JP2019166424A - Wastewater treatment device and wastewater treatment method - Google Patents

Wastewater treatment device and wastewater treatment method Download PDF

Info

Publication number
JP2019166424A
JP2019166424A JP2018053980A JP2018053980A JP2019166424A JP 2019166424 A JP2019166424 A JP 2019166424A JP 2018053980 A JP2018053980 A JP 2018053980A JP 2018053980 A JP2018053980 A JP 2018053980A JP 2019166424 A JP2019166424 A JP 2019166424A
Authority
JP
Japan
Prior art keywords
treated water
tank
path
water path
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018053980A
Other languages
Japanese (ja)
Other versions
JP7073154B2 (en
Inventor
壮一郎 矢次
Soichiro Yatsugi
壮一郎 矢次
永江 信也
Shinya Nagae
信也 永江
佑子 都築
Yuko Tsuzuki
佑子 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2018053980A priority Critical patent/JP7073154B2/en
Publication of JP2019166424A publication Critical patent/JP2019166424A/en
Application granted granted Critical
Publication of JP7073154B2 publication Critical patent/JP7073154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a wastewater treatment device capable of discharging filtrated water through a natural discharge route using a principle of siphon without using corrosion-resistant expensive vacuum tank and vacuum pump.SOLUTION: A wastewater treatment device 100 includes a membrane separation tank 10 having membrane separation means 11 dipped and arranged therein, a treated water tank 20 storing water to be treated filtered through the membrane separation means and arranged so that a liquid level of the treated water is lower than a liquid level of the water to be treated in the membrane separation tank, a first treated water path 40 arranged so that a highest position is higher than a liquid level of the water to be treated in the membrane separation tank to connect the membrane separation means with the treated water tank, a second treated water path 50 branching from the first treated water path and connected to the treated water tank via an air vent tank 30 in which a lowest part in an internal space is arranged in a lower position than the liquid level of the treated water in the treated water tank, and a third treated water path 60 branching from the second treated water path between the air vent tank and the treated water tank and connected with pump means 61 capable of discharging the treated water in the second treated water path.SELECTED DRAWING: Figure 1

Description

本発明は、膜分離手段を備えた排水処理装置及び排水処理方法に関する。   The present invention relates to a wastewater treatment apparatus and a wastewater treatment method provided with membrane separation means.

特許文献1には、内部にろ過膜が浸漬された膜浸漬槽と、膜ろ過された処理水を貯留する処理水槽と、該膜浸漬槽内のろ過膜と該処理水槽とを接続する移送配管とを有する膜ろ過による水処理装置において、前記移送配管が、膜浸漬槽の水面より下に開口部を有して処理水槽に接続されると共に、該移送配管に配管内を減圧にする真空ポンプまたは真空タンクでなる減圧装置を接続し、サイフォンにより膜ろ過水を処理水槽に移送するように構成された膜ろ過による水処理装置が提案されている。   Patent Document 1 discloses a membrane immersion tank in which a filtration membrane is immersed, a treatment water tank that stores the membrane-filtered treated water, and a transfer pipe that connects the filtration membrane in the membrane immersion tank and the treated water tank. In the water treatment apparatus using membrane filtration, the transfer pipe has an opening below the water surface of the membrane immersion tank and is connected to the treatment water tank, and a vacuum pump for reducing the pressure in the pipe to the transfer pipe Alternatively, there has been proposed a water treatment device by membrane filtration configured to connect a decompression device comprising a vacuum tank and transfer membrane filtrate to a treated water tank by a siphon.

特開2003−251346号公報JP 2003-251346 A

上述した水処理装置では、ろ過膜に堆積したファウリング物質による膜詰まりを解消するために、必要に応じて次亜塩素酸ナトリウムなどの洗浄液を移送配管からろ過膜に供給してファウリング物質を除去する薬液洗浄が行なわれる。   In the water treatment apparatus described above, in order to eliminate the clogging caused by the fouling substance deposited on the filtration membrane, a cleaning liquid such as sodium hypochlorite is supplied from the transfer pipe to the filtration membrane as necessary to remove the fouling substance. The chemical solution to be removed is washed.

このような薬液洗浄後に真空ポンプや真空タンクなどの減圧装置を用いて移送配管にサイフォンを形成するように構成すると、洗浄液から生じる塩素ガスによって真空ポンプや真空タンクが腐食して破損する虞があったため、耐腐食性の材料を用いて減圧装置を構成する必要があり、部品選定に手間を要するばかりかコストの上昇を招くという問題があった。   If a siphon is formed in the transfer pipe using a decompression device such as a vacuum pump or vacuum tank after such chemical cleaning, the vacuum pump or vacuum tank may be corroded and damaged by chlorine gas generated from the cleaning liquid. For this reason, it is necessary to construct a decompression device using a corrosion-resistant material, and there is a problem in that not only labor is required for selecting parts, but also cost increases.

また、移送配管にエアロックが生じないように大型の真空タンクを用いる場合には、そのための設置スペースの確保という問題や、ろ過膜から移送配管に流入した洗浄排液が処理水槽に流入しないように取り出すポンプ手段を設ける必要があり、何れも部品コストや施工コストの上昇を来すという問題もあった。   In addition, when using a large vacuum tank so that air lock does not occur in the transfer pipe, there is a problem of securing the installation space for that purpose, and the cleaning wastewater flowing into the transfer pipe from the filtration membrane does not flow into the treated water tank. It is necessary to provide a pump means for taking out the components, and there has been a problem that both of them raise the cost of parts and the construction cost.

本発明の目的は、上述した問題に鑑み、耐腐食性の高価な真空タンクや真空ポンプを用いることなくサイフォンの原理を用いた自然排出経路によるろ過水の排出が可能な排水処理装置及び排水処理方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a wastewater treatment apparatus and a wastewater treatment apparatus capable of discharging filtered water by a natural discharge path using the principle of siphon without using an expensive vacuum tank or vacuum pump having corrosion resistance. The point is to provide a method.

上述の目的を達成するため、本発明による排水処理装置の第一の特徴構成は、特許請求の範囲の請求項1に記載した通り、膜分離手段を備えた排水処理装置であって、前記膜分離手段が被処理水中に浸漬配置された膜分離槽と、前記膜分離手段でろ過された処理水が貯留され、貯留された処理水の液面が前記膜分離槽の被処理水の液面より低くなるように配置された処理水槽と、最高位置が前記膜分離槽の被処理水の液面よりも高くなるように配置され、前記膜分離手段と前記処理水槽とを接続する第一処理水経路と、前記第一処理水経路から分岐して、内部空間の最下部が前記処理水槽の処理水の液面よりも低い位置となるように配置されたエア抜きタンクを介して前記処理水槽に接続される第二処理水経路と、前記エア抜きタンクと前記処理水槽との間で前記第二処理水経路から分岐して、前記第二処理水経路中の処理水を排出可能なポンプ手段が接続された第三処理水経路と、を備えている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the wastewater treatment apparatus according to the present invention is a wastewater treatment apparatus provided with membrane separation means, as described in claim 1 of the claims, wherein the membrane A membrane separation tank in which the separation means is immersed in the water to be treated, and the treated water filtered by the membrane separation means are stored, and the level of the stored treated water is the liquid level of the water to be treated in the membrane separation tank. A first treatment that connects the membrane separation means and the treated water tank, the treated water tank arranged so as to be lower, and the highest position disposed higher than the liquid level of the treated water in the membrane separation tank. The treated water tank via an air vent tank that is branched from the water path and the first treated water path, and the lowermost part of the internal space is positioned lower than the treated water level of the treated water tank A second treated water path connected to, the air vent tank and the And a third treated water path that is branched from the second treated water path to the water tank and connected to pump means capable of discharging treated water in the second treated water path. is there.

エア抜きタンクに充填された呼水を、ポンプ手段を用いて第二処理水経路から第三処理水経路に排出することにより第二処理水経路と連通する第一処理水経路を負圧に導く。第一処理水経路に生じる負圧によって膜分離槽の被処理水が膜分離手段を介して吸引されるようになり、被処理水の膜分離手段によるろ過が進み、ろ過された処理水が第一処理水経路に流入する。その結果、第一処理水経路を介して膜分離手段と処理水槽との間が処理水で満たされるようになり、サイフォンの原理によって膜分離手段による継続的なろ過作用が維持されるようになる。なお、第一処理水経路を満たすための処理水は、処理水槽に貯留された処理水であってもよく、膜分離手段でろ過された処理水と処理水槽に貯留された処理水の両方であってもよい。   The discharged water filled in the air vent tank is discharged from the second treated water path to the third treated water path using the pump means, thereby leading the first treated water path communicating with the second treated water path to negative pressure. . The water to be treated in the membrane separation tank is sucked through the membrane separation means due to the negative pressure generated in the first treated water path, the filtration by the membrane separation means proceeds, and the filtered treated water is It flows into one treated water path. As a result, the space between the membrane separation means and the treated water tank is filled with the treated water via the first treated water path, and the continuous filtering action by the membrane separation means is maintained by the siphon principle. . The treated water for satisfying the first treated water path may be treated water stored in the treated water tank, both treated water filtered by the membrane separation means and treated water stored in the treated water tank. There may be.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記エア抜きタンクに大気開放手段を備えている点にある。   As described in the second aspect of the present invention, the second characteristic configuration is that, in addition to the first characteristic configuration described above, the air vent tank is provided with an air release means.

エア抜きタンクに備えた大気開放手段によりエア抜きタンクを大気開放することにより、ろ過に先駆けてエア抜きタンクに接続されている各処理水経路に内部圧力の変動を招くことなく、エア抜きタンクに呼水を充填できるようになる。   By opening the air bleed tank to the air with the air release means provided in the air bleed tank, prior to filtration, the air evacuation tank does not cause fluctuations in internal pressure in each treated water path connected to the air bleed tank. It becomes possible to fill the exhalation water.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記第二処理水経路のうち前記第三処理水経路の接続部と前記処理水槽との間に流路を開閉自在な流量調整手段を備えている点にある。   In addition to the first or second characteristic configuration described above, the third characteristic configuration includes the connection portion of the third treated water path and the second treated water path, as described in claim 3. It is in the point which is equipped with the flow volume adjustment means which can open and close a flow path between treatment water tanks.

流量調整手段によって第三処理水経路の接続部と処理水槽との間の流路を解放することにより、処理水槽からエア抜きタンクに呼水を供給することができ、流量調整手段によって該流路を閉塞することによってエア抜きタンクから第三処理水経路を介して呼水を排出して第三処理水経路の空気を引く抜くことができるようになる。   By releasing the flow path between the connection part of the third treated water path and the treated water tank by the flow rate adjusting means, it is possible to supply exhalation water from the treated water tank to the air vent tank, and As a result of the blockage, expiratory water can be discharged from the air vent tank via the third treated water path and the air in the third treated water path can be drawn out.

同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記第三処理水経路が前記膜分離手段の洗浄液を貯留する洗浄液貯留槽または前記第一処理水経路に接続されている点にある。   In the fourth feature configuration, as described in claim 4, in addition to any of the first to third feature configurations described above, the third treated water path stores the cleaning liquid of the membrane separation means. It exists in the point connected to a washing | cleaning-liquid storage tank or said 1st treated water path | route.

膜分離手段を薬液洗浄する必要がある場合に、第三処理水経路が洗浄液貯留槽に接続されていれば、処理水を希釈水として洗浄液貯留槽に供給でき、また洗浄液貯留槽からエア抜きタンクに希釈された洗浄薬液を導入することができる。また、第三処理水経路が第一処理水経路に接続されていれば、エア抜きタンクに導入された洗浄薬液を、第三処理水経路に備えたポンプ手段を介して第三処理水経路から第一処理水経路を介して膜分離手段に供給することができるようになる。後者の場合には、エア抜きタンクを洗浄液貯留槽として機能させると、他の洗浄液貯留槽を設ける必要がなくなる。   When it is necessary to perform chemical cleaning on the membrane separation means, if the third treatment water path is connected to the cleaning liquid storage tank, the treated water can be supplied as dilution water to the cleaning liquid storage tank, and the air vent tank from the cleaning liquid storage tank A diluted cleaning chemical can be introduced. Further, if the third treated water path is connected to the first treated water path, the cleaning chemical introduced into the air vent tank is removed from the third treated water path via the pump means provided in the third treated water path. It becomes possible to supply the membrane separation means via the first treated water path. In the latter case, if the air vent tank is made to function as a cleaning liquid storage tank, there is no need to provide another cleaning liquid storage tank.

同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記エア抜きタンクの内部空間の容量が前記第一処理水経路の流路空間の容量よりも大きな値に設定されている点にある。   In the fifth feature configuration, as described in claim 5, in addition to any of the first to fourth feature configurations described above, the capacity of the internal space of the air vent tank is the first treated water path. This is because it is set to a value larger than the capacity of the channel space.

エア抜きタンクに充填された呼水を、第三処理水経路を介して排出することによって、第一処理水経路の内部空間に滞留している空気の全量を吸引して排出でき、確実にサイフォン形成することができるようになる。   By discharging the expiratory water filled in the air vent tank through the third treated water path, the entire amount of air staying in the internal space of the first treated water path can be sucked and discharged, and the siphon is reliably Can be formed.

同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記第二処理水経路は前記第一処理水経路からの分岐部に立ち上がり部を備えている点にある。   In the sixth feature configuration, in addition to any one of the first to fifth feature configurations described above, the second treated water path is branched from the first treated water path. This is in that the part has a rising part.

エア抜きタンクに充填された呼水を、第三処理水経路を介して排出すると第一処理水経路が負圧になって膜分離手段のろ過が開始される。この時、膜分離手段から処理水が第一処理水経路に流入する際に、第一処理水経路の内部空間に滞留して迅速なサイフォン形成を阻害する虞がある空気が処理水とともに立ち上がり部に流れ込むため、速やかにサイフォンが形成されるようになる。   When the exhaled water filled in the air vent tank is discharged through the third treated water path, the first treated water path becomes negative pressure and filtration of the membrane separation means is started. At this time, when the treated water flows from the membrane separation means into the first treated water path, the air that may stay in the internal space of the first treated water path and hinder rapid siphon formation rises together with the treated water. As a result, the siphon is quickly formed.

同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記第二処理水経路の流路断面積が第一処理水経路の流路断面積よりも小さく設定されている点にある。   In the seventh feature configuration, as described in claim 7, in addition to any of the first to sixth feature configurations described above, the flow path cross-sectional area of the second treated water path is the first treated water. This is because it is set smaller than the channel cross-sectional area of the path.

第一処理水経路よりも第二処理水経路を流れる流体の流速が上がるため、速やかに空気を引き抜くことができるようになる。   Since the flow velocity of the fluid flowing through the second treated water path is higher than that of the first treated water path, air can be quickly extracted.

本発明による排水処理方法の第一の特徴構成は、同請求項8に記載した通り、上述した第一から第七の何れかの特徴構成を備えた排水処理装置を用いた排水処理方法であって、前記第一処理水経路中に処理水を充満させることによりサイフォンを形成させて前記膜分離手段から処理水を得るろ過運転工程と、前記第一処理水経路中にガスが貯留されることによりサイフォンが形成されていない状態から、前記ポンプ手段を稼働させて前記第一処理水経路中に貯留されたガスを前記エア抜きタンクに導くことにより前記第一処理水経路中に処理水を充満させて前記ろ過運転工程が可能な状態へと復帰させるろ過運転復帰工程と、を備えている点にある。   The first characteristic configuration of the wastewater treatment method according to the present invention is a wastewater treatment method using the wastewater treatment apparatus having any one of the first to seventh characteristic configurations described above. The first treated water path is filled with treated water to form a siphon to obtain treated water from the membrane separation means, and gas is stored in the first treated water path. From the state where the siphon is not formed by the operation, the pump means is operated to guide the gas stored in the first treated water path to the air vent tank, thereby filling the first treated water path with the treated water. And a filtration operation return step for returning to a state where the filtration operation step is possible.

ろ過運転工程では、膜分離層と処理水槽の間の水頭差を利用したサイフォンの原理によって、第一処理水経路を介して膜分離手段を経た処理水が処理水槽に貯留される。また、第一処理水経路に空気が溜まってサイフォンが崩れた場合には、ろ過運転復帰工程によって第一処理水経路の空気が排出されてサイフォンが再形成される。   In the filtration operation step, the treated water that has passed through the membrane separation means is stored in the treated water tank via the first treated water path by the siphon principle using the water head difference between the membrane separation layer and the treated water tank. Moreover, when air accumulates in the 1st treated water path | route and siphon collapses, the air of a 1st treated water path | route is discharged | emitted by a filtration driving | operation return process, and a siphon is re-formed.

同第二の特徴構成は、同請求項9に記載した通り、上述の第一の特徴構成に加えて、前記第一処理水経路の処理水の流れを停止するろ過運転停止工程を備え、ろ過運転工程と前記ろ過運転停止工程を繰返し実行するとともに、前記ろ過運転工程が前記第一処理水経路を介して前記膜分離手段から処理水を定流量で取り出すように構成され、ろ過運転の実行時間を調整することにより被処理水からろ過される処理水の量を調整するように構成されている点にある。   In addition to the first feature configuration described above, the second feature configuration includes a filtration operation stop step for stopping the flow of treated water in the first treated water path, as described in claim 9. An operation process and the filtration operation stop process are repeatedly executed, and the filtration operation process is configured to take out treated water from the membrane separation means at a constant flow rate through the first treated water path, and an execution time of the filtration operation. It is in the point comprised so that the quantity of the treated water filtered from to-be-processed water may be adjusted by adjusting.

膜分離手段に備えたろ過膜の閉塞を回避するべく、処理水を取り出す膜ろ過運転工程と、処理水の取り出しを停止してろ過膜をリラクゼーションするろ過運転停止工程が交互に行なわれる。ところで、膜分離槽に流入する被処理水の流量が変動する場合に、その変動に合わせて第一処理水経路を流れる処理水の流量を変動させると、低流量の時間帯において第一処理水経路の流速が低下し、その影響で処理水に含まれる気泡が処理水槽の内部に滞留し、形成されているサイフォンが崩れる虞がある。そのような場合でも、ろ過運転の実行時間を調整することにより、第一処理水経路の流速を一定以上に保ちつつ膜分離手段から処理水を定流量で取り出すことができ、膜分離槽に流入する被処理水の流量変動に対応しながらも安定したろ過運転が実現できる。   In order to avoid clogging of the filtration membrane provided in the membrane separation means, a membrane filtration operation step for taking out the treated water and a filtration operation stopping step for relaxing the filtration membrane by stopping the removal of the treated water are alternately performed. By the way, when the flow rate of the treated water flowing into the membrane separation tank fluctuates, if the flow rate of the treated water flowing through the first treated water path is varied in accordance with the variation, the first treated water in the low flow time zone. There is a possibility that the flow velocity of the path is lowered, and bubbles contained in the treated water are retained in the treated water tank due to the influence, and the formed siphon is destroyed. Even in such a case, by adjusting the execution time of the filtration operation, the treated water can be taken out at a constant flow rate from the membrane separation means while maintaining the flow rate of the first treated water path at a certain level or more, and flows into the membrane separation tank. Stable filtration operation can be realized while responding to fluctuations in the flow rate of treated water.

以上説明した通り、本発明によれば、耐腐食性の高価な真空タンクや真空ポンプを用いることなくサイフォンの原理を用いた自然排出経路によるろ過水の排出が可能な排水処理装置及び排水処理方法を提供することができるようになった。   As described above, according to the present invention, a wastewater treatment apparatus and a wastewater treatment method capable of discharging filtered water by a natural discharge path using the principle of siphon without using an expensive corrosion-resistant vacuum tank or vacuum pump. Can now be provided.

本発明による排水処理装置の説明図Explanatory drawing of the waste water treatment equipment by the present invention 排水処理装置の要部の説明図Explanatory drawing of the main part of the wastewater treatment equipment 別実施形態を示す排水処理装置の説明図Explanatory drawing of the waste water treatment equipment which shows another embodiment 別実施形態を示す排水処理装置の説明図Explanatory drawing of the waste water treatment equipment which shows another embodiment

以下、本発明による排水処理装置及び排水処理方法の実施形態を説明する。
[排水処理装置の構成]
図1に示すように、排水処理装置100は、被処理水に膜分離手段11が浸漬配置された膜分離槽10と、膜分離手段11によりろ過された処理水を貯留する処理水槽20と、膜分離手段11から処理水槽20に処理水を移送する移送管で構成される第一処理水経路40を備えている。
Hereinafter, embodiments of a wastewater treatment apparatus and a wastewater treatment method according to the present invention will be described.
[Configuration of wastewater treatment equipment]
As shown in FIG. 1, the waste water treatment apparatus 100 includes a membrane separation tank 10 in which the membrane separation means 11 is immersed in the water to be treated, a treatment water tank 20 that stores the treated water filtered by the membrane separation means 11, A first treated water path 40 including a transfer pipe for transferring treated water from the membrane separation means 11 to the treated water tank 20 is provided.

膜分離手段11は、例えば有機濾過膜を備えた膜カートリッジの複数が、膜面が縦姿勢となるようにフレームに支持され、膜カートリッジによってろ過された処理水が集水されるヘッダー管を介して第一処理水経路40に流出するように構成された平膜型の膜分離装置を用いることができる。   For example, the membrane separation means 11 is supported by a frame such that a plurality of membrane cartridges provided with an organic filtration membrane are placed in a vertical posture, and through a header pipe where treated water filtered by the membrane cartridge is collected. Therefore, a flat membrane type membrane separation device configured to flow out into the first treated water path 40 can be used.

膜分離手段11の下方に散気装置12が設置され、ブロワBから供給される空気が流量調整弁V11を介して散気装置12に供給され、被処理水に供給される気泡によって被処理水が膜面に平行な流れとなる上向流が生成され、膜表面に蓄積した汚れ物質が剥離される。   An air diffuser 12 is installed below the membrane separation means 11, and air supplied from the blower B is supplied to the air diffuser 12 via the flow rate adjusting valve V11, and the water to be treated is supplied by bubbles supplied to the water to be treated. As a result, an upward flow is generated in a flow parallel to the film surface, and the dirt accumulated on the film surface is peeled off.

膜分離槽10の液位L10より処理水槽20の液位L20が低位となるように、つまり膜分離槽10に貯留された処理水の液面が膜分離槽の被処理水の液面より低くなるように膜分離槽10及び処理水槽20が設置され、第一処理水経路40の最高位置(最高設置高さ)が膜分離槽10の被処理水の液位L10よりも高くなるように第一処理水経路40が配置されている。   The liquid level L20 of the treated water tank 20 is lower than the liquid level L10 of the membrane separation tank 10, that is, the liquid level of the treated water stored in the membrane separation tank 10 is lower than the liquid level of the water to be treated in the membrane separation tank. The membrane separation tank 10 and the treated water tank 20 are installed so that the highest position (maximum installation height) of the first treated water path 40 is higher than the liquid level L10 of the water to be treated in the membrane separation tank 10. One treated water path 40 is arranged.

膜分離手段11によりろ過された処理水が、膜分離槽10の液位L10と処理水槽20の液位L20との間の水頭差Δhを利用したサイフォンの原理に基づいて、第一処理水経路40を介して処理水槽20に流出するようにサイフォン形成機構が設けられている。   The treated water filtered by the membrane separation means 11 is based on the siphon principle using the water head difference Δh between the liquid level L10 of the membrane separation tank 10 and the liquid level L20 of the treated water tank 20. A siphon forming mechanism is provided so as to flow out into the treated water tank 20 through 40.

即ち、サイフォン形成機構は、第一処理水経路40から分岐して処理水槽20に接続される第二処理水経路50と、第二処理水経路50に設けられたエア抜きタンク30と、エア抜きタンク30と処理水槽20との間で第二処理水経路50から分岐する第三処理水経路60と、第三処理水経路60に設置され第二処理水経路50中の処理水を排出可能なポンプ手段61とを含む。   That is, the siphon forming mechanism includes a second treated water path 50 branched from the first treated water path 40 and connected to the treated water tank 20, an air vent tank 30 provided in the second treated water path 50, and an air vent. The third treated water path 60 that branches from the second treated water path 50 between the tank 30 and the treated water tank 20 and the treated water in the second treated water path 50 that is installed in the third treated water path 60 can be discharged. Pump means 61.

第一処理水経路40には、処理水の流量を調整する一対の流量調整弁V2,V3、サイフォンブレーク弁V1、開閉弁V12、ろ過圧力計S1、ろ過流量計S2などが設けられている。ろ過圧力計S1の値に基づいてろ過膜の閉塞の程度が判断され、必要に応じて逆洗や薬液洗浄が行なわれる。また、ろ過流量計S2の値に基づいて流量調整弁V2の開度が調整される。なお、流量調整弁V2の故障などに対応するために流量調整弁V3が予備的に設けられている。従って、流量調整弁V3は常時は閉止されている。   The first treated water path 40 is provided with a pair of flow rate regulating valves V2, V3 for adjusting the flow rate of treated water, a siphon break valve V1, an on-off valve V12, a filtration pressure gauge S1, a filtration flow meter S2, and the like. Based on the value of the filtration pressure gauge S1, the degree of clogging of the filtration membrane is determined, and backwashing or chemical cleaning is performed as necessary. Moreover, the opening degree of the flow regulating valve V2 is adjusted based on the value of the filtration flow meter S2. A flow rate adjusting valve V3 is provided as a preliminary to cope with a failure of the flow rate adjusting valve V2. Therefore, the flow rate adjustment valve V3 is normally closed.

第二処理水経路50に備えたエア抜きタンク30には大気開放弁V5が設けられ、エア抜きタンク30の上流側に開閉弁V4、下流側に開閉弁V6、さらに第三処理水経路60の分岐部より処理水槽20側に開閉弁V7が設けられている。   The air vent tank 30 provided in the second treated water path 50 is provided with an atmosphere release valve V5. The open / close valve V4 is upstream of the air vent tank 30, the open / close valve V6 is downstream, and the third treated water path 60 is An on-off valve V7 is provided on the treated water tank 20 side from the branch portion.

第三処理水経路60にはポンプ手段61、逆止弁V8、開閉弁V9、V10が設けられ、開放弁V10を閉止した状態で開閉弁V9を開放することにより、第二処理水経路50中の水が系外に排出されるように構成されている。   The third treated water path 60 is provided with a pump means 61, a check valve V8, and open / close valves V9, V10. By opening the open / close valve V9 with the open valve V10 closed, the third treated water path 50 Water is discharged out of the system.

また、開放弁V9を閉止した状態で開閉弁V10を開放することにより、エア抜きタンク30に充填された洗浄用薬液を、第一処理水経路40を介して膜分離手段11に供給する薬液供給路70が設けられている。薬液供給路70については後述する。   Further, by opening the on-off valve V10 with the release valve V9 closed, the chemical supply for supplying the cleaning chemical filled in the air vent tank 30 to the membrane separation means 11 via the first treated water path 40. A path 70 is provided. The chemical solution supply path 70 will be described later.

[排水処理方法の構成]
以下にサイフォンを形成するためのプロセスについて説明する。
処理水槽20に処理水が無い初期には、先ず処理水槽20に起動用水を充填しておく。次に、サイフォンブレーク弁V1、開閉弁V12を閉止するとともにエア抜きタンク30の大気開放弁V5、開閉弁V4、V6,V7を開放して、処理水槽20からエア抜きタンク30に呼水を充填する。エア抜きタンクが大気開放されることにより、ろ過に先駆けてエア抜きタンク30に接続されている各処理水経路40,50の内部圧力の変動を招くことなく、エア抜きタンク30に呼水を充填できるようになる。つまり、大気開放弁V5が本発明の大気開放手段として機能する。
[Configuration of wastewater treatment method]
The process for forming a siphon is described below.
In the initial stage when there is no treated water in the treated water tank 20, first, the treated water tank 20 is filled with activation water. Next, the siphon break valve V1 and the open / close valve V12 are closed, and the atmosphere release valve V5, the open / close valves V4, V6, and V7 of the air vent tank 30 are opened to fill the air vent tank 30 from the treated water tank 20. To do. By opening the air vent tank to the atmosphere, prior to filtration, the air vent tank 30 is filled with exhaled water without causing fluctuations in the internal pressure of the treated water paths 40 and 50 connected to the air vent tank 30. become able to. That is, the atmosphere release valve V5 functions as the atmosphere release means of the present invention.

次に、大気開放弁V5及び開閉弁V7を閉止するとともに、流量調整弁V2を僅かに開くべく寸開して、第三処理水経路60に備えたポンプ手段61を起動する。このとき、開放弁V10は閉止され開閉弁V9が開放されている。ポンプ手段61によりエア抜きタンク30内の呼水が吸引排出されることにより、第一処理水経路40が負圧となり、膜分離手段11による被処理水のろ過が開始される。   Next, the air release valve V5 and the opening / closing valve V7 are closed, and the flow rate adjustment valve V2 is opened slightly to open the pump means 61 provided in the third treated water path 60. At this time, the release valve V10 is closed and the on-off valve V9 is opened. As the expiratory water in the air vent tank 30 is sucked and discharged by the pump means 61, the first treated water path 40 becomes negative pressure, and filtration of the treated water by the membrane separation means 11 is started.

膜分離手段11から第一処理水経路40に流れるろ過水の流れによって、第一処理水経路40の空気が第二処理水経路50及び第三処理水経路60を介して排出される結果、第一処理水経路40が処理水で充満して膜分離手段11と処理水槽20との間でサイフォンが形成され、その後ポンプ手段61を停止するとともに開閉弁V4を閉止し、開閉弁V12を開放することにより、膜ろ過が継続して行われる。   As a result of the flow of filtered water flowing from the membrane separation means 11 to the first treated water path 40, the air in the first treated water path 40 is discharged via the second treated water path 50 and the third treated water path 60. One treated water path 40 is filled with treated water and a siphon is formed between the membrane separation means 11 and the treated water tank 20, and then the pump means 61 is stopped, the on-off valve V4 is closed, and the on-off valve V12 is opened. Therefore, membrane filtration is continuously performed.

図2に示すように、第一処理水経路40から第二処理水経路50への分岐部に立ち上がり部52が形成されている。エア抜きタンク30に充填された呼水を、第三処理水経路60を介して排出すると第一処理水経路40が負圧になって膜分離手段11のろ過が開始される。この時、膜分離手段11から処理水が第一処理水経路40に流入する際に、第一処理水経路40の内部空間に滞留して迅速なサイフォン形成を阻害する虞がある空気が処理水とともに立ち上がり部52に流れ込むため、速やかにサイフォンが形成されるようになる。   As shown in FIG. 2, a rising portion 52 is formed at a branch portion from the first treated water path 40 to the second treated water path 50. When the expelled water filled in the air vent tank 30 is discharged through the third treated water path 60, the first treated water path 40 becomes negative pressure, and the filtration of the membrane separation means 11 is started. At this time, when treated water flows from the membrane separation means 11 into the first treated water path 40, air that may stay in the internal space of the first treated water path 40 and hinder rapid siphon formation is treated water. At the same time, since it flows into the rising portion 52, a siphon is quickly formed.

開閉弁V7は流量調整手段として機能し、開閉弁V7によって第三処理水経路60の接続部と処理水槽20との間の流路を解放することにより、処理水槽20からエア抜きタンク30に呼水を供給することができ、開閉弁V7によって該流路を閉塞することによってエア抜きタンク30から第三処理水経路60を介して呼水を排出して第三処理水経路60の空気を引く抜くことができるようになる。   The on-off valve V7 functions as a flow rate adjusting means, and the on-off valve V7 opens the flow path between the connection portion of the third treated water path 60 and the treated water tank 20, thereby calling the air vent tank 30 from the treated water tank 20. Water can be supplied, and the flow path is closed by the on-off valve V7 to discharge expiratory water from the air vent tank 30 through the third treated water path 60 and draw air in the third treated water path 60. It can be pulled out.

この状態で流量調整弁V2を閉止すると、散気装置12から散気されながら膜ろ過が停止するリラクゼーション状態になり、被処理水の上向流によって膜面が洗浄される。この時、第一処理水経路40内は処理水で満たされた状態が維持されるため、流量調節弁V2を寸開すると膜ろ過が再開される。なお、膜ろ過中にサイフォンブレーク弁V1を開放することにより第一処理水経路40に空気が流入して形成されているサイフォンが破られることによってもリラクゼーション状態になる。   When the flow rate adjustment valve V2 is closed in this state, a relaxation state is reached in which membrane filtration stops while being diffused from the diffuser 12, and the membrane surface is washed by the upward flow of the water to be treated. At this time, since the inside of the first treated water path 40 is maintained filled with treated water, membrane filtration is resumed when the flow rate control valve V2 is opened. In addition, it will be in a relaxation state also when the siphon formed by air flowing into the first treated water path 40 is broken by opening the siphon break valve V1 during membrane filtration.

即ち、排水処理装置100では、第一処理水経路40中に処理水を充満させることによりサイフォンを形成させて膜分離手段11から処理水を得るろ過運転工程と、第一処理水経路40中にガスが貯留されることによりサイフォンが形成されていない状態から、ポンプ手段61を稼働させて第一処理水経路40中に貯留されたガスをエア抜きタンク30に導くことにより第一処理水経路40中に処理水を充満させてろ過運転工程が可能な状態へと復帰させるろ過運転復帰工程と、が実行される。   That is, in the wastewater treatment apparatus 100, a filtration operation step in which treated water is filled in the first treated water path 40 to form treated siphon to obtain treated water from the membrane separation means 11, and in the first treated water path 40. From the state in which the siphon is not formed by storing the gas, the pump means 61 is operated to guide the gas stored in the first treated water path 40 to the air vent tank 30, thereby causing the first treated water path 40. A filtration operation return step is performed in which the treated water is filled to return to a state where the filtration operation step is possible.

また、第一処理水経路40の処理水の流れを停止するろ過運転停止工程を備え、ろ過運転工程とろ過運転停止工程を繰返し実行するとともに、ろ過運転工程が第一処理水経路40を介して膜分離手段11から処理水を定流量で取り出すように構成され、ろ過運転の実行時間を調整することにより被処理水からろ過される処理水の量を調整するように構成されている。   In addition, a filtration operation stop process for stopping the flow of treated water in the first treated water path 40 is provided, the filtration operation process and the filtration operation stop process are repeatedly executed, and the filtration operation process is performed via the first treated water path 40. The configuration is such that the treated water is taken out from the membrane separation means 11 at a constant flow rate, and the amount of treated water that is filtered from the treated water is adjusted by adjusting the execution time of the filtration operation.

膜分離槽10に流入する被処理水の流量が一定である場合には、膜分離手段11に備えたろ過膜の閉塞を回避するべく、処理水を取り出す膜ろ過運転工程と、処理水の取り出しを停止してろ過膜をリラクゼーションするろ過運転停止工程が所定時間間隔で交互に行なわれる。例えば、9分間の膜ろ過運転工程と1分間のろ過運転停止工程が10分を単位に繰返し行なわれる。   When the flow rate of the water to be treated flowing into the membrane separation tank 10 is constant, the membrane filtration operation step for taking out the treated water and the removal of the treated water in order to avoid clogging of the filtration membrane provided in the membrane separation means 11 The filtration operation stop process of stopping the process and relaxing the filter membrane is alternately performed at predetermined time intervals. For example, a membrane filtration operation process for 9 minutes and a filtration operation stop process for 1 minute are repeatedly performed in units of 10 minutes.

しかし、膜分離槽10に流入する被処理水の流量が変動する場合に、その変動に合わせて第一処理水経路40を流れる処理水の流量を変動させると、流量が少ない場合に処理水に含まれる気泡の影響で第一処理水経路40の下流側でエアロック現象が発現してサイフォンが崩れる虞がある。そのため、膜分離槽10に流入する被処理水の流量が変動に関わらず、ろ過時の瞬時流速を一定速度(本実施形態では0.8m/秒以上に保持するように運転される。   However, when the flow rate of the water to be treated flowing into the membrane separation tank 10 varies, if the flow rate of the treated water flowing through the first treated water path 40 is varied in accordance with the variation, There is a possibility that the siphon may collapse due to the occurrence of an airlock phenomenon on the downstream side of the first treated water path 40 due to the influence of contained bubbles. Therefore, the flow rate of the water to be treated flowing into the membrane separation tank 10 is operated so as to maintain the instantaneous flow rate during filtration at a constant speed (in this embodiment, 0.8 m / second or more).

しかし、そのような場合でも、ろ過運転の実行時間を調整することにより、膜分離手段11から処理水を定流量で取り出すことができ、膜分離槽10に流入する被処理水の流量変動に対応しながらも安定したろ過運転が実現できる。   However, even in such a case, by adjusting the execution time of the filtration operation, the treated water can be taken out from the membrane separation means 11 at a constant flow rate, and it corresponds to the flow rate fluctuation of the treated water flowing into the membrane separation tank 10. However, stable filtration operation can be realized.

具体的に、膜分離槽10に流入する被処理水の流量が少ない場合には、ろ過運転停止工程の時間を長く設定し、膜分離槽10に流入する被処理水の流量が多い場合には、ろ過運転停止工程の時間を短く設定することにより、膜分離槽10に流入する被処理水の流量の変動に関わらず、第一処理水経路40を流れる処理水の瞬時流量を一定に維持することができる。   Specifically, when the flow rate of the water to be treated flowing into the membrane separation tank 10 is small, the time for the filtration operation stop process is set long, and when the flow rate of the water to be treated flowing into the membrane separation tank 10 is large By setting the time of the filtration operation stop process short, the instantaneous flow rate of the treated water flowing through the first treated water path 40 is kept constant regardless of the fluctuation of the flow rate of the treated water flowing into the membrane separation tank 10. be able to.

上述したエア抜きタンク30の内部空間の容量は、第一処理水経路40の流路空間の容量よりも大きな値に設定されている必要があり、このように設定されることによって、第一処理水経路40の内部空間に滞留している空気を全量吸引して確実にサイフォン形成することができるようになる。   The capacity of the internal space of the air bleed tank 30 described above needs to be set to a value larger than the capacity of the flow path space of the first treated water path 40, and the first process is performed by setting in this way. The entire amount of air staying in the internal space of the water path 40 is sucked to ensure siphon formation.

また、第二処理水経路50の流路断面積は、第一処理水経路40の流路断面積よりも小さく設定されていることが好ましく、このように設定されることによって、第一処理水経路40よりも第二処理水経路50を流れる流体の流速が上がるため、速やかに空気を引き抜くことができるようになる。   Moreover, it is preferable that the flow path cross-sectional area of the 2nd treated water path | route 50 is set smaller than the flow path cross-sectional area of the 1st treated water path | route 40, and by setting in this way, 1st treated water Since the flow velocity of the fluid flowing through the second treated water path 50 is higher than that of the path 40, air can be quickly extracted.

[膜洗浄の方法]
次に膜分離手段11の洗浄について説明図する。
ろ過圧力計S1の値が予め設定された圧力よりも大きくなると、水頭差Δhでは膜分離手段11により適切にろ過できなくなる。排水処理装置100は、そのような場合に備えて第一処理水経路40から膜分離手段11内部へ向けて洗浄薬液を注入することにより、膜を薬液洗浄する薬液洗浄工程を実施することができるように構成されている。洗浄薬液として例えば次亜塩素酸ナトリウムの希釈薬液を用いることができる。
[Method of membrane cleaning]
Next, the cleaning of the membrane separation means 11 will be described.
When the value of the filtration pressure gauge S1 becomes larger than a preset pressure, the membrane separation means 11 cannot properly filter the water head difference Δh. In preparation for such a case, the waste water treatment apparatus 100 can perform a chemical cleaning step of cleaning the membrane by injecting a cleaning chemical from the first treated water path 40 toward the inside of the membrane separation means 11. It is configured as follows. For example, a dilute solution of sodium hypochlorite can be used as the cleaning solution.

薬液洗浄工程では、先ずサイフォンブレーク弁V1を開放してろ過運転工程からろ過運転停止工程に移行する。流量調整弁V2、開閉弁V4,V6,V7,V9,V12を閉止した状態でエア抜きタンク30に薬液を充填し、その後大気開放弁V5、開閉弁V6,V7を開放すると、処理水槽20の処理水がエア抜きタンク30に流入して薬液が希釈される。   In the chemical cleaning process, first, the siphon break valve V1 is opened, and the process proceeds from the filtration operation process to the filtration operation stop process. When the flow control valve V2, the on-off valves V4, V6, V7, V9, and V12 are closed, the air vent tank 30 is filled with a chemical solution, and then the atmosphere release valve V5 and the on-off valves V6 and V7 are opened. The treated water flows into the air vent tank 30 and the chemical solution is diluted.

所定濃度に希釈されると、開閉弁V7、サイフォンブレーク弁V1を閉止するとともに開閉弁V10を開放して、ポンプ手段61を起動する。エア抜きタンク30から洗浄薬液が第二処理水経路50、第三処理水経路60、薬液供給路70を介して第一処理水経路40に流入し、さらに膜分離手段11に供給されて膜が洗浄される。つまり、エア抜きタンク30が洗浄薬液貯留槽として機能する。   When diluted to a predetermined concentration, the on-off valve V7 and the siphon break valve V1 are closed and the on-off valve V10 is opened to start the pump means 61. The cleaning chemical liquid flows from the air vent tank 30 into the first treated water path 40 via the second treated water path 50, the third treated water path 60, and the chemical liquid supply path 70, and is further supplied to the membrane separation means 11 to form the membrane. Washed. That is, the air vent tank 30 functions as a cleaning chemical solution storage tank.

洗浄が終了すると、大気開放弁V5及び開閉弁V10を閉止するとともに、開閉弁V4,V9流量調整弁V2を開いてポンプ手段61を起動することにより、洗浄廃液が第三処理水経路60を介して排出される。その後、ろ過運転復帰工程が実行されることにより、ろ過運転工程に移行する。   When the cleaning is completed, the air release valve V5 and the on-off valve V10 are closed, and the on-off valves V4 and V9 flow rate adjusting valve V2 are opened to start the pump means 61, so that the cleaning waste liquid passes through the third treated water path 60. Discharged. Then, it transfers to a filtration operation process by performing a filtration operation return process.

第三処理水経路60を介して排出された洗浄廃液は、膜分離槽10の上流側の生物処理槽に返送される。   The cleaning waste liquid discharged through the third treated water path 60 is returned to the biological treatment tank on the upstream side of the membrane separation tank 10.

ポンプ手段61として耐食性を有するマグネットポンプを好適に用いることができ、経年使用しても洗浄薬液に含まれる塩素成分による軸受などの劣化による水漏れを回避することができるようになる。   A magnetic pump having corrosion resistance can be suitably used as the pump means 61, and water leakage due to deterioration of the bearing or the like due to chlorine components contained in the cleaning chemical solution can be avoided even when used over time.

[膜洗浄のための排水処理装置の他の構成]
図3に示すように、第三処理水経路60が開閉弁V13を介して薬液タンク80に接続されていてもよい。
[Other configurations of wastewater treatment equipment for membrane cleaning]
As shown in FIG. 3, the third treated water path 60 may be connected to the chemical tank 80 via the on-off valve V13.

処理水槽20に貯留された処理水がポンプ手段61によって第三処理水経路60を介して薬液タンク80に供給されて所定濃度に希釈された後に希釈薬液が薬液供給路70を介して第一処理水経路40に流入し、さらに膜分離手段11に供給されて膜が洗浄されるように構成してもよい。   The treated water stored in the treated water tank 20 is supplied to the chemical liquid tank 80 via the third treated water path 60 by the pump means 61 and diluted to a predetermined concentration, and then the diluted chemical liquid is first treated via the chemical liquid supply path 70. You may comprise so that it may flow into the water path 40 and may be supplied to the membrane separation means 11, and a membrane | film | coat may be wash | cleaned.

即ち、第三処理水経路60が膜分離手段11の洗浄液を貯留する洗浄液貯留槽80または第一処理水経路40に接続されている。   That is, the third treated water path 60 is connected to the cleaning liquid storage tank 80 or the first treated water path 40 that stores the cleaning liquid of the membrane separation means 11.

上述した実施形態では、第一処理水経路40を介して膜分離手段11から処理水槽20に処理水が送られる一系統の水処理系統に一つのエア抜きタンク30を備えた排水処理装置100を説明したが、複数の水処理系統を備え、各水処理系統が一つのエア抜きタンク30で処理されるように構成してもよい。   In the embodiment described above, the wastewater treatment apparatus 100 including one air vent tank 30 in one water treatment system in which treated water is sent from the membrane separation means 11 to the treated water tank 20 via the first treated water path 40. Although described, a plurality of water treatment systems may be provided so that each water treatment system is processed by one air vent tank 30.

第二処理水経路50、エア抜きタンク30、第三処理水経路60を兼用し、各系統に対して時間を異ならせてろ過運転復帰工程を実行するように構成すればよい。   What is necessary is just to comprise so that the 2nd treated water path | route 50, the air bleeding tank 30, and the 3rd treated water path | route 60 may be combined, and time may be varied with respect to each system | strain, and a filtration driving | operation return process may be performed.

上述した実施形態では、サイフォンを形成するためのプロセスにおいて、各系統の第一処理水経路40を処理水で満たすために流量調整弁V2を操作しているが、開閉弁V12を操作してもよく、流量調整弁V2と開閉弁V12の両方を操作してもよい。即ち、各系統の第一処理水経路40を満たすための処理水は、各処理水槽20に貯留された処理水であってもよく、各膜分離手段11でろ過された処理水と各処理水槽20に貯留された処理水の両方であってもよい。   In the above-described embodiment, in the process for forming the siphon, the flow rate adjustment valve V2 is operated to fill the first treated water path 40 of each system with treated water, but even if the on-off valve V12 is operated. Alternatively, both the flow rate adjustment valve V2 and the on-off valve V12 may be operated. That is, the treated water for satisfying the first treated water path 40 of each system may be treated water stored in each treated water tank 20, and treated water filtered by each membrane separation means 11 and each treated water tank. Both of the treated water stored in 20 may be used.

[排水処理装置の自動運転のための構成]
図4に示すように、エア抜きタンク30に液位センサS3を設けて、各センサS1,S2,S3の検出値が入力され、その値に基づいて各弁の開閉や開度を調整するとともにポンプ手段の起動停止を制御する制御装置を備えることにより、上述したろ過運転復帰工程、ろ過運転工程、ろ過運転停止工程などが自動で行なわれるように構成してもよい。
[Configuration for automatic operation of wastewater treatment equipment]
As shown in FIG. 4, a liquid level sensor S3 is provided in the bleed tank 30, and the detection values of the sensors S1, S2, S3 are input, and the opening / closing and opening of each valve are adjusted based on the detected values. By providing a control device that controls the start and stop of the pump means, the above-described filtration operation return step, filtration operation step, filtration operation stop step, and the like may be automatically performed.

制御装置は、ろ過運転復帰工程を実行する際に液位センサS3に従って呼水の充填量を調整し、薬液洗浄工程を実施する際に液位センサS3に従って洗浄薬液の充填量を調整する。   The control device adjusts the filling amount of expiratory water according to the liquid level sensor S3 when executing the filtration operation return step, and adjusts the filling amount of the cleaning chemical according to the liquid level sensor S3 when performing the chemical solution cleaning step.

図4中、符号Mが付された弁はモータ駆動の自動弁であり制御装置によりリモート制御される。また、ポンプ手段及び逆止弁は故障に備えて冗長設置されていることが好ましい。   In FIG. 4, a valve denoted by a symbol M is a motor-driven automatic valve and is remotely controlled by a control device. Moreover, it is preferable that the pump means and the check valve are redundantly installed in preparation for failure.

上述した膜分離手段11に備えたろ過膜として、限外ろ過膜、精密ろ過膜などが用いられる。膜の形態として平膜以外に中空糸膜などを用いることも可能である。   As the filtration membrane provided in the membrane separation means 11 described above, an ultrafiltration membrane, a microfiltration membrane or the like is used. In addition to a flat membrane, a hollow fiber membrane or the like can be used as the membrane form.

上述した実施形態は、何れも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることは言うまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

100:排水処理装置
10:膜分離槽
11:膜分離手段
12:散気装置
20:処理水槽
30:エア抜きタンク
40:第一処理水経路
50:第二処理水経路
60:第三処理水経路
61:ポンプ手段
70:薬液供給路
80:薬液タンク
V1:サイフォンブレーク弁
V2,V3:流量調整弁
V4,V6,V7:開閉弁
V5:大気開放弁
100: Waste water treatment device 10: Membrane separation tank 11: Membrane separation means 12: Aeration device 20: Treated water tank 30: Air vent tank 40: First treated water path 50: Second treated water path 60: Third treated water path 61: Pump means 70: Chemical solution supply path 80: Chemical solution tank V1: Siphon break valves V2, V3: Flow rate adjusting valves V4, V6, V7: On-off valve V5: Atmospheric release valve

Claims (9)

膜分離手段を備えた排水処理装置であって、
前記膜分離手段が被処理水中に浸漬配置された膜分離槽と、
前記膜分離手段でろ過された処理水が貯留され、貯留された処理水の液面が前記膜分離槽の被処理水の液面より低くなるように配置された処理水槽と、
最高位置が前記膜分離槽の被処理水の液面よりも高くなるように配置され、前記膜分離手段と前記処理水槽とを接続する第一処理水経路と、
前記第一処理水経路から分岐して、内部空間の最下部が前記処理水槽の処理水の液面よりも低い位置となるように配置されたエア抜きタンクを介して前記処理水槽に接続される第二処理水経路と、
前記エア抜きタンクと前記処理水槽との間で前記第二処理水経路から分岐して、前記第二処理水経路中の処理水を排出可能なポンプ手段が接続された第三処理水経路と、
を備えている排水処理装置。
A wastewater treatment apparatus equipped with membrane separation means,
A membrane separation tank in which the membrane separation means is immersed in the water to be treated;
The treated water filtered by the membrane separation means is stored, and the treated water tank disposed so that the stored treated water level is lower than the treated water level of the membrane separation tank,
A first treated water path that is disposed such that the highest position is higher than the level of the water to be treated in the membrane separation tank, and connects the membrane separation means and the treated water tank;
It branches from said 1st treated water path | route, and is connected to the said treated water tank through the air vent tank arrange | positioned so that the lowest part of internal space may become a position lower than the liquid level of the treated water of the said treated water tank A second treated water path;
A third treated water path that is branched from the second treated water path between the air vent tank and the treated water tank and connected to pump means capable of discharging treated water in the second treated water path;
Wastewater treatment equipment equipped with.
前記エア抜きタンクに大気開放手段を備えている請求項1記載の排水処理装置。   The wastewater treatment apparatus according to claim 1, wherein the air vent tank is provided with an air release means. 前記第二処理水経路のうち前記第三処理水経路の接続部と前記処理水槽との間に流路を開閉自在な流量調整手段を備えている請求項1または2記載の排水処理装置。   The wastewater treatment apparatus according to claim 1 or 2, further comprising a flow rate adjusting means capable of opening and closing a flow path between a connection portion of the third treated water path and the treated water tank in the second treated water path. 前記第三処理水経路が前記膜分離手段の洗浄液を貯留する洗浄液貯留槽または前記第一処理水経路に接続されている請求項1から3の何れかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 3, wherein the third treated water path is connected to a cleaning liquid storage tank that stores the cleaning liquid of the membrane separation unit or the first treated water path. 前記エア抜きタンクの内部空間の容量が前記第一処理水経路の流路空間の容量よりも大きな値に設定されている請求項1から4の何れかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 4, wherein a capacity of an internal space of the air vent tank is set to a value larger than a capacity of a flow path space of the first treated water path. 前記第二処理水経路は前記第一処理水経路からの分岐部に立ち上がり部を備えている請求項1から5の何れかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 5, wherein the second treated water path includes a rising portion at a branch portion from the first treated water path. 前記第二処理水経路の流路断面積が第一処理水経路の流路断面積よりも小さく設定されている請求項1から6の何れかに記載の排水処理装置。   The wastewater treatment apparatus according to any one of claims 1 to 6, wherein a flow path cross-sectional area of the second treated water path is set smaller than a flow path cross-sectional area of the first treated water path. 請求項1から7の何れかに記載の排水処理装置を用いた排水処理方法であって、
前記第一処理水経路中に処理水を充満させることによりサイフォンを形成させて前記膜分離手段から処理水を得るろ過運転工程と、
前記第一処理水経路中にガスが貯留されることによりサイフォンが形成されていない状態から、前記ポンプ手段を稼働させて前記第一処理水経路中に貯留されたガスを前記エア抜きタンクに導くことにより前記第一処理水経路中に処理水を充満させて前記ろ過運転工程が可能な状態へと復帰させるろ過運転復帰工程と、
を備えている排水処理方法。
A wastewater treatment method using the wastewater treatment apparatus according to any one of claims 1 to 7,
Filtration operation step of obtaining treated water from the membrane separation means by forming siphon by filling the first treated water path with treated water;
The gas stored in the first treated water path leads the gas stored in the first treated water path to the air vent tank by operating the pump means from a state where no siphon is formed. Filtration operation return step of returning the state where the filtration operation step is possible by filling the first treated water path with the treated water,
Effluent treatment method.
前記第一処理水経路の処理水の流れを停止するろ過運転停止工程を備え、ろ過運転工程と前記ろ過運転停止工程を繰返し実行するとともに、前記ろ過運転工程が前記第一処理水経路を介して前記膜分離手段から処理水を定流量で取り出すように構成され、
ろ過運転の実行時間を調整することにより被処理水からろ過される処理水の量を調整するように構成されている請求項8記載の排水処理方法。
A filtration operation stop process for stopping the flow of treated water in the first treated water path is provided, the filtration operation process and the filtration operation stop process are repeatedly performed, and the filtration operation process is performed via the first treated water path. Configured to extract treated water from the membrane separation means at a constant flow rate,
The wastewater treatment method according to claim 8, wherein the amount of treated water filtered from the treated water is adjusted by adjusting an execution time of the filtration operation.
JP2018053980A 2018-03-22 2018-03-22 Wastewater treatment equipment and wastewater treatment method Active JP7073154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018053980A JP7073154B2 (en) 2018-03-22 2018-03-22 Wastewater treatment equipment and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053980A JP7073154B2 (en) 2018-03-22 2018-03-22 Wastewater treatment equipment and wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2019166424A true JP2019166424A (en) 2019-10-03
JP7073154B2 JP7073154B2 (en) 2022-05-23

Family

ID=68107815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053980A Active JP7073154B2 (en) 2018-03-22 2018-03-22 Wastewater treatment equipment and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP7073154B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286457A1 (en) * 2021-07-12 2023-01-19 株式会社クボタ Wastewater treatment method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238273A (en) * 1993-02-17 1994-08-30 Mitsubishi Rayon Eng Co Ltd Membrane separation-type water purification
JPH0839061A (en) * 1994-08-01 1996-02-13 Kurita Water Ind Ltd Immersion type membrane separator
JPH10118684A (en) * 1996-10-17 1998-05-12 Tokyu Constr Co Ltd Immersion type membrane separation and activated sludge apparatus
JPH11207332A (en) * 1998-01-28 1999-08-03 Maezawa Ind Inc Immersion type membrane filtering device of siphon suction system
JP2000279960A (en) * 1999-03-31 2000-10-10 Yuasa Corp Immersion type membrane separation device and operation method thereof
JP2001347143A (en) * 2000-06-06 2001-12-18 Mitsubishi Rayon Co Ltd Water treating device and operation method thereof
JP2003053159A (en) * 2001-08-20 2003-02-25 Japan Organo Co Ltd Membrane filtration system and method of operating the same
JP2003251346A (en) * 2002-03-06 2003-09-09 Ebara Corp Water treatment device by membrane filtration and operation method therefor
JP2005211847A (en) * 2004-01-30 2005-08-11 Tsukishima Kikai Co Ltd Filtering device
CA2765285A1 (en) * 2012-01-25 2013-07-25 Calco Environmental Group Ltd. Siphon actuated filtration process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238273A (en) * 1993-02-17 1994-08-30 Mitsubishi Rayon Eng Co Ltd Membrane separation-type water purification
JPH0839061A (en) * 1994-08-01 1996-02-13 Kurita Water Ind Ltd Immersion type membrane separator
JPH10118684A (en) * 1996-10-17 1998-05-12 Tokyu Constr Co Ltd Immersion type membrane separation and activated sludge apparatus
JPH11207332A (en) * 1998-01-28 1999-08-03 Maezawa Ind Inc Immersion type membrane filtering device of siphon suction system
JP2000279960A (en) * 1999-03-31 2000-10-10 Yuasa Corp Immersion type membrane separation device and operation method thereof
JP2001347143A (en) * 2000-06-06 2001-12-18 Mitsubishi Rayon Co Ltd Water treating device and operation method thereof
JP2003053159A (en) * 2001-08-20 2003-02-25 Japan Organo Co Ltd Membrane filtration system and method of operating the same
JP2003251346A (en) * 2002-03-06 2003-09-09 Ebara Corp Water treatment device by membrane filtration and operation method therefor
JP2005211847A (en) * 2004-01-30 2005-08-11 Tsukishima Kikai Co Ltd Filtering device
CA2765285A1 (en) * 2012-01-25 2013-07-25 Calco Environmental Group Ltd. Siphon actuated filtration process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286457A1 (en) * 2021-07-12 2023-01-19 株式会社クボタ Wastewater treatment method

Also Published As

Publication number Publication date
JP7073154B2 (en) 2022-05-23

Similar Documents

Publication Publication Date Title
JP6003646B2 (en) Membrane module cleaning method
JP3446399B2 (en) Immersion type membrane separation device and membrane separation method using the same
KR20100028116A (en) Cleaning method for simple filtration systems
JP2010501340A (en) Low pressure backwash
US11452971B2 (en) Method for operating membrane separation device with halt process
WO2011024726A1 (en) Method for cleaning immersion membrane apparatus and immersion membrane apparatus
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JPWO2020255201A1 (en) Filtration membrane cleaning equipment, filtration membrane cleaning methods, and water treatment systems
JP2018023965A (en) Cleaning method for external pressure type filtration module and filtration device
JP2019166424A (en) Wastewater treatment device and wastewater treatment method
JP5147267B2 (en) Cleaning method for membrane filtration system
JPH11207332A (en) Immersion type membrane filtering device of siphon suction system
JP5280204B2 (en) Operation method of water purification equipment
JP2014172014A (en) Membrane separation device and membrane separation method
JP5025672B2 (en) Membrane separator
JP2015231591A (en) Remote supervisory control system
JP7075751B2 (en) How to clean the filtration membrane
JP2015199024A (en) Chemical solution cleaning method, water treatment system and membrane filtration apparatus
JP2000210660A (en) Immersion type membrane filter, and production of clarified water
JP2002126468A (en) Method of cleaning membrane module and membrane filter apparatus
JP2016137469A (en) Method and device for cleaning air diffusion pipe, and activated sludge treatment method and activated sludge treatment system
CN212369691U (en) Improved direct filtration system
JP7213711B2 (en) Water treatment device and water treatment method
JP6137945B2 (en) Used silicon coolant processing apparatus and used silicon coolant processing method
CN113993611B (en) Water treatment device and water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220511

R150 Certificate of patent or registration of utility model

Ref document number: 7073154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150