JPH11236646A - 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法 - Google Patents

耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法

Info

Publication number
JPH11236646A
JPH11236646A JP10094210A JP9421098A JPH11236646A JP H11236646 A JPH11236646 A JP H11236646A JP 10094210 A JP10094210 A JP 10094210A JP 9421098 A JP9421098 A JP 9421098A JP H11236646 A JPH11236646 A JP H11236646A
Authority
JP
Japan
Prior art keywords
steel
carbosulfide
less
machinability
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10094210A
Other languages
English (en)
Other versions
JP3395642B2 (ja
Inventor
Yasuo Kurokawa
八寿男 黒川
Yoshihiko Kamata
芳彦 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP09421098A priority Critical patent/JP3395642B2/ja
Publication of JPH11236646A publication Critical patent/JPH11236646A/ja
Application granted granted Critical
Publication of JP3395642B2 publication Critical patent/JP3395642B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【課題】表面硬化処理時の異常粒成長がなく熱処理歪み
の少ない高強度・高靭性の表面硬化部品とその素材とな
る被削性に優れた耐粗粒化肌焼ボロン鋼材及びその表面
硬化部品の製造方法を提供する。 【解決手段】C:0.1〜0.3%、Si:0.01〜0.5%、Mn:
0.6〜2.0%、P≦0.025%、S:0.002〜0.2%、Nb:0.02
〜0.08%、Ti:0.04〜1.0%、B:0.001〜0.01%、N≦0.
008%、Cr:0〜2.0%、Mo:0〜1.0%、Ni: 0〜2.0%、
Al:0〜0.10%、3S−Ti+4N≦0%、残部は Feと不純物
の組成で、鋼中のTi炭硫化物の最大直径が10μm以下、
その量が清浄度で0.05%以上である被削性に優れた耐粗
粒化肌焼鋼材。W:0〜1.0%、Ti≦1.0%、Zr≦1.0
%、3S−Ti−Zr+4N≦0%で、Ti炭硫化物とZr炭硫化物
の最大直径が10μm以下、その量の和が清浄度で0.05%
以上でも良い。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、肌焼鋼材及び表面
硬化部品と、その表面硬化部品の製造方法に関し、より
詳しくは、被削性に優れた耐粗粒化肌焼鋼材及び強度と
靭性に優れた表面硬化部品並びにその製造方法に関す
る。
【0002】
【従来の技術】従来、自動車用や産業機械用などの各種
機械構造部品、特に歯車を代表とする表面硬化部品は、
肌焼鋼を素材として、これを熱間鍛造や冷間鍛造した後
に切削加工して所望の形状に成形加工し、次いで、耐摩
耗性や疲労強度を向上させる目的で部品表面に浸炭処理
や浸炭窒化処理などの表面硬化処理を施してから使用に
供されている。
【0003】表面硬化部品の素材鋼となる機械構造用肌
焼鋼としては、従来、JIS規格鋼(機械構造用マンガ
ン鋼(SMn鋼)及びマンガンクロム鋼(SMnC鋼)
(いずれもJIS G 4106)、クロムモリブデン鋼(SCM
鋼)(JIS G 4105)、クロム鋼(SCr鋼)(JIS G 41
04)、ニッケルクロムモリブデン鋼(SNCM鋼)(JI
S G 4103)、ニッケルクロム鋼(SNC鋼)(JIS G 41
02)など)が用いられてきた。しかし、こうしたJIS
規格鋼では、合金元素を多量に含み、又、通常の表
面硬化処理において長時間を要する、ためにコスト面で
問題があった。すなわち、近年の経済事情の下、産業界
からは各種表面硬化部品の素材コストの低減に対する要
請があるが、この要請に充分応えられるものではなかっ
た。
【0004】そのため、素材鋼に添加する各種合金成分
を削減する検討がなされ、この合金成分削減による焼入
れ性の低下を補うために、少量のB(ボロン)を添加す
るボロン鋼が注目されてきた。しかし、従来型の、単に
合金成分量を減じたボロン鋼では、浸炭処理や浸炭窒化
処理などの表面硬化処理時に930℃程度まで加熱され
た場合に異常粒成長が生じ、焼入れ時の歪み発生や材料
強度の低下が生ずるという問題がある。
【0005】上記の産業界からの要請に対して、一方で
は、高温で表面硬化処理を行い処理時間の短縮を図る浸
炭用鋼材の製造方法が特開平4−176816号公報に
提案されている。しかしこの公報で開示された技術は、
単に、高温浸炭時の結晶粒の粗大化を防止し、これによ
り熱処理歪みの発生や強度低下の防止を図ろうとするも
のである。そのため、自動車や産業機械の使用環境が過
酷となった現状においては、必ずしも使用に耐えれるだ
けの充分な強度−靭性バランスを備えたものが得られる
というわけではない。
【0006】又、近年、機械構造部品の高強度化に伴っ
て、熱間鍛造や冷間鍛造した後に所望の形状に成形する
ための切削加工のコストが嵩むという問題が生じてい
る。このため、切削加工を容易にし、低コスト化を図る
ために被削性に優れた快削肌焼鋼に対する要求がますま
す大きくなっている。
【0007】従来、被削性を高めるために、鋼にPb、
Te、Bi、Ca及びSなどの快削元素を単独あるいは
複合添加することが行われてきた。しかし、JIS規格
鋼である機械構造用鋼や、前記したボロン鋼などに、単
に上記の快削元素を添加しただけの場合には、所望の機
械的性質、なかでも靭性を確保できないことが多い。
【0008】鉄と鋼(vol.57(1971年)S4
84)には、脱酸調整快削鋼にTiを添加すれば被削性
が高まる場合のあることが報告されている。しかし、T
iの多量の添加はTiNが多量に生成されることもあっ
て工具摩耗を増大させ、被削性の点からは好ましくない
ことも述べられている。例えば、C:0.45%、S
i:0.29%、Mn:0.78%、P:0.017
%、S:0.041%、Al:0.006%、N:0.
0087%、Ti:0.228%、O:0.004%及
びCa:0.001%を含有する鋼では却ってドリル寿
命が低下して被削性が劣っている。このように、鋼に単
にTiを添加するだけでは被削性は向上するものではな
い。
【0009】又、硫黄快削鋼の硫化物形態制御の目的で
Zrが添加されることがあるが、例えば、鉄と鋼(vo
l.62(1976年)p.885)に記されているよ
うに、Zrは被削性に対してはほとんど影響を及ぼさな
い。つまり、鋼に単にZrを添加するだけでは被削性は
向上するものではない。
【0010】
【発明が解決しようとする課題】本発明は上記現状に鑑
みなされたもので、充分な強度−靭性バランスを有し
て、過酷な環境下での使用に充分耐え得る低コスト型の
表面硬化部品及びその素材となる耐粗粒化肌焼鋼材と、
その表面硬化部品の製造方法を提供すること、なかで
も、表面硬化処理時の異常粒成長がなく熱処理歪みの少
ない高強度・高靭性の表面硬化部品とその素材となる被
削性に優れた耐粗粒化肌焼ボロン鋼材及びその表面硬化
部品の製造方法を提供することを目的とする。
【0011】なお、本発明でいう「耐粗粒化鋼材」と
は、「オ−ステナイト結晶粒度番号5以上の整細粒鋼
材」のことを指す。
【0012】
【課題を解決するための手段】本発明の要旨は、下記
(1)、(2)に示す被削性に優れた耐粗粒化肌焼鋼
材、(3)に示す強度と靭性に優れた表面硬化部品及び
(4)、(5)に示す強度と靭性に優れた表面硬化部品
の製造方法にある。
【0013】(1)重量%で、C:0.1〜0.3%、
Si:0.01〜0.5%、Mn:0.6〜2.0%、
P:0.025%以下、S:0.002〜0.2%、N
b:0.02〜0.08%、Ti:0.04〜1.0
%、B:0.001〜0.01%、N:0.008%以
下、Cr:0〜2.0%、Mo:0〜1.0%、Ni:
0〜2.0%及びAl:0〜0.10%を含み、下記
式で表されるfn1の値が0%以下、残部はFe及び不
可避不純物の化学組成で、更に、鋼中のTi炭硫化物の
最大直径が10μm以下で、且つ、その量が清浄度で
0.05%以上である被削性に優れた耐粗粒化肌焼鋼
材。
【0014】 fn1=3S(%)−Ti(%)+4N(%)・・・ (2)重量%で、C:0.1〜0.3%、Si:0.0
1〜0.5%、Mn:0.6〜2.0%、P:0.02
5%以下、S:0.002〜0.2%、Nb:0.02
〜0.08%、Ti:1.0%以下、Zr:1.0%以
下で、且つ、Ti(%)+Zr(%):0.04〜1.
0%、B:0.001〜0.01%、N:0.008%
以下、Cr:0〜2.0%、Mo:0〜1.0%、W:
0〜1.0%、Ni:0〜2.0%及びAl:0〜0.
10%を含み、下記式で表されるfn2の値が0%以
下、残部はFe及び不可避不純物の化学組成で、更に、
鋼中のTi炭硫化物及びZr炭硫化物の最大直径が10
μm以下で、且つ、その量の和が清浄度で0.05%以
上である被削性に優れた耐粗粒化肌焼鋼材。
【0015】 fn2=3S(%)−Ti(%)−Zr(%)+4N(%)・・・ (3)素材が、上記(1)又は(2)に記載の鋼材であ
って、表面硬化処理後にHv300以上の芯部硬度と2
0J/cm2 以上の衝撃値を有することを特徴とする強
度と靭性に優れた表面硬化部品。
【0016】(4)上記(1)又は(2)に記載の鋼材
を、表面硬化処理に先立って1150℃以上に加熱して
から熱間鍛造することを特徴とする強度と靭性に優れた
表面硬化部品の製造方法。
【0017】(5)上記(1)又は(2)に記載の鋼材
を、分塊、圧延及び熱処理の少なくとも1つの工程を1
150℃以上に加熱して行い、その後鍛造し表面硬化処
理することを特徴とする強度と靭性に優れた表面硬化部
品の製造方法。
【0018】なお、本発明でいう「Ti炭硫化物」には
単なるTi硫化物を、又、「Zr炭硫化物」には単なる
Zr硫化物をそれぞれ含むものとする。又、「(Ti及
びZrの炭硫化物の)最大直径」とは「個々のTi及び
Zrの炭硫化物における最も長い径」のことを指す。T
i炭硫化物の清浄度やZr炭硫化物の清浄度は、光学顕
微鏡の倍率を400倍として、JIS G 0555に規定された
「鋼の非金属介在物の顕微鏡試験方法」によって60視
野測定した値をいう。
【0019】表面硬化処理後の芯部とは表面硬化されて
いない部分のことをいう。
【0020】以下、上記の(1)〜(5)に記載のもの
をそれぞれ(1)〜(5)の発明という。
【0021】本発明者らは、表面硬化部品の素材となる
鋼材の化学組成並びに表面硬化部品の組織及び熱処理方
法について調査・研究を行った。
【0022】その結果、先ず、次の重要な事項が判明し
た。
【0023】従来、低合金鋼における異常粒成長の発生
を防止する手段として少量のNbを添加すればよいこと
が知られている。これはNbの添加で析出した微細なN
bCのピン止め作用を利用することで、浸炭処理や浸炭
窒化処理などの表面硬化処理における加熱時のオーステ
ナイト粒の異常成長を防止するものである。一方、ボロ
ン鋼の場合、添加したB(ボロン)が鋼中のNと結びつ
きやすくBNとして析出するので、焼入れ性に有効な固
溶B量が減少する。このため、TiやZrを添加してT
iNやZrNとし、鋼中のNをTiやZrにより固定し
てBと結合するN量を減少させることにより固溶B量を
確保する方法が一般に行われている。しかし、異常粒成
長の防止と固溶Bの確保を同時に達成するために、Nb
とTiやZrを複合添加した鋼では溶製時にニオブチタ
ン炭窒化物〔NbTi(CN)〕やニオブジルコニウム
炭窒化物〔NbZr(CN)〕が粗大に析出し、この炭
窒化物はその後の分塊、圧延及び鍛造の加熱時や熱処理
時に容易には溶解しないことが本発明者らの検討により
明らかになった。したがって、異常粒成長の防止に有効
な所謂「ピン止め作用」をする微細なNbCの析出量が
減少し、表面硬化処理時に粗粒が発生することが考えら
れる。
【0024】そこで本発明者らは更に詳細な研究を続
け、その結果、次の知見を得るに至った。
【0025】(a)NbとTiやZrを複合添加した鋼
において凝固時に析出する粗大な炭窒化物はNbC、T
iCやZrC、NbN、TiNやZrN、Nb(CN)
及びTi(CN)やZr(CN)といった単独元素の炭
化物、窒化物や炭窒化物ではなく、NbとTiやZrの
複合炭窒化物である〔NbTi(CN)〕や〔NbZr
(CN)〕である。
【0026】(b)複合炭窒化物〔NbTi(CN)〕
や〔NbZr(CN)〕の固溶と加熱温度(T)の関係
については以下のとおりである。
【0027】(イ)T<1150℃の場合:上記の複合
炭窒化物は鋼中で安定に存在する。
【0028】(ロ)1150℃≦T≦1350℃の場
合:上記の複合炭窒化物のNbだけが固溶し、炭窒化物
中にTiやZrが濃化する。
【0029】(ハ)1350℃<Tの場合:上記の複合
炭窒化物は完全に固溶する(Ti、Zrも固溶する)。
【0030】(c)表面硬化処理の前に素材鋼及び/又
は表面硬化部品が1150℃以上の温度域に加熱された
場合に、微細に析出したNbCのピン止め作用で表面硬
化処理時の異常粒成長を防止できる。
【0031】(d)表面硬化処理後、Hv300以上の
芯部硬度と20J/cm2 以上の衝撃値を有すれば、そ
の表面硬化処理部品は自動車や産業機械が使用される過
酷な環境においても充分な耐久性を示す。
【0032】(e)鋼に適正量のTiやZrを添加し、
鋼中の介在物制御として硫化物をTi炭硫化物やZr炭
硫化物に変え、上記Ti炭硫化物やZr炭硫化物を微細
に分散させ、更に、前記したfn1あるいはfn2の値
を0%以下にすれば、鋼材の被削性が飛躍的に向上す
る。 (f)fn1あるいはfn2の値が0%以下であれば、
焼入れ性に有効な固溶B量を確保することもできる。
【0033】そこで、更に研究を続けた結果、下記の事
項を見いだした。
【0034】(g)Sとのバランスを考慮して鋼にTi
とZrのいずれかを積極的に添加すると、鋼中にTi炭
硫化物あるいはZr炭硫化物が形成され、Ti及びZr
を添加すると、鋼中にはTi炭硫化物とZr炭硫化物と
が形成される。
【0035】(h)鋼中に上記したTi炭硫化物やZr
炭硫化物が生成すると、MnSの生成量が減少する。
【0036】(i)鋼中のS含有量が同じ場合には、T
i炭硫化物やZr炭硫化物はMnSよりも大きな被削性
改善効果を有する。これは、Ti炭硫化物やZr炭硫化
物の融点がMnSのそれよりも低いため、切削加工時に
工具のすくい面での潤滑作用が大きくなることに基づ
く。
【0037】(j)Ti炭硫化物やZr炭硫化物の効果
を充分発揮させるためには、N含有量を低く制限するこ
とが重要である。これは、N含有量が多いとTiNやZ
rNとしてTiやZrが固定されてしまい、Ti炭硫化
物やZr炭硫化物の生成が抑制されてしまうためであ
る。
【0038】(k)製鋼時に生成したTi炭硫化物やZ
r炭硫化物は、通常の熱間加工のための加熱温度及び調
質処理や表面硬化処理における通常の加熱温度では基地
に固溶しない。したがって、オーステナイト領域におい
て所謂「ピン止め作用」が発揮されるので、オーステナ
イト粒の粗大化防止や表面硬化処理時の異常粒成長の防
止に有効である。
【0039】(l)Ti炭硫化物やZr炭硫化物によっ
て被削性を高めるとともに大きな強度と良好な靭性を確
保するためには、Ti炭硫化物やZr炭硫化物のサイズ
と、その清浄度で表される量(以下、単に「清浄度」と
いう)を適正化しておくことが重要である。
【0040】本発明は、上記の知見に基づいて完成され
たものである。
【0041】
【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、化学成分の含有量の「%」は「重
量%」を意味する。
【0042】(A)素材鋼の化学組成 C:Cは、SとともにTiやZrと結合してTi炭硫化
物やZr炭硫化物を形成し、被削性を高める作用を有す
る。更に、Cは強度を確保するのにも有効な元素であ
る。しかし、その含有量が0.1%未満では添加効果に
乏しく、一方、0.3%を超えて含有させると鋼の靭性
が低下することになるので、その含有量を0.1〜0.
3%とした。
【0043】Si:Siは、鋼の脱酸及び焼入れ性を高
める作用を有する。更に、静的強度の向上及び高温での
表面酸化の防止にも有効な元素である。しかし、その含
有量が0.01%未満では所望の静的強度が確保できな
いことに加えて高温での表面の耐酸化性が劣化し、0.
5%を超えると靭性の劣化を招くこととなるので、その
含有量を0.01〜0.5%とした。
【0044】Mn:Mnは、鋼の焼入れ性を高めるとと
もに強度を向上させる効果を有する。しかし、その含有
量が0.6%未満では充分な焼入れ性が得られず、2.
0%を超えて含有させると偏析を生じて熱間延性が低下
するようになる。したがって、Mnの含有量を0.6〜
2.0%とした。
【0045】P:Pは、鋼の靭性を劣化させるととも
に、冷間及び熱間での鍛造性を低下させてしまう。特
に、その含有量が0.025%を超えると靭性及び冷間
・熱間鍛造性の劣化が著しくなる。したがって、Pの含
有量を0.025%以下とした。
【0046】S:Sは、CとともにTiやZrと結合し
てTi炭硫化物やZr炭硫化物を形成し、被削性を高め
る作用を有する。しかし、その含有量が0.002%未
満では所望の効果が得られない。
【0047】従来、快削鋼にSを添加する目的は、Mn
Sを形成させて被削性を改善させることにあった。しか
し、本発明者らの検討によると、上記のMnSの被削性
向上作用は、切削時の切り屑と工具表面との潤滑性を高
める機能に基づくことが判明した。しかもMnSは巨大
化し、鋼材本体の地疵を大きくし、欠陥となる場合があ
る。本発明におけるSの被削性改善作用は、適正量のC
とTiやZrとの複合添加によってTiやZrの炭硫化
物を形成させることで初めて得られる。このためには、
上記したように0.002%以上のSの含有量が必要で
ある。一方、Sを0.2%を超えて含有させても被削性
に与える効果に変化はないが、鋼中に粗大なMnSが再
び生じるようになり、地疵等の問題が生じる。更に、熱
間での加工性が著しく劣化し熱間での塑性加工が困難に
なるし、靭性が低下することもある。したがって、Sの
含有量を0.002〜0.2%とした。Sの好ましい含
有量は0.005〜0.1%である。
【0048】Nb:Nbは、鋼の結晶粒を微細にして靭
性を高めるとともに、表面硬化処理のための加熱時の異
常粒成長の防止に有効な元素である。しかし、その含有
量が0.02%未満では添加効果に乏しく、一方、0.
08%を超えて含有させても結晶粒微細化の効果が飽和
して経済性を損なうばかりであるし、変形抵抗が上昇し
て冷間鍛造性や熱間鍛造性が劣化するようにもなる。し
たがって、Nbの含有量を0.02〜0.08%とし
た。
【0049】Ti、Zr:Ti、Zrは本発明において
介在物を制御するための重要な合金元素であって、それ
ぞれC及びSと結合してTi炭硫化物やZr炭硫化物を
形成し、被削性を高める作用を有する。
【0050】Tiを単独で添加する場合、その含有量が
0.04%未満ではSを充分Ti炭硫化物に変えること
ができないので、被削性を高めることができない。一
方、1.0%を超えて含有させても、被削性改善効果が
飽和してコストが嵩むばかりか、靭性及び熱間加工性が
著しく劣化してしまう。したがって、(1)の発明にあ
ってはTiの含有量を0.04〜1.0%とした。な
お、(1)の発明の場合に、良好な被削性と靭性を安定
して得るためには、Tiの含有量を0.06〜0.8%
とすることが好ましい。一方、上記の被削性を高める効
果は、TiとZrの含有量に関し、Ti(%)+Zr
(%)の値が0.04%以上の場合にも確実に得られ
る。しかし、Ti(%)+Zr(%)の値で1.0%を
超えるTiとZrを含有させても被削性向上効果は飽和
するのでコストが嵩んでしまう。なお、Ti(%)+Z
r(%)の値が0.04〜1.0%でありさえすれば良
いので、必ずしもTiとZrを複合して含有させる必要
はない。Zrを添加しない場合は前記した(1)の発明
になり、この場合はTiを1.0%を超えて含有させる
とTi炭硫化物による被削性向上効果が飽和してコスト
が嵩むばかりか、靭性及び熱間加工性の著しい低下を招
いてしまう。Tiを添加しない、つまりZrを単独で添
加する場合に、Zrを1.0%を超えて含有させるとZ
r炭硫化物による被削性向上効果が飽和してコストが嵩
むばかりか、靭性及び熱間加工性の著しい低下を招いて
しまう。したがって(2)の発明にあっては、TiとZ
rの含有量をいずれも1.0%以下で、且つ、Ti
(%)+Zr(%)の値を0.04〜1.0%とした。
なお、(2)の発明の場合に、良好な被削性と靭性を安
定して得るためには、TiとZrの含有量の上限はそれ
ぞれ0.8%とすることが好ましい。
【0051】B:Bは、鋼の焼入れ性を向上させて強度
と靭性を高めるのに有効な元素である。しかし、その含
有量が0.001%未満では所望の効果が得難い。一
方、0.01%を超えて含有させるとその効果が飽和し
てコストの上昇を招くばかりか、却って焼入れ性の低下
をきたす場合もあるので、Bの含有量を0.001〜
0.01%とした。
【0052】N:本発明においてはNの含有量を低く制
御することが極めて重要である。すなわち、NはTiや
Zrとの親和力が大きいために容易にTiやZrと結合
してTiNやZrNを生成し、TiやZrを固定してし
まうので、Nを多量に含有する場合には前記したTi炭
硫化物やZr炭硫化物の被削性向上効果が充分に発揮で
きないこととなる。特に、TiやZrの含有量が低めの
場合には、N含有量の影響が顕著となる。更に、粗大な
TiNやZrNは靭性及び被削性を低下させてしまう。
したがって、N含有量を0.008%以下とした。
【0053】なお、(1)の発明においては、Ti炭硫
化物の効果を高めるために、N含有量の上限は0.00
6%とすることが好ましい。又、(2)の発明において
も、Ti炭硫化物とZr炭硫化物の効果を高めるため
に、N含有量の上限は0.006%とすることが好まし
い。
【0054】Cr:Crは添加しなくても良い。添加す
れば鋼の焼入れ性を向上させるとともに、浸炭処理など
の表面硬化処理時にCと結合して複合炭化物を形成する
ので耐摩耗性を向上させる効果がある。この効果を確実
に得るには、Crは0.05%以上の含有量とすること
が好ましい。しかし、その含有量が2.0%を超えると
靭性が劣化する。したがって、Cr含有量を0〜2.0
%とした。
【0055】Mo:Moは添加しなくても良い。添加す
れば鋼の焼入れ性を向上させるとともに、表面硬化処理
後の芯部硬度を上げる作用がある。この効果を確実に得
るには、Moは0.05%以上の含有とすることが望ま
しい。しかし、その含有量が1.0%を超えると、むし
ろ硬くなりすぎて靭性が低下するようになるし、コスト
も嵩んでしまう。したがって、Moの含有量を0〜1.
0%とした。
【0056】W:Wは添加しなくても良い。添加すれ
ば、鋼の焼入れ性を向上させるとともに、表面硬化処理
後の芯部硬度を上げる作用がある。この効果を確実に得
るには、Wは0.05%以上の含有とすることが望まし
い。しかし、その含有量が1.0%を超えると、むしろ
硬くなりすぎて靭性が低下するようになるし、コストも
嵩んでしまう。したがって、(2)の発明において、W
の含有量を0〜1.0%とした。
【0057】Ni:Niは添加しなくても良い。添加す
れば鋼の焼入れ性を高めるとともに、靭性を向上させる
作用がある。この効果を確実に得るには、Niは0.0
3%以上の含有とすることが望ましい。しかし、その含
有量が2.0%を超えると、前記の効果が飽和するので
コストが嵩んでしまう。したがって、Niの含有量を0
〜2.0%とした。なお、Niを添加する場合のより好
ましい含有量の下限値は0.1%である。
【0058】Al:Alは添加しなくても良い。添加す
れば鋼の脱酸の安定化及び均質化を図る作用がある。こ
の効果を確実に得るには、Alは0.005%以上の含
有量とすることが望ましい。しかし、その含有量が0.
10%を超えると前記効果が飽和することに加えて靭性
が劣化するようになる。したがって、Alの含有量を0
〜0.10%とした。
【0059】fn1、fn2:(1)の発明において、
前記式で表されるfn1の値が0%以下の場合に、T
i炭硫化物の被削性向上効果及び焼入れ性を高めるため
に有効な固溶B量を確保することができる。更に、上記
の条件が満たされ、且つ、表面硬化処理の前に素材鋼及
び/又は表面硬化部品が1150℃以上の温度域に加熱
された場合に、微細に析出したNbCとTi炭硫化物の
ピン止め作用で表面硬化処理時の異常粒成長が防止でき
る。したがって(1)の発明においてはfn1≦0%の
制限を設ける。
【0060】(2)の発明において、前記式で表され
るfn2の値が0%以下の場合に、Ti炭硫化物やZr
炭硫化物の被削性向上効果及び焼入れ性を高めるために
有効な固溶B量を確保することができる。更に、上記の
条件が満たされ、且つ、表面硬化処理の前に素材鋼及び
/又は表面硬化部品が1150℃以上の温度域に加熱さ
れた場合に、微細に析出したNbCとTi炭硫化物やZ
r炭硫化物のピン止め作用で表面硬化処理時の異常粒成
長が防止できる。したがって(2)の発明においてはf
n2≦0%の制限を設ける。
【0061】上記の化学組成を有する素材鋼は、例えば
熱間で分塊されて鋼片となり、次いで熱間で圧延された
後、熱間あるいは冷間で鍛造され、必要に応じて焼準さ
れ、更に切削加工されて所定の表面硬化部品の形状に加
工される。そして最終的に表面硬化処理を受けることと
なる。
【0062】(B)Ti炭硫化物、Zr炭硫化物のサイ
ズと量 上記の化学組成を有する非調質鋼材の被削性をTi炭硫
化物やZr炭硫化物によって高めるとともに良好な強度
−靭性バランスをも確保するためには、Ti炭硫化物や
Zr炭硫化物のサイズと清浄度(TiとZrを複合添加
する場合にはTi炭硫化物とZr炭硫化物の清浄度の
和)で表される量を適正化しておくことが重要である。
【0063】鋼中のTi炭硫化物及びZr炭硫化物の最
大直径が10μmを超えると疲労強度や靭性が低下して
しまう。なお、Ti炭硫化物及びZr炭硫化物の最大直
径はいずれも7μm以下とすることが好ましい。Ti炭
硫化物とZr炭硫化物は、それらの最大直径が小さすぎ
ると被削性向上効果が小さくなってしまう。したがっ
て、Ti炭硫化物とZr炭硫化物の最大直径の下限値は
0.5μm程度とすることが好ましい。
【0064】(1)の発明において、最大直径が10μ
m以下のTi炭硫化物の量が清浄度で0.05%未満の
場合には、Ti炭硫化物による被削性向上効果が発揮さ
れない。したがって、(1)の発明にあっては、Ti炭
硫化物の最大直径が10μm以下で清浄度を0.05%
以上とした。なお、前記の清浄度は0.08%以上とす
ることが好ましい。上記のTi炭硫化物の清浄度の値が
大きすぎると疲労強度が低下する場合があるので、上記
のTi炭硫化物の清浄度の上限値は2.0%程度とする
ことが好ましい。
【0065】(2)の発明において、最大直径が10μ
m以下のTi炭硫化物及びZr炭硫化物の量の和が清浄
度で0.05%未満の場合には、Ti炭硫化物及びZr
炭硫化物による被削性向上効果が発揮されない。したが
って、(2)の発明にあっては、Ti炭硫化物及びZr
炭硫化物の最大直径が10μm以下で、且つその量の和
を清浄度で0.05%以上とした。なお、前記の清浄度
の和は0.08%以上とすることが好ましい。上記のT
i炭硫化物とZr炭硫化物の清浄度の和の値が大きすぎ
ると疲労強度が低下してしまうので、上記の清浄度の和
の上限値は2.0%程度とすることが好ましい。
【0066】上記したようなTi炭硫化物とZr炭硫化
物の形態は基本的にはTi、Zr、S及びNの含有量で
決定される。しかし、Ti炭硫化物やZr炭硫化物のサ
イズと清浄度(清浄度の和)を上述の値とするために
は、TiやZrの酸化物が過剰に生成することを防ぐこ
とが重要である。このためには、鋼が前記(A)項で述
べた化学組成を有しているだけでは充分でない場合があ
るので、例えば、Si及びAlで充分脱酸し、最後にT
iやZrを添加する製鋼法を採れば良い。
【0067】なお、Ti炭硫化物とZr炭硫化物は、鋼
材から採取した試験片を鏡面研磨し、その研磨面を被検
面として倍率400倍以上で光学顕微鏡観察すれば、色
と形状から容易に他の介在物と識別できる。すなわち、
前記の条件で光学顕微鏡観察すれば、Ti炭硫化物及び
Zr炭硫化物の「色」は極めて薄い灰色で、「形状」は
JISのB系介在物やC系介在物に相当する粒状(球
状)として認められる。Ti炭硫化物及びZr炭硫化物
の詳細判定は、前記の被検面をEDX(エネルギー分散
型X線分析装置)などの分析機能を備えた電子顕微鏡で
観察することによって行うこともできる。
【0068】前記のTi炭硫化物やZr炭硫化物の清浄
度は、既に述べたように、光学顕微鏡の倍率を400倍
として、JIS G 0555に規定された「鋼の非金属介在物の
顕微鏡試験方法」によって60視野測定した値をいう。
なお、Ti炭硫化物やZr炭硫化物の最大直径も、倍率
が400倍の光学顕微鏡で60視野観察して調査すれば
良い。
【0069】(C)熱間鍛造、分塊、圧延及び熱処理 既に述べた特開平4−176816号公報にはNb、T
i及びVのうちの1種以上を添加した肌焼鋼を用いて、
高温浸炭時の結晶粒の粗大化を防止する製造方法が開示
されている。この公報に記載の肌焼鋼におけるものを初
めとして、一般に、微細な合金炭窒化物を析出させれ
ば、そのピン止め作用により表面硬化処理時の結晶粒成
長を抑制することは可能である。
【0070】浸炭や浸炭窒化などの所謂表面硬化処理時
の加熱時に、微細な合金炭窒化物を、表面硬化処理の前
段階で充分に鋼中に固溶させ、微細な合金炭窒化物析出
の素地を作っておく必要がある。このためには、表面硬
化処理の前の工程で、一旦高温に加熱しておけばよい。
従来、結晶粒成長を抑制するためのこの高温加熱温度
は、各合金炭窒化物の溶解度積から求めた固溶温度から
1200℃に設定されていた。
【0071】しかし既に述べたように、NbとTiや
Zrを複合添加した鋼において凝固時に析出する粗大な
合金炭窒化物は、NbとTiやZrの複合炭窒化物〔N
bTi(CN)〕や〔NbZr(CN)〕である。複
合炭窒化物〔NbTi(CN)〕や〔NbZr(C
N)〕の固溶と加熱温度(T)の関係については以下の
とおりである。
【0072】(イ)T<1150℃の場合:上記の複合
炭窒化物は鋼中で安定に存在する。
【0073】(ロ)1150℃≦T≦1350℃の場
合:上記の複合炭窒化物のNbだけが固溶し、炭窒化物
中にTiやZrが濃化する。
【0074】(ハ)1350℃<Tの場合:上記の複合
炭窒化物は完全に固溶する(Ti、Zrも固溶する)。
【0075】したがって、本発明においては、微細に析
出したNbCのピン止め作用を利用して異常粒成長の発
生を防止するために、表面硬化処理の前の工程で一旦1
150℃以上に加熱する。
【0076】そこで、表面硬化部品への加工工程に熱間
鍛造が含まれる場合には、少なくともこの熱間鍛造にお
ける加熱温度を1150℃以上としてNbを固溶させれ
ばよいことになる((4)の発明)。
【0077】あるいは既に述べた表面硬化処理の前工程
のうち、熱間鍛造以外で「加熱」処理を伴うものは分
塊、圧延及び所謂「熱処理」であるため、これら分塊、
圧延及び熱処理の少なくとも1つの工程において加熱温
度を1150℃以上とすればよいことになる((5)の
発明)。
【0078】なお、本発明においては、微細に析出した
NbCのピン止め作用を利用することに加えて、Ti炭
硫化物やZr炭硫化物のピン止め作用も利用して表面硬
化処理時の異常粒成長の防止を図る。このTi炭硫化物
やZr炭硫化物は1350℃以下の温度では基地に固溶
し難い。このため、上記した(4)の発明及び(5)の
発明における加熱温度の上限は、Ti炭硫化物やZr炭
硫化物のピン止め作用を確保するために1350℃とす
るのが良い。
【0079】なお、浸炭や浸炭窒化などの所謂表面硬化
処理の加熱時に、微細な合金炭窒化物を析出させておく
ためには、上記の加熱後の冷却速度は0.2℃/s以上
とすることが望ましい。
【0080】(D)表面硬化処理 表面硬化処理は、所定の表面硬化部品の表面を硬化さ
せ、製品として必要な耐摩耗性や疲労強度を確保するの
に必要不可欠の処理である。しかし、この処理方法は特
に規定されるものではなく、通常の方法で行えばよい。
【0081】(E)表面硬化処理後の表面硬化部品の芯
部硬度と靭性 表面硬化部品が、自動車や産業機械が使用される過酷な
環境においても充分な耐久性を発揮するためには、表面
硬化処理後、Hv300以上の芯部硬度と20J/cm
2 以上の衝撃値を有することが必要である。これらの一
方及び/又は両方から外れる場合は表面硬化部品の実環
境での耐久性は極めて劣化したものとなってしまう。し
たがって、表面硬化部品の芯部硬度はHv300以上、
且つ、衝撃値は20J/cm2 以上とした。
【0082】(F)焼戻し 低温で焼戻しを行うと表面硬度の大きな低下を伴うこと
なく靭性を改善できるので、本発明の表面硬化部品は、
表面硬化処理の後必要に応じて焼戻しを実施したもので
あっても良い。焼戻しをする場合は、表面硬度を確保す
るためにその温度を150〜200℃とするのが望まし
い。
【0083】
【実施例】(実施例1)表1、表2に示す化学組成の鋼
を通常の方法によって150kg真空炉を用いて溶製し
た。なお、鋼I、鋼Kと鋼Rを除いて、Ti酸化物の生
成を防ぐために、Si及びAlで充分脱酸し種々の元素
を添加した最後にTiを添加して、Ti炭硫化物のサイ
ズと清浄度を調整するようにした。鋼I、鋼Kと鋼Rに
ついてはSi及びAlで脱酸する際に同時にTiを添加
した。
【0084】表1、表2において、鋼A〜Hは化学組成
が本発明で規定する範囲内にある本発明例の鋼、鋼I〜
Wは成分のいずれかが本発明で規定する含有量の範囲か
ら外れた比較例の鋼である。なお、比較例の鋼におい
て、鋼U、鋼V及び鋼WはそれぞれJISのSMn42
0鋼、SCr420鋼及びSCM420鋼に相当するも
のである。
【0085】
【表1】
【0086】
【表2】
【0087】次いで、これらの鋼を1140℃に加熱し
た後に通常の方法によって鋼片とし、更に1100℃に
加熱して、1100〜1000℃の温度で30mm直径
の丸棒に熱間鍛造した。
【0088】こうして得られた熱間鍛造後の丸棒からJI
S G 0555の図1に則って試験片を採取し、鏡面研磨した
幅が15mmで高さが20mmの被検面を、倍率が40
0倍の光学顕微鏡で60視野観察して、Ti炭硫化物を
他の介在物と区分しながらその清浄度を測定した。Ti
炭硫化物の最大直径も、倍率が400倍の光学顕微鏡で
60視野観察して調査した。
【0089】又、上記の熱間鍛造後の丸棒から8mm直
径×12mm長さの粗粒化測定試験片を切り出し、この
試験片を用いて下記の4条件の加工熱処理試験を行い、
異常粒成長の発生率を倍率100倍の光学顕微鏡で10
視野観察して調査した。
【0090】(条件1)真空中で、試験片を1100
℃、1175℃及び1250℃の温度でそれぞれ15分
間加熱した後、圧縮加工により30%の変形量を与えて
室温まで1.0℃/sの冷却速度で冷却した。この後、
930℃×6hr(炭素ポテンシャル:0.8%)の浸
炭処理を行った後油焼入れした。
【0091】(条件2)真空中で、試験片を1100℃
で15分間加熱し、続いて圧縮加工により30%の変形
量を与え、一旦室温まで2.0℃/sの冷却速度で冷却
した。この後、更に、1100℃、1175℃及び12
50℃の温度で15分間加熱した後、室温まで1.0℃
/sの冷却速度で冷却した。次いで、930℃×6hr
(炭素ポテンシャル:0.8%)の浸炭処理を行った後
油焼入れした。
【0092】(条件3)大気中で、試験片に常温で圧縮
加工により30%の変形量を与えた。次いで、真空中
で、1100℃、1175℃及び1250℃の温度でそ
れぞれ15分間加熱した後、室温まで1.0℃/sの冷
却速度で冷却した。この後、930℃×6hr(炭素ポ
テンシャル:0.8%)の浸炭処理を行った後油焼入れ
した。
【0093】(条件4)真空中で、試験片を1100
℃、1175℃及び1250℃の温度でそれぞれ15分
間加熱した後、一旦室温まで1.0℃/sの冷却速度で
冷却した。次いで、真空中で1100℃で15分間加熱
し、更に、圧縮加工により30%の変形量を与え、室温
まで2.0℃/sの冷却速度で冷却した。この後、93
0℃×6hr(炭素ポテンシャル:0.8%)の浸炭処
理を行った後油焼入れした。
【0094】表3に、熱間鍛造後の丸棒におけるTi炭
硫化物の清浄度及び最大直径の調査結果、並びに条件1
〜4の加工熱処理試験を行った場合の異常粒成長の発生
率調査結果を示す。なお、異常粒成長の発生率は100
倍の倍率で10視野検鏡した場合の面積割合で表示し
た。
【0095】
【表3】
【0096】表3から、化学組成及び最大直径が10μ
m以下のTi炭硫化物の清浄度が本発明で規定する範囲
内にある本発明例の鋼A〜Hを素材とするものと、比較
例の鋼のうち鋼Qと鋼Sを素材とするものだけが本発明
で規定した条件で加熱処理した場合に異常粒成長しない
ことが明らかである。
【0097】(実施例2)前記の実施例1で作製した鋼
A〜Wの鋼片を1190℃に加熱してから、1190〜
1000℃の温度で30mm直径の丸棒に熱間鍛造し
た。
【0098】こうして得られた熱間鍛造後の丸棒から実
施例1の場合と同様に、JIS G 0555の図1に則って試験
片を採取し、鏡面研磨した幅が15mmで高さが20m
mの被検面を、倍率が400倍の光学顕微鏡で60視野
観察して、Ti炭硫化物を他の介在物と区分しながらそ
の清浄度を測定した。Ti炭硫化物の最大直径も、倍率
が400倍の光学顕微鏡で60視野観察して調査した。
【0099】又、上記の熱間鍛造後の丸棒の中心部から
JIS3号シャルピ−衝撃試験片を切り出し、表面処理
として930℃×6hr(炭素ポテンシャル:0.8
%)の浸炭処理を行った後油焼入れし、更に、160℃
で焼戻しを行った。次いで、衝撃試験を行うと共に試験
片中心部すなわち芯部の硬度測定を行った。
【0100】被削性評価のため、ドリル穿孔試験も実施
した。すなわち、前記した熱間鍛造後の30mm直径の
丸棒を25mmの長さに輪切りにしたものを用いて、R
/2部(Rは丸棒の半径)についてその長さ方向に貫通
孔をあけ、刃先摩損により穿孔不能となったときの貫通
孔の個数を数え、被削性の評価を行った。穿孔条件は、
JIS高速度工具鋼SKH51のφ5mmストレ−トシ
ャンクドリルを使用し、水溶性の潤滑剤を用いて、送り
0.15mm/rev、回転数980rpmで行った。
【0101】表4に各種試験の結果を示す。
【0102】
【表4】
【0103】表4から、化学組成及び最大直径が10μ
m以下のTi炭硫化物の清浄度が本発明で規定する範囲
内にある本発明例の鋼A〜Hを素材とするものはHv3
00以上の芯部硬度と20J/cm2 以上の衝撃値を有
している。更に、被削性も良好なことが明らかである。
したがって、これらの鋼を素材とする表面硬化部品は自
動車や産業機械が使用される過酷な環境においても充分
な耐久性を発揮できることになる。
【0104】一方、前記実施例1において本発明で規定
した条件で加熱処理した場合に異常粒成長しなかった比
較例の鋼の鋼Qと鋼Sを素材とするものは、芯部硬度と
衝撃値のいずれかが低く、表面硬化部品の実環境での耐
久性は極めて劣化したものとなってしまう。
【0105】又、比較例の鋼のうち最大直径が10μm
以下のTi炭硫化物の量が清浄度で0.05%を下回る
鋼I、鋼K、鋼R、鋼U、鋼V及び鋼Wではドリル貫通
孔の個数が100個に達せず被削性が劣っている。
【0106】(実施例3)前記の実施例1で作製した鋼
A〜H、鋼Q及び鋼Sの鋼片を1180℃で真空中の熱
処理を行い、一旦室温まで0.25℃/sの冷却速度で
冷却した。その後、1100℃に加熱してから、110
0〜1000℃の温度で30mm直径の丸棒に熱間鍛造
した。
【0107】こうして得られた熱間鍛造後の丸棒から実
施例1の場合と同様に、JIS G 0555の図1に則って試験
片を採取し、鏡面研磨した幅が15mmで高さが20m
mの被検面を、倍率が400倍の光学顕微鏡で60視野
観察して、Ti炭硫化物を他の介在物と区分しながらそ
の清浄度を測定した。Ti炭硫化物の最大直径も、倍率
が400倍の光学顕微鏡で60視野観察して調査した。
【0108】又、上記の熱間鍛造後の丸棒の中心部から
JIS3号シャルピ−衝撃試験片を切り出し、表面硬化
処理として930℃×6hr(炭素ポテンシャル:0.
8%)の浸炭処理を行った後油焼入れし、更に、170
℃で焼戻しを行った。次いで、衝撃試験を行うと共に試
験片中心部硬度すなわち芯部硬度の測定を行った。
【0109】被削性評価のためのドリル穿孔試験も実施
した。その試験片、試験方法及び評価方法は実施例2で
述べたとおりである。
【0110】表5に各種試験の結果を示す。
【0111】
【表5】
【0112】表5から、化学組成及び最大直径が10μ
m以下のTi炭硫化物の清浄度が本発明で規定する範囲
内にある本発明例の鋼A〜Hを素材とするものはHv3
00以上の芯部硬度と20J/cm2 以上の衝撃値を有
している。更に、被削性も良好なことが明らかである。
したがって、これらの鋼を素材とする表面硬化部品は自
動車や産業機械が使用される過酷な環境においても充分
な耐久性を発揮できることになる。
【0113】一方、前記実施例1において本発明で規定
した条件で加熱処理した場合に異常粒成長しなかった比
較例の鋼のQとSを素材とするものは、芯部硬度と衝撃
値のいずれかが低く、表面硬化部品の実環境での耐久性
は極めて劣化したものとなってしまう。
【0114】(実施例4)表6に示す化学組成の鋼を通
常の方法によって150kg真空炉を用いて溶製した。
なお、Ti酸化物及びZr酸化物の生成を防ぐために、
Si及びAlで充分脱酸し種々の元素を添加した最後に
TiとZrを添加して、Ti炭硫化物とZr炭硫化物の
サイズと清浄度(清浄度の和)を調整するようにした。
【0115】表6において、鋼a〜dは化学組成が本発
明で規定する範囲内にある本発明例の鋼、鋼e〜gは成
分のいずれかが本発明で規定する含有量の範囲から外れ
た比較例の鋼である。
【0116】
【表6】
【0117】次いで、これらの鋼を1140℃に加熱し
た後に通常の方法によって鋼片とし、更に1100℃に
加熱して、1100〜1000℃の温度で30mm直径
の丸棒に熱間鍛造した。
【0118】こうして得られた熱間鍛造後の丸棒からJI
S G 0555の図1に則って試験片を採取し、鏡面研磨した
幅が15mmで高さが20mmの被検面を、倍率が40
0倍の光学顕微鏡で60視野観察して、Ti炭硫化物及
びZr炭硫化物を他の介在物と区分しながらその清浄度
(清浄度の和)を測定した。Ti炭硫化物及びZr炭硫
化物の最大直径も、倍率が400倍の光学顕微鏡で60
視野観察して調査した。又、上記の熱間鍛造後の丸棒か
ら8mm直径×12mm長さの粗粒化測定試験片を切り
出し、この試験片を用いて前記の実施例1におけるのと
同じ条件1〜4で加工熱処理試験を行い、異常粒成長の
発生率を倍率100倍の光学顕微鏡で10視野観察して
調査した。
【0119】表7に、上記の各種試験の結果を示す。な
お、「Ti、Zr炭硫化物」とした欄において、Tiと
Zrとを複合添加した場合には「最大直径」はいずれか
大きい方の炭硫化物の値であり、清浄度は清浄度の和を
意味する。又、異常粒成長の発生率は100倍の倍率で
10視野検鏡した場合の面積割合で表示した。
【0120】
【表7】
【0121】表7から、化学組成及び最大直径が10μ
m以下の「Ti、Zr炭硫化物」の清浄度が本発明で規
定する範囲内にある本発明例の鋼a〜dを素材とするも
のと、比較例の鋼gを素材とするものだけが本発明で規
定した条件で加熱処理した場合に異常粒成長しないこと
が明らかである。
【0122】(実施例5)前記の実施例4で作製した鋼
a〜gの鋼片を1190℃に加熱してから、1190〜
1000℃の温度で30mm直径の丸棒に熱間鍛造し
た。
【0123】こうして得られた熱間鍛造後の丸棒から実
施例4の場合と同様に、JIS G 0555の図1に則って試験
片を採取し、鏡面研磨した幅が15mmで高さが20m
mの被検面を、倍率が400倍の光学顕微鏡で60視野
観察して、Ti炭硫化物及びZr炭硫化物を他の介在物
と区分しながらその清浄度(清浄度の和)も測定した。
Ti炭硫化物及びZr炭硫化物の最大直径も、倍率が4
00倍の光学顕微鏡で60視野観察して調査した。
【0124】又、上記の熱間鍛造後の丸棒の中心部から
JIS3号シャルピ−衝撃試験片を切り出し、表面処理
として930℃×6hr(炭素ポテンシャル:0.8
%)の浸炭処理を行った後油焼入れし、更に、160℃
で焼戻しを行った。次いで、衝撃試験を行うと共に試験
片中心部すなわち芯部の硬度測定を行った。
【0125】被削性評価のため、ドリル穿孔試験も実施
した。その試験片、試験方法及び評価方法は実施例2で
述べたとおりである。
【0126】表8に各種試験の結果を示す。なお、「T
i、Zr炭硫化物」とした欄において、TiとZrとを
複合添加した場合には「最大直径」はいずれか大きい方
の炭硫化物の値であり、清浄度は清浄度の和を意味する
ことは、前記の表7と同じである。
【0127】
【表8】
【0128】表8から、化学組成及び最大直径が10μ
m以下の「Ti、Zr炭硫化物」の清浄度が本発明で規
定する範囲内にある本発明例の鋼a〜dを素材とするも
のはHv300以上の芯部硬度と20J/cm2 以上の
衝撃値を有している。更に、被削性も良好なことが明ら
かである。したがって、これらの鋼を素材とする表面硬
化部品は自動車や産業機械が使用される過酷な環境にお
いても充分な耐久性を発揮できることになる。
【0129】一方、前記実施例4において本発明で規定
した条件で加熱処理した場合に異常粒成長しなかった比
較例の鋼の鋼gを素材とするものは、衝撃値が低く、表
面硬化部品の実環境での耐久性は極めて劣化したものと
なってしまう。
【0130】又、比較例の鋼e、鋼fを素材とするもの
は最大直径が10μm以下の「Ti、Zr炭硫化物」の
量が清浄度で0.05%を下回り、ドリル貫通孔の個数
が100個に達せず被削性が劣っている。
【0131】(実施例6)前記の実施例4で作製した鋼
a〜gの鋼片を1180℃で真空中の熱処理を行い、一
旦室温まで0.25℃/sの冷却速度で冷却した。その
後、1100℃に加熱してから、1100〜1000℃
の温度で30mm直径の丸棒に熱間鍛造した。
【0132】こうして得られた熱間鍛造後の丸棒から実
施例4の場合と同様に、JIS G 0555の図1に則って試験
片を採取し、鏡面研磨した幅が15mmで高さが20m
mの被検面を、倍率が400倍の光学顕微鏡で60視野
観察して、Ti炭硫化物及びZr炭硫化物を他の介在物
と区分しながらその清浄度(清浄度の和)も測定した。
Ti炭硫化物及びZr炭硫化物の最大直径も、倍率が4
00倍の光学顕微鏡で60視野観察して調査した。
【0133】又、上記の熱間鍛造後の丸棒の中心部から
JIS3号シャルピ−衝撃試験片を切り出し、表面硬化
処理として930℃×6hr(炭素ポテンシャル:0.
8%)の浸炭処理を行った後油焼入れし、更に、170
℃で焼戻しを行った。次いで、衝撃試験を行うと共に試
験片中心部硬度すなわち芯部硬度の測定を行った。
【0134】被削性評価のためのドリル穿孔試験も実施
した。その試験片、試験方法及び評価方法は実施例2で
述べたとおりである。
【0135】表9に各種試験の結果を示す。なお、「T
i、Zr炭硫化物」とした欄において、TiとZrとを
複合添加した場合には「最大直径」はいずれか大きい方
の炭硫化物の値であり、清浄度は清浄度の和を意味する
ことは、前記の表7及び表8と同じである。
【0136】
【表9】
【0137】表9から、化学組成及び最大直径が10μ
m以下の「Ti、Zr炭硫化物」の清浄度が本発明で規
定する範囲内にある本発明例の鋼a〜dを素材とするも
のはHv300以上の芯部硬度と20J/cm2 以上の
衝撃値を有している。更に、被削性も良好なことが明ら
かである。したがって、これらの鋼を素材とする表面硬
化部品は自動車や産業機械が使用される過酷な環境にお
いても充分な耐久性を発揮できることになる。
【0138】一方、前記実施例4において本発明で規定
した条件で加熱処理した場合に異常粒成長しなかった比
較例の鋼の鋼gを素材とするものは、衝撃値が低く、表
面硬化部品の実環境での耐久性は極めて劣化したものと
なってしまう。
【0139】又、比較例の鋼e及び鋼fを素材とするも
のは最大直径が10μm以下の「Ti、Zr炭硫化物」
の量が清浄度で0.05%を下回り、ドリル貫通孔の個
数が100個に達せず被削性が劣っている。
【0140】
【発明の効果】本発明による低コスト型の表面硬化部品
は強度と靭性に優れ、異常粒成長も生じないので、自動
車や産業機械用などの各種機械構造部品、特に歯車を代
表とする表面硬化部品として利用することができる。本
発明の耐粗粒化肌焼鋼材は被削性に優れるので、上記の
表面硬化部品は、本発明の耐粗粒化肌焼鋼材を素材と
し、これに本発明方法を適用することによって、比較的
容易に製造することができる。

Claims (5)

    【特許請求の範囲】
  1. 【請求項1】重量%で、C:0.1〜0.3%、Si:
    0.01〜0.5%、Mn:0.6〜2.0%、P:
    0.025%以下、S:0.002〜0.2%、Nb:
    0.02〜0.08%、Ti:0.04〜1.0%、
    B:0.001〜0.01%、N:0.008%以下、
    Cr:0〜2.0%、Mo:0〜1.0%、Ni:0〜
    2.0%及びAl:0〜0.10%を含み、下記式で
    表されるfn1の値が0%以下を満たし、残部はFe及
    び不可避不純物の化学組成で、更に、鋼中のTi炭硫化
    物の最大直径が10μm以下で、且つ、その量が清浄度
    で0.05%以上である被削性に優れた耐粗粒化肌焼鋼
    材。 fn1=3S(%)−Ti(%)+4N(%)・・・
  2. 【請求項2】重量%で、C:0.1〜0.3%、Si:
    0.01〜0.5%、Mn:0.6〜2.0%、P:
    0.025%以下、S:0.002〜0.2%、Nb:
    0.02〜0.08%、Ti:1.0%以下、Zr:
    1.0%以下で、且つ、Ti(%)+Zr(%):0.
    04〜1.0%、B:0.001〜0.01%、N:
    0.008%以下、Cr:0〜2.0%、Mo:0〜
    1.0%、W:0〜1.0%、Ni:0〜2.0%及び
    Al:0〜0.10%を含み、下記式で表されるfn
    2の値が0%以下を満たし、残部はFe及び不可避不純
    物の化学組成で、更に、鋼中のTi炭硫化物及びZr炭
    硫化物の最大直径が10μm以下で、且つ、その量の和
    が清浄度で0.05%以上である被削性に優れた耐粗粒
    化肌焼鋼材。 fn2=3S(%)−Ti(%)−Zr(%)+4N(%)・・・
  3. 【請求項3】素材が、請求項1又は2に記載の鋼材であ
    って、表面硬化処理後にHv300以上の芯部硬度と2
    0J/cm2 以上の衝撃値を有することを特徴とする強
    度と靭性に優れた表面硬化部品。
  4. 【請求項4】請求項1又は2に記載の鋼材を、表面硬化
    処理に先立って1150℃以上に加熱してから熱間鍛造
    することを特徴とする強度と靭性に優れた表面硬化部品
    の製造方法。
  5. 【請求項5】請求鋼1又は2に記載の鋼材を、分塊、圧
    延及び熱処理の少なくとも1つの工程を1150℃以上
    に加熱して行い、その後鍛造し表面硬化処理することを
    特徴とする強度と靭性に優れた表面硬化部品の製造方
    法。
JP09421098A 1997-12-15 1998-04-07 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法 Expired - Fee Related JP3395642B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09421098A JP3395642B2 (ja) 1997-12-15 1998-04-07 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-344833 1997-12-15
JP34483397 1997-12-15
JP09421098A JP3395642B2 (ja) 1997-12-15 1998-04-07 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法

Publications (2)

Publication Number Publication Date
JPH11236646A true JPH11236646A (ja) 1999-08-31
JP3395642B2 JP3395642B2 (ja) 2003-04-14

Family

ID=26435490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09421098A Expired - Fee Related JP3395642B2 (ja) 1997-12-15 1998-04-07 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法

Country Status (1)

Country Link
JP (1) JP3395642B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114775A1 (ja) * 2010-03-16 2011-09-22 新日本製鐵株式会社 軟窒化用鋼、並びに軟窒化鋼部品及びその製造方法
US8801873B2 (en) 2009-03-30 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Carburized steel part
EP2418296A4 (en) * 2009-04-06 2017-05-17 Nippon Steel & Sumitomo Metal Corporation Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
US10718040B2 (en) 2015-04-22 2020-07-21 Nippon Steel Corporation Hot-rolled steel sheet, steel material, and method for producing hot-rolled steel sheet
US20220074034A1 (en) * 2018-09-18 2022-03-10 Ezm Edelstahlzieherei Mark Gmbh Steel for Surface Hardening, Having a High Edge Hardness and Having a Fine Ductile Grain Structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801873B2 (en) 2009-03-30 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Carburized steel part
EP2418296A4 (en) * 2009-04-06 2017-05-17 Nippon Steel & Sumitomo Metal Corporation Steel for case hardening which has excellent cold workability and machinability and which exhibits excellent fatigue characteristics after carburizing and quenching, and process for production of same
WO2011114775A1 (ja) * 2010-03-16 2011-09-22 新日本製鐵株式会社 軟窒化用鋼、並びに軟窒化鋼部品及びその製造方法
JP4819201B2 (ja) * 2010-03-16 2011-11-24 新日本製鐵株式会社 軟窒化用鋼、並びに軟窒化鋼部品及びその製造方法
US9284632B2 (en) 2010-03-16 2016-03-15 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part
US10196720B2 (en) 2010-03-16 2019-02-05 Nippon Steel & Sumitomo Metal Corporation Steel for nitrocarburizing, nitrocarburized steel part, and producing method of nitrocarburized steel part
US10718040B2 (en) 2015-04-22 2020-07-21 Nippon Steel Corporation Hot-rolled steel sheet, steel material, and method for producing hot-rolled steel sheet
US20220074034A1 (en) * 2018-09-18 2022-03-10 Ezm Edelstahlzieherei Mark Gmbh Steel for Surface Hardening, Having a High Edge Hardness and Having a Fine Ductile Grain Structure

Also Published As

Publication number Publication date
JP3395642B2 (ja) 2003-04-14

Similar Documents

Publication Publication Date Title
CN111032899B (zh) 渗碳轴承部件用钢材
WO1998023784A1 (fr) Acier d'excellente usinabilite et composant usine
JP4451808B2 (ja) 疲労特性と耐結晶粒粗大化特性に優れた肌焼用圧延棒鋼およびその製法
JP4267234B2 (ja) 鍛造性と被削性に優れた機械構造用熱間圧延鋼材
JP4502929B2 (ja) 転動疲労特性および結晶粒粗大化防止特性に優れた肌焼用鋼
JP3489434B2 (ja) 高強度快削非調質鋼材
JP3416869B2 (ja) 被削性に優れた低延性非調質鋼材
JP2000096185A (ja) 軸受用鋼
US20050205168A1 (en) Crankshaft
JP3395642B2 (ja) 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法
WO2018212196A1 (ja) 鋼及び部品
JP3489656B2 (ja) 被削性に優れた高強度高靭性調質鋼材
JPH11229032A (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP3890724B2 (ja) 被削性に優れたフェライト・パーライト型非調質鋼材
JP3644275B2 (ja) 被削性に優れたマルテンサイト・ベイナイト型非調質鋼材及びその製造方法
JP3849296B2 (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP3494271B2 (ja) 強度と靱性に優れた快削非調質鋼
JP3855418B2 (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP3236883B2 (ja) 肌焼鋼及びそれを用いた鋼管の製造方法
JP3353698B2 (ja) 軟窒化用鋼材の製造方法及びその鋼材を用いた軟窒化部品
JP3879251B2 (ja) 強度と靱性に優れた表面硬化部品の製造方法
JP3769918B2 (ja) 耐粗粒化肌焼鋼材並びに強度と靭性に優れた表面硬化部品及びその製造方法
JP3489655B2 (ja) 高強度高靭性快削非調質鋼材
JP3472675B2 (ja) 高強度快削非調質鋼材
JP3075139B2 (ja) 耐粗粒化肌焼鋼および強度と靱性に優れた表面硬化部品並びにその製造方法

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees