JP2000210660A - Immersion type membrane filter, and production of clarified water - Google Patents
Immersion type membrane filter, and production of clarified waterInfo
- Publication number
- JP2000210660A JP2000210660A JP11012163A JP1216399A JP2000210660A JP 2000210660 A JP2000210660 A JP 2000210660A JP 11012163 A JP11012163 A JP 11012163A JP 1216399 A JP1216399 A JP 1216399A JP 2000210660 A JP2000210660 A JP 2000210660A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- clarified water
- water
- treated
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、膜濾過装置および
清澄水の製造方法に関するものであり、詳しくは、濾過
膜を被処理水に浸漬して、被処理液の水頭圧力差を透過
の駆動力として清澄水を取り出す浸漬式膜濾過装置およ
び清澄水の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane filtration apparatus and a method for producing clarified water, and more particularly, to immersing a filtration membrane in water to be treated to drive the head pressure difference of the liquid to be treated. The present invention relates to a submerged membrane filtration device for taking out clear water as a force and a method for producing clear water.
【0002】[0002]
【従来の技術】従来、浄水処理、排水処理は、砂濾過
法、凝集沈殿法、塩素添加などを主要プロセスとしてシ
ステムが構築され、処理が行われてきた。しかし、砂濾
過法や凝集沈殿法では、広大な設備面積を必要とした
り、原水状況によっては、厳密な運転管理を行わないと
十分な分離が行えないなどの問題がクローズアップされ
てきており、その欠点を解消することができる技術とし
て、膜分離法の適用が推進されてきている。膜分離法
は、従来の砂濾過法よりも高速な濾過処理ができるとと
もに設備容積も小さく、かつ凝集沈殿法などの他プロセ
スと複合処理が可能である、精密な濾過が可能であるた
め、塩素などによる殺菌処理を省略もしくは軽減するこ
とができるなどのメリットを有している。2. Description of the Related Art Conventionally, systems for water purification and wastewater treatment have been constructed and processed by using sand filtration, coagulation sedimentation, and chlorine addition as main processes. However, the sand filtration method and the coagulation sedimentation method require a large equipment area, and depending on the raw water conditions, problems such as insufficient separation cannot be achieved unless strict operation management is performed, As a technique capable of solving the disadvantage, application of a membrane separation method has been promoted. The membrane separation method can perform filtration at a higher speed than the conventional sand filtration method, has a small equipment volume, and can be combined with other processes such as the coagulation sedimentation method. There is an advantage that the sterilization treatment by such a method can be omitted or reduced.
【0003】これらの浄水、排水処理において膜分離法
を適用する場合、これまで主に展開されてきた工業用水
製造などで行われていた被処理水をポンプなどで加圧し
て膜分離処理を行う「加圧式」では高圧で処理できるた
めに、濾過速度を幅広く設定できるメリットがある反
面、装置の耐圧性が必要になるなどコストや運転管理の
面から問題があった。そこで、膜エレメントと膜エレメ
ントケースからなる膜分離モジュールを被処理水に浸漬
する「浸漬式」が幅広く採用されている。When the membrane separation method is applied to these water purification and wastewater treatments, the water to be treated, which has been mainly used in industrial water production and the like, is pressurized by a pump or the like to perform the membrane separation treatment. The "pressurized type" has the advantage of being able to set the filtration speed widely because it can be processed at a high pressure, but has a problem in terms of cost and operation management, such as the need for pressure resistance of the apparatus. Therefore, a "immersion type" in which a membrane separation module including a membrane element and a membrane element case is immersed in water to be treated is widely used.
【0004】浸漬式膜分離膜モジュールは、被処理水側
の膜表面に被処理水中の汚れ物質が蓄積するため、被処
理水に膜面流速を付与することによって、膜面に蓄積す
る汚れを剥離させる方法を採るのが一般的である。被処
理水が活性汚泥水の場合、被処理水槽で曝気を行うた
め、この散気で得られる気液混相流を膜面に導入するこ
とによって効率的に膜面への汚れの蓄積を軽減させるこ
とができる。そのため、排水処理用浸漬式膜分離モジュ
ールでは、特開昭60−150885号公報、特公平4
−70958号公報などに見られるように活性汚泥処理
との併用における適用が活発である。また、膜を回転さ
せたり、膜面にポンプや撹拌子で流れを生じさせるとい
った手段によって膜面に流速を付与する方法も採ること
ができる。また、膜エレメントとしても、布状の平膜
型、管状膜型、ストロー状の中空糸膜型など多岐にわた
って展開されている。The immersion type membrane separation membrane module accumulates dirt substances in the water to be treated on the surface of the membrane on the side of the water to be treated. In general, a method of peeling is used. When the water to be treated is activated sludge water, aeration is performed in the water tank to be treated. Therefore, the gas-liquid multiphase flow obtained by this aeration is introduced to the membrane surface to efficiently reduce the accumulation of dirt on the membrane surface. be able to. Therefore, in the immersion type membrane separation module for wastewater treatment, Japanese Patent Application Laid-Open No. S60-150885,
As seen in, for example, -70958, application in combination with activated sludge treatment is active. Further, a method of applying a flow rate to the film surface by means such as rotating the film or generating a flow on the film surface with a pump or a stirrer can be employed. In addition, as a membrane element, a wide variety of fabric elements such as a cloth-like flat membrane type, a tubular membrane type, and a straw-like hollow fiber membrane type have been developed.
【0005】ところで、浸漬式膜分離モジュールにおい
て清澄水(透過水)を取り出すための膜間圧力差、すな
わち分離駆動力を付与する方法としては、基本的に3種
類が存在する。1つは、特公平4−70958号公報に
例示されるように膜の透過側を吸引ポンプによって減圧
する方法である。もう一つは、特公平8−22370号
公報に例示されるように膜の透過側の配管を膜モジュー
ルよりも低くすることによって透過側を負圧状態にし、
吸引ポンプと同じ作用を得るものである。また、3番目
の方法としては、特開平7−299490号公報に例示
されるように被処理水に対して、膜モジュールを深くま
で浸漬することによって、水位差(水頭圧差)を生じさ
せ、実質的に被処理水側を加圧状態にするものである。
これらの方法は、基本的には、排他的なものではなく、
併用させることも基本的には問題ない。[0005] There are basically three types of methods for imparting a transmembrane pressure difference for extracting clarified water (permeated water), that is, a separation driving force in an immersion type membrane separation module. One is a method of depressurizing the permeate side of the membrane with a suction pump as exemplified in Japanese Patent Publication No. 4-70958. The other is to make the permeate side a negative pressure state by lowering the pipe on the permeate side of the membrane as compared to the membrane module as exemplified in Japanese Patent Publication No. Hei.
The same operation as that of the suction pump is obtained. As a third method, as exemplified in Japanese Patent Application Laid-Open No. 7-299490, a water level difference (water head pressure difference) is generated by immersing a membrane module in water to be treated deep. The water to be treated is placed in a pressurized state.
These methods are basically not exclusive,
There is basically no problem with using them together.
【0006】[0006]
【発明が解決しようとする課題】ここで、1番目の方法
は、吸引圧力を調節・制御することによって必要な処理
量を安定して得ることができるというメリットを有して
いるが、ポンプ動力を必要とするため、ランニングコス
ト上の問題がある。2番目、3番目の方法は、ポンプ動
力を必要としないという点から、経済的なメリットを有
するが、基本的に圧力が一定となり、一定の処理量を得
ることは困難であるといった特徴を有している。Here, the first method has an advantage that a required processing amount can be stably obtained by adjusting and controlling the suction pressure. Requires a running cost. The second and third methods have an economical advantage in that they do not require pump power, but have the characteristic that the pressure is basically constant and it is difficult to obtain a constant throughput. are doing.
【0007】さらに、本発明者らは、浸漬式膜濾過モジ
ュールの開発検討を行う過程で、次のような知見を得
た。1番目、および2番目の方法、すなわち、透過側を
吸引して減圧状態にした場合、減圧状態にしなかった場
合に比べて、被処理液中に溶存している空気が溶けきれ
なくなり、膜の透過側で気泡が発生することが判明し
た。この気泡は透過側に滞留しやすく、気泡が滞留した
部分では清澄水(透過水)の流れが阻害されるため、有
効膜面積が減少したり、清澄水(透過水)流動抵抗が増
大し、濾過性能を低下させることになる。Further, the present inventors have obtained the following findings in the course of developing and studying a submerged membrane filtration module. In the first and second methods, that is, when the permeate side is suctioned to reduce the pressure, the air dissolved in the liquid to be treated cannot be completely dissolved as compared with the case where the pressure is not reduced. It was found that bubbles were generated on the permeation side. These bubbles are likely to stay on the permeation side, and the flow of the clarified water (permeated water) is hindered in the portion where the bubbles are stagnated, so that the effective membrane area is reduced and the flow resistance of the clarified water (permeated water) is increased, This will reduce the filtration performance.
【0008】この場合、1番目の方法では、定流量を得
るために、吸引ポンプの出力がアップし、定流量を確保
しようとする。この結果、膜の透過流束が局所的に増加
し、膜が汚損することになる。また、吸引圧力が大きく
なりすぎると、膜の細孔内へ汚れが引き込まれ、物理洗
浄や薬液洗浄による回復性も低下する。さらに、本発明
者らが基礎検討を行った結果、透過流束と膜面への汚れ
の蓄積は、級数的な変化を示すので、ある透過流束を越
えて濾過を行うと、その部分での汚れの蓄積が急速に進
むことになり非常に好ましくないことが判明した。ま
た、実際に運転検討を行ったところ、発生した気泡は、
吸引ポンプのラインにも引き込まれやすく、その過程で
ポンプへの負荷変動が生じやすく、その結果、脈動が生
じるため、定流量の吸引が困難になるという事態を引き
起こしていた。[0008] In this case, in the first method, in order to obtain a constant flow rate, the output of the suction pump is increased, and an attempt is made to secure a constant flow rate. As a result, the permeation flux of the membrane locally increases, and the membrane becomes fouled. Also, if the suction pressure is too high, dirt is drawn into the pores of the membrane, and the recoverability by physical cleaning and chemical cleaning also decreases. Further, as a result of the basic studies performed by the present inventors, the permeation flux and the accumulation of dirt on the membrane surface show a series of changes. It has been found that the accumulation of dirt rapidly progresses, which is very undesirable. In addition, when we actually examined the operation, the generated bubbles were
It is easily drawn into the line of the suction pump, and the load on the pump is likely to fluctuate in the process. As a result, pulsation occurs, which causes a situation where suction at a constant flow rate becomes difficult.
【0009】また、2番目の方法に至っては、サイホン
による吸引を行うため、気泡の発生は致命的であり、長
期間の運転を行ううちにサイホンが効かなくなり、連続
運転を困難であった。Further, in the second method, since suction is performed by a siphon, the generation of air bubbles is fatal, and the siphon becomes ineffective during long-term operation, and continuous operation is difficult.
【0010】一方、3番目の方法では透過側を負圧にし
ないため、気泡の発生・蓄積を抑えることができるが、
膜にかかる圧力差を制御できないため、いわゆる定圧運
転になる。定圧運転の場合、膜が新品状態で透過性能が
高いときは、膜透過流束が高くなる。これは、前述のよ
うに膜面への汚れの蓄積を急速に促進させることになる
ため、連続運転期間を縮める要因となっていた。On the other hand, in the third method, the generation and accumulation of bubbles can be suppressed because the transmission side is not set to a negative pressure.
Since the pressure difference applied to the membrane cannot be controlled, so-called constant pressure operation is performed. In the case of constant pressure operation, when the permeation performance is high in a new state of the membrane, the permeation flux becomes high. This accelerates the accumulation of dirt on the membrane surface, as described above, and has been a factor of shortening the continuous operation period.
【0011】本発明の目的は、透過側の気泡発生による
障害をなくし、膜の透過性能低下を抑えながら長期に安
定して連続運転が可能な浸漬式膜濾過装置および清澄水
の製造方法を提供することである。An object of the present invention is to provide an immersion-type membrane filtration device capable of performing continuous operation stably for a long period of time while eliminating obstacles caused by generation of bubbles on the permeation side and suppressing a decrease in permeation performance of the membrane, and a method for producing clear water. It is to be.
【0012】[0012]
【課題を解決するための手段】本発明は、「濾過膜を被
処理液に浸漬し、被処理液の水頭圧によって清澄水を得
る方式の浸漬式膜濾過装置であって、前記濾過膜の透過
側には大気に開放される配管を有するとともに、濾過膜
の有効部分よりも下部に清澄水貯留部を有し、かつ該清
澄水貯留部の下流に清澄水を系外へ取り出すための手段
を備えていることを特徴とする浸漬式膜濾過装置。」に
より基本的に達成される。SUMMARY OF THE INVENTION The present invention relates to an immersion type membrane filtration apparatus of a type in which a filtration membrane is immersed in a liquid to be treated and clear water is obtained by the head pressure of the liquid to be treated. Means for having a pipe open to the atmosphere on the permeation side, having a clarified water reservoir below the effective portion of the filtration membrane, and taking out the clarified water out of the system downstream of the clarified water reservoir. Immersion-type membrane filtration device characterized by comprising: ".
【0013】[0013]
【発明の実施の形態】本発明は、分離の駆動力を得る方
法として基本的に前述の3番目の方法、すなわち、水頭
圧による圧力を用いるものである。これによって透過側
を減圧する必要はなく、気泡の発生を抑えた浸漬式膜濾
過を実施することが可能となる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention basically uses the third method mentioned above as a method for obtaining a driving force for separation, that is, a pressure based on a head pressure. Thus, it is not necessary to reduce the pressure on the permeation side, and it is possible to perform immersion type membrane filtration in which generation of bubbles is suppressed.
【0014】ここで、本発明の浸漬式濾過装置の実施形
態の一例を示す側断面回路図を図1に、膜モジュールの
外観を図2に、膜エレメントの外観を図3に示す。ここ
で用いた膜エレメント(図3)は、フレーム4の両面に
清澄水流路材8を挿んで膜2を接着剤によって接着した
平膜エレメントで、膜の下方に清澄水貯留部3を透過側
に連接した構造になっている。また、図中5、6は、清
澄水取水用配管と大気開放用配管である。図2に示す膜
モジュールはこのエレメントを複数並列に配置してエレ
メント容器10に装填し、清澄水取水用配管5と大気開
放用配管6を連接したものである。Here, a side sectional circuit diagram showing an example of an embodiment of the immersion type filtration device of the present invention is shown in FIG. 1, an external appearance of a membrane module is shown in FIG. 2, and an external appearance of a membrane element is shown in FIG. The membrane element (FIG. 3) used here is a flat membrane element in which the clarified water channel material 8 is inserted on both sides of the frame 4 and the membrane 2 is adhered with an adhesive. It is connected to the structure. Reference numerals 5 and 6 in the figure denote a pipe for clear water intake and a pipe for opening to the atmosphere. In the membrane module shown in FIG. 2, a plurality of these elements are arranged in parallel, loaded into the element container 10, and the clarified water intake pipe 5 and the atmosphere opening pipe 6 are connected.
【0015】また、図4は、この膜モジュールを被処理
液槽11に浸漬し、清澄水取水用配管5に取水ポンプ7
を接続した回路図である。図4に示すように、膜の被処
理液側には、被処理液自身による水頭圧が生じ、かつ透
過側は、大気開放用配管6によって常圧にされるので、
膜を介して圧力差が生じる。これにより、被処理液から
清澄水を得ることができ、得られた清澄水は、清澄水貯
留部3に流下して貯留される。貯留された清澄水は、清
澄水取水ポンプ7によって系外へ取り出される。FIG. 4 shows that this membrane module is immersed in a liquid tank 11 to be treated, and a water intake pump 7 is connected to a clarified water intake pipe 5.
FIG. As shown in FIG. 4, a water head pressure is generated by the liquid to be treated on the liquid to be treated side of the membrane, and the pressure on the permeate side is set to normal pressure by the atmosphere opening pipe 6.
A pressure difference is created across the membrane. As a result, clarified water can be obtained from the liquid to be treated, and the obtained clarified water flows down to the clarified water storage unit 3 and is stored. The stored clear water is taken out of the system by a clear water intake pump 7.
【0016】なお、本発明における清澄水を系外へ取り
出す手段は、特に限定されるものではないが、吸水ポン
プが一般的であり、ポンプの種類としても、遠心ポン
プ、往復ポンプ、回転ポンプ、エアリフトポンプなど特
に制限されるものではない。しかしながら、本発明の実
施にあたって、濾過を一定量脈動なく行えることが好ま
しく、さらに、低位置の清澄水をくみあげる場合が多い
ので、その場合は、自給式の回転ポンプが好ましい。ま
た、被処理液が生物処理槽で、曝気を必要とする場合
は、曝気ラインを利用してエアリフトポンプを用いると
取水用の動力を省略できるので、装置が簡略化できて望
ましい方法である。The means for removing clarified water out of the system in the present invention is not particularly limited, but a water suction pump is generally used, and a centrifugal pump, a reciprocating pump, a rotary pump, There is no particular limitation such as an air lift pump. However, in the practice of the present invention, it is preferable that the filtration can be performed without a certain amount of pulsation, and furthermore, the clarified water at a low position is often pumped. In this case, a self-contained rotary pump is preferable. When the liquid to be treated is a biological treatment tank and needs aeration, the use of an air lift pump using an aeration line can eliminate the power for water intake, which is a desirable method because the apparatus can be simplified.
【0017】清澄水の取水方法としても、とくに限定さ
れるものではないが、本発明の主旨からして定流量で取
水するのが好ましい。ただし、運転開始直後から取水量
が膜透過量よりも多いと、清澄水貯留部への供給量が不
足するため、ポンプが清澄水を安定して吸水できないこ
とになる。従って、少なくとも、運転開始直後に得られ
る膜透過水量よりも少ない流量を取水量として設定しな
ければならない。このとき、取水量が膜透過水量よりも
小さい状況では、清澄水貯留部内の清澄水量は、時間と
ともに増加する。その結果、清澄水は、図4に示すよう
に清澄水取水用配管5と大気開放用配管6の方へ貯まっ
ていき、そのため、膜濾過の駆動力である水頭圧力差が
小さくなるので、膜透過水量が減少する。最終的には、
取水量と膜透過水量が同じになる高さで平衡状態にな
る。この状態で膜濾過が続けられるが、濾過の進行とと
もに、膜が被処理液中の汚れ物質などによって目詰まり
を起こし、膜透過性能が低下し、膜透過水量が取水量を
下回ってくる。その結果、前述とは反対に、貯まってい
た清澄水の水位が低くなっていくので、水頭圧力差が高
くなり、そのため、膜透過水量は増加し、取水量とバラ
ンスがとれたところで水位が安定する。このように、常
に取水した清澄水量が、膜濾過によって清澄水貯留部に
補給されることになるので、取水手段の選択・設定の仕
方によってどのような取水方法も可能になり、従来、容
易でなかった定量濾過が可能となる。その結果、膜面へ
の汚れの蓄積を抑えられ、長期間安定した運転ができる
ようになる。The method of taking the clarified water is not particularly limited, but it is preferable to take the water at a constant flow rate from the gist of the present invention. However, if the water intake is greater than the membrane permeation immediately after the start of operation, the pump will not be able to stably absorb the clarified water because the supply to the clarified water storage unit will be insufficient. Therefore, at least a flow rate smaller than the membrane permeated water amount obtained immediately after the start of operation must be set as the water flow rate. At this time, in a situation where the water intake amount is smaller than the membrane permeate water amount, the clarified water amount in the clarified water storage unit increases with time. As a result, the clarified water accumulates toward the clarified water intake pipe 5 and the atmosphere opening pipe 6 as shown in FIG. 4, so that the head pressure difference, which is the driving force for membrane filtration, is reduced. The amount of permeated water decreases. Eventually,
An equilibrium state is reached at a height where the water intake and membrane permeate are the same. In this state, the membrane filtration is continued. However, as the filtration proceeds, the membrane is clogged with a contaminant in the liquid to be treated and the like, and the membrane permeation performance decreases, and the amount of water permeated through the membrane falls below the water intake. As a result, contrary to the above, the water level of the stored clarified water decreases and the head pressure difference increases, which increases the amount of permeated water and stabilizes the water level when the amount of water is balanced. I do. In this way, the amount of clarified water that is constantly withdrawn is replenished to the clarified water storage unit by membrane filtration, so that any type of water intake method is possible depending on the method of selecting and setting the water intake means. Quantitative filtration that was not possible becomes possible. As a result, accumulation of dirt on the membrane surface can be suppressed, and stable operation can be performed for a long period of time.
【0018】ここで、取水量の設定については、被処理
水における膜透過水量の初期値が、純水で測定した値と
同じであるので、膜モジュールを被処理液に浸漬する前
に予め純水透過係数Kを測定しておくことにより、適切
な清澄水の取水量Q(m3 /d)を得ることができる。
一般に、連続運転によって膜の透過性が低下した場合、
膜エレメントを薬液に浸漬するなどして、いわゆる薬液
洗浄を行って性能を回復させる。Here, regarding the setting of the water intake amount, since the initial value of the membrane permeated water amount in the water to be treated is the same as the value measured with pure water, before the membrane module is immersed in the liquid to be treated, By measuring the water permeability coefficient K, it is possible to obtain an appropriate amount Q (m3 / d) of clear water.
Generally, if the permeability of the membrane is reduced by continuous operation,
The performance is restored by performing so-called chemical cleaning, for example, by immersing the membrane element in a chemical.
【0019】薬液洗浄のタイミングは、初期透過性能の
1/10〜1/2倍程度まで透過性能が低下した時点で
行うのが一般的である。本発明における浸漬式膜濾過装
置の場合、膜が新品で透過性能が高い状態では、清澄水
の水位が高い状態にあり、膜性能が低下してくると清澄
水の水位が低下し、最終的には、清澄水貯留部が空にな
って、設定量の取水ができなくなるまでが、連続運転の
寿命となるので、この時点の透過性能が、初期透過性能
の1/10〜1/2倍になるのが効率的である。The timing of chemical cleaning is generally performed when the transmission performance is reduced to about 1/10 to 1/2 times the initial transmission performance. In the case of the immersion type membrane filtration device in the present invention, when the membrane is new and has high permeation performance, the water level of the clarified water is in a high state, and when the membrane performance is reduced, the water level of the clarified water is reduced, and finally, The permeation performance at this point is 1/10 to 1/2 times the initial permeation performance because the life of the continuous operation is the time until the clarified water storage unit becomes empty and the set amount of water cannot be taken. Is more efficient.
【0020】このことから、下記の式を満たす範囲で取
水量Qを設定することが好ましいことが判明した。From this, it has been found that it is preferable to set the water intake Q within a range satisfying the following equation.
【0021】 Q=a×K×L×S(1/10≦a≦1/2) ここで、 L:膜エレメントの有効膜部分の最下部水深(m) K:使用前の膜エレメントの有効膜部分を被処理液と同
温度の純水に浸漬したときの純水透過係数(m3 /d・
1mAq) S:膜面積(m) である。また、被処理液と同温度のKを得るには、次式
を用いて補正すればよい。Q = a × K × L × S (1/10 ≦ a ≦ 1/2) where L: lowest water depth (m) of the effective membrane portion of the membrane element K: effective membrane element before use Pure water permeation coefficient (m3 / d ・) when the membrane part is immersed in pure water at the same temperature as the liquid to be treated
1 mAq) S: film area (m) In order to obtain K at the same temperature as the liquid to be treated, correction may be made using the following equation.
【0022】K=(温度T℃のK)×(温度T℃の水の
粘度)/(被処理液温度の水の粘度) なお、清澄水貯留部が空になって設定した取水量が得ら
れなくなった時点で、連続運転を終了し、膜の薬液洗浄
もしくは、膜の交換を行うことになるが、この時期を自
動的に認識する手段としては、清澄水貯留部の水位検出
手段を備え、水位が一定値以下になったことを検出した
り、清澄水の取水ラインに流量センサを備え、取水量が
設定下限流量以下になった状況を検知することにより、
アラームを発生させたり、膜性能を回復させる物理洗浄
や薬液洗浄を実行することが可能である。K = (K at the temperature T ° C.) × (viscosity of the water at the temperature T ° C.) / (Viscosity of the water at the temperature of the liquid to be treated) It should be noted that the amount of water withdrawal set when the clarified water storage unit is empty is obtained. When it is no longer possible, the continuous operation is terminated and the membrane is washed with a chemical solution or the membrane is replaced.However, as a means for automatically recognizing this time, a water level detecting means of the clear water storage unit is provided. , By detecting that the water level has fallen below a certain value, or by providing a flow rate sensor in the clarified water intake line to detect a situation where the intake amount has fallen below the set lower limit flow rate.
It is possible to execute physical cleaning or chemical cleaning for generating an alarm or restoring the film performance.
【0023】なお、本発明における膜濾過運転方法とし
ては、水頭圧力差を駆動力として濾過運転を行う以外特
に限定されるものではないが、最も簡便な運転方法とし
ては、特に操作をせずに、水頭圧力差に任せた濾過を行
うことである。また、定期的に濾過量を減らしたり、濾
過を中止する間欠運転などを行うことも可能である。な
お、このような運転を行うときは、清澄水の取水を一時
的に減らしたり、取水をやめることによって実施するこ
とが可能である。また、図5に示すように、大気開放用
配管6に設けたバルブ6′を閉止した上で、取水ライン
から清澄水を加圧逆流させることによって膜の透過側か
ら被処理液側への逆圧洗浄を行うことも可能である。こ
こで、濾過膜の透過側に、清澄水を供給するための手段
としては特に制限されるものではないが、取水手段とし
てポンプを用いる場合は、逆流が可能なポンプを使用す
ることにより取水手段と逆圧洗浄手段の両方を行うこと
が可能となるので好適である。The method of the membrane filtration operation in the present invention is not particularly limited except that the filtration operation is performed using the head pressure difference as a driving force, but the simplest operation method is that the operation is performed without any particular operation. , Filtration is performed according to the head pressure difference. It is also possible to periodically reduce the amount of filtration or perform an intermittent operation in which the filtration is stopped. In addition, when performing such an operation, it is possible to implement by temporarily reducing the intake of the clear water or stopping the intake. Further, as shown in FIG. 5, after closing a valve 6 ′ provided in the atmosphere opening pipe 6, the clarified water is pressurized and back-flowed from the water intake line to reverse the flow from the permeation side of the membrane to the liquid to be treated. Pressure washing can also be performed. Here, the means for supplying the clarified water to the permeate side of the filtration membrane is not particularly limited, but when a pump is used as the water intake means, a pump capable of reverse flow is used. This is preferable because it is possible to perform both of the cleaning step and the back pressure cleaning means.
【0024】ところで、本発明における物理洗浄として
は、膜の被処理液側に流速を与えることによる剪断力に
よってり汚れを剥離させる方法、前述のような逆圧洗浄
などがあげられる。また、薬液洗浄としては、膜の被処
理液側に薬液を接触させる方法、透過側に薬液を注入す
る方法があげられる。使用する薬液としても、酸、アル
カリ、次亜塩素酸ソーダなど特に制限されるものではな
い。As the physical cleaning in the present invention, there are a method of removing dirt by shearing force by applying a flow rate to the liquid side of the film to be treated, and the above-mentioned back pressure cleaning. Examples of the chemical cleaning include a method in which a chemical liquid is brought into contact with the liquid to be treated of the membrane, and a method in which the chemical liquid is injected into the permeation side. The chemical used is not particularly limited, such as acid, alkali, and sodium hypochlorite.
【0025】本発明に用いられる膜は、特に制限される
ものではなく、形態としては、平膜、中空糸膜が代表的
である。とくに、平膜の場合は、膜面に流速を与えた場
合の剪断力による汚れの除去効果が高く本発明に適して
いる。また、中空糸膜の場合は、膜自身が液中で揺動し
やすいため、汚れが脱落しやすい特長も有している。The membrane used in the present invention is not particularly limited, and examples of the form include a flat membrane and a hollow fiber membrane. In particular, in the case of a flat membrane, the effect of removing dirt due to shearing force when a flow velocity is applied to the membrane surface is high, and is suitable for the present invention. Further, in the case of the hollow fiber membrane, the membrane itself easily swings in the liquid, and thus has a feature that dirt is easily removed.
【0026】膜構造としては、均質膜、多孔質膜、複合
膜などが挙げられるが、特に限定はない。これらの膜の
具体例としては、ポリアクリロニトリル多孔質膜、ポリ
イミド多孔質膜、ポリエーテルスルホン多孔質膜、ポリ
フェニレンスルフィドスルホン多孔質膜、ポリテトラフ
ルオロエチレン多孔質膜、ポリプロピレン多孔質膜、ポ
リエチレン多孔質膜等の多孔質膜や、これら多孔質膜に
機能層としては架橋型シリコーン、ポリブタジエン、ポ
リアクリロニトリルブタジエン、エチレンプロピレンラ
バー、ネオプレンゴム等のゴム状高分子を複合化した複
合膜や架橋型シリコーンチューブなどの均質膜を挙げる
ことができる。Examples of the membrane structure include a homogeneous membrane, a porous membrane, and a composite membrane, but are not particularly limited. Specific examples of these membranes include a polyacrylonitrile porous membrane, a polyimide porous membrane, a polyether sulfone porous membrane, a polyphenylene sulfide sulfone porous membrane, a polytetrafluoroethylene porous membrane, a polypropylene porous membrane, and a polyethylene porous membrane. A porous membrane such as a membrane, or a composite membrane or a crosslinked silicone tube obtained by compounding a rubber-like polymer such as crosslinked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, or neoprene rubber as a functional layer on these porous membranes. And the like.
【0027】膜の細孔径としても特に制限されるもので
はないが、孔径が小さいほど本発明の課題であるところ
の気泡が抜けにくくなるため、本発明の適用には細孔径
が小さなものほど効果が高い。具体的には、相当細孔径
0.1μm以下のものへ本発明を適用するととくに効果
的である。なお、ここでいうところの相当細孔径dは、
膜が汚損されていない状態で、水を透過させ、 d=(32×η×L×F/ΔP)0.5 η:水の粘度 L:膜厚 F:透過流束 ΔP:膜間差圧 を計算することによって得た値である。The pore size of the membrane is not particularly limited, but the smaller the pore size, the more difficult it is to remove bubbles, which is the object of the present invention. Therefore, the smaller the pore size, the more effective the application of the present invention. Is high. Specifically, it is particularly effective to apply the present invention to those having an equivalent pore diameter of 0.1 μm or less. Note that the equivalent pore diameter d here is:
Water is permeated in a state where the membrane is not contaminated, and d = (32 × η × L × F / ΔP) 0.5 η: viscosity of water L: film thickness F: permeation flux ΔP: transmembrane pressure is calculated. It is the value obtained by doing.
【0028】本発明を適用可能な被処理液としても特に
制限されるものではないが、被処理水の性状によって
は、膜が侵されて劣化する場合があるため、注意が必要
である。なお、本発明に適した被処理液としては、河川
水、湖沼水、凝集処理後水、生物処理水、各種排水など
があげられるが、特に活性汚泥を含有した固形分濃度の
高い廃水処理に特に適している。The liquid to be treated to which the present invention can be applied is not particularly limited, but care should be taken because the film may be damaged and deteriorated depending on the properties of the water to be treated. The liquid to be treated suitable for the present invention includes river water, lake and marsh water, water after coagulation treatment, biologically treated water, various wastewaters, and the like. Particularly suitable.
【0029】[0029]
【実施例】以下実施例をもってもって本発明をさらに具
体的に説明する。ただし、本発明はこれにより限定され
るものではない。The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by this.
【0030】実施例1 ポリエステル不織布にポリスルホン膜がコーティングさ
れた複合平膜(細孔径0.01μm、厚さ55μm、初
期純水透過性能1.2m3 /m2 ・日・1mAq)をフ
レームの両面に貼り付けた図3に示すような平膜エレメ
ント(有効膜部分:縦700mm、幅100mm、有効
膜面積0.14m)3枚を図2に例示するような内寸
(幅110mm×奥36mm×高さ710mm)の膜エ
レメント容器に装填した上で、清澄水取水用配管と大気
開放用配管を連接させた膜モジュールを作製した。この
膜モジュールの清澄水取水用配管に、取水ポンプを取り
付けた図1に示す回路の浸漬式膜濾過装置を作製した。
この装置を、排水処理設備の生物処理槽(活性汚泥濃度
MLSS:10,000ppm)で曝気範囲の上部に、
濾過膜有効部分の下端部から水面までの距離が2mにな
るように浸漬し、取水ポンプを設定流量0.3m3 /d
(a=0.3)に設定して、連続取水した。Example 1 A composite flat membrane (pore diameter 0.01 μm, thickness 55 μm, initial pure water permeability 1.2 m 3 / m 2 · day · 1 mAq) in which a polyester non-woven fabric was coated with a polysulfone membrane was attached to both sides of a frame. 3 attached flat membrane elements (effective membrane portion: 700 mm in length, 100 mm in width, 0.14 m in effective membrane area) as shown in FIG. 3 with inner dimensions (110 mm in width × 36 mm in depth × height) as exemplified in FIG. (710 mm), and a membrane module in which a clarified water intake pipe and an atmosphere open pipe were connected to each other was produced. An immersion type membrane filtration device having a circuit shown in FIG. 1 was prepared in which a water intake pump was attached to the clarified water intake pipe of this membrane module.
This device is installed in the upper part of the aeration range in a biological treatment tank (activated sludge concentration MLSS: 10,000 ppm) of a wastewater treatment facility.
Immerse so that the distance from the lower end of the effective part of the filtration membrane to the water surface is 2 m, and set the water intake pump to a set flow rate of 0.3 m 3 / d
(A = 0.3), and water was taken continuously.
【0031】結果、設定流量の取水が不可能になるまで
に28日の連続濾過ができ、得られた清澄水量は、8.
4m3 であった。濾過運転終了後、3枚のうち中心の膜
エレメントを引き上げて外観を観察したところ、膜の全
体が黒褐色に変色していた。また、純水透過性能を測定
したところ、0.35m3 /m2 ・日・1mAqであっ
た。As a result, continuous filtration can be performed for 28 days before the set flow rate can be withdrawn, and the amount of clarified water obtained is 8.
It was 4 m3. After the completion of the filtration operation, the central membrane element of the three membranes was pulled up, and the appearance was observed. As a result, the entire membrane was discolored to black-brown. The pure water permeation performance was measured to be 0.35 m 3 / m 2 · day · 1 mAq.
【0032】比較例1 膜エレメントの大気開放用配管を封止する他は、実施例
と同じ装置を同じ方法で運転したところ、5日後には、
清澄水取水配管に気泡が蓄積し、時折、取水ポンプが脈
動していた。また、28日後に得られた清澄水量は、
8.4m3 であり、実施例1と同じであったが、28日
の濾過運転終了後、3枚のうち膜エレメントを引き上げ
て外観を観察したところ、膜の上部があまり変色してい
ないのに対し、下部ほどひどく黒褐色に変色していた。
また、純水透過性能を測定したところ、0.26m3 /
m2 ・日・1mAqであった。Comparative Example 1 The same apparatus was operated in the same manner as in the example except that the pipe for opening the atmosphere to the membrane element was sealed.
Bubbles accumulated in the clarified water intake pipe, and occasionally the intake pump pulsated. Also, the amount of clarified water obtained after 28 days is
It was 8.4 m 3, which was the same as in Example 1. However, after the filtration operation was completed on the 28th, the membrane element was pulled out of three sheets and the appearance was observed. On the other hand, the lower part was severely discolored to dark brown.
When the pure water permeation performance was measured, it was found to be 0.26 m3 /
m 2 · day · 1 mAq.
【0033】[0033]
【発明の効果】本発明において、濾過膜を被処理液に浸
漬し、被処理液の水頭圧によって清澄水を得る方式の浸
漬式膜濾過装置であって、該濾過膜の透過側が大気開放
されているとともに濾過膜の有効部分よりも下部に清澄
水貯留部が備えられ、該清澄水貯留部から清澄水を系外
へ取り出すための手段を備えていることを特徴とする浸
漬式膜濾過装置により、膜の透過性能低下を抑えながら
長期に安定して連続運転が可能な浸漬式膜濾過装置を提
供することが可能となった。According to the present invention, there is provided an immersion type membrane filtration apparatus in which a filtration membrane is immersed in a liquid to be treated and clear water is obtained by a head pressure of the liquid to be treated, wherein the permeation side of the filtration membrane is opened to the atmosphere. A submerged water storage unit provided below the effective part of the filtration membrane, and a means for removing clarified water from the clarified water storage unit to the outside of the system. Accordingly, it has become possible to provide an immersion type membrane filtration device capable of performing continuous operation stably for a long period of time while suppressing a decrease in the permeability of the membrane.
【図1】本発明に係る浸漬式膜濾過装置の一例の側断面
回路図である。FIG. 1 is a side sectional circuit diagram of an example of an immersion type membrane filtration device according to the present invention.
【図2】本発明に係る膜モジュールの一例の外観図であ
る。FIG. 2 is an external view of an example of a membrane module according to the present invention.
【図3】本発明に係る平膜エレメントの外観図である。FIG. 3 is an external view of a flat membrane element according to the present invention.
【図4】本発明に係る浸漬式膜濾過装置の一例の運転状
態を示す側断面図である。FIG. 4 is a side sectional view showing an operation state of an example of an immersion type membrane filtration device according to the present invention.
【図5】本発明に係る浸漬式膜濾過装置の一例の逆圧洗
浄状態を示す側断面図である。FIG. 5 is a side sectional view showing an example of a submerged membrane filtration device according to the present invention in a back pressure washing state.
1:膜エレメント 2:膜 3:清澄水貯留部 4:フレーム 5:清澄水取水配管 6:大気開放用配管 7:取水ポンプ 8:透過側流路材 9:膜接着部 10:膜エレメント容器 11:被処理水槽 12:散気管 1: Membrane element 2: Membrane 3: Refined water storage part 4: Frame 5: Refined water intake pipe 6: Atmospheric release pipe 7: Intake pump 8: Permeate side flow path material 9: Membrane adhesion part 10: Membrane element container 11 : Treatment tank 12 : Air diffuser
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA02 HA42 HA93 JA18A JA20A JA53A KA13 KA44 KC03 KC07 KC16 KD11 KD17 KD24 KE03R KE05P KE06P KE12P KE24P MA01 MA03 MA06 MA22 MA31 MB02 MC22 MC23 MC30 MC39 MC48X MC58 MC61 MC62X MC63 MC65 MC68 PA01 PA02 PB04 PB08 PC64 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA02 HA42 HA93 JA18A JA20A JA53A KA13 KA44 KC03 KC07 KC16 KD11 KD17 KD24 KE03R KE05P KE06P KE12P KE24P MA01 MA03 MA06 MA22 MA31 MB02 MC22 MC23 MC30 MC63 MC68 MC62 MC62 MC68 PA02 PB04 PB08 PC64
Claims (7)
頭圧によって清澄水を得る方式の浸漬式膜濾過装置であ
って、前記濾過膜の透過側には大気に開放される配管を
有するとともに、濾過膜の有効部分よりも下部に清澄水
貯留部を有し、かつ該清澄水貯留部の下流に清澄水を系
外へ取り出すための手段を備えていることを特徴とする
浸漬式膜濾過装置。An immersion type membrane filtration apparatus in which a filtration membrane is immersed in a liquid to be treated to obtain clarified water by a head pressure of the liquid to be treated, wherein the filtration membrane is open to the atmosphere on the permeation side of the filtration membrane. It has a pipe, and has a clarified water reservoir below the effective portion of the filtration membrane, and is provided with means for taking out clarified water out of the system downstream of the clarified water reservoir. Immersion type membrane filtration device.
プであることを特徴とする請求項1記載の浸漬式膜濾過
装置。2. The immersion type membrane filtration device according to claim 1, wherein the means for taking out the clarified water out of the system is a constant flow pump.
とする請求項2記載の浸漬式膜濾過装置。3. The immersion type membrane filtration device according to claim 2, wherein said constant flow rate pump is a self-supply type.
水頭圧によって濾過膜を透過した清澄水を、清澄水貯留
部から系外に取り出すことを特徴とする清澄水の製造方
法。4. An apparatus according to claim 1, which is immersed in a liquid to be treated.
A method for producing clarified water, wherein clarified water that has passed through a filtration membrane due to a head pressure is taken out of the system from a clarified water storage unit.
った場合に、アラーム発生、物理洗浄、薬液洗浄のうち
の少なくとも一つの行程を行うことを特徴とする請求項
4に記載の清澄水の製造方法。5. The method according to claim 4, wherein when the water level of the clarified water storage section falls below a set value, at least one of alarm generation, physical cleaning, and chemical cleaning is performed. Method for producing clear water.
清澄水の取水流量が設定値下限値以下になった場合に、
アラーム発生、物理洗浄、薬液洗浄のうちの少なくとも
一つの行程を行うことを特徴とする請求項4に記載の清
澄水の製造方法。6. When the flow rate of the clarified water in the means for taking out the clarified water to the outside of the system falls below a set value lower limit value,
The method for producing clear water according to claim 4, wherein at least one of an alarm generation, a physical cleaning, and a chemical cleaning is performed.
を満たすことを特徴とする請求項4記載の清澄水の製造
方法。 Q=a×K×L×S(1/10≦a≦1/2) L:膜エレメントの有効膜部分の最下部水深(m) K:使用前の膜エレメントの有効膜部分を被処理液と同
温度の純水に浸漬したときの純水透過係数(m3 /m2
・d・1mAq) S:膜面積(m)7. The method for producing clarified water according to claim 4, wherein the amount of clarified water withdrawn Q (m3 / d) satisfies the following equation. Q = a × K × L × S (1/10 ≦ a ≦ 1/2) L: Lowest water depth (m) of the effective membrane portion of the membrane element K: Liquid to be treated on the effective membrane portion of the membrane element before use Pure water permeability coefficient (m3 / m2) when immersed in pure water at the same temperature as
• d · 1 mAq) S: membrane area (m)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11012163A JP2000210660A (en) | 1999-01-20 | 1999-01-20 | Immersion type membrane filter, and production of clarified water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11012163A JP2000210660A (en) | 1999-01-20 | 1999-01-20 | Immersion type membrane filter, and production of clarified water |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000210660A true JP2000210660A (en) | 2000-08-02 |
Family
ID=11797785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11012163A Pending JP2000210660A (en) | 1999-01-20 | 1999-01-20 | Immersion type membrane filter, and production of clarified water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000210660A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6979404B2 (en) | 2002-01-02 | 2005-12-27 | Triple I | Self-manifolding sheet membrane module |
JP2007152302A (en) * | 2005-12-08 | 2007-06-21 | Mitsubishi Rayon Eng Co Ltd | Solid/liquid separator of solid/liquid mixture |
JP2007160234A (en) * | 2005-12-14 | 2007-06-28 | Nikko Co | Dipping-type membrane module |
WO2009004962A1 (en) | 2007-07-03 | 2009-01-08 | Sumitomo Electric Fine Polymer, Inc. | Flat-membrane element for filtration and flat-membrane filtration module |
JP2013009644A (en) * | 2011-06-30 | 2013-01-17 | Yuasa Membrane System:Kk | Bactericidal device for culture solution for hydroponics using membrane filtration, and method thereof |
JP2017070913A (en) * | 2015-10-08 | 2017-04-13 | 日立造船株式会社 | Infiltration water intake unit |
-
1999
- 1999-01-20 JP JP11012163A patent/JP2000210660A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6979404B2 (en) | 2002-01-02 | 2005-12-27 | Triple I | Self-manifolding sheet membrane module |
JP2007152302A (en) * | 2005-12-08 | 2007-06-21 | Mitsubishi Rayon Eng Co Ltd | Solid/liquid separator of solid/liquid mixture |
JP2007160234A (en) * | 2005-12-14 | 2007-06-28 | Nikko Co | Dipping-type membrane module |
WO2009004962A1 (en) | 2007-07-03 | 2009-01-08 | Sumitomo Electric Fine Polymer, Inc. | Flat-membrane element for filtration and flat-membrane filtration module |
JP5369278B2 (en) * | 2007-07-03 | 2013-12-18 | 住友電気工業株式会社 | Flat membrane element for filtration and flat membrane filtration module |
JP2013009644A (en) * | 2011-06-30 | 2013-01-17 | Yuasa Membrane System:Kk | Bactericidal device for culture solution for hydroponics using membrane filtration, and method thereof |
JP2017070913A (en) * | 2015-10-08 | 2017-04-13 | 日立造船株式会社 | Infiltration water intake unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100225776B1 (en) | Membrane device and membrane treating device | |
KR102329058B1 (en) | A computer readable recording medium recording a clogged point specific program of the separation membrane module, a tidal system and a tidal method | |
JPH07313850A (en) | Method for backward washing immersion-type ceramic membrane separator | |
JP2001190937A (en) | Water purification equipment and method of cleaning membrane element | |
KR20130137004A (en) | Chemical cleaning method for immersed membrane element | |
US11452971B2 (en) | Method for operating membrane separation device with halt process | |
JP5795459B2 (en) | Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using the same, immersion filtration device, and immersion filtration method | |
JP4984460B2 (en) | Separation membrane cleaning method and organic sewage treatment apparatus | |
JP2007296500A (en) | Membrane separation apparatus and membrane filtration method | |
JPWO2014034836A1 (en) | Membrane separation cleaning method for activated sludge | |
JP2000210660A (en) | Immersion type membrane filter, and production of clarified water | |
JP3832232B2 (en) | Membrane separator | |
JP5120106B2 (en) | Method and apparatus for treating organic alkaline wastewater | |
JP5119989B2 (en) | Storage method of solid-liquid separation membrane | |
JP2009039677A (en) | Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus | |
JP2005177744A (en) | Producing apparatus of reclaimed water and producing method of reclaimed water | |
JPH1057780A (en) | Dipped membrane separator | |
JP2005058970A (en) | Immersion type membrane filter and method for manufacturing clarified water | |
JP7067678B1 (en) | Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method | |
JP7213711B2 (en) | Water treatment device and water treatment method | |
JP2002035750A (en) | Sewage filtering method | |
JPH11244893A (en) | Operation method of organic sewage treating device | |
JP3958495B2 (en) | Cleaning method for hollow fiber membrane module | |
JPH08323165A (en) | Membrane device and membrane treating device | |
WO2010113589A1 (en) | Water treatment device and water treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061031 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070313 |