JPH11238742A - Manufacture of silicon carbide semiconductor device - Google Patents

Manufacture of silicon carbide semiconductor device

Info

Publication number
JPH11238742A
JPH11238742A JP10040550A JP4055098A JPH11238742A JP H11238742 A JPH11238742 A JP H11238742A JP 10040550 A JP10040550 A JP 10040550A JP 4055098 A JP4055098 A JP 4055098A JP H11238742 A JPH11238742 A JP H11238742A
Authority
JP
Japan
Prior art keywords
silicon carbide
channel layer
layer
type silicon
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10040550A
Other languages
Japanese (ja)
Inventor
Takeshi Endo
剛 遠藤
Kumar Rajesh
クマール ラジェシュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10040550A priority Critical patent/JPH11238742A/en
Publication of JPH11238742A publication Critical patent/JPH11238742A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize high mobility in a planar MOSFET. SOLUTION: Prior to epitaxial growth of a surface channel layer on an n<-> type silicon carbide epitaxial layer 2 and p<-> type silicon carbide base regions 3a and 3b, the base regions 3a, 3b and epitaxial layer 2 are subjected thereon to RIE a reactive ion etching, and further subjected thereon to a heat treatment etching process in a hydrogen atmosphere. Thereby the surface of a wafer for epitaxial growth of the surface channel layer can be mode in a satisfactory condition, and the crystallization of the surface channel layer can be made satisfactory. As a result, the channel modality of the surface channel layer an be improved, and the mobility of a planar power MOSFET can be made high.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素半導体装
置の製造方法に関し、特に絶縁ゲート型電界効果トラン
ジスタ、とりわけ大電力用の縦型パワーMOSFETに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silicon carbide semiconductor device, and more particularly to an insulated gate field effect transistor, and more particularly to a vertical power MOSFET for high power.

【0002】[0002]

【従来の技術】本出願人は、縦型MOSFETにおい
て、チャネル移動度を向上させてオン抵抗を低減させた
ものを、特願平9−259076号で出願している。こ
の縦型MOSFETのうち、プレーナ型MOSFETを
例として、その断面図を図4に示し、この図に基づいて
プレーナ型縦型MOSFETの構造について説明する。
2. Description of the Related Art The applicant of the present invention has filed a Japanese Patent Application No. 9-259076 for a vertical MOSFET in which channel mobility is improved and on-resistance is reduced. FIG. 4 shows a cross-sectional view of a planar MOSFET as an example of the vertical MOSFET, and the structure of the planar MOSFET will be described with reference to FIG.

【0003】n+ 型炭化珪素半導体基板1は上面を主表
面1aとし、主表面の反対面である下面を裏面1bとし
ている。このn+ 型炭化珪素半導体基板1の主表面1a
上には、基板1よりも低いドーパント濃度を有するn-
型炭化珪素エピタキシャル層(以下、n- 型炭化珪素エ
ピ層という)2が積層されている。このとき、n+ 型炭
化珪素半導体基板1およびn- 型炭化珪素エピ層2の上
面を(0001)Si面としているが、n+ 型炭化珪素
半導体基板1およびn- 型炭化珪素エピ層2の上面を
(112−0)a面としてもよい。つまり、(000
1)Si面を用いると低い表面状態密度が得られ、(1
12−0)a面を用いると、低い表面状態密度で、かつ
完全にらせん転位の無い結晶が得られるためである。ま
た、このとき、当然ながら、n- 型炭化珪素エピ層2の
高品質成長のために、3°〜10°程度の傾斜を設けた
オフ基板を用いてもよい。
An n + -type silicon carbide semiconductor substrate 1 has an upper surface as a main surface 1a and a lower surface opposite to the main surface as a back surface 1b. Main surface 1a of n + type silicon carbide semiconductor substrate 1
Above, n having a lower dopant concentration than substrate 1
-Type silicon carbide epitaxial layer (hereinafter referred to as n - type silicon carbide epi layer) 2 is stacked. In this case, n + -type silicon carbide semiconductor substrate 1 and the n - but the upper surface of type silicon carbide epitaxial layer 2 is set to (0001) Si plane, n + -type silicon carbide semiconductor substrate 1 and the n - -type silicon carbide epitaxial layer 2 The upper surface may be the (112-0) a surface. That is, (000
1) A low surface state density can be obtained by using the Si surface, and (1)
The use of the 12-0) a-plane makes it possible to obtain a crystal having a low surface state density and completely free from screw dislocations. At this time, of course, an off-substrate having an inclination of about 3 ° to 10 ° may be used for high-quality growth of n -type silicon carbide epilayer 2.

【0004】n- 型炭化珪素エピ層2の表層部における
所定領域には、所定深さを有するp - 型炭化珪素ベース
領域3aおよびp- 型炭化珪素ベース領域3bが離間し
て形成されている。また、p- 型炭化珪素ベース領域3
aの表層部における所定領域には、ベース領域3aより
も浅いn+ 型ソース領域4aが、また、p- 型炭化珪素
ベース領域3bの表層部における所定領域には、ベース
領域3bよりも浅いn + 型ソース領域4bがそれぞれ形
成されている。
[0004] n-In the surface layer of silicon carbide epilayer 2
In a predetermined area, p having a predetermined depth -Type silicon carbide base
Regions 3a and p-Type silicon carbide base region 3b is separated
It is formed. Also, p--Type silicon carbide base region 3
a in a predetermined region in the surface layer portion of the base region 3a
Also shallow n+The type source region 4a also has p-Type silicon carbide
A predetermined area in the surface portion of the base area 3b includes a base
N shallower than region 3b +Each of the mold source regions 4b
Has been established.

【0005】さらに、n+ 型ソース領域4aとn+ 型ソ
ース領域4bとの間におけるn- 型炭化珪素エピ層2お
よびp- 型炭化珪素ベース領域3a、3bの表面部には
-型SiC層5が延設されている。つまり、p- 型炭
化珪素ベース領域3a、3bの表面部においてソース領
域4a、4bとn- 型炭化珪素エピ層2とを繋ぐように
- 型SiC層5が配置されている。
Further, the surface of n -type silicon carbide epilayer 2 and p -type silicon carbide base regions 3a and 3b between n + -type source region 4a and n + -type source region 4b have n -type SiC Layer 5 extends. That is, n -type SiC layer 5 is arranged so as to connect source regions 4a, 4b and n -type silicon carbide epilayer 2 at the surface portions of p -type silicon carbide base regions 3a, 3b.

【0006】このn- 型SiC層5は、エピタキシャル
成長にて形成されたものであり、エピタキシャル膜の結
晶が4H、6H、3Cのものを用いる。尚、エピタキシ
ャル層は下地の基板に関係なく各種の結晶を形成できる
ものである。このn+ 型SiC層5は、デバイスの動作
時にデバイス表面においてチャネル形成層として機能す
る。以下、このn- 型SiC層5を表面チャネル層とい
う。
[0006] The n - type SiC layer 5 has been formed by epitaxial growth, the crystal of the epitaxial film is used 4H, 6H, those 3C. The epitaxial layer can form various crystals regardless of the underlying substrate. This n + -type SiC layer 5 functions as a channel forming layer on the device surface during device operation. Hereinafter, this n -type SiC layer 5 is referred to as a surface channel layer.

【0007】表面チャネル層5のドーパント濃度は、1
×1015cm-3〜1×1017cm-3程度の低濃度となっ
ており、かつ、n- 型炭化珪素エピ層2及びp- 型炭化
珪素ベース領域3a、3bのドーパント濃度以下となっ
ている。これにより、低オン抵抗化が図られている。ま
た、p- 型炭化珪素ベース領域3a、3b、n+ 型ソー
ス領域4a、4bの表面部には凹部6a、6bが形成さ
れている。
The dopant concentration of the surface channel layer 5 is 1
The concentration is as low as about × 10 15 cm −3 to about 1 × 10 17 cm −3 , and is lower than the dopant concentration of n -type silicon carbide epilayer 2 and p -type silicon carbide base regions 3a and 3b. ing. Thereby, low on-resistance is achieved. In addition, concave portions 6a and 6b are formed in the surface portions of p -type silicon carbide base regions 3a and 3b and n + -type source regions 4a and 4b.

【0008】表面チャネル層5の上面およびn+ 型ソー
ス領域4a、4bの上面にはゲート絶縁膜(シリコン酸
化膜)7が形成されている。さらに、ゲート絶縁膜7の
上にはポリシリコンゲート電極8が形成されており、こ
のポリシリコンゲート電極8はLTO(Low Tem
perature Oxide)からなる絶縁膜9にて
覆われている。その上にはソース電極10が形成され、
ソース電極10はn+型ソース領域4a、4bおよびp
- 型炭化珪素ベース領域3a、3bと接している。ま
た、n+ 型炭化珪素半導体基板1の裏面1bには、ドレ
イン電極11が形成されている。
A gate insulating film (silicon oxide film) 7 is formed on the upper surface of the surface channel layer 5 and the upper surfaces of the n + -type source regions 4a and 4b. Further, a polysilicon gate electrode 8 is formed on the gate insulating film 7, and the polysilicon gate electrode 8 is formed by LTO (Low Tem).
It is covered with an insulating film 9 made of P.O. A source electrode 10 is formed thereon,
The source electrode 10 includes n + type source regions 4a, 4b and p
- type silicon carbide base regions 3a, is in contact with 3b. Drain electrode 11 is formed on rear surface 1b of n + -type silicon carbide semiconductor substrate 1.

【0009】次に、図4に示すプレーナ型パワーMOS
FETの製造工程を、図5〜図7を用いて説明する。 〔図5(a)に示す工程〕まず、n型4Hまたは6Hま
たは3C−SiC基板、すなわちn+ 型炭化珪素半導体
基板1を用意する。ここで、n+ 型炭化珪素半導体基板
1はその厚さが400μmであり、主表面1aが(00
01)Si面、又は、(112−0)a面である。この
基板1の主表面1aに厚さ5μmのn- 型炭化珪素エピ
層2をエピタキシャル成長する。本例では、n- 型炭化
珪素エピ層2は下地の基板1と同様の結晶が得られ、n
型4Hまたは6Hまたは3C−SiC層となる。
Next, a planar type power MOS shown in FIG.
The manufacturing process of the FET will be described with reference to FIGS. [Step shown in FIG. 5A] First, an n-type 4H or 6H or 3C-SiC substrate, that is, an n + -type silicon carbide semiconductor substrate 1 is prepared. Here, n + -type silicon carbide semiconductor substrate 1 has a thickness of 400 μm and main surface 1a has a thickness of (00).
01) Si plane or (112-0) a plane. An n -- type silicon carbide epilayer 2 having a thickness of 5 μm is epitaxially grown on main surface 1a of substrate 1. In this example, n -type silicon carbide epilayer 2 has the same crystal as base substrate 1,
It becomes a mold 4H or 6H or 3C-SiC layer.

【0010】〔図5(b)に示す工程〕n- 型炭化珪素
エピ層2の表面を研磨したのち、この上の所定領域にL
TO膜20を配置し、これをマスクとしてB+ (若しく
はアルミニウム)をイオン注入して、p- 型炭化珪素ベ
ース領域3a、3bを形成する。このときのイオン注入
条件は、温度が700℃で、ドーズ量が1×1016cm
-2としている。
[Step shown in FIG. 5 (b)] After polishing the surface of n - type silicon carbide epilayer 2, L
A TO film 20 is arranged, and B + (or aluminum) is ion-implanted using the TO film 20 as a mask to form p -type silicon carbide base regions 3a and 3b. The ion implantation conditions at this time are a temperature of 700 ° C. and a dose of 1 × 10 16 cm.
-2 .

【0011】〔図5(c)に示す工程〕LTO膜20を
除去した後、エピタキシャル成長法によって、n- 型炭
化珪素エピ層2の表層部及びp- 型炭化珪素ベース領域
3a、3bの上部に表面チャネル層5を成長させる。こ
のとき、プレーナ型パワーMOSFETをノーマリオフ
型にするために、表面チャネル層5の厚み(膜厚)は所
望の厚みとしている。
[Step shown in FIG. 5 (c)] After the LTO film 20 is removed, the surface of the n -type silicon carbide epilayer 2 and the upper portions of the p -type silicon carbide base regions 3a and 3b are formed by epitaxial growth. The surface channel layer 5 is grown. At this time, the thickness (film thickness) of the surface channel layer 5 is set to a desired thickness in order to make the planar power MOSFET a normally-off type.

【0012】〔図6(a)に示す工程〕表面チャネル層
5の上の所定領域にLTO膜21を配置し、これをマス
クとしてN+ をイオン注入し、n+ 型ソース領域4a、
4bを形成する。このときのイオン注入条件は、700
℃、ドーズ量は1×1015cm-2としている。 〔図6(b)に示す工程〕そして、LTO膜21を除去
した後、フォトレジスト法を用いて表面チャネル層5の
上の所定領域にLTO膜22を配置し、これをマスクと
してRIEによりp- 型炭化珪素ベース領域3a、3b
上の表面チャネル層5を部分的にエッチング除去する。
[Step shown in FIG. 6 (a)] An LTO film 21 is arranged in a predetermined region on the surface channel layer 5, and N + ions are implanted using the LTO film 21 as a mask to form an n + type source region 4a,
4b is formed. The ion implantation condition at this time is 700
C. and the dose is 1 × 10 15 cm −2 . [Step shown in FIG. 6B] Then, after the LTO film 21 is removed, an LTO film 22 is arranged in a predetermined region on the surface channel layer 5 by using a photoresist method, and the pTO is formed by RIE using the LTO film 22 as a mask. - type silicon carbide base regions 3a, 3b
The upper surface channel layer 5 is partially etched away.

【0013】〔図6(c)に示す工程〕さらに、LTO
膜22をマスクにしてB+ をイオン注入し、ディープベ
ース層30a、30bを形成する。これにより、ベース
領域3a、3bの一部が厚くなったものとなり、ディー
プベース層30a、30b下のn- 型炭化珪素エピ層2
における厚さが薄くなって、電界強度を高くすることが
できるため、この部分でアバランシェブレークダウンし
易くなり、耐圧を向上させることができる。
[Step shown in FIG. 6 (c)]
B + ions are implanted using the film 22 as a mask to form the deep base layers 30a and 30b. As a result, a part of base regions 3a and 3b becomes thicker, and n -type silicon carbide epitaxial layer 2 under deep base layers 30a and 30b.
, The electric field strength can be increased, so that avalanche breakdown easily occurs at this portion, and the withstand voltage can be improved.

【0014】このディープベース層30a、30bは、
+ 型ソース領域4a、4bに重ならない部分に形成さ
れると共に、p- 型炭化珪素ベース領域3a、3bのう
ちディープベース層30a、30bが形成された厚みが
厚くなった部分が、ディープベース層30aが形成され
ていない厚みの薄い部分よりも不純物濃度が濃く形成さ
れる。
The deep base layers 30a and 30b are
The p - type silicon carbide base regions 3a, 3b are formed in portions that do not overlap the n + -type source regions 4a, 4b, and the portions of the p -type silicon carbide base regions 3a, 3b where the deep base layers 30a, 30b are formed are thickened. The impurity concentration is higher than that of the thin portion where the layer 30a is not formed.

【0015】〔図7(a)に示す工程〕LTO膜22を
除去した後、基板の上にウェット酸化によりゲート絶縁
膜(ゲート酸化膜)7を形成する。このとき、雰囲気温
度は1080℃とする。その後、ゲート絶縁膜7の上に
ポリシリコンゲート電極8をLPCVDにより堆積す
る。このときの成膜温度は600℃とする。
[Step shown in FIG. 7A] After removing the LTO film 22, a gate insulating film (gate oxide film) 7 is formed on the substrate by wet oxidation. At this time, the ambient temperature is 1080 ° C. Thereafter, a polysilicon gate electrode 8 is deposited on the gate insulating film 7 by LPCVD. The film formation temperature at this time is 600 ° C.

【0016】〔図7(b)に示す工程〕引き続き、ゲー
ト絶縁膜7の不要部分を除去した後、LTOよりなる絶
縁膜9を形成しゲート絶縁膜7を覆う。より詳しくは、
成膜温度は425℃であり、成膜後に1000℃のアニ
ールを行う。このとき、アニール雰囲気ガスはH2 、N
2 若しくはArのいずれかとする。
[Step shown in FIG. 7B]
After removing unnecessary portions of the insulating film 7,
An edge film 9 is formed to cover the gate insulating film 7. More specifically,
The film formation temperature is 425 ° C.
Rules. At this time, the annealing atmosphere gas is HTwo, N
TwoOr Ar.

【0017】〔図7(c)に示す工程〕そして、室温で
の金属スパッタリングによりソース電極10及びドレイ
ン電極11を配置する。また、成膜後に1000℃のア
ニールを行う。このようにして、図1に示す縦型パワー
MOSFETが完成する。次に、このパワープレーナ型
MOSFETの作用(動作)を説明する。
[Step shown in FIG. 7C] Then, the source electrode 10 and the drain electrode 11 are arranged by metal sputtering at room temperature. After film formation, annealing at 1000 ° C. is performed. Thus, the vertical power MOSFET shown in FIG. 1 is completed. Next, the operation (operation) of the power planar type MOSFET will be described.

【0018】上記MOSFETは蓄積モードで動作す
る。表面チャネル層5において、キャリアはp- 型炭化
珪素ベース領域3a、3bと表面チャネル層5との間の
静電ポテンシャルの差、及び表面チャネル層5とポリシ
リコンゲート電極8との間の仕事関数の差により生じた
電位によって空乏化される。このため、ポリシリコンゲ
ート電極8に印加する電圧を調整することにより、表面
チャネル層5とポリシリコンゲート電極8との間の仕事
関数の差と、外部からの印加電圧により生じる電位差を
変化させ、チャネルの状態を制御することでMOSFE
Tのオン、オフを制御する。
The MOSFET operates in a storage mode. In surface channel layer 5, carriers are the difference in electrostatic potential between p -type silicon carbide base regions 3 a and 3 b and surface channel layer 5, and the work function between surface channel layer 5 and polysilicon gate electrode 8. Depleted by the potential generated by the difference between Therefore, by adjusting the voltage applied to the polysilicon gate electrode 8, the work function difference between the surface channel layer 5 and the polysilicon gate electrode 8 and the potential difference caused by an externally applied voltage are changed. By controlling the channel state, MOSFE
Controls ON and OFF of T.

【0019】具体的には、オフ状態において、空乏領域
は、p- 型炭化珪素ベース領域3a、3b及びポリシリ
コンゲート電極8により作られた電界によって、表面チ
ャネル層5内に形成されているため、ポリシリコンゲー
ト電極8に対して正のバイアスを供給することによっ
て、ゲート絶縁膜(SiO2 )7と表面チャネル層5と
の間の界面においてn+ 型ソース領域4a、4bからn
- 型ドリフト領域2方向へ延びるチャネル領域を形成
し、オン状態にスイッチングさせる。
More specifically, in the off state, the depletion region is formed in surface channel layer 5 by an electric field created by p -type silicon carbide base regions 3 a and 3 b and polysilicon gate electrode 8. By supplying a positive bias to the polysilicon gate electrode 8, the n + -type source regions 4a, 4b to n at the interface between the gate insulating film (SiO 2 ) 7 and the surface channel layer 5
- a channel region formed extending in a type drift region 2 direction to switch to the ON state.

【0020】このとき、電子は、n+ 型ソース領域4
a、4bから表面チャネル層5を経由し表面チャネル層
5からJFET部を含むn- 型炭化珪素エピ層2に流れ
る。そして、n- 型炭化珪素エピ層(ドリフト領域)2
に達すると、電子は、n+ 型炭化珪素半導体基板(n+
ドレイン)1へ垂直に流れる。このようにゲート電極8
に正の電圧を印加することにより、表面チャネル層5に
蓄積型チャネルを誘起させ、ソース電極10とドレイン
電極11との間に電流を流す。
At this time, electrons are supplied to the n + type source region 4.
a and 4b flow through the surface channel layer 5 and flow from the surface channel layer 5 to the n -type silicon carbide epilayer 2 including the JFET portion. Then, n -type silicon carbide epilayer (drift region) 2
, Electrons are transferred to the n + type silicon carbide semiconductor substrate (n +
Drain) 1 flows vertically. Thus, the gate electrode 8
, A storage channel is induced in the surface channel layer 5, and a current flows between the source electrode 10 and the drain electrode 11.

【0021】このように、プレーナ型MOSFETにお
いて、動作モードをチャネル形成層の導電型を反転させ
ることなくチャネルを誘起する蓄積モードとすること
で、導電型を反転させる反転モードのMOSFETに比
べ、チャネル移動度を大きくしてオン抵抗を低減させる
ようにしている。
As described above, in the planar type MOSFET, the operation mode is set to the accumulation mode in which the channel is induced without inverting the conductivity type of the channel forming layer. The on-resistance is reduced by increasing the mobility.

【0022】[0022]

【発明が解決しようとする課題】上記図1に示したプレ
ーナ型MOSFETにおいて、チャネル領域を構成する
表面チャネル層5はエピタキシャル成長によって形成さ
れる。しかしながら、このエピタキシャル成長を行うウ
ェハ表面(n- 型炭化珪素エピ層2及びp- 型炭化珪素
ベース領域3a、3bの表面)は、研磨やp- 型炭化珪
素ベース領域3a、3bを形成するためのイオン注入に
よってエピ表面にダメージを受けているため、結晶性が
良質なものにならない(エピ表面層にイオン注入時のエ
ネルギー集中が起こり結晶性が悪くなる)ことが判っ
た。
In the planar type MOSFET shown in FIG. 1, the surface channel layer 5 constituting the channel region is formed by epitaxial growth. However, the wafer surfaces (surfaces of n -type silicon carbide epilayer 2 and p -type silicon carbide base regions 3a and 3b) on which the epitaxial growth is performed are used for polishing or forming p -type silicon carbide base regions 3a and 3b. Since the epi surface was damaged by the ion implantation, it was found that the crystallinity did not become good (energy concentration at the time of ion implantation occurred in the epi surface layer and the crystallinity deteriorated).

【0023】このため、FET動作特性において、チャ
ネル移動度が低下するという問題が発生することが判っ
た。本発明は上記点に鑑みて成され、プレーナ型MOS
FETにおける高移動度化を図ることを目的とする。
For this reason, it has been found that a problem occurs in the FET operating characteristics that the channel mobility is reduced. The present invention has been made in view of the above points, and has been made in consideration of a planar type MOS.
It is an object to increase the mobility of an FET.

【0024】[0024]

【課題を解決するための手段】上記目的を達成するた
め、以下の技術的手段を採用する。請求項1に記載の発
明においては、半導体層(2)及び前記ベース領域(3
a、3b)の上部に表面チャネル層(5)をエピタキシ
ャル成長させる工程の前に、ベース領域(3a、3b)
及び前記半導体層(2)の表面をRIE(Riacti
ve Ion Etching)によってエッチングす
る工程と、ベース領域(3a、3b)及び半導体層
(2)の表面を水素雰囲気中の熱処理によってエッチン
グする工程とを行うことを特徴としている。
In order to achieve the above object, the following technical means are employed. In the invention described in claim 1, the semiconductor layer (2) and the base region (3)
Before the step of epitaxially growing the surface channel layer (5) on top of the base regions (3a, 3b)
And the surface of the semiconductor layer (2) is subjected to RIE (Riacti).
and a step of etching the surfaces of the base regions (3a, 3b) and the surface of the semiconductor layer (2) by heat treatment in a hydrogen atmosphere.

【0025】このように、ベース領域(3a、3b)及
び前記半導体層(2)の表面をRIEによってエッチン
グすれば、該表面の凹凸部分やベース領域(3a、3
b)を形成する際におけるイオン注入による半導体層
(2)の表面のダメージ部分を除去でき、さらに該表面
を水素雰囲気中の熱処理によってエッチングすれば、R
IEによるダメージ部分を除去することができる。
As described above, if the surfaces of the base regions (3a, 3b) and the semiconductor layer (2) are etched by RIE, the irregularities on the surfaces and the base regions (3a, 3b) can be obtained.
b), the damaged portion of the surface of the semiconductor layer (2) due to ion implantation can be removed, and if the surface is etched by heat treatment in a hydrogen atmosphere, R
The part damaged by the IE can be removed.

【0026】このため、表面チャネル層(5)をエピタ
キシャル成長させる前に、成長させるウェハ表面の状態
を良好にすることができ、表面チャネル層(5)の結晶
性を良好にすることができる。これにより、表面チャネ
ル層(5)のチャネル移動度を向上することができ、プ
レーナ型パワーMOSFETの高移動度化を図ることが
できる。
Therefore, before the surface channel layer (5) is epitaxially grown, the condition of the surface of the wafer to be grown can be improved, and the crystallinity of the surface channel layer (5) can be improved. Thereby, the channel mobility of the surface channel layer (5) can be improved, and the mobility of the planar power MOSFET can be increased.

【0027】なお、請求項2に示すように、ベース領域
(3a、3b)及び前記半導体層(2)の表面をRIE
によってエッチングしたのち、該表面に犠牲酸化膜(3
c)を形成し、さらにこの犠牲酸化膜(3c)を除去す
るようにしても、請求項1と同様の効果を得ることがで
きる。
According to a second aspect of the present invention, the surfaces of the base region (3a, 3b) and the semiconductor layer (2) are formed by RIE.
After etching by a sacrificial oxide film (3
Even if c) is formed and the sacrificial oxide film (3c) is removed, the same effect as in claim 1 can be obtained.

【0028】[0028]

【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。 (第1実施形態)本実施形態に示される縦型パワーMO
SFETは、製造方法についてが従来と異なっており、
構造については図8に示す縦型パワーMOSFETと同
様であるため、製造方法についてのみ説明し、構造につ
いての説明は省略する。なお、本実施形態では、上記図
3〜図5に示した従来の製造工程に対して後述する製造
工程を付加したのもであるため、上記と同様の部分につ
いては図5〜図7を参照し、付加した部分のみについて
説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. (First Embodiment) Vertical power MO shown in this embodiment
The SFET is different from the conventional one in the manufacturing method,
Since the structure is the same as that of the vertical power MOSFET shown in FIG. 8, only the manufacturing method will be described, and the description of the structure will be omitted. In this embodiment, since a manufacturing process described later is added to the conventional manufacturing process shown in FIGS. 3 to 5, the same parts as those described above are shown in FIGS. Only the added portion will be described.

【0029】まず、上記と同様に図5(a)、図5
(b)に示す工程を行い、n- 型炭化珪素エピ層2の所
定領域にp- 型炭化珪素ベース領域3a、3bを形成す
る。次に、以下に示す製造工程を実施する。 〔図1(a)に示す工程〕まず、LTO膜(低温成長酸
化膜)20を除去し、ドライエッチングの1つであるR
IE法によってウェハ表面全面(n- 型炭化珪素エピ層
2及びp- 型炭化珪素ベース領域3a、3bの表面)を
数nm程度、プラズマエッチングする。このとき、RI
Eガスとして、SF6 、CF4 、CH3 等のフッ素系ガ
スのみ、又はフッ素系ガスに水素を付加したもの若しく
はフッ素系ガスに酸素を付加したものを用いている。こ
の工程により、ウェハ表面の凹凸やp- 型炭化珪素ベー
ス領域3a、3bを形成したときにおける表面荒れが除
去される。
First, FIG. 5A and FIG.
By performing the step shown in (b), p -- type silicon carbide base regions 3a and 3b are formed in predetermined regions of n -- type silicon carbide epilayer 2. Next, the following manufacturing process is performed. [Step shown in FIG. 1 (a)] First, the LTO film (low temperature growth oxide film) 20 is removed, and R, which is one of dry etching, is removed.
The entire surface of the wafer (the surface of the n -type silicon carbide epilayer 2 and the p -type silicon carbide base regions 3a and 3b) is plasma-etched to a thickness of about several nm by the IE method. At this time, RI
As the E gas, only a fluorine-based gas such as SF 6 , CF 4 or CH 3 , or a gas obtained by adding hydrogen to a fluorine-based gas or a gas obtained by adding oxygen to a fluorine-based gas is used. By this step, the irregularities on the wafer surface and the surface roughness when the p -type silicon carbide base regions 3a and 3b are formed are removed.

【0030】〔図1(b)に示す工程〕次に、RCA洗
浄したのち、水素雰囲気中で1500℃の熱処理を行
う。これにより、RIE法によるエッチング時に生じた
ダメージがエッチング除去され、ウェハ表面は滑らかで
結晶性が良好なものとなる。そして、図5(c)に示す
工程を行って、エピタキシャル膜(表面チャネル層)5
を成長させる。このとき、上記図1(a)、(b)の工
程にて、ウェハ表面は滑らかで結晶性が良好な面状態が
良好なものとなっているため、成長するエピタキシャル
膜(表面チャネル層)5も結晶性の優れたものとなる。
[Step shown in FIG. 1B] Next, after RCA cleaning, a heat treatment at 1500 ° C. is performed in a hydrogen atmosphere. As a result, damage caused at the time of etching by the RIE method is removed by etching, and the wafer surface becomes smooth and has good crystallinity. Then, the step shown in FIG. 5C is performed, and the epitaxial film (surface channel layer) 5 is formed.
Grow. At this time, in the steps shown in FIGS. 1A and 1B, since the wafer surface is smooth and has good crystallinity and a good surface state, the epitaxial film (surface channel layer) 5 to be grown is formed. Also have excellent crystallinity.

【0031】具体的に、エピタキシャル膜5の結晶性を
X線にて観察してみたところ、図2(a)に示される従
来のものに比して、図2(b)に示される本実施形態に
おけるものの方がX線ロッキングカーブの特性が良好と
なっており、結晶性が改善されていることが確認され
た。この後、さらに図6、図7に示す工程を経てプレー
ナ型パワーMOSFETを完成させる。このようにし
て、本実施形態におけるプレーナ型パワーMOSFET
が製造される。
Specifically, when the crystallinity of the epitaxial film 5 was observed with an X-ray, the present embodiment shown in FIG. 2B was compared with the conventional one shown in FIG. In the form, the characteristics of the X-ray rocking curve were better, and it was confirmed that the crystallinity was improved. Thereafter, the planar type power MOSFET is completed through the steps shown in FIGS. Thus, the planar type power MOSFET according to the present embodiment
Is manufactured.

【0032】次に、この縦型パワーMOSFETの作用
(動作)を説明する。本MOSFETはノーマリオフ型
の蓄積モードで動作するものであって、ポリシリコンゲ
ート電極に電圧を印加しない場合は、表面チャネル層5
においてキャリアは、p- 型炭化珪素ベース領域3a、
3bと表面チャネル層5との間の静電ポテンシャルの
差、及び表面チャネル層5とポリシリコンゲート電極8
との間の仕事関数の差により生じた電位によって全域空
乏化される。ポリシリコンゲート電極8に電圧を印加す
ることにより、表面チャネル層5とポリシリコンゲート
電極8との間の仕事関数の差と外部からの印加電圧の和
により生じる電位差を変化させる。このことにより、チ
ャネルの状態を制御することができる。
Next, the operation (operation) of the vertical power MOSFET will be described. This MOSFET operates in a normally-off type accumulation mode, and when no voltage is applied to the polysilicon gate electrode, the surface channel layer 5
The carrier is a p - type silicon carbide base region 3a,
3b and the difference in electrostatic potential between the surface channel layer 5 and the surface channel layer 5 and the polysilicon gate electrode 8
Is fully depleted by the potential created by the work function difference between By applying a voltage to the polysilicon gate electrode 8, a potential difference caused by a sum of a work function difference between the surface channel layer 5 and the polysilicon gate electrode 8 and an externally applied voltage is changed. As a result, the state of the channel can be controlled.

【0033】つまり、ポリシリコンゲート電極8の仕事
関数を第1の仕事関数とし、p- 型炭化珪素ベース領域
3a、3bの仕事関数を第2の仕事関数とし、表面チャ
ネル層5の仕事関数を第3の仕事関数としたとき、第1
〜第3の仕事関数の差を利用して、表面チャネル層5の
n型のキャリアを空乏化する様に第1〜第3の仕事関数
と表面チャネル層5の不純物濃度及び膜厚を設定するこ
とができる。
That is, the work function of the polysilicon gate electrode 8 is the first work function, the work function of the p -type silicon carbide base regions 3a and 3b is the second work function, and the work function of the surface channel layer 5 is Assuming the third work function, the first
Using the difference between the first to third work functions, the first to third work functions, the impurity concentration and the film thickness of the surface channel layer 5 are set so as to deplete the n-type carriers in the surface channel layer 5. be able to.

【0034】また、オフ状態において、空乏領域は、p
- 型炭化珪素ベース領域3a、3b及びポリシリコンゲ
ート電極8により作られた電界によって、表面チャネル
層5内に形成される。この状態からポリシリコンゲート
電極8に対して正のバイアスを供給すると、ゲート絶縁
膜(SiO2 )7と表面チャネル層5との間の界面にお
いてn+ 型ソース領域4a、4bからn- 型ドリフト領
域2方向へ延びるチャネル領域が形成され、オン状態に
スイッチングされる。このとき、電子は、n+型ソース
領域4a、4bから表面チャネル層5を経由し表面チャ
ネル層5からn - 型炭化珪素エピ層2に流れる。そし
て、n- 型炭化珪素エピ層2(ドリフト領域)に達する
と、電子は、n+ 型炭化珪素半導体基板1(n+ ドレイ
ン)へ垂直に流れる。
In the off state, the depletion region is p
--Type silicon carbide base regions 3a, 3b and polysilicon regions
The electric field created by the gate electrode 8 causes the surface channel
Formed in layer 5. From this state the polysilicon gate
When a positive bias is supplied to the electrode 8, the gate insulation
Film (SiOTwo) At the interface between 7 and the surface channel layer 5
And n+From the mold source regions 4a, 4b to n-Mold drift area
A channel region extending in the direction of region 2 is formed and turned on.
Is switched. At this time, the electron is n+Type source
From the regions 4a and 4b via the surface channel layer 5, the surface channel
Flannel layer 5 to n -Flows into the epitaxial silicon carbide layer 2. Soshi
And n--Type silicon carbide epi layer 2 (drift region)
And the electron is n+Type silicon carbide semiconductor substrate 1 (n+Dray
Flows vertically to

【0035】このようにゲート電極8に正の電圧を印加
することにより、表面チャネル層5に蓄積型チャネルを
誘起させ、ソース電極10とドレイン電極11との間に
キャリアが流れる。このとき、上述したように、本実施
形態におけるプレーナ型パワーMOSFETは、従来に
おけるプレーナ型MOSFETに比して表面チャネル層
5の結晶性が良好なものとなっている。このため、本実
施形態においては、従来のものよりも表面チャネル層5
のチャネル移動度を向上させることができ、高移動度の
プレーナ型パワーMOSFETとすることができる。
As described above, by applying a positive voltage to the gate electrode 8, a storage channel is induced in the surface channel layer 5, and carriers flow between the source electrode 10 and the drain electrode 11. At this time, as described above, the planar-type power MOSFET of the present embodiment has better crystallinity of the surface channel layer 5 than the conventional planar-type MOSFET. For this reason, in the present embodiment, the surface channel layer 5
Channel mobility can be improved, and a high mobility planar power MOSFET can be obtained.

【0036】具体的に、デバイス作製後のFET動作特
性を調べてみたところ、従来のプレーナ型パワーMOS
FETがチャネル移動度が40cm2 /Vsecであ
り、本実施形態におけるプレーナ型パワーMOSFET
がチャネル移動度が120cm 2 /Vsecであった。
つまり、本実施形態では従来に比してチャネル移動度が
3倍に増加しているという結果をしめしている。この結
果からも、プレーナ型パワーMOSFETの高移動度化
が図れていることが判る。
Specifically, FET operation characteristics after device fabrication are described.
Investigation of the characteristics shows that a conventional planar power MOS
FET has channel mobility of 40cmTwo/ Vsec
The planar type power MOSFET according to the present embodiment
Has a channel mobility of 120 cm Two/ Vsec.
That is, in the present embodiment, the channel mobility is higher than in the related art.
The result is that it has increased threefold. This result
High mobility of planar type power MOSFET
It turns out that it is planned.

【0037】このように、表面チャネル層5をエピタキ
シャル成長させる前に、RIE法によってウェハ表面の
ダメージ層を除去し、さらにRIEダメージを水素雰囲
気における熱処理を施すことによってウェハ表面の状態
を良好にするとができ、この上に形成されるエピタキシ
ャル膜(表面チャネル層)5の結晶性を良好にすること
ができる。
As described above, before the surface channel layer 5 is epitaxially grown, the damaged layer on the wafer surface is removed by RIE, and the RIE damage is subjected to a heat treatment in a hydrogen atmosphere to improve the condition of the wafer surface. The crystallinity of the epitaxial film (surface channel layer) 5 formed thereon can be improved.

【0038】(第2実施形態)本実施形態では、第1実
施形態と異なる方法によって、エピタキシャル膜(表面
チャネル層)5を成長させるウェハ表面の状態を良好に
する。従って、ウェハ表面の状態を良好にする製造工程
を図3に示し、この工程についてのみ説明する。
(Second Embodiment) In this embodiment, the state of the wafer surface on which the epitaxial film (surface channel layer) 5 is grown is improved by a method different from that of the first embodiment. Accordingly, a manufacturing process for improving the condition of the wafer surface is shown in FIG. 3, and only this process will be described.

【0039】〔図3(a)に示す工程〕まず、LTO膜
20を除去し、RIE法によってウェハ表面全面(n-
型炭化珪素エピ層2及びp- 型炭化珪素ベース領域3
a、3bの表面)を数nm程度、プラズマエッチングす
る。このとき、RIEガスとして、SF6 、CF4 、C
3 等のフッ素系ガスのみ、又はフッ素系ガスに水素を
付加したもの若しくはフッ素系ガスに酸素を付加したも
のを用いている。この工程により、ウェハ表面の凹凸や
- 型炭化珪素ベース領域3a、3bを形成したときに
おける表面荒れが除去される。
[Step shown in FIG. 3A] First, the LTO film
20 is removed, and the entire surface of the wafer (n-
-Type silicon carbide epilayer 2 and p--Type silicon carbide base region 3
a, 3b) is plasma-etched to about several nm.
You. At this time, SF is used as the RIE gas.6, CFFour, C
H ThreeHydrogen gas only or fluorine gas
Oxygen is added to the gas or fluorine gas
Is used. By this process, irregularities on the wafer surface and
p-When silicon carbide base regions 3a and 3b are formed
Surface roughness is removed.

【0040】〔図3(b)に示す工程〕次に、RCA洗
浄したのち、1100℃程度、4時間のウェット酸化を
行う。これにより、ウェハ表面に犠牲酸化膜3cが形成
される。 〔図3(c)に示す工程〕その後、希フッ酸により犠牲
酸化膜3cをエッチング除去する。これにより、RIE
法によるエッチング時に生じたダメージが除去され、ウ
ェハ表面は滑らかで結晶性が良好なものとなる。
[Step shown in FIG. 3B] Next, after RCA cleaning, wet oxidation is performed at about 1100 ° C. for 4 hours. Thus, a sacrificial oxide film 3c is formed on the wafer surface. [Step shown in FIG. 3 (c)] Thereafter, the sacrificial oxide film 3c is removed by etching with diluted hydrofluoric acid. With this, RIE
The damage caused during the etching by the method is removed, and the wafer surface becomes smooth and has good crystallinity.

【0041】そして、図3(c)に示す工程を行って、
エピタキシャル膜(表面チャネル層)5を成長させる
と、エピタキシャル膜(表面チャネル層)5も結晶性の
優れたものとなる。これにより第1実施形態と同様に、
プレーナ型パワーMOSFETの高移動度化を図ること
ができる。
Then, the step shown in FIG.
When the epitaxial film (surface channel layer) 5 is grown, the epitaxial film (surface channel layer) 5 also has excellent crystallinity. Thereby, similarly to the first embodiment,
The mobility of the planar power MOSFET can be increased.

【0042】(他の実施形態)上記実施形態では、n+
型ソース領域4a、4bを形成する前に表面チャネル層
5をエピタキシャル成長させるようにしているが、n+
型ソース領域4a、4bを形成しておいた後に、n+
ソース領域4a、4bやp- 型炭化珪素ベース領域3
a、3b及びn- 型炭化珪素エピ層2の表面上に表面チ
ャネル層40をエピタキシャル成長させるようにしても
よい。
(Other Embodiments) In the above embodiment, n +
Although the surface channel layer 5 is epitaxially grown before forming the mold source regions 4a and 4b, n +
After forming source regions 4a and 4b, n + source regions 4a and 4b and p type silicon carbide base region 3 are formed.
A surface channel layer 40 may be epitaxially grown on the surfaces of the a, 3b and n -type silicon carbide epilayers 2.

【0043】また、上記実施形態において、プレーナ型
MOSFETを例に挙げて説明したが、チャネル層を基
板表面に対して垂直とした、いわゆるトレンチ型(コン
ケーブ型)縦型MOSFETに本発明の一実施形態を適
用してもよい。なお、上記実施形態では、面方位を特定
して説明したが、実施において基板面方位の特定を行わ
なくても上記効果を奏することができる。
In the above embodiment, the planar MOSFET has been described as an example. However, a so-called trench (concave) vertical MOSFET in which the channel layer is perpendicular to the substrate surface is an embodiment of the present invention. A form may be applied. In the above embodiment, the plane orientation is specified and described. However, the above effects can be obtained without specifying the substrate plane orientation in the embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態におけるプレーナ型パワーMOS
FETの製造工程を示す図である。
FIG. 1 is a planer type power MOS according to a first embodiment.
It is a figure showing the manufacturing process of FET.

【図2】表面チャネル層5におけるX線ロッキングカー
ブを示す比較図であって、(a)はウェハ表面の処理を
行った場合の図であり、(b)はウェハ表面処理を行っ
ていない場合の図である。
FIGS. 2A and 2B are comparison diagrams showing an X-ray rocking curve in a surface channel layer 5; FIG. 2A is a diagram when a wafer surface treatment is performed; FIG. 2B is a diagram when a wafer surface treatment is not performed; FIG.

【図3】第2実施形態におけるプレーナ型パワーMOS
FETの製造工程を示す図である。
FIG. 3 is a planer type power MOS according to a second embodiment.
It is a figure showing the manufacturing process of FET.

【図4】本出願人が先に出願した縦型パワーMOSFE
Tの構成を示す断面図である。
FIG. 4 is a vertical power MOSFE filed earlier by the present applicant.
It is sectional drawing which shows the structure of T.

【図5】図4に示す縦型パワーMOSFETの製造工程
を示す図である。
FIG. 5 is a view showing a manufacturing process of the vertical power MOSFET shown in FIG. 4;

【図6】図5に続く縦型パワーMOSFETの製造工程
を示す図である。
FIG. 6 is a view illustrating a manufacturing process of the vertical power MOSFET following FIG. 5;

【図7】図6に続く縦型パワーMOSFETの製造工程
を示す図である。
FIG. 7 is a view illustrating a manufacturing step of the vertical power MOSFET following FIG. 6;

【符号の説明】[Explanation of symbols]

1…n+ 型炭化珪素半導体基板、2…n- 型炭化珪素エ
ピタキシャル層、3a、3b…p- 型炭化珪素ベース領
域、4a、4b…n+ 型ソース領域、5…表面チャネル
層(n- 型SiC層)、7…ゲート絶縁膜、8…ゲート
電極、9…絶縁膜、10…ソース電極、11…ドレイン
電極。
1 ... n + -type silicon carbide semiconductor substrate, 2 ... n - -type silicon carbide epitaxial layer, 3a, 3b ... p - type silicon carbide base region, 4a, 4b ... n + -type source region, 5 ... surface channel layer (n - 7: gate insulating film, 8: gate electrode, 9: insulating film, 10: source electrode, 11: drain electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板(1)の主表面
上に、この半導体基板(1)よりも高抵抗な炭化珪素よ
りなる第1導電型の半導体層(2)を形成する工程と、 前記半導体層(2)の表層部の所定領域に、所定深さを
有する第2導電型のベース領域(3a、3b)をイオン
注入によって形成する工程と、 前記ベース領域(3a、3b)及び前記半導体層(2)
の表面をRIE(Riactive Ion Etch
ing)によってエッチングする工程と、 前記ベース領域(3a、3b)及び前記半導体層(2)
の表面を水素雰囲気中の熱処理によってエッチングする
工程と、 前記半導体層(2)及び前記ベース領域(3a、3b)
の上部に表面チャネル層(5)をエピタキシャル成長さ
せる工程と、 前記ベース領域(3a、3b)の表層部の所定領域に、
前記表面チャネル層(5)に接すると共に該ベース領域
(3a、3b)の深さよりも浅い第1導電型のソース領
域(4a、4b)を形成する工程とを備えた炭化珪素半
導体装置の製造方法。
1. A step of forming a first conductivity type semiconductor layer (2) made of silicon carbide having a higher resistance than the semiconductor substrate (1) on a main surface of the first conductivity type semiconductor substrate (1). Forming a second conductivity type base region (3a, 3b) having a predetermined depth in a predetermined region of a surface portion of the semiconductor layer (2) by ion implantation; and the base region (3a, 3b). And the semiconductor layer (2)
The surface of the RIE (Reactive Ion Etch)
ing), the base region (3a, 3b) and the semiconductor layer (2).
Etching the surface of the semiconductor layer by heat treatment in a hydrogen atmosphere; and the semiconductor layer (2) and the base regions (3a, 3b).
A step of epitaxially growing a surface channel layer (5) on the upper surface of the base region (3),
Forming a first conductivity type source region (4a, 4b) in contact with the surface channel layer (5) and shallower than the depth of the base region (3a, 3b). .
【請求項2】 第1導電型の半導体基板(1)の主表面
上に、この半導体基板(1)よりも高抵抗な炭化珪素よ
りなる第1導電型の半導体層(2)を形成する工程と、 前記半導体層(2)の表層部の所定領域に、所定深さを
有する第2導電型のベース領域(3a、3b)をイオン
注入によって形成する工程と、 前記ベース領域(3a、3b)及び前記半導体層(2)
の表面をRIEによってエッチングする工程と、 前記ベース領域(3a、3b)及び前記半導体層(2)
の表面に犠牲酸化膜(3c)を形成する工程と、 前記犠牲酸化膜(3c)を除去する工程と、 前記半導体層(2)及び前記ベース領域(3a、3b)
の上部に表面チャネル層(5)をエピタキシャル成長さ
せる工程と、 前記ベース領域(3a、3b)の表層部の所定領域に、
前記表面チャネル層(5)に接すると共に該ベース領域
(3a、3b)の深さよりも浅い第1導電型のソース領
域(4a、4b)を形成する工程とを備えた炭化珪素半
導体装置の製造方法。
2. A step of forming a first conductive type semiconductor layer (2) made of silicon carbide having a higher resistance than the semiconductor substrate (1) on a main surface of the first conductive type semiconductor substrate (1). Forming a second conductivity type base region (3a, 3b) having a predetermined depth in a predetermined region of a surface portion of the semiconductor layer (2) by ion implantation; and the base region (3a, 3b). And the semiconductor layer (2)
Etching the surface of the base region by RIE, the base region (3a, 3b) and the semiconductor layer (2).
Forming a sacrificial oxide film (3c) on the surface of the substrate; removing the sacrificial oxide film (3c); the semiconductor layer (2) and the base regions (3a, 3b)
A step of epitaxially growing a surface channel layer (5) on the upper surface of the base region (3),
Forming a first conductivity type source region (4a, 4b) in contact with the surface channel layer (5) and shallower than the depth of the base region (3a, 3b). .
JP10040550A 1998-02-23 1998-02-23 Manufacture of silicon carbide semiconductor device Pending JPH11238742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10040550A JPH11238742A (en) 1998-02-23 1998-02-23 Manufacture of silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10040550A JPH11238742A (en) 1998-02-23 1998-02-23 Manufacture of silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
JPH11238742A true JPH11238742A (en) 1999-08-31

Family

ID=12583569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10040550A Pending JPH11238742A (en) 1998-02-23 1998-02-23 Manufacture of silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JPH11238742A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094098A (en) * 1999-09-21 2001-04-06 Denso Corp Silicon carbide semiconductor device and fabrication method thereof
JP2001210637A (en) * 1999-11-18 2001-08-03 Denso Corp Method for manufacturing silicon carbide semiconductor device
WO2002029900A3 (en) * 2000-10-03 2002-10-31 Cree Inc Silicon carbide power mosfets having a shorting channel and methods of fabrication them
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
US6767843B2 (en) 2000-10-03 2004-07-27 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
EP1494268A2 (en) * 2003-07-02 2005-01-05 Matsushita Electric Industrial Co., Ltd. SiC Semiconductor device and method for fabricating the same
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7022378B2 (en) 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US7118970B2 (en) 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
JP2006351744A (en) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd Manufacturing method of silicon carbide semiconductor device
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7528040B2 (en) 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
DE102008056389A1 (en) 2007-11-09 2009-05-14 Denso Corp., Kariya-shi Semiconductor device with high breakdown voltage transistor
US7615801B2 (en) 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US7727904B2 (en) 2005-09-16 2010-06-01 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US8193848B2 (en) 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8288220B2 (en) 2009-03-27 2012-10-16 Cree, Inc. Methods of forming semiconductor devices including epitaxial layers and related structures
US8294507B2 (en) 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8330244B2 (en) 2006-08-01 2012-12-11 Cree, Inc. Semiconductor devices including Schottky diodes having doped regions arranged as islands and methods of fabricating same
US8354690B2 (en) 2009-08-31 2013-01-15 Cree, Inc. Solid-state pinch off thyristor circuits
US8415671B2 (en) 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
US8432012B2 (en) 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
JP2015226030A (en) * 2014-05-30 2015-12-14 三菱電機株式会社 Silicon carbide semiconductor device manufacturing method
US9231122B2 (en) 2011-09-11 2016-01-05 Cree, Inc. Schottky diode
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US9548374B2 (en) 2006-08-17 2017-01-17 Cree, Inc. High power insulated gate bipolar transistors
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9984894B2 (en) 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US6998322B2 (en) 1998-08-28 2006-02-14 Cree, Inc. Methods of fabricating high voltage, high temperature capacitor and interconnection structures
JP2001094098A (en) * 1999-09-21 2001-04-06 Denso Corp Silicon carbide semiconductor device and fabrication method thereof
JP2001210637A (en) * 1999-11-18 2001-08-03 Denso Corp Method for manufacturing silicon carbide semiconductor device
WO2002029900A3 (en) * 2000-10-03 2002-10-31 Cree Inc Silicon carbide power mosfets having a shorting channel and methods of fabrication them
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
US6767843B2 (en) 2000-10-03 2004-07-27 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
US6956238B2 (en) 2000-10-03 2005-10-18 Cree, Inc. Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
US7022378B2 (en) 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US6979863B2 (en) 2003-04-24 2005-12-27 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
US7074643B2 (en) 2003-04-24 2006-07-11 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
US7381992B2 (en) 2003-04-24 2008-06-03 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions
EP1494268A3 (en) * 2003-07-02 2010-04-21 Panasonic Corporation SiC Semiconductor device and method for fabricating the same
EP1494268A2 (en) * 2003-07-02 2005-01-05 Matsushita Electric Industrial Co., Ltd. SiC Semiconductor device and method for fabricating the same
US7846828B2 (en) 2003-07-02 2010-12-07 Panasonic Corporation Semiconductor device and method for fabricating the same
US7118970B2 (en) 2004-06-22 2006-10-10 Cree, Inc. Methods of fabricating silicon carbide devices with hybrid well regions
US7705362B2 (en) 2004-06-22 2010-04-27 Cree, Inc. Silicon carbide devices with hybrid well regions
US7414268B2 (en) 2005-05-18 2008-08-19 Cree, Inc. High voltage silicon carbide MOS-bipolar devices having bi-directional blocking capabilities
US7615801B2 (en) 2005-05-18 2009-11-10 Cree, Inc. High voltage silicon carbide devices having bi-directional blocking capabilities
US8859366B2 (en) 2005-05-24 2014-10-14 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US7528040B2 (en) 2005-05-24 2009-05-05 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
US8188483B2 (en) 2005-05-24 2012-05-29 Cree, Inc. Silicon carbide devices having smooth channels
US9142663B2 (en) 2005-05-24 2015-09-22 Cree, Inc. Silicon carbide devices having smooth channels
JP2006351744A (en) * 2005-06-15 2006-12-28 Fuji Electric Holdings Co Ltd Manufacturing method of silicon carbide semiconductor device
US7727904B2 (en) 2005-09-16 2010-06-01 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US8536066B2 (en) 2005-09-16 2013-09-17 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US8432012B2 (en) 2006-08-01 2013-04-30 Cree, Inc. Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same
US8330244B2 (en) 2006-08-01 2012-12-11 Cree, Inc. Semiconductor devices including Schottky diodes having doped regions arranged as islands and methods of fabricating same
US9548374B2 (en) 2006-08-17 2017-01-17 Cree, Inc. High power insulated gate bipolar transistors
US9064840B2 (en) 2007-02-27 2015-06-23 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
DE102008056389A1 (en) 2007-11-09 2009-05-14 Denso Corp., Kariya-shi Semiconductor device with high breakdown voltage transistor
US8288220B2 (en) 2009-03-27 2012-10-16 Cree, Inc. Methods of forming semiconductor devices including epitaxial layers and related structures
US9640652B2 (en) 2009-03-27 2017-05-02 Cree, Inc. Semiconductor devices including epitaxial layers and related methods
US8294507B2 (en) 2009-05-08 2012-10-23 Cree, Inc. Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits
US8193848B2 (en) 2009-06-02 2012-06-05 Cree, Inc. Power switching devices having controllable surge current capabilities
US8354690B2 (en) 2009-08-31 2013-01-15 Cree, Inc. Solid-state pinch off thyristor circuits
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US9595618B2 (en) 2010-03-08 2017-03-14 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US8415671B2 (en) 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9984894B2 (en) 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions
US9865750B2 (en) 2011-09-11 2018-01-09 Cree, Inc. Schottky diode
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US9231122B2 (en) 2011-09-11 2016-01-05 Cree, Inc. Schottky diode
US10141302B2 (en) 2011-09-11 2018-11-27 Cree, Inc. High current, low switching loss SiC power module
US10153364B2 (en) 2011-09-11 2018-12-11 Cree, Inc. Power module having a switch module for supporting high current densities
US11024731B2 (en) 2011-09-11 2021-06-01 Cree, Inc. Power module for supporting high current densities
US11171229B2 (en) 2011-09-11 2021-11-09 Cree, Inc. Low switching loss high performance power module
JP2015226030A (en) * 2014-05-30 2015-12-14 三菱電機株式会社 Silicon carbide semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JPH11238742A (en) Manufacture of silicon carbide semiconductor device
JP3385938B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
JP3893725B2 (en) Method for manufacturing silicon carbide semiconductor device
US5976936A (en) Silicon carbide semiconductor device
JP3216804B2 (en) Manufacturing method of silicon carbide vertical FET and silicon carbide vertical FET
US8198675B2 (en) Silicon carbide semiconductor device and method of manufacturing the same
US6573534B1 (en) Silicon carbide semiconductor device
US9012984B2 (en) Field effect transistor devices with regrown p-layers
JP3217690B2 (en) Method for manufacturing semiconductor device
JP5774261B2 (en) Silicon carbide self-aligned epitaxial MOSFET and manufacturing method thereof
JP3428459B2 (en) Silicon carbide n-channel MOS semiconductor device and method of manufacturing the same
JPH11261061A (en) Silicon carbide semiconductor device and its manufacture
WO1994013017A1 (en) Power mosfet in silicon carbide
US9269781B2 (en) Semiconductor device and method for manufacturing the same
JP2003318398A (en) Silicon carbide semiconductor device
JP2006066439A (en) Semiconductor device and its manufacturing method
JP2003318409A (en) Semiconductor device and manufacturing method therefor
US8222107B2 (en) Method for producing semiconductor element
JPWO2019142722A1 (en) Semiconductor devices and their manufacturing methods
JP2002222950A (en) Method of manufacturing silicon carbide semiconductor device
JPH09172187A (en) Junction type field-effect semiconductor device and its manufacture
JP4806852B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP3968860B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2005310886A (en) Silicon carbide semiconductor device and its manufacturing method
WO2015019731A1 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061226