、本実施形態においては、永柳工業株式会社製の中空糸ガス分離膜(M60−6000GE)を用いている。前述したように、この水素ガス溶解手段13の水入口に接続された流路26には水温検知手段29が接続されている。また、水素ガス溶解手段13のガス入口に接続された流路12には水素ガス入口圧力計14及び逆止弁11が接続されている。さらに、水素ガス溶解手段10の水素水出口に接続された流路15には水素水出口圧力計17及び水素水取り出し弁16が接続されている。   The hydrogen gas dissolving means 13 dissolves the supplied hydrogen gas in water via a gas separation hollow fiber membrane. In this embodiment, a hollow fiber gas separation membrane (M60-6000GE) manufactured by Nagayanagi Industry Co., Ltd. is used. ) Is used. As described above, the water temperature detecting means 29 is connected to the flow path 26 connected to the water inlet of the hydrogen gas dissolving means 13. Further, a hydrogen gas inlet pressure gauge 14 and a check valve 11 are connected to the flow path 12 connected to the gas inlet of the hydrogen gas dissolving means 13. Further, a hydrogen water outlet pressure gauge 17 and a hydrogen water take-off valve 16 are connected to the flow path 15 connected to the hydrogen water outlet of the hydrogen gas dissolving means 10.

本発明の水素ガス供給手段は、本実施形態においては、制御回路30によってオンオフ制御される電気分解装置からなる水素ガス発生装置10から構成されている。制御回路30は、ガス圧制御として、供給されるガス圧が、水温検知手段29により検知した水道水の温度Tによって規定されるあらかじめ定められた範囲内に収まるように水素ガス発生装置10を制御するように構成されている。即ち、水素ガスの透過状態と水素ガスの溶解濃度状態とが、水素ガス溶解手段13におけるガス分離中空糸膜に流入する水の温度によって変化するので、この水素ガス溶解手段13に流入する水道水の水温Tに応じて水素ガス発生装置10の電気分解をオンオフ制御することによって、水素ガス溶解手段13に供給される水素ガス圧力を制御している。具体的には、水温Tに応じてあらかじめ決められている上限圧力値及び下限圧力値を数式又はテーブルから求め、水素ガス入口圧力計14の検出したガス圧力P3が上限圧力値にいたるまで電気分解を続け(オンを保ち)、圧力P3が上限圧力値となった際に電気分解を停止し(オフにし)、圧力P3が下限圧力値となった際に電気分解を再開する(オンにする)。   In the present embodiment, the hydrogen gas supply means of the present invention is composed of a hydrogen gas generator 10 that is an electrolyzer controlled to be turned on and off by a control circuit 30. As the gas pressure control, the control circuit 30 controls the hydrogen gas generator 10 so that the supplied gas pressure falls within a predetermined range defined by the tap water temperature T detected by the water temperature detecting means 29. Is configured to do. That is, the permeation state of hydrogen gas and the dissolved concentration state of hydrogen gas vary depending on the temperature of the water flowing into the gas separation hollow fiber membrane in the hydrogen gas dissolving means 13, so that the tap water flowing into the hydrogen gas dissolving means 13 The hydrogen gas pressure supplied to the hydrogen gas dissolving means 13 is controlled by on / off controlling the electrolysis of the hydrogen gas generator 10 according to the water temperature T. Specifically, an upper limit pressure value and a lower limit pressure value determined in advance according to the water temperature T are obtained from a mathematical formula or a table, and electrolysis is performed until the gas pressure P3 detected by the hydrogen gas inlet pressure gauge 14 reaches the upper limit pressure value. (Maintaining ON), electrolysis is stopped (turned off) when the pressure P3 reaches the upper limit pressure value, and electrolysis is restarted (turned on) when the pressure P3 reaches the lower limit pressure value .

水温に応じてガス圧力の調整が必要な理由は、(1)水中への飽和溶存水素濃度が水温により変化すること、(2)水素ガス溶解用の中空糸膜のガス透過量が水温により大きく変化するためである。酸素ガスや窒素ガスが溶解している水道水中に水素ガスを溶解して所望の濃度を得るためには、水素水の圧力と供給される水素ガス量とを考慮すると共に、水素ガス溶解用中空糸膜のガス透過量が水温により変化することを考慮する必要がある。即ち、水温が低いと膜の収縮が起こりガス透過量が少なくなり、水温が高いと膜の膨潤によりガス透過量は多くなるので、この透過量を一定にするために水温を計測し、水素ガスの供給圧を調整する。   The reason why the gas pressure needs to be adjusted according to the water temperature is that (1) the saturated dissolved hydrogen concentration in the water changes depending on the water temperature, and (2) the gas permeation amount of the hollow fiber membrane for dissolving hydrogen gas is larger depending on the water temperature. Because it changes. In order to obtain a desired concentration by dissolving hydrogen gas in tap water in which oxygen gas or nitrogen gas is dissolved, the pressure for hydrogen water and the amount of hydrogen gas supplied are taken into account, and a hollow for dissolving hydrogen gas is used. It is necessary to consider that the gas permeation amount of the yarn membrane varies with the water temperature. That is, if the water temperature is low, the membrane contracts and the gas permeation amount decreases, and if the water temperature is high, the gas permeation amount increases due to the membrane swelling. Adjust the supply pressure.

水素水取り出し弁16は、水素ガス溶解手段13で生成された水素水を取り出す際に開成し、水素ガス溶解手段13内を平衡状態に制御する際に閉成するように、制御回路30によって開閉制御される電磁弁である。この水素水取り出し弁16は、前述したように水素水出口圧力計15の下流側に設置されており、水素水を取り出す場合には手動で制御するように構成されていても良い。   The hydrogen water take-off valve 16 is opened and closed by a control circuit 30 so as to be opened when taking out the hydrogen water generated by the hydrogen gas dissolving means 13 and closed when controlling the inside of the hydrogen gas dissolving means 13 to an equilibrium state. It is a solenoid valve to be controlled. The hydrogen water take-off valve 16 is installed on the downstream side of the hydrogen water outlet pressure gauge 15 as described above, and may be configured to be manually controlled when taking out the hydrogen water.

水道水通水弁19は、水素ガス溶解手段13に水道水を供給する際に開成し、水素ガス溶解手段13内を平衡状態に制御する際に閉成するように、制御回路30によって開閉制御される電磁弁である。この水道水通水弁19は、前述したように、水道からの第1の水道水流入路である流路18に設置されている。   The tap water flow valve 19 is opened and closed by the control circuit 30 so as to open when supplying tap water to the hydrogen gas dissolving means 13 and to close when controlling the hydrogen gas dissolving means 13 in an equilibrium state. Is a solenoid valve. As described above, the tap water flow valve 19 is installed in the flow path 18 that is the first tap water inflow path from the water supply.

水温検知手段29は、水素ガス溶解手段13の水入口側の流路26に設置されている水温センサであり、供給される水道水の温度T、即ち、水素ガス溶解手段13のガス分離中空糸膜に印加される水の温度を検出して水温信号を出力する。この水温検知手段13の検出した水温信号は、制御回路30に送られる。   The water temperature detecting means 29 is a water temperature sensor installed in the flow path 26 on the water inlet side of the hydrogen gas dissolving means 13, and the temperature T of the supplied tap water, that is, the gas separation hollow fiber of the hydrogen gas dissolving means 13. The temperature of water applied to the membrane is detected and a water temperature signal is output. The water temperature signal detected by the water temperature detecting means 13 is sent to the control circuit 30.

本発明の水圧力調整手段は、制御回路30によって制御される第1の停止圧調整弁24及び第2の停止圧調整弁28と、第1の定流量弁25及び第2の定流量弁27から構成されている。制御回路30は、水圧制御として、水素水取り出し弁16から取り出す水素水の濃度を所定濃度以上に保つように、水道水通水弁19及び水素水取り出し弁16(並びに第1の停止圧調整弁24及び第2の停止圧調整弁28)を閉成した際に水道水入口圧力計22が検出した水圧P1と、水素ガス入口圧力計14の検出したガス圧力P3とが略等しくなるように、水圧力調整手段である第1の停止圧調整弁24又は第2の停止圧調整弁28を制御して平衡状態を実現する。   The water pressure adjusting means of the present invention includes a first stop pressure adjusting valve 24 and a second stop pressure adjusting valve 28 controlled by a control circuit 30, a first constant flow valve 25 and a second constant flow valve 27. It is composed of As the water pressure control, the control circuit 30 controls the tap water flow valve 19 and the hydrogen water take-off valve 16 (and the first stop pressure adjusting valve) so as to keep the concentration of the hydrogen water taken out from the hydrogen water take-off valve 16 at a predetermined concentration or higher. 24 and the second stop pressure adjusting valve 28) are closed such that the water pressure P1 detected by the tap water inlet pressure gauge 22 and the gas pressure P3 detected by the hydrogen gas inlet pressure gauge 14 are substantially equal. An equilibrium state is realized by controlling the first stop pressure adjusting valve 24 or the second stop pressure adjusting valve 28 which is a water pressure adjusting means.

制御回路30は、例えば、CPUと、ROMと、RAMと、操作部と、表示部とを備えている。CPUはROM又はRAMに格納された制御プログラムに従って、RAMをワークエリアとして使用しながら、水素水供給装置100の動作を制御する。この制御回路30には、水素ガス入口圧力計14、水素水出口圧力計17、水温検知手段29、水道水入口圧力計22及び水道水通水弁19からの検出信号が入力され、水素ガス発生装置10、水素水取り出し弁16、水道水通水弁19、第1の停止圧調整弁24及び第2の停止圧調整弁28に駆動信号が出力される。   The control circuit 30 includes, for example, a CPU, a ROM, a RAM, an operation unit, and a display unit. The CPU controls the operation of the hydrogen water supply apparatus 100 using the RAM as a work area according to a control program stored in the ROM or RAM. Detection signals from the hydrogen gas inlet pressure gauge 14, the hydrogen water outlet pressure gauge 17, the water temperature detecting means 29, the tap water inlet pressure gauge 22, and the tap water water flow valve 19 are input to the control circuit 30 to generate hydrogen gas. Drive signals are output to the device 10, the hydrogen water take-off valve 16, the tap water flow valve 19, the first stop pressure adjustment valve 24, and the second stop pressure adjustment valve 28.

以下、本実施形態における水素水供給装置100の動作を説明する。   Hereinafter, the operation of the hydrogen water supply apparatus 100 in the present embodiment will be described.

水素水供給装置100からの水素水の取り出しは、水素水取り出し弁16を自動又は手動により開成して行われる。例えば、自動販売機において、1回で500mLの水素水取り出しを行う場合には、1.5L/minの流量の水素水であれば、水素水取り出し弁16を20秒間開成すれば良いこととなる。   The extraction of hydrogen water from the hydrogen water supply apparatus 100 is performed by opening the hydrogen water extraction valve 16 automatically or manually. For example, when taking out 500 mL of hydrogen water at a time in a vending machine, the hydrogen water take-off valve 16 may be opened for 20 seconds if the hydrogen water has a flow rate of 1.5 L / min. .

水素水取り出し弁16の位置において、1.5L/minの流量の水素水を、水温にかかわらず、常時大気圧における飽和濃度である溶存水素濃度1.6mg/L以上の溶解状態で得られるように、水素ガス溶解手段13のガス分離中空糸膜に供給される水素ガス圧力P3が調整される。以下、このガス圧制御について説明する。   At the position of the hydrogen water take-off valve 16, hydrogen water having a flow rate of 1.5 L / min can be obtained in a dissolved state with a dissolved hydrogen concentration of 1.6 mg / L or higher, which is a saturated concentration at atmospheric pressure, regardless of the water temperature. Furthermore, the hydrogen gas pressure P3 supplied to the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13 is adjusted. Hereinafter, this gas pressure control will be described.

図2は制御回路30のガス圧制御プログラムの一例の流れを示している。   FIG. 2 shows a flow of an example of the gas pressure control program of the control circuit 30.

まず、CPUは、水温検知手段29からの水温信号を読み込む(ステップS1)。この水温信号は、周知の方法でデジタルデータに変換されているものとする。   First, the CPU reads a water temperature signal from the water temperature detecting means 29 (step S1). It is assumed that this water temperature signal is converted into digital data by a known method.

次いで、この水温に応じたガス圧の上限圧力値及び下限圧力値を求める(ステップS2)。ROM又はRAMには、図3に示すような水温に対応する上限圧力値及び下限圧力値の関係がテーブルとして又は線形式として記憶されており、ステップS2では、このテーブル又は線形式を用いて算出が行われる。線形式の場合、上限圧力値(MPa)=−0.0019×水温(℃)−0.20(y=0.0019x−0.20)、下限圧力値(MPa)=−0.0019×水温(℃)−0.19(y=0.0019x−0.19)から算出される。   Next, an upper limit pressure value and a lower limit pressure value of the gas pressure corresponding to the water temperature are obtained (step S2). In the ROM or RAM, the relationship between the upper limit pressure value and the lower limit pressure value corresponding to the water temperature as shown in FIG. 3 is stored as a table or as a line format. In step S2, calculation is performed using this table or line format. Is done. In the case of a linear format, the upper limit pressure value (MPa) = − 0.0019 × water temperature (° C.) − 0.20 (y = 0.0001x−0.20), the lower limit pressure value (MPa) = − 0.0019 × water temperature Calculated from (° C.) − 0.19 (y = 0.0001x−0.19).

次いで、水素ガス発生装置10に指示を出力して電気分解を開始させる(ステップS3)。   Next, an instruction is output to the hydrogen gas generator 10 to start electrolysis (step S3).

次いで、水素ガス入口圧力計14の検出したガス圧力P3が上限圧力値を超えたか否かを判別する(ステップS4)。ガス圧力P3が上限圧力値を超えた(上回った)場合(YESの場合)、電気分解を停止する(ステップS5)。   Next, it is determined whether or not the gas pressure P3 detected by the hydrogen gas inlet pressure gauge 14 exceeds the upper limit pressure value (step S4). When the gas pressure P3 exceeds (exceeds) the upper limit pressure value (in the case of YES), the electrolysis is stopped (step S5).

ガス圧力P3が上限圧力値を超えていない場合(NOの場合)、ガス圧力P3が下限圧力値を超えたか否かを判別する(ステップS6)。ガス圧力P3が下限圧力値を超えた(下回った)場合(YESの場合)、電気分解を再開し(ステップS7)、このガス圧制御処理を終了する。ガス圧力P3が下限圧力値を超えていない場合(NOの場合)も、このガス圧制御処理を終了する。   When the gas pressure P3 does not exceed the upper limit pressure value (in the case of NO), it is determined whether or not the gas pressure P3 exceeds the lower limit pressure value (step S6). When the gas pressure P3 exceeds (below) the lower limit pressure value (in the case of YES), electrolysis is restarted (step S7), and this gas pressure control process is terminated. Also when the gas pressure P3 does not exceed the lower limit pressure value (in the case of NO), this gas pressure control process is terminated.

以上のガス圧制御により、水素ガス溶解手段13のガス分離中空糸膜に供給される水素ガス圧力P3が、水温に応じて変化する上限圧力値及び下限圧力値で規定される範囲内に制御される。   By the above gas pressure control, the hydrogen gas pressure P3 supplied to the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13 is controlled within a range defined by an upper limit pressure value and a lower limit pressure value that change according to the water temperature. The

水素水取り出し系における水素水は、常時大気圧における飽和濃度である溶存水素濃度1.6mg/L以上の溶解状態で取り出しされる。1.5L/minの流量で水素水を流すためには、水素水出口圧力計17の位置において、多少の圧力P2の存在する必要がある。また、水素ガス溶解手段13のガス分離中空糸膜の前後に通水時の圧力差が生じる。水道水通水弁19及び水素水取り出し弁16が閉じている際に、水素ガス入口圧力計14の位置における水素ガス圧力P3が、水素ガス溶解手段13のガス分離中空糸膜の水側の圧力P1に略等しくなれば水素ガスが多量に水側に流れることもなく、ガス分離中空糸膜内の水は大気圧における飽和濃度である溶存水素濃度1.6mg/L以上水素が溶解された状態で保持される。このため、水素水取り出し弁16を開成した運転開始時にも、溶存水素濃度1.6mg/L以上溶解された水素水を直ちに供給することができる。以下、この水圧制御について説明する。   Hydrogen water in the hydrogen water take-out system is always taken out in a dissolved state with a dissolved hydrogen concentration of 1.6 mg / L or more, which is a saturated concentration at atmospheric pressure. In order to allow hydrogen water to flow at a flow rate of 1.5 L / min, it is necessary that some pressure P2 exists at the position of the hydrogen water outlet pressure gauge 17. Further, a pressure difference during water flow occurs before and after the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13. When the tap water flow valve 19 and the hydrogen water take-off valve 16 are closed, the hydrogen gas pressure P3 at the position of the hydrogen gas inlet pressure gauge 14 is the pressure on the water side of the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13. If it is substantially equal to P1, a large amount of hydrogen gas does not flow to the water side, and the water in the gas separation hollow fiber membrane has a dissolved hydrogen concentration of 1.6 mg / L or more which is a saturated concentration at atmospheric pressure. Held in. For this reason, even at the start of operation when the hydrogen water take-off valve 16 is opened, it is possible to immediately supply hydrogen water having a dissolved hydrogen concentration of 1.6 mg / L or more. Hereinafter, this water pressure control will be described.

図4は制御回路30の水圧制御プログラムの一例の流れを示している。   FIG. 4 shows a flow of an example of the water pressure control program of the control circuit 30.

まず、CPUは、水道水通水弁19、水素水取り出し弁16、第1の停止圧調整弁24及び第2の停止圧調整弁28を閉成する(ステップS11)。   First, the CPU closes the tap water flow valve 19, the hydrogen water take-off valve 16, the first stop pressure adjusting valve 24, and the second stop pressure adjusting valve 28 (step S11).

次いで、水入口圧力計22が検出した水圧P1と、水素ガス入口圧力計14の検出したガス圧力P3とが略等しいか(P3≒P1)否かを判別する(ステップS12)。   Next, it is determined whether or not the water pressure P1 detected by the water inlet pressure gauge 22 and the gas pressure P3 detected by the hydrogen gas inlet pressure gauge 14 are substantially equal (P3≈P1) (step S12).

P3≒P1ではない場合(NOの場合)、ガス圧力P3が水圧P1より大きいか(P3>P1)か否かを判別する(ステップS13)。ガス圧力P3の方が大きい場合(YESの場合)、第1の停止圧調整弁24を制御して水道水をより多く取り込み、水圧P1が大きくなるように水圧調整する(ステップS14)。一方、ガス圧力P3の方が大きくない場合(NOの場合)、第2の停止圧調整弁28を制御して水道水を排水し、水圧P1が小さくなるように水圧調整する(ステップS15)。   If P3≈P1 is not satisfied (NO), it is determined whether or not the gas pressure P3 is greater than the water pressure P1 (P3> P1) (step S13). When the gas pressure P3 is larger (in the case of YES), the first stop pressure adjusting valve 24 is controlled to take in more tap water and adjust the water pressure so that the water pressure P1 becomes larger (step S14). On the other hand, when the gas pressure P3 is not larger (in the case of NO), the second stop pressure adjusting valve 28 is controlled to drain the tap water, and the water pressure is adjusted so that the water pressure P1 becomes smaller (step S15).

その後、水圧P1と、ガス圧力P3とが略等しいか(P3≒P1)否かを判別する(ステップS16)。P3≒P1ではない場合(NOの場合)、ステップS13へ戻り、ステップS13〜S16の処理を繰り返す。   Thereafter, it is determined whether or not the water pressure P1 and the gas pressure P3 are substantially equal (P3≈P1) (step S16). When P3≈P1 is not satisfied (in the case of NO), the process returns to step S13 and the processes of steps S13 to S16 are repeated.

ステップS12又はS16において、P3≒P1である場合(YESの場合)、この水圧制御処理を終了する。   In step S12 or S16, when P3≈P1 (in the case of YES), this water pressure control process is terminated.

以上の水圧制御により、水道水通水弁19、水素水取り出し弁16、第1の停止圧調整弁24及び第2の停止圧調整弁28が閉成されている際の水道水側の圧力P1が水素ガスのガス圧P3と平衡状態圧となるように調整される。なお、この場合の水入口圧力計22の圧力P1と、水素水出口圧力計17の圧力P2とは同じである。図示の例では、第1の停止圧調整弁24の下流に第1の定流量弁25が設けられ、第2の定流量弁27の下流に第2の停止圧調整弁28が設けられているが、第1の停止圧調整弁及び第1の定流量弁の設置位置の前後関係、並びに第2の停止圧調整弁及び第2の定流量弁の設置位置の前後関係には規制はなく、いずれの前後関係であっても良い。   By the above water pressure control, the tap water side pressure P1 when the tap water flow valve 19, the hydrogen water take-off valve 16, the first stop pressure adjusting valve 24 and the second stop pressure adjusting valve 28 are closed. Is adjusted to the equilibrium pressure with the gas pressure P3 of hydrogen gas. In this case, the pressure P1 of the water inlet pressure gauge 22 and the pressure P2 of the hydrogen water outlet pressure gauge 17 are the same. In the illustrated example, a first constant flow valve 25 is provided downstream of the first stop pressure adjustment valve 24, and a second stop pressure adjustment valve 28 is provided downstream of the second constant flow valve 27. However, there is no restriction on the context of the installation positions of the first stop pressure adjusting valve and the first constant flow valve, and the context of the installation positions of the second stop pressure adjusting valve and the second constant flow valve, Any context may be used.

水素水取り出し弁16を開成して水素水を取り出しする際に、前述した通水時の圧力差が生じるように、水道水側の圧力P1を水道水用フィルタF等の通水透過抵抗により調整する。これらの通水透過抵抗の調整によっても所望の圧力調整ができない場合は、流量調整弁21により調整する。   When the hydrogen water take-off valve 16 is opened and the hydrogen water is taken out, the tap water side pressure P1 is adjusted by the water flow permeation resistance of the tap water filter F or the like so that the pressure difference at the time of water flow is generated. To do. If the desired pressure cannot be adjusted even by adjusting these water flow resistances, the flow rate adjusting valve 21 is used.

また、水素ガス溶解手段13のガス分離中空糸膜における水素ガスの透過には、透過用圧力が必要であり、水素水出口圧力計17における圧力P2と水素ガス入口圧力計14における圧力P3とが等しくとも透過圧が作用するので、水素ガスが水側に流入することはない。水素ガス入口圧力計14における圧力P3が{(水道水通水弁19、水素水取り出し弁16、第1の停止圧調整弁24及び第2の停止圧調整弁28を閉成した状態での水素水出口圧力計17における圧力P2)−(ガス透過圧)}以下となった場合には、水側から水中の溶存ガス(酸素及び窒素)が水素側に多量に入ることとなり、水素ガスの純度低下となり好ましくない。本願発明者等の実験によれば、制御で許されるガス透過圧差は0.02MPaであった。   Further, permeation pressure is required for permeation of hydrogen gas through the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13, and the pressure P2 in the hydrogen water outlet pressure gauge 17 and the pressure P3 in the hydrogen gas inlet pressure gauge 14 are Even if equal, the permeation pressure acts, so that hydrogen gas does not flow into the water side. The pressure P3 in the hydrogen gas inlet pressure gauge 14 is {(hydrogen in a state where the tap water flow valve 19, the hydrogen water discharge valve 16, the first stop pressure adjusting valve 24 and the second stop pressure adjusting valve 28 are closed. When the pressure at the water outlet pressure gauge 17 becomes P2)-(gas permeation pressure)} or less, dissolved gas (oxygen and nitrogen) in water enters the hydrogen side in large quantities from the water side, and the purity of the hydrogen gas It is not preferable because it decreases. According to the experiments by the inventors of the present application, the gas permeation pressure difference allowed by the control was 0.02 MPa.

以上説明したように、本実施形態によれば、制御手段30は、水素水取り出し弁16から取り出される水素水の溶存水素濃度が大気圧における飽和濃度である1.6mg/L以上に保持されるように、水温検知手段29により検知した水の温度に基づいて、水素ガス供給手段である水素ガス発生装置10を制御するとともに、水素ガスのガス圧P3と水道水通水弁19、水素水取り出し弁16、第1の停止圧調整弁24及び第2の停止圧調整弁28が閉成した際の水圧が略同圧となるように水圧力調整手段を制御することにより、任意の時点で任意の量の水素水を取り出しても、溶存水素濃度の高い水素水を常に供給することができる。   As described above, according to the present embodiment, the control means 30 maintains the dissolved hydrogen concentration of the hydrogen water taken out from the hydrogen water take-off valve 16 at 1.6 mg / L or more, which is the saturated concentration at atmospheric pressure. As described above, based on the temperature of the water detected by the water temperature detection means 29, the hydrogen gas generator 10 as the hydrogen gas supply means is controlled, and the gas pressure P3 of the hydrogen gas, the tap water flow valve 19, the hydrogen water extraction By controlling the water pressure adjusting means so that the water pressure when the valve 16, the first stop pressure adjusting valve 24 and the second stop pressure adjusting valve 28 are closed is substantially the same, it is arbitrary at any time Even if this amount of hydrogen water is taken out, hydrogen water with a high dissolved hydrogen concentration can always be supplied.

図5は本発明の第2の実施形態における水素水供給装置200の全体構成を概略的に示している。本実施形態の水素水供給装置200も、水道に直結されており、水道から供給される水道水に水素ガスを溶解させて水素水を製造するものであり、水素水の自動販売機に利用することができる。   FIG. 5 schematically shows the overall configuration of the hydrogen water supply apparatus 200 according to the second embodiment of the present invention. The hydrogen water supply apparatus 200 of the present embodiment is also directly connected to the water supply, and produces hydrogen water by dissolving hydrogen gas in the tap water supplied from the water supply, and is used for a hydrogen water vending machine. be able to.

同図に示すように、水素水供給装置200は、電気分解装置からなる水素ガス発生装置10と、発生した水素ガスのガス圧を一定圧に維持する圧力計31a付きの水素ガス貯留タンク31と、この水素ガス貯留タンク31に逆止弁11及び流路12を介して接続されたガス圧力調整弁(電磁弁)32と、このガス圧力調整弁32の下流の流路12に設けられた第3の定流量弁33と、第3の定流量弁33に流路12を介してガス入口が接続された水素ガス溶解手段13と、流路12に設けられた水素ガス入口圧力計14と、水素ガス溶解手段13の水素水出口に流路15を介して接続された水素水取り出し弁(電磁弁)16と、流路15に設けられた水素水出口圧力計17と、水道からの第1の水道水流入路である流路18に設けられ、この流路18を開閉制御する水道水通水弁(電磁弁)19と、この流路18の水道水通水弁19の下流に設けられた減圧弁20と、この流路18の減圧弁20の下流に設けられた流量調整弁21と、この流路18に設けられた水道水入口圧力計22と、この流路18の流量調整弁21の下流に設けられた水道水用フィルタFと、水道からの第2の水道水流入路である流路23に設けられ、この流路23を開閉制御する第1の停止圧調整弁(電磁弁)24と、この流路23の第1の停止圧調整弁24の下流に設けられた第1の定流量弁25と、第1の定流量弁25の下流の流路18に設けられた水道水用フィルタFと、この水道水用フィルタFの下流流路26に設けられた第2の定流量弁27と、この流路26の第2の定流量弁27の下流に設けられこの流路26を開閉制御する第2の停止圧調整弁(電磁弁)28と、第1の定流量弁25の下流の流路26に設けられた第2の定流量弁27と、この流路26の第2の定流量弁27の下流に設けられこの流路26を開閉制御する第2の停止圧調整弁(電磁弁)28と、水道水用フィルタFの出口及び水素ガス溶解手段13の水道水入口に接続された流路26に設けられた水温検知手段29と、ガス圧力調整弁32、水素水取り出し弁16、水温検知手段29、水道水通水弁19、第1の停止圧調整弁24及び第2の停止圧調整弁28に電気的に接続された制御回路30(本発明の制御手段に対応する)とを備えている。なお、制御回路30は、水道水入口圧力計22、水素水出口圧力計17及び水素ガス入口圧力計14にも電気的に接続されている。   As shown in the figure, the hydrogen water supply device 200 includes a hydrogen gas generator 10 comprising an electrolyzer, a hydrogen gas storage tank 31 with a pressure gauge 31a that maintains the gas pressure of the generated hydrogen gas at a constant pressure, and A gas pressure adjusting valve (solenoid valve) 32 connected to the hydrogen gas storage tank 31 via the check valve 11 and the flow path 12 and a second flow path 12 provided downstream of the gas pressure adjusting valve 32. 3 constant flow valve 33, a hydrogen gas dissolving means 13 having a gas inlet connected to the third constant flow valve 33 via the flow path 12, a hydrogen gas inlet pressure gauge 14 provided in the flow path 12, A hydrogen water outlet valve (solenoid valve) 16 connected to the hydrogen water outlet of the hydrogen gas dissolving means 13 via the flow path 15, a hydrogen water outlet pressure gauge 17 provided in the flow path 15, and a first from the water supply Provided in the flow path 18 which is the tap water inflow path of A tap water flow valve (solenoid valve) 19 that controls the opening and closing of the passage 18, a pressure reducing valve 20 provided downstream of the tap water flow valve 19 in the flow path 18, and a downstream position of the pressure reducing valve 20 in the flow path 18. A flow rate adjusting valve 21 provided in the channel 18, a tap water inlet pressure gauge 22 provided in the flow channel 18, a tap water filter F provided downstream of the flow rate adjusting valve 21 in the flow channel 18, and a water supply A first stop pressure adjusting valve (solenoid valve) 24 that opens and closes the flow path 23, and a first stop pressure adjustment of the flow path 23. A first constant flow valve 25 provided downstream of the valve 24, a tap water filter F provided in a flow path 18 downstream of the first constant flow valve 25, and a downstream flow of the tap water filter F A second constant flow valve 27 provided in the passage 26 and a downstream of the second constant flow valve 27 in the flow passage 26 are provided. A second stop pressure adjusting valve (solenoid valve) 28 for controlling the opening and closing of the flow path 26, a second constant flow valve 27 provided in the flow path 26 downstream of the first constant flow valve 25, and this flow A second stop pressure adjusting valve (solenoid valve) 28 that is provided downstream of the second constant flow valve 27 in the passage 26 and controls the opening and closing of the passage 26, the outlet of the tap water filter F, and the hydrogen gas dissolving means 13. The water temperature detecting means 29 provided in the flow path 26 connected to the tap water inlet, the gas pressure adjusting valve 32, the hydrogen water take-off valve 16, the water temperature detecting means 29, the tap water flow valve 19, the first stop pressure. And a control circuit 30 (corresponding to the control means of the present invention) electrically connected to the regulating valve 24 and the second stop pressure regulating valve 28. The control circuit 30 is also electrically connected to the tap water inlet pressure gauge 22, the hydrogen water outlet pressure gauge 17, and the hydrogen gas inlet pressure gauge 14.

水素ガス発生装置10は、水の電気分解により水素ガスを生成するように構成された電気分解装置である。この電気分解装置は、必要な時に必要なだけ水を電気分解し水素ガスを発生させることができ、簡単な操作で安全かつ便利に水素ガスを供給できる。   The hydrogen gas generation device 10 is an electrolysis device configured to generate hydrogen gas by electrolysis of water. This electrolysis apparatus can electrolyze water as much as necessary to generate hydrogen gas, and can supply hydrogen gas safely and conveniently with a simple operation.

本発明の水素ガス供給手段は、本実施形態においては、水素ガス発生装置10と、発生した水素ガスのガス圧を一定圧に維持する水素ガス貯留タンク31と、制御回路30によって制御されるガス圧力調整弁32とから構成されている。制御回路30は、ガス圧制御として、供給されるガス圧が、水温検知手段29により検知した水道水の温度Tによって規定されるあらかじめ定められた範囲内に収まるようにガス圧力調整弁32を制御するように構成されている。即ち、水素ガスの透過状態と水素ガスの溶解濃度状態とが、水素ガス溶解手段13におけるガス分離中空糸膜に流入する水の温度によって変化するので、この水素ガス溶解手段13に流入する水道水の水温Tに応じてガス圧力調整弁32をオンオフ制御することによって、水素ガス溶解手段13に供給される水素ガス圧力を制御している。具体的には、水温Tに応じてあらかじめ決められている上限圧力値及び下限圧力値を数式又はテーブルから求め、水素ガス入口圧力計14の検出したガス圧力P3が上限圧力値にいたるまでガス圧力調整弁32を開成し、圧力P3が上限圧力値となった際にガス圧力調整弁32を閉成し、圧力P3が下限圧力値となった際にガス圧力調整弁32を再度開成する。この場合、水素ガス貯留タンク31の出力ガス圧P4が一気に水素ガス溶解手段13に印加されないように、ガス圧力調整弁32の前後のいずれかに定流量弁(図5の場合、第3の定流量弁33)を設けて減圧することが望ましい。   In this embodiment, the hydrogen gas supply means of the present invention is a gas controlled by a hydrogen gas generator 10, a hydrogen gas storage tank 31 that maintains the gas pressure of the generated hydrogen gas at a constant pressure, and a control circuit 30. And a pressure regulating valve 32. As the gas pressure control, the control circuit 30 controls the gas pressure adjustment valve 32 so that the supplied gas pressure falls within a predetermined range defined by the tap water temperature T detected by the water temperature detecting means 29. Is configured to do. That is, the permeation state of hydrogen gas and the dissolved concentration state of hydrogen gas vary depending on the temperature of the water flowing into the gas separation hollow fiber membrane in the hydrogen gas dissolving means 13, so that the tap water flowing into the hydrogen gas dissolving means 13 The hydrogen gas pressure supplied to the hydrogen gas dissolving means 13 is controlled by on / off controlling the gas pressure adjusting valve 32 according to the water temperature T of the gas. Specifically, an upper limit pressure value and a lower limit pressure value determined in advance according to the water temperature T are obtained from a mathematical formula or a table, and the gas pressure until the gas pressure P3 detected by the hydrogen gas inlet pressure gauge 14 reaches the upper limit pressure value. The adjustment valve 32 is opened, the gas pressure adjustment valve 32 is closed when the pressure P3 reaches the upper limit pressure value, and the gas pressure adjustment valve 32 is opened again when the pressure P3 reaches the lower limit pressure value. In this case, in order to prevent the output gas pressure P4 of the hydrogen gas storage tank 31 from being applied to the hydrogen gas dissolving means 13 at once, a constant flow valve (in the case of FIG. It is desirable to provide a flow valve 33) to reduce the pressure.

本実施形態における水素ガス溶解手段13、水素水取り出し弁16、水道水通水弁19、水温検知手段29及び水圧力調整手段の構成は、第1の実施形態の場合と同様であるため説明を省略する。本実施形態における制御回路30は、ガス圧制御処理が異なるのみで、その他の構成は第1の実施形態の場合と同様である。   The configurations of the hydrogen gas dissolving means 13, the hydrogen water take-off valve 16, the tap water flow valve 19, the water temperature detecting means 29, and the water pressure adjusting means in the present embodiment are the same as in the case of the first embodiment and will be described. Omitted. The control circuit 30 in the present embodiment is different only in the gas pressure control process, and the other configurations are the same as those in the first embodiment.

図6は制御回路30のガス圧制御プログラムの一例の流れを示している。   FIG. 6 shows a flow of an example of the gas pressure control program of the control circuit 30.

まず、CPUは、水温検知手段29からの水温信号を読み込む(ステップS21)。この水温信号は、周知の方法でデジタルデータに変換されているものとする。   First, the CPU reads a water temperature signal from the water temperature detecting means 29 (step S21). It is assumed that this water temperature signal is converted into digital data by a known method.

次いで、この水温に応じたガス圧の上限圧力値及び下限圧力値を求める(ステップS22)。ROM又はRAMには、図3に示すような水温に対応する上限圧力値及び下限圧力値の関係がテーブルとして又は線形式として記憶されており、ステップS22では、このテーブル又は線形式を用いて算出が行われる。線形式の場合、上限圧力値(MPa)=−0.0019×水温(℃)−0.20(y=0.0019x−0.20)、下限圧力値(MPa)=−0.0019×水温(℃)−0.19(y=0.0019x−0.19)から算出される。   Next, an upper limit pressure value and a lower limit pressure value of the gas pressure corresponding to the water temperature are obtained (step S22). In the ROM or RAM, the relationship between the upper limit pressure value and the lower limit pressure value corresponding to the water temperature as shown in FIG. 3 is stored as a table or in a line format. In step S22, calculation is performed using this table or line format. Is done. In the case of a linear format, the upper limit pressure value (MPa) = − 0.0019 × water temperature (° C.) − 0.20 (y = 0.0001x−0.20), the lower limit pressure value (MPa) = − 0.0019 × water temperature Calculated from (° C.) − 0.19 (y = 0.0001x−0.19).

次いで、ガス圧力調整弁32に指示を出力してオン又はオフの制御を行う(ステップS23)。   Next, an instruction is output to the gas pressure adjusting valve 32 to perform on / off control (step S23).

次いで、水素ガス入口圧力計14の検出したガス圧力P3が上限圧力値及び下限圧力値の範囲内(上限圧力値及び下限圧力値を含む)であるか否かを判別する(ステップS24)。ガス圧力P3が上限圧力値及び下限圧力値の範囲内ではない場合(NOの場合)、ステップS23へ戻り、ガス圧力調整弁32による制御を行う。ガス圧力P3が上限圧力値及び下限圧力値の範囲内にある場合(YESの場合)、このガス圧制御処理を終了する。   Next, it is determined whether or not the gas pressure P3 detected by the hydrogen gas inlet pressure gauge 14 is within the range between the upper limit pressure value and the lower limit pressure value (including the upper limit pressure value and the lower limit pressure value) (step S24). When the gas pressure P3 is not within the range of the upper limit pressure value and the lower limit pressure value (in the case of NO), the process returns to step S23 and the control by the gas pressure adjustment valve 32 is performed. When the gas pressure P3 is in the range between the upper limit pressure value and the lower limit pressure value (in the case of YES), this gas pressure control process is terminated.

以上のガス圧制御により、水素ガス溶解手段13のガス分離中空糸膜に供給される水素ガス圧力P3が、水温に応じて変化する上限圧力値及び下限圧力値で規定される範囲内に制御される。   By the above gas pressure control, the hydrogen gas pressure P3 supplied to the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13 is controlled within a range defined by an upper limit pressure value and a lower limit pressure value that change according to the water temperature. The

本実施形態のその他の動作は第1の実施形態の場合と同様である。   Other operations in the present embodiment are the same as those in the first embodiment.

以上説明したように、本実施形態によれば、制御手段30は、水素水取り出し弁16から取り出される水素水の溶存水素濃度が大気圧における飽和濃度である1.6mg/L以上に保持されるように、水温検知手段29により検知した水の温度に基づいて、水素ガス供給手段の一部であるガス圧力調整弁32を制御するとともに、水素ガスのガス圧P3と水道水通水弁19、水素水取り出し弁16、第1の停止圧調整弁24及び第2の停止圧調整弁28が閉成した際の水圧が略同圧となるように水圧力調整手段を制御することにより、任意の時点で任意の量の水素水を取り出しても、溶存水素濃度の高い水素水を常に供給することができる。   As described above, according to the present embodiment, the control means 30 maintains the dissolved hydrogen concentration of the hydrogen water taken out from the hydrogen water take-off valve 16 at 1.6 mg / L or more, which is the saturated concentration at atmospheric pressure. As described above, based on the temperature of the water detected by the water temperature detecting means 29, the gas pressure adjusting valve 32 which is a part of the hydrogen gas supplying means is controlled, and the gas pressure P3 of the hydrogen gas and the tap water flow valve 19, By controlling the water pressure adjusting means so that the water pressure when the hydrogen water take-out valve 16, the first stop pressure adjusting valve 24 and the second stop pressure adjusting valve 28 are closed is substantially the same, any arbitrary pressure can be obtained. Even if an arbitrary amount of hydrogen water is taken out at the time, hydrogen water having a high dissolved hydrogen concentration can always be supplied.

なお、水素ガス発生装置10として、電気分解装置の代わりに水素ガスボンベのような高圧ガス容器に収納された水素ガスを発生する装置を用いても良い。上述のごとくガス圧力調整弁32を用いてガス圧の制御を行うことで制御可能である。   As the hydrogen gas generator 10, an apparatus that generates hydrogen gas stored in a high-pressure gas container such as a hydrogen gas cylinder may be used instead of the electrolyzer. As described above, the gas pressure can be controlled by controlling the gas pressure using the gas pressure adjusting valve 32.

図7は本発明の第3の実施形態における水素水供給装置300の全体構成を概略的に示している。本実施形態の水素水供給装置300も、水道に直結されており、水道から供給される水道水に水素ガスを溶解させて水素水を製造するものであり、水素水の自動販売機に利用することができる。   FIG. 7 schematically shows the overall configuration of a hydrogen water supply apparatus 300 according to the third embodiment of the present invention. The hydrogen water supply apparatus 300 of the present embodiment is also directly connected to the water supply, and produces hydrogen water by dissolving hydrogen gas in the tap water supplied from the water supply, and is used for a hydrogen water vending machine. be able to.

同図に示すように、水素水供給装置300は、電気分解装置からなる水素ガス発生装置10と、この水素ガス発生装置10に逆止弁11及び流路12を介してガス入口が接続された水素ガス溶解手段13と、流路12に設けられた水素ガス入口圧力計14と、水素ガス溶解手段13の水素水出口に流路15を介して接続された水素水取り出し弁(電磁弁)16と、流路15に設けられた水素水出口圧力計17と、水道からの第1の水道水流入路である流路18に設けられ、この流路18を開閉制御する水道水通水弁(電磁弁)19と、この流路18の水道水通水弁19の下流に設けられた減圧弁20と、この流路18の減圧弁20の下流に設けられた流量調整弁21と、この流路18に設けられた水道水入口圧力計22と、この流路18の流量調整弁21の下流に設けられた水道水用フィルタFと、水道からの第2の水道水流入路である流路23に設けられ、この流路23を開閉制御する第1の停止圧調整弁(電磁弁)24と、この流路23の第1の停止圧調整弁24の下流に設けられた第1の定流量弁25と、第1の定流量弁25の下流の流路18に設けられた水道水用フィルタFの下流流路26に設けられた第2の定流量弁27と、この流路26の第2の定流量弁27の下流に設けられこの流路26を開閉制御する第2の停止圧調整弁(電磁弁)28と、水道水用フィルタFの出口及び水素ガス溶解手段13の水道水入口に接続された流路26に設けられた溶存酸素除去手段34と、溶存酸素除去手段34に接続された吸引ポンプ35と、溶存酸素除去手段34の下流の流路26に設けられた水温検知手段29と、水素ガス発生装置10、水素水取り出し弁16、水温検知手段29、水道水通水弁19、第1の停止圧調整弁24及び第2の停止圧調整弁28に電気的に接続された制御回路30(本発明の制御手段に対応する)とを備えている。なお、制御回路30は、水道水入口圧力計22、水素水出口圧力計17及び水素ガス入口圧力計14にも電気的に接続されている。   As shown in the figure, a hydrogen water supply apparatus 300 includes a hydrogen gas generation apparatus 10 composed of an electrolysis apparatus, and a gas inlet connected to the hydrogen gas generation apparatus 10 via a check valve 11 and a flow path 12. Hydrogen gas dissolving means 13, hydrogen gas inlet pressure gauge 14 provided in the flow path 12, and hydrogen water removal valve (electromagnetic valve) 16 connected to the hydrogen water outlet of the hydrogen gas dissolving means 13 via the flow path 15. And a hydrogen water outlet pressure gauge 17 provided in the flow passage 15 and a flow passage 18 which is provided in the flow passage 18 which is the first tap water inflow passage from the water supply and controls the opening and closing of the flow passage 18 ( Solenoid valve 19, a pressure reducing valve 20 provided downstream of the tap water flow valve 19 in the flow path 18, a flow rate adjusting valve 21 provided downstream of the pressure reducing valve 20 in the flow path 18, The tap water inlet pressure gauge 22 provided in the channel 18 and the flow of the channel 18 A tap water filter F provided downstream of the adjustment valve 21 and a first stop pressure adjustment valve provided in the flow path 23 which is a second tap water inflow path from the water supply and controls the opening and closing of the flow path 23. (Electromagnetic valve) 24, a first constant flow valve 25 provided downstream of the first stop pressure regulating valve 24 in the flow path 23, and a flow path 18 downstream of the first constant flow valve 25. The second constant flow valve 27 provided in the downstream flow path 26 of the tap water filter F and the flow path 26 provided downstream of the second constant flow valve 27 of the flow path 26 are controlled to open and close. A second stop pressure adjusting valve (solenoid valve) 28, a dissolved oxygen removing means 34 provided in a flow path 26 connected to the outlet of the tap water filter F and the tap water inlet of the hydrogen gas dissolving means 13; The suction pump 35 connected to the oxygen removing means 34 and the flow path 2 downstream of the dissolved oxygen removing means 34 Water temperature detecting means 29, hydrogen gas generator 10, hydrogen water take-off valve 16, water temperature detecting means 29, tap water flow valve 19, first stop pressure adjusting valve 24, and second stop pressure adjusting valve And a control circuit 30 (corresponding to the control means of the present invention) electrically connected to 28. The control circuit 30 is also electrically connected to the tap water inlet pressure gauge 22, the hydrogen water outlet pressure gauge 17, and the hydrogen gas inlet pressure gauge 14.

本実施形態における水素ガス発生装置10、水素ガス溶解手段13、水素水取り出し弁16、水道水通水弁19、水温検知手段29、水圧力調整手段及び制御回路30の構成は、第1の実施形態の場合と同様であるため説明を省略する。   The configuration of the hydrogen gas generator 10, the hydrogen gas dissolving means 13, the hydrogen water take-off valve 16, the tap water flow valve 19, the water temperature detecting means 29, the water pressure adjusting means, and the control circuit 30 in the present embodiment is the first implementation. Since it is the same as that of the case of form, description is abbreviate | omitted.

溶存酸素除去手段34は、供給される水道水中の溶存酸素の少なくとも一部を、ガス分離中空糸膜によって取り除く(脱気する)ものである。本実施形態においては、ガス分離中空糸膜として、永柳工業株式会社製の中空糸ガス分離膜(M60−6000GE)を用いている。この溶存酸素除去手段34で少なくとも一部の溶存酸素が除去された水道水は、水素ガス溶解手段13に供給される。   The dissolved oxygen removing means 34 removes (degass) at least a part of the dissolved oxygen in the supplied tap water with the gas separation hollow fiber membrane. In this embodiment, a hollow fiber gas separation membrane (M60-6000GE) manufactured by Nagayanagi Industry Co., Ltd. is used as the gas separation hollow fiber membrane. The tap water from which at least a part of the dissolved oxygen has been removed by the dissolved oxygen removing means 34 is supplied to the hydrogen gas dissolving means 13.

吸引ポンプ35は、溶存酸素除去手段34に接続され、ガス分離中空糸膜の外側を減圧にするものである。吸引ポンプ35によりガス分離中空糸膜の外側を減圧にすると、中空糸の壁面を通して気体(溶存酸素)が減圧側へ移動し水道水中の溶存ガスが減少する。これにより、取り出す水素水の溶存水素濃度を高く保持することができる。   The suction pump 35 is connected to the dissolved oxygen removing means 34 and depressurizes the outside of the gas separation hollow fiber membrane. When the outside of the gas separation hollow fiber membrane is depressurized by the suction pump 35, the gas (dissolved oxygen) moves to the decompression side through the wall surface of the hollow fiber, and the dissolved gas in the tap water decreases. Thereby, the dissolved hydrogen concentration of the hydrogen water to be taken out can be kept high.

水道水には、大気解放時の溶存酸素が溶解されており、水素水供給装置300の系内の水素水取り出し弁16のところで常時大気圧での飽和濃度である溶存水素濃度1.6mg/L以上溶解された状態であっても、系外へ放出されれば、大気圧下に開放され、ヘンリーの法則による溶存水素濃度と溶存酸素濃度との平衡が保たれることになり、大気解放後は溶存水素濃度1.6mg/L以上が維持されないこととなる。よって、溶存酸素除去手段34を利用して溶存酸素をできるだけ除去することで、大気解放後の溶存水素濃度を高く保持することができる。この第3の実施形態におけるその他の動作及び作用効果は、第1の実施形態の場合と同様であるため、説明は省略する。   In the tap water, dissolved oxygen at the time of release to the atmosphere is dissolved, and a dissolved hydrogen concentration of 1.6 mg / L, which is a saturated concentration at atmospheric pressure at the hydrogen water take-off valve 16 in the system of the hydrogen water supply device 300 at all times. Even if it is in a dissolved state, it will be released to atmospheric pressure if released outside the system, and the equilibrium between dissolved hydrogen concentration and dissolved oxygen concentration according to Henry's law will be maintained. Will not maintain a dissolved hydrogen concentration of 1.6 mg / L or more. Therefore, by removing dissolved oxygen as much as possible using the dissolved oxygen removing means 34, the dissolved hydrogen concentration after release to the atmosphere can be kept high. Other operations and effects in the third embodiment are the same as in the case of the first embodiment, and a description thereof will be omitted.

ガス圧制御として、水素ガス発生装置10である電気分解装置の動作を制御するのではなく、第2の実施形態のごとくガス圧力調整弁32と第3の定流量弁33とを用いてガス圧の制御を行っても良い。またその場合、水素ガス発生装置10として、電気分解装置の代わりに水素ガスボンベのような高圧ガス容器に収納された水素ガスを発生する装置を用いても良い。   As the gas pressure control, the operation of the electrolyzer that is the hydrogen gas generator 10 is not controlled, but the gas pressure is adjusted using the gas pressure adjusting valve 32 and the third constant flow valve 33 as in the second embodiment. You may control. In that case, as the hydrogen gas generator 10, an apparatus that generates hydrogen gas stored in a high-pressure gas container such as a hydrogen gas cylinder may be used instead of the electrolysis apparatus.

図8は本発明の第4の実施形態における水素水供給装置400の構成を概略的に示している。本実施形態の水素水供給装置400も、水道に直結されており、水道から供給される水道水に水素ガスを溶解させて水素水を製造するものであり、水素水の自動販売機に利用することができる。   FIG. 8 schematically shows the configuration of a hydrogen water supply apparatus 400 according to the fourth embodiment of the present invention. The hydrogen water supply apparatus 400 of the present embodiment is also directly connected to the water supply, and produces hydrogen water by dissolving hydrogen gas in the tap water supplied from the water supply, and is used in a hydrogen water vending machine. be able to.

同図に示すように、水素水供給装置400は、電気分解装置からなる水素ガス発生装置10と、この水素ガス発生装置10に逆止弁11及び流路12を介してガス入口が接続された水素ガス溶解手段13と、流路12に設けられた水素ガス入口圧力計14と、水素ガス溶解手段13の水素水出口に流路15を介して接続された水素水取り出し弁(電磁弁)16と、流路15に設けられた水素水出口圧力計17と、水道からの第1の水道水流入路である流路18に設けられ、この流路18を開閉制御する水道水通水弁(電磁弁)19と、この流路18の水道水通水弁19の下流に設けられた減圧弁20と、この流路18の減圧弁20の下流に設けられた流量調整弁21と、この流路18に設けられた水道水入口圧力計22と、この流路18の流量調整弁21の下流に設けられた水道水用フィルタFと、水道からの第2の水道水流入路である流路23に設けられ、この流路23を開閉制御する第1の停止圧調整弁(電磁弁)24と、この流路23の第1の停止圧調整弁24の下流に設けられた第1の定流量弁25と、第1の定流量弁25の下流の流路18に設けられた水道水用フィルタFの下流流路26に設けられた第2の定流量弁27と、この流路26の第2の定流量弁27の下流に設けられこの流路26を開閉制御する第2の停止圧調整弁(電磁弁)28と、水道水用フィルタFの出口及び水素ガス溶解手段13の水道水入口に接続された流路26に設けられた溶存酸素除去手段34と、溶存酸素除去手段34に接続された吸引ポンプ35と、溶存酸素除去手段34の下流の流路26に設けられた冷却手段36と、冷却手段36の下流の流路26に設けられた水温検知手段29と、水素ガス発生装置10、水素水取り出し弁16、水温検知手段29、冷却手段36、水道水通水弁19、第1の停止圧調整弁24及び第2の停止圧調整弁28に電気的に接続された制御回路30(本発明の制御手段に対応する)とを備えている。なお、制御回路30は、水道水入口圧力計22、水素水出口圧力計17及び水素ガス入口圧力計14にも電気的に接続されている。   As shown in the figure, a hydrogen water supply device 400 includes a hydrogen gas generation device 10 composed of an electrolysis device, and a gas inlet connected to the hydrogen gas generation device 10 via a check valve 11 and a flow path 12. Hydrogen gas dissolving means 13, hydrogen gas inlet pressure gauge 14 provided in the flow path 12, and hydrogen water removal valve (electromagnetic valve) 16 connected to the hydrogen water outlet of the hydrogen gas dissolving means 13 via the flow path 15. And a hydrogen water outlet pressure gauge 17 provided in the flow passage 15 and a flow passage 18 which is provided in the flow passage 18 which is the first tap water inflow passage from the water supply and controls the opening and closing of the flow passage 18 ( Solenoid valve 19, a pressure reducing valve 20 provided downstream of the tap water flow valve 19 in the flow path 18, a flow rate adjusting valve 21 provided downstream of the pressure reducing valve 20 in the flow path 18, The tap water inlet pressure gauge 22 provided in the channel 18 and the flow of the channel 18 A tap water filter F provided downstream of the adjustment valve 21 and a first stop pressure adjustment valve provided in the flow path 23 which is a second tap water inflow path from the water supply and controls the opening and closing of the flow path 23. (Electromagnetic valve) 24, a first constant flow valve 25 provided downstream of the first stop pressure regulating valve 24 in the flow path 23, and a flow path 18 downstream of the first constant flow valve 25. The second constant flow valve 27 provided in the downstream flow path 26 of the tap water filter F and the flow path 26 provided downstream of the second constant flow valve 27 of the flow path 26 are controlled to open and close. A second stop pressure adjusting valve (solenoid valve) 28, a dissolved oxygen removing means 34 provided in a flow path 26 connected to the outlet of the tap water filter F and the tap water inlet of the hydrogen gas dissolving means 13; The suction pump 35 connected to the oxygen removing means 34 and the flow path 2 downstream of the dissolved oxygen removing means 34 , A water temperature detecting means 29 provided in the flow path 26 downstream of the cooling means 36, the hydrogen gas generator 10, the hydrogen water removal valve 16, the water temperature detecting means 29, the cooling means 36, and tap water A control circuit 30 (corresponding to the control means of the present invention) electrically connected to the water flow valve 19, the first stop pressure adjusting valve 24, and the second stop pressure adjusting valve 28 is provided. The control circuit 30 is also electrically connected to the tap water inlet pressure gauge 22, the hydrogen water outlet pressure gauge 17, and the hydrogen gas inlet pressure gauge 14.

本実施形態における水素ガス発生装置10、水素ガス溶解手段13、水素水取り出し弁16、水道水通水弁19、溶存酸素除去手段34、吸引ポンプ35、水温検知手段29、水圧力調整手段及び制御回路30の構成は、第3の実施形態の場合と同様であるため説明を省略する。   In the present embodiment, the hydrogen gas generator 10, the hydrogen gas dissolving means 13, the hydrogen water take-off valve 16, the tap water flow valve 19, the dissolved oxygen removing means 34, the suction pump 35, the water temperature detecting means 29, the water pressure adjusting means and the control. Since the configuration of the circuit 30 is the same as that of the third embodiment, description thereof is omitted.

冷却手段36は、水道水を所定温度に冷却させるものである。この冷却手段36は、溶存酸素除去手段34と水素ガス溶解手段13との間に設置されていることが望ましい。その理由として、一般的に、水に溶ける気体の量は、水温が高い方が少ないため、溶存酸素除去手段34による脱酸素は、水温が高い方が、膜の膨潤状態からも、ガスの飽和濃度からも望ましいからである。   The cooling means 36 is for cooling the tap water to a predetermined temperature. This cooling means 36 is preferably installed between the dissolved oxygen removing means 34 and the hydrogen gas dissolving means 13. The reason is that, generally, the amount of gas dissolved in water is lower when the water temperature is higher. Therefore, deoxygenation by the dissolved oxygen removing means 34 causes gas saturation even when the water temperature is higher from the membrane swelling state. This is because it is desirable also from the concentration.

本実施形態においては、冷却手段36によって水道水が所定温度に冷却維持されるため、第1〜第3の実施形態のごとき水温に基づくガス圧制御は不要となる。本実施形態において水温検知手段29の検出した信号は、冷却手段36により所定温度の水温を常に維持するための制御に使用される。   In this embodiment, since the tap water is cooled and maintained at a predetermined temperature by the cooling means 36, gas pressure control based on the water temperature as in the first to third embodiments is unnecessary. In the present embodiment, the signal detected by the water temperature detecting means 29 is used for control for constantly maintaining the water temperature at a predetermined temperature by the cooling means 36.

以上説明したように、本実施形態によれば、冷却手段36を備えることで、水素ガス溶解手段13に流入する水道水の温度を一定に維持することができる。これにより、水温に応じてガス圧制御することによりガス分離中空糸膜のガス透過量を調整することが不要となり、さらには水圧力調整手段による制御も固定できることとなる。従って、溶存水素濃度の高い水素水を常に供給できると共に、飲料用として冷たい水素水を提供することができる。本実施形態におけるその他の動作及び作用効果は、第1〜第3の実施形態の場合と同様であるため、説明は省略する。   As described above, according to the present embodiment, the temperature of tap water flowing into the hydrogen gas dissolving means 13 can be kept constant by providing the cooling means 36. Thereby, it is not necessary to adjust the gas permeation amount of the gas separation hollow fiber membrane by controlling the gas pressure according to the water temperature, and further, the control by the water pressure adjusting means can be fixed. Therefore, hydrogen water having a high dissolved hydrogen concentration can always be supplied, and cold hydrogen water for beverages can be provided. Other operations and effects in the present embodiment are the same as those in the first to third embodiments, and a description thereof will be omitted.

水素ガス発生装置10として、電気分解装置の代わりに水素ガスボンベのような高圧ガス容器に収納された水素ガスを発生する装置を用いても良い。ただし、高圧ガス容器からの水素ガスを減圧弁等を利用して減圧することが必要となる。   As the hydrogen gas generator 10, an apparatus that generates hydrogen gas stored in a high-pressure gas container such as a hydrogen gas cylinder may be used instead of the electrolysis apparatus. However, it is necessary to depressurize the hydrogen gas from the high pressure gas container using a pressure reducing valve or the like.

以下、本発明の水素水供給装置の実施例について説明する。   Examples of the hydrogen water supply device of the present invention will be described below.

まず、水道水通水弁19、水素水取り出し弁16、第1の停止圧調整弁24及び第2の停止圧調整弁28の閉成時における水素ガス圧と水圧との平衡について検討した。水素水供給装置としては、第1の実施形態における水素水供給装置100を用いた。溶存水素濃度を測定するために、水素水取り出し弁16の下流側に溶存水素計を設置した。水素ガス発生装置10は株式会社GSユアサ製のGSユアサHG-105電解装置を使用し、水素ガス溶解手段13のガス分離中空糸膜は永柳工業株式会社製の中空糸ガス分離膜(M60−6000GE)を使用し、溶存水素計はバイオニクス機器株式会社製のBIH-50Dを使用した。   First, the balance between the hydrogen gas pressure and the water pressure when the tap water flow valve 19, the hydrogen water discharge valve 16, the first stop pressure adjusting valve 24, and the second stop pressure adjusting valve 28 were closed was examined. As the hydrogen water supply device, the hydrogen water supply device 100 in the first embodiment was used. In order to measure the dissolved hydrogen concentration, a dissolved hydrogen meter was installed on the downstream side of the hydrogen water take-off valve 16. The hydrogen gas generator 10 uses a GS Yuasa HG-105 electrolyzer manufactured by GS Yuasa Co., Ltd., and the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13 is a hollow fiber gas separation membrane (M60-6000GE manufactured by Nagayanagi Industry Co., Ltd.). ), And the dissolved hydrogen meter used was BIH-50D manufactured by Bionics Instruments Co., Ltd.

試験方法:水素ガス溶解手段13において、水素ガス圧を0.16MPaとして、水側の締切圧を変化させて、水素ガス溶解手段13に関連する全ての開閉弁を閉じて、その後の系内の平衡状態への移行を試験した。水温は24℃であった。   Test method: In the hydrogen gas dissolving means 13, the hydrogen gas pressure is set to 0.16 MPa, the cutoff pressure on the water side is changed, all the on-off valves related to the hydrogen gas dissolving means 13 are closed, and The transition to equilibrium was tested. The water temperature was 24 ° C.

試験結果を表1〜3に示す。

Figure 2016077987
Test results are shown in Tables 1-3.
Figure 2016077987

Figure 2016077987
Figure 2016077987

Figure 2016077987
Figure 2016077987

表1の[水圧=水素ガス圧]の場合には、漏れがなければ常に平衡状態が保たれた。また、表2の[水圧<水素ガス圧]の場合には、ガス分離中空糸膜はガス透過膜であり早期にガスが水側に移行し、差圧の1/4が水素ガス圧の減圧となり、3/4が水圧の増圧となって平衡状態となった。表3の[水圧>水素ガス圧]の場合には、ガス透過圧が作用することと、水中でのガスが少ないこととにより、非常に遅いスピードで、0.003MPaという若干の圧力であるが、水側から水素ガス側に水中のガスが移動した。従って、水素ガスの不要な消費を抑制するためには、水素水採水大気中状態では[水圧≧水素ガス圧]の状態とすることが要求される点が確認され、本発明の[水圧≒水素ガス圧]が任意の時点で任意の量の水素水を取り出しても所定濃度以上の水素水を常に供給されるためには必要となる。   In the case of [Water pressure = Hydrogen gas pressure] in Table 1, the equilibrium was always maintained if there was no leakage. Further, in the case of [Water pressure <Hydrogen gas pressure] in Table 2, the gas separation hollow fiber membrane is a gas permeable membrane, the gas is transferred to the water side at an early stage, and 1/4 of the differential pressure is reduced by the hydrogen gas pressure. As a result, 3/4 increased to the water pressure, and the equilibrium was reached. In the case of [Water pressure> Hydrogen gas pressure] in Table 3, it is a slight pressure of 0.003 MPa at a very slow speed due to the gas permeation pressure acting and the small amount of gas in water. Underwater gas moved from the water side to the hydrogen gas side. Therefore, in order to suppress unnecessary consumption of hydrogen gas, it has been confirmed that it is required to satisfy the condition of [water pressure ≧ hydrogen gas pressure] in the hydrogen water sampling air state. [Hydrogen gas pressure] is necessary in order to always supply hydrogen water having a predetermined concentration or higher even if an arbitrary amount of hydrogen water is taken out at an arbitrary time.

[実施例1]
本発明の第3の実施形態における水素水供給装置300を用いて、温度による溶存水素濃度の差について検討した。溶存水素濃度を測定するために、水素水取り出し弁16の下流側に溶存水素計を設置した。水素ガス発生装置10は株式会社GSユアサ製のGSユアサHG-105電解装置を使用し、水素ガス溶解手段13のガス分離中空糸膜は永柳工業株式会社製の中空糸ガス分離膜(M60−6000GE)を使用し、溶存酸素除去手段34の脱気膜は永柳工業株式会社製の中空糸ガス分離膜(M60−6000GE)を使用し、吸引ポンプ35は株式会社イワキ製のAPN-30GD2-Wを10秒オン/50秒オフで使用し、溶存水素計はバイオニクス機器株式会社製のBIH-50Dを使用した。
[Example 1]
Using the hydrogen water supply device 300 in the third embodiment of the present invention, the difference in dissolved hydrogen concentration due to temperature was examined. In order to measure the dissolved hydrogen concentration, a dissolved hydrogen meter was installed on the downstream side of the hydrogen water take-off valve 16. The hydrogen gas generator 10 uses a GS Yuasa HG-105 electrolyzer manufactured by GS Yuasa Co., Ltd., and the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13 is a hollow fiber gas separation membrane (M60-6000GE manufactured by Nagayanagi Industry Co., Ltd.). ), The degassing membrane of the dissolved oxygen removing means 34 is a hollow fiber gas separation membrane (M60-6000GE) manufactured by Nagayanagi Industry Co., Ltd., and the suction pump 35 is an APN-30GD2-W manufactured by Iwaki Co., Ltd. Used for 10 seconds on / 50 seconds off, the dissolved hydrogen meter used was BIH-50D manufactured by Bionics Instruments Co., Ltd.

試験条件を表4に示す。

Figure 2016077987
Table 4 shows the test conditions.
Figure 2016077987

試験結果を表5及び図9に示す。

Figure 2016077987
The test results are shown in Table 5 and FIG.
Figure 2016077987

表5及び図9に示すように、溶存水素濃度1.6mg/Lの水素水を得るためには、13℃で0.18MPa、25℃で0.15MPa、33℃で0.135MPaの水素ガス圧が必要であった。平均して1℃当たり0.00225MPaの調整が必要であり、水温の5℃低下により0.011MPa昇圧する必要があることが分かる。   As shown in Table 5 and FIG. 9, in order to obtain hydrogen water having a dissolved hydrogen concentration of 1.6 mg / L, hydrogen gas of 0.18 MPa at 13 ° C., 0.15 MPa at 25 ° C., and 0.135 MPa at 33 ° C. Pressure was needed. It can be seen that, on average, adjustment of 0.00225 MPa per 1 ° C. is necessary, and it is necessary to increase the pressure by 0.011 MPa due to a 5 ° C. decrease in water temperature.

[実施例2]
本発明の第1の実施形態における水素水供給装置100と第3の実施形態における水素水供給装置300とを用いて、溶存酸素除去手段34の有無について検討した。溶存水素濃度を測定するために、水素水取り出し弁16の下流側に溶存水素計を設置した。水素ガス発生装置10は株式会社GSユアサ製のGSユアサHG-105電解装置を使用し、水素ガス溶解手段13のガス分離中空糸膜は永柳工業株式会社製の中空糸ガス分離膜(M60−6000GE)を使用し、溶存酸素除去手段34の脱気膜は永柳工業株式会社製の中空糸ガス分離膜(M60−6000GE)を使用し、吸引ポンプ35は株式会社イワキ製のAPN-30GD2-Wを10秒オン/50秒オフで使用し、溶存水素計はバイオニクス機器株式会社製のBIH-50Dを使用した。
[Example 2]
The presence or absence of the dissolved oxygen removal means 34 was examined using the hydrogen water supply apparatus 100 in the first embodiment of the present invention and the hydrogen water supply apparatus 300 in the third embodiment. In order to measure the dissolved hydrogen concentration, a dissolved hydrogen meter was installed on the downstream side of the hydrogen water take-off valve 16. The hydrogen gas generator 10 uses a GS Yuasa HG-105 electrolyzer manufactured by GS Yuasa Co., Ltd., and the gas separation hollow fiber membrane of the hydrogen gas dissolving means 13 is a hollow fiber gas separation membrane (M60-6000GE manufactured by Nagayanagi Industry Co., Ltd.). ), The degassing membrane of the dissolved oxygen removing means 34 is a hollow fiber gas separation membrane (M60-6000GE) manufactured by Nagayanagi Industry Co., Ltd., and the suction pump 35 is an APN-30GD2-W manufactured by Iwaki Co., Ltd. Used for 10 seconds on / 50 seconds off, the dissolved hydrogen meter used was BIH-50D manufactured by Bionics Instruments Co., Ltd.

試験条件を表6に示す。

Figure 2016077987
Table 6 shows the test conditions.
Figure 2016077987

試験結果を表7及び図10に示す。

Figure 2016077987
The test results are shown in Table 7 and FIG.
Figure 2016077987

表7及び図10に示すように、溶存酸素除去手段34において、水道水中の溶存酸素(酸素ガス)や溶存窒素(窒素ガス)が除去されるので、水素ガスが0.025MPa低圧で同溶存水素濃度の水素水を得ることができた。また、水素ガスが低圧となることは、水素水取り出し弁16の閉状態での水圧を低くすることができるので、好ましい状況である。   As shown in Table 7 and FIG. 10, the dissolved oxygen removing means 34 removes dissolved oxygen (oxygen gas) and dissolved nitrogen (nitrogen gas) in tap water, so that the hydrogen gas is dissolved at a low pressure of 0.025 MPa. Concentrated hydrogen water could be obtained. Further, the hydrogen gas having a low pressure is a preferable situation because the water pressure in the closed state of the hydrogen water take-off valve 16 can be lowered.

[実施例3]
本発明の第4の実施形態における水素水供給装置400を用いて、水温変化に対応する水素ガス圧制御採否による間欠での水素水採取について検討した。溶存水素濃度を測定するために、水素水取り出し弁16の下流側に溶存水素計を設置した。
[Example 3]
Using the hydrogen water supply apparatus 400 according to the fourth embodiment of the present invention, intermittent hydrogen water collection by adopting or rejecting hydrogen gas pressure control corresponding to a change in water temperature was examined. In order to measure the dissolved hydrogen concentration, a dissolved hydrogen meter was installed on the downstream side of the hydrogen water take-off valve 16.

試験条件を表8に示す。

Figure 2016077987
Table 8 shows the test conditions.
Figure 2016077987

表9、表10及び図11、並びに図12は、40秒水素水採取−140秒水素水採取無し、1L採取要領で運転させた試験結果を示している。表9及び図11は温度にて水素ガス圧を制御した場合を示している。表10及び図12は温度による水素ガス圧制御値から外れた場合を示している。   Tables 9, 10 and 11 and FIG. 12 and FIG. 12 show the test results of 40 seconds of hydrogen water sampling-140 seconds of no hydrogen water sampling and 1 L sampling procedure. Table 9 and FIG. 11 show the case where the hydrogen gas pressure is controlled by the temperature. Table 10 and FIG. 12 show a case where the temperature deviates from the hydrogen gas pressure control value depending on the temperature.

Figure 2016077987
Figure 2016077987

Figure 2016077987
Figure 2016077987

水温に応じて水素ガス圧を制御した場合、調整を行えば、1Lの水素水採取にあたって、待機・停止の時間分にかかわらず、常に溶存水素濃度1.6mg/Lの水素水を供給することができた。なお、この実施例では水道水の温度調整を冷却水槽を利用して行ったため、休止以後の運転開始で待機時の水素ガス溶解手段13での高溶解溶存水素が初期に流出し、冷却水槽部で待機した過冷却水が低溶解溶存水素となり次に溶出し、以後安定した所望の溶存水素濃度1.6mg/L以上の水素水を得ることができた。過冷却水の溶存水素濃度不足は初期の過剰な溶存水素濃度にて補足されるので全体の1L容量中の溶存水素濃度は1.6mg/L以上であることに間違いはなかった。   When hydrogen gas pressure is controlled according to the water temperature, if adjusted, hydrogen water with a dissolved hydrogen concentration of 1.6 mg / L will always be supplied regardless of the standby / stop time when collecting 1 L of hydrogen water. I was able to. In this embodiment, since the temperature of the tap water is adjusted using the cooling water tank, the high-dissolved dissolved hydrogen in the hydrogen gas dissolving means 13 in the standby state flows out in the initial stage when the operation is started after the suspension, and the cooling water tank portion Then, the supercooled water waiting in (1) became low-dissolved dissolved hydrogen and eluted, and thereafter stable hydrogen water having a desired dissolved hydrogen concentration of 1.6 mg / L or more could be obtained. Since the lack of dissolved hydrogen concentration in the supercooled water was supplemented by the initial excessive dissolved hydrogen concentration, there was no doubt that the dissolved hydrogen concentration in the entire 1 L volume was 1.6 mg / L or more.

一方、水温による水素ガスの上限圧力値及び下限圧力値の範囲を外れた(上限圧力値を上回る)水素ガス圧とすると、停止中にも多量の水素ガスが水側に移行し、水中に水素ガス体を検出することとなり、待機中に水素ガスを損失しコストアップにつながる結果となった。下限圧力値を下回る水素ガス圧とすると、所望の溶存水素濃度1.6mg/Lを得られず、水素水の商品規格から外れる品となった。   On the other hand, if the hydrogen gas pressure is out of the range of the upper limit pressure value and the lower limit pressure value of the water temperature (exceeding the upper limit pressure value), a large amount of hydrogen gas moves to the water side even during stoppage, The gas body was detected, and hydrogen gas was lost during standby, resulting in increased costs. When the hydrogen gas pressure was lower than the lower limit pressure value, the desired dissolved hydrogen concentration of 1.6 mg / L could not be obtained, and the product deviated from the product specification of hydrogen water.

従って、制御手段30は、水温検知手段29により検知した水の温度Tに基づいて、水素ガス圧を制御すると共に、水素ガスのガス圧P3と、水道水通水弁19、水素水取り出し弁16、第1の停止圧調整弁24及び第2の停止圧調整弁28を閉成して系を閉鎖した際の水圧とが略同圧に調整するように水圧力調整手段を制御することにより、任意の時点に、任意の量の水素水を取り出しても、常に所定濃度以上(例えば、1.6mg/L以上)の水素水を供給できる。   Therefore, the control means 30 controls the hydrogen gas pressure based on the temperature T of the water detected by the water temperature detection means 29, as well as the hydrogen gas pressure P3, the tap water flow valve 19, and the hydrogen water take-off valve 16. By controlling the water pressure adjusting means so that the water pressure when the first stop pressure adjusting valve 24 and the second stop pressure adjusting valve 28 are closed and the system is closed is adjusted to substantially the same pressure, Even if an arbitrary amount of hydrogen water is taken out at an arbitrary time point, hydrogen water at a predetermined concentration or higher (for example, 1.6 mg / L or higher) can always be supplied.

なお、上述した実施形態の水素水供給装置100、200、300及び400において、水素ガス溶解手段13には、シリコン系の中空糸ガス分離膜を用いたが、本発明はこれに限定されるものではない。例えば、他の種のガス分離膜材質による水素ガス溶解装置を用いてもよい。   In the hydrogen water supply devices 100, 200, 300, and 400 of the above-described embodiments, the silicon-based hollow fiber gas separation membrane is used as the hydrogen gas dissolving means 13, but the present invention is not limited to this. is not. For example, a hydrogen gas dissolving device made of another kind of gas separation membrane material may be used.

さらに、上述した実施形態の水素水供給装置100、200、300及び400において、水道水を用いたが、本発明はこれに限定されるものではない。水道水以外の水を用いてもよい。   Furthermore, although tap water was used in the hydrogen water supply devices 100, 200, 300, and 400 of the above-described embodiments, the present invention is not limited to this. Water other than tap water may be used.

以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。   All the embodiments described above are illustrative of the present invention and are not intended to be limiting, and the present invention can be implemented in other various modifications and changes. Therefore, the scope of the present invention is defined only by the claims and their equivalents.

本発明の水素水供給装置は、水道直結型、随時水素水取り出し式飲料用水素水供給装置(水素水サーバ)として利用できる。   The hydrogen water supply apparatus of the present invention can be used as a hydrogen water supply apparatus (hydrogen water server) for drinking water directly connected to the water supply system, and at any time a hydrogen water take-out type.

10 水素ガス発生装置
11 逆止弁
12、15、18、23、26 流路
13 水素ガス溶解手段
14 水素ガス入口圧力計
16 水素水取り出し弁
17 水素水出口圧力計
19 水道水通水弁
20 減圧弁
21 流量調整弁
22 水道水入口圧力計
24 第1の停止圧調整弁
25 第1の定流量弁
27 第2の定流量弁
28 第2の停止圧調整弁
29 水温検知手段
30 制御回路
31 水素ガス貯留タンク
32 ガス圧力調整弁
33 第3の定流量弁
34 溶存酸素除去手段
35 吸引ポンプ
36 冷却手段
100、200、300、400 水素水供給装置
F 水道水用フィルタ
DESCRIPTION OF SYMBOLS 10 Hydrogen gas generator 11 Check valve 12, 15, 18, 23, 26 Flow path 13 Hydrogen gas melt | dissolution means 14 Hydrogen gas inlet pressure gauge 16 Hydrogen water outlet valve 17 Hydrogen water outlet pressure gauge 19 Tap water flow valve 20 Pressure reduction Valve 21 Flow adjustment valve 22 Tap water inlet pressure gauge 24 First stop pressure adjustment valve 25 First constant flow valve 27 Second constant flow valve 28 Second stop pressure adjustment valve 29 Water temperature detection means 30 Control circuit 31 Hydrogen Gas storage tank 32 Gas pressure regulating valve 33 Third constant flow valve 34 Dissolved oxygen removing means 35 Suction pump 36 Cooling means 100, 200, 300, 400 Hydrogen water supply device F Tap water filter

Claims (9)

水道に直結され、水道水が一過式で通水される水素水供給装置であって、
前記水道水及び水素ガスが供給されると共に、前記供給される水素ガスをガス分離中空糸膜を介して前記供給される水道水に溶解させて水素水を生成するように構成された水素ガス溶解手段と、前記水素ガス溶解手段の水流入路に設けられ前記供給される水道水の温度を検知する水温検知手段と、前記水素ガス溶解手段に前記水素ガスを供給すると共に供給される前記水素ガスのガス圧を可変調整可能な水素ガス供給手段と、前記水道からの水道水流入路を開閉制御可能な水道水通水弁と、前記水素ガス溶解手段の水素水流出路を開閉制御可能な水素水取出し弁と、前記水素ガス溶解手段に供給される前記水道水の水圧を調整するように構成された水圧力調整手段と、前記水温検知手段によって検出された水温に応じて前記水素ガス供給手段を制御し、供給される前記水素ガスのガス圧を調整するように構成された制御手段とを備えており、
前記水圧力調整手段は、前記水素水取出し弁から取り出される水素水の濃度を所定濃度以上に保持するべく、前記水素ガス溶解手段に供給される前記水素ガスのガス圧と、前記水道水通水弁及び前記水素水取り出し弁を閉成した際に前記水素ガス溶解手段に供給される前記水道水の水圧とを略同圧に制御するように構成されていることを特徴とする水素水供給装置。
It is a hydrogen water supply device that is directly connected to the water supply and through which the tap water is passed in a temporary manner,
Hydrogen gas dissolution configured to generate hydrogen water by supplying the tap water and hydrogen gas and dissolving the supplied hydrogen gas in the supplied tap water through a gas separation hollow fiber membrane Means for detecting the temperature of the supplied tap water provided in the water inflow path of the hydrogen gas dissolving means, and supplying the hydrogen gas to the hydrogen gas dissolving means and supplying the hydrogen gas Hydrogen gas supply means capable of variably adjusting the gas pressure, tap water flow valve capable of opening and closing the tap water inflow passage from the water supply, and hydrogen water capable of opening and closing the hydrogen water outflow passage of the hydrogen gas dissolving means A take-off valve, a water pressure adjusting means configured to adjust a water pressure of the tap water supplied to the hydrogen gas dissolving means, and the hydrogen gas supply means according to the water temperature detected by the water temperature detecting means Controlled, and a configured control means to adjust the gas pressure of the hydrogen gas supplied,
The water pressure adjusting means includes a gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means and the tap water passage water so that the concentration of hydrogen water taken out from the hydrogen water take-off valve is maintained at a predetermined concentration or more. A hydrogen water supply device configured to control the water pressure of the tap water supplied to the hydrogen gas dissolving means when the valve and the hydrogen water take-off valve are closed to substantially the same pressure. .
前記水素ガス供給手段が電気分解により前記水素ガスを発生する水素ガス発生装置を備えており、前記制御手段は、前記水素ガス溶解手段に供給される前記水素ガスのガス圧が前記検出された水温によって規定される範囲内に収まるように前記水素ガス発生装置の電気分解を制御するように構成されていることを特徴とする請求項1に記載の水素水供給装置。   The hydrogen gas supply means includes a hydrogen gas generator that generates the hydrogen gas by electrolysis, and the control means includes a water temperature at which the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means is detected. The hydrogen water supply device according to claim 1, wherein the electrolysis of the hydrogen gas generator is controlled so as to be within a range defined by. 前記水素ガス供給手段が電気分解により前記水素ガスを発生する水素ガス発生装置と、該発生した水素ガスのガス圧を一定圧に維持する水素ガス貯留タンクと、該水素ガス貯留タンクからの水素ガスのガス圧を制御するガス圧調整手段とを備えており、前記制御手段は、前記水素ガス溶解手段に供給される前記水素ガスのガス圧が前記検出された水温によって規定される範囲内に収まるように前記ガス圧調整手段を制御するように構成されていることを特徴とする請求項1に記載の水素水供給装置。   A hydrogen gas generator for generating the hydrogen gas by electrolysis by the hydrogen gas supply means; a hydrogen gas storage tank for maintaining a gas pressure of the generated hydrogen gas at a constant pressure; and a hydrogen gas from the hydrogen gas storage tank Gas pressure adjusting means for controlling the gas pressure of the hydrogen gas, and the control means falls within a range in which the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means is defined by the detected water temperature. The hydrogen water supply device according to claim 1, wherein the gas pressure adjusting means is controlled as described above. 前記水素ガス供給手段が水素ガスボンベと、該水素ガスボンベからの水素ガスのガス圧を制御するガス圧調整手段とを備えており、前記制御手段は、前記水素ガス溶解手段に供給される前記水素ガスのガス圧が前記検出された水温によって規定される範囲内に収まるように前記ガス圧調整手段を制御するように構成されていることを特徴とする請求項1に記載の水素水供給装置。   The hydrogen gas supply means includes a hydrogen gas cylinder and a gas pressure adjusting means for controlling the gas pressure of the hydrogen gas from the hydrogen gas cylinder, and the control means supplies the hydrogen gas supplied to the hydrogen gas dissolving means. The hydrogen water supply apparatus according to claim 1, wherein the gas pressure adjusting means is controlled so that the gas pressure falls within a range defined by the detected water temperature. 前記水圧力調整手段が前記水道からの水道水流入路に設けられた第1の停止圧調整弁及び/又は前記水素ガス溶解手段の水道水流入路からの排水路に設けられた第2の停止圧調整弁を備えており、前記第1の停止圧調整弁又は前記第2の停止圧調整弁を調整することにより、前記水素ガス溶解手段に供給される前記水素ガスのガス圧と、前記水道水通水弁及び前記水素水取り出し弁を閉成した際に前記水素ガス溶解手段に供給される前記水道水の水圧とが略同圧となるように制御するように構成されていることを特徴とする請求項1から4のいずれか1項に記載の水素水供給装置。   The water pressure adjusting means is a first stop pressure adjusting valve provided in a tap water inflow passage from the water supply and / or a second stop provided in a drainage passage from the tap water inflow passage of the hydrogen gas dissolving means. A pressure adjusting valve, and adjusting the first stop pressure adjusting valve or the second stop pressure adjusting valve to adjust the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means; When the water flow valve and the hydrogen water take-off valve are closed, the tap water supplied to the hydrogen gas dissolving means is controlled so as to have substantially the same pressure. The hydrogen water supply device according to any one of claims 1 to 4. 前記制御手段は、前記水素ガス溶解手段に供給される前記水素ガスのガス圧と、前記水道水通水弁及び前記水素水取り出し弁を閉成した際に前記水素ガス溶解手段に供給される前記水道水の水圧とが略同圧となるように前記第1の停止圧調整弁及び/又は前記第2の停止圧調整弁を制御するように構成されていることを特徴とする請求項5に記載の水素水供給装置。   The control means is supplied to the hydrogen gas dissolving means when the gas pressure of the hydrogen gas supplied to the hydrogen gas dissolving means and the tap water flow valve and the hydrogen water take-off valve are closed. 6. The first stop pressure adjusting valve and / or the second stop pressure adjusting valve is controlled so that the water pressure of tap water becomes substantially the same pressure. The hydrogen water supply apparatus as described. 前記水道水の溶存酸素を少なくとも一部除去する溶存酸素除去手段をさらに備えており、前記溶存酸素除去手段で溶存酸素が除去された前記水道水が前記水素ガス溶解手段に供給されるように構成されていることを特徴とする請求項1から6のいずれか1項に記載の水素水供給装置。   The apparatus further includes a dissolved oxygen removing unit that removes at least a part of the dissolved oxygen of the tap water, and the tap water from which the dissolved oxygen has been removed by the dissolved oxygen removing unit is supplied to the hydrogen gas dissolving unit. The hydrogen water supply device according to any one of claims 1 to 6, wherein the hydrogen water supply device is provided. 前記水道水を所定温度に冷却させる冷却手段をさらに備えており、前記冷却手段で冷却された前記水道水が前記水素ガス溶解手段に供給されるように構成されていることを特徴とする請求項1から7のいずれか1項に記載の水素水供給装置。   A cooling means for cooling the tap water to a predetermined temperature is further provided, and the tap water cooled by the cooling means is configured to be supplied to the hydrogen gas dissolving means. The hydrogen water supply device according to any one of 1 to 7. 前記制御手段は、前記水素ガス溶解手段に供給される前記水道水の温度が前記所定温度に維持されるように前記検出された水温に応じて前記冷却手段を制御するように構成されていることを特徴とする請求項8に記載の水素水供給装置。   The control means is configured to control the cooling means according to the detected water temperature so that the temperature of the tap water supplied to the hydrogen gas dissolving means is maintained at the predetermined temperature. The hydrogen water supply device according to claim 8.
JP2014213653A 2014-10-20 2014-10-20 Hydrogen water supply device Active JP6185445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014213653A JP6185445B2 (en) 2014-10-20 2014-10-20 Hydrogen water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014213653A JP6185445B2 (en) 2014-10-20 2014-10-20 Hydrogen water supply device

Publications (2)

Publication Number Publication Date
JP2016077987A true JP2016077987A (en) 2016-05-16
JP6185445B2 JP6185445B2 (en) 2017-08-23

Family

ID=55955538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014213653A Active JP6185445B2 (en) 2014-10-20 2014-10-20 Hydrogen water supply device

Country Status (1)

Country Link
JP (1) JP6185445B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034147A (en) * 2016-08-29 2018-03-08 株式会社光未来 Water feeding pump-less hydrogen water manufacturing apparatus and hydrogen water manufacturing method
WO2018127986A1 (en) * 2017-01-09 2018-07-12 トラストネットワーク株式会社 Real-time large-volume hydrogen water generator
JP2021023155A (en) * 2019-07-31 2021-02-22 株式会社 伊藤園 Method for dispersing hydrogen into liquid solvent
CN113769596A (en) * 2021-09-30 2021-12-10 正氢科技(中山市)有限公司 High fusion device of hydrogen and water
CN114057273A (en) * 2021-11-22 2022-02-18 三峡大学 High-solution gas water preparation device, high-solution gas water preparation method and application
US11746028B2 (en) 2018-07-25 2023-09-05 Nihon Trim Co., Ltd. Hydrogen gas dissolving apparatus
US11788197B2 (en) 2018-06-06 2023-10-17 Nihon Trim Co., Ltd. Hydrogen gas dissolving apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614528A (en) * 1984-06-15 1986-01-10 Arubatsuku Service Kk Manufacturing apparatus of high-purity solution of water-soluble gas
JPH11244677A (en) * 1998-02-27 1999-09-14 Japan Organo Co Ltd Apparatus for producing gas-dissolved water
JP2000354729A (en) * 1999-04-12 2000-12-26 Japan Organo Co Ltd Method and apparatus for producing functional water for washing
JP2003136077A (en) * 2001-10-31 2003-05-13 Nec Corp Apparatus for making washing water or dipping water used in production of semiconductor
JP2010207724A (en) * 2009-03-10 2010-09-24 Yamatake Corp Gas dissolving system, gas dissolving method, and gas dissolving program
WO2013061015A1 (en) * 2011-10-25 2013-05-02 Headmaster Ltd Producing or dispensing liquid products
JP2014042894A (en) * 2012-08-28 2014-03-13 Ashitamiraizu:Kk Hydrogen injector, and hydrogen injection system equipped with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614528A (en) * 1984-06-15 1986-01-10 Arubatsuku Service Kk Manufacturing apparatus of high-purity solution of water-soluble gas
JPH11244677A (en) * 1998-02-27 1999-09-14 Japan Organo Co Ltd Apparatus for producing gas-dissolved water
JP2000354729A (en) * 1999-04-12 2000-12-26 Japan Organo Co Ltd Method and apparatus for producing functional water for washing
JP2003136077A (en) * 2001-10-31 2003-05-13 Nec Corp Apparatus for making washing water or dipping water used in production of semiconductor
JP2010207724A (en) * 2009-03-10 2010-09-24 Yamatake Corp Gas dissolving system, gas dissolving method, and gas dissolving program
WO2013061015A1 (en) * 2011-10-25 2013-05-02 Headmaster Ltd Producing or dispensing liquid products
JP2014530758A (en) * 2011-10-25 2014-11-20 ヘッドマスター リミテッド Manufacture or dispense liquid products
JP2014042894A (en) * 2012-08-28 2014-03-13 Ashitamiraizu:Kk Hydrogen injector, and hydrogen injection system equipped with the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034147A (en) * 2016-08-29 2018-03-08 株式会社光未来 Water feeding pump-less hydrogen water manufacturing apparatus and hydrogen water manufacturing method
WO2018127986A1 (en) * 2017-01-09 2018-07-12 トラストネットワーク株式会社 Real-time large-volume hydrogen water generator
US11788197B2 (en) 2018-06-06 2023-10-17 Nihon Trim Co., Ltd. Hydrogen gas dissolving apparatus
US11746028B2 (en) 2018-07-25 2023-09-05 Nihon Trim Co., Ltd. Hydrogen gas dissolving apparatus
JP2021023155A (en) * 2019-07-31 2021-02-22 株式会社 伊藤園 Method for dispersing hydrogen into liquid solvent
CN113769596A (en) * 2021-09-30 2021-12-10 正氢科技(中山市)有限公司 High fusion device of hydrogen and water
CN114057273A (en) * 2021-11-22 2022-02-18 三峡大学 High-solution gas water preparation device, high-solution gas water preparation method and application

Also Published As

Publication number Publication date
JP6185445B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6185445B2 (en) Hydrogen water supply device
KR101383014B1 (en) Method and apparatus for controlling pressure by forward osmosis
JP6891121B2 (en) Water purification system and method
EP1793219A1 (en) Method and apparatus for measuring concentration of dissolved gas in liquid, and apparatus for producing nitrogen gas dissolved water
JP6052948B2 (en) Method for producing hydrogen-containing water for beverages and apparatus for producing the same
US11788197B2 (en) Hydrogen gas dissolving apparatus
TW201838930A (en) Cleaning water supply device
JP2023120215A (en) Hydrogen gas dissolution device
JP2017170273A (en) Operation control method of reverse osmosis membrane device and reverse osmosis membrane processing system
US20210024381A1 (en) Portable multimode reverse osmosis water purification system
JP2005218885A (en) Hydrogen water manufacturing apparatus, hydrogen water manufacturing method, and hydrogen water
JP2014184380A (en) Water treatment apparatus
JP6395659B2 (en) Method for producing hydrogen-containing water for beverages and apparatus for producing the same
CN107021557B (en) Functional water production device and functional water production method
JP2007185559A (en) Method and device for dissolving gas
KR20070008103A (en) Apparatus and method for manufacturing oxygen water
JP2007152192A (en) Water quality monitoring equipment and water treatment facility
JP5663410B2 (en) Ultrapure water production method and apparatus
KR20190118573A (en) Operation management method and reverse osmosis membrane treatment system of reverse osmosis membrane device
JP7245002B2 (en) Hydrogen gas dissolver
JP2019166424A (en) Wastewater treatment device and wastewater treatment method
KR20130003301U (en) Oxygen fusion equipment
US10280526B2 (en) System for production of a sterilizing solution
JP2022054190A (en) Hydrogen water production device and hydrogen water production method
KR101744866B1 (en) Hydrogen Water Supplier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6185445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250