JPH11233058A - Electron microscope - Google Patents

Electron microscope

Info

Publication number
JPH11233058A
JPH11233058A JP10029513A JP2951398A JPH11233058A JP H11233058 A JPH11233058 A JP H11233058A JP 10029513 A JP10029513 A JP 10029513A JP 2951398 A JP2951398 A JP 2951398A JP H11233058 A JPH11233058 A JP H11233058A
Authority
JP
Japan
Prior art keywords
image
specimen
sample
electron beam
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10029513A
Other languages
Japanese (ja)
Inventor
Junichiro Tomizawa
淳一郎 富澤
Masuhiro Ito
祐博 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP10029513A priority Critical patent/JPH11233058A/en
Publication of JPH11233058A publication Critical patent/JPH11233058A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To highly precisely extract particle in a wide area of a specimen for a long duration by setting the binary threshold value corresponding to the alteration of electron beam at the time of extracting particle from an image. SOLUTION: Electron beam 1 passes a route kept in highly vacuum state, is deflected by a magnetic field of a deflecting coil 2, and scan a specimen while being converged upon the specimen 5 by an objective lens 3. When electron beam 1 is radiated to the specimen 5, specimen signals of reflected electrons and secondary electrons are generated while reflecting the shape of the specimen 5 and the specimen signals are detected by a detector 7, converted into digital signals, and stored in an image memory 8. After that, the signals are displayed as an image on a display apparatus 10 by a control and processing device 9. In this case, the brightness level of the reflected electron signals is increased more as the atomic number increases more, and utilizing such a characteristic property, particle extraction is carried out and reflected electron image is obtained. A black and white binary image is constituted by previously setting the threshold value and the particle extraction is carried out in the binary image.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、走査電子顕微鏡の
画像を使用した粒子抽出に際し、高精度な粒子抽出方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly accurate particle extraction method for extracting particles using an image of a scanning electron microscope.

【0002】[0002]

【従来の技術】走査電子顕微鏡の画像による試料の粒子
抽出においては、高真空に保たれた試料室に挿入された
試料を、電子ビームで試料上の微小領域を走査すること
によって発生する反射電子画像の輝度レベルを用いて、
固定のしきい値を設定し、その二値化処理により、目的
とする粒子を抽出することが行われている。
2. Description of the Related Art In particle extraction of a sample by using an image of a scanning electron microscope, reflected electrons generated by scanning a sample inserted into a sample chamber maintained in a high vacuum with a small area on the sample with an electron beam. Using the brightness level of the image,
A fixed threshold value is set, and a target particle is extracted by the binarization process.

【0003】[0003]

【発明が解決しようとする課題】上記の抽出方法は、試
料上の小エリア内で短時間の抽出等、反射電子の輝度レ
ベルが安定している場合は抽出が可能であるが、試料を
移動しながら広エリアを長時間行う際、電子ビームの変
動等で反射電子の輝度レベルが変動した場合に、しきい
値と輝度の関係が変化するため、正確な粒子抽出が行え
なくなっていた。本発明は、長時間の間、高精度な粒子
抽出をすることを目的とする。
According to the above-mentioned extraction method, extraction is possible when the luminance level of reflected electrons is stable, such as in a short time within a small area on the sample. However, when performing a wide area for a long time, if the luminance level of the reflected electrons fluctuates due to fluctuations of the electron beam or the like, the relationship between the threshold and the luminance changes, so that accurate particle extraction cannot be performed. An object of the present invention is to perform highly accurate particle extraction for a long time.

【0004】[0004]

【課題を解決するための手段】本発明では、二値化処理
のためのしきい値を、反射電子画像の輝度レベルの変動
に合わせて連動させて設定することで、輝度レベルとし
きい値の関係を一定に保つことにより、前記目的を達成
する。
According to the present invention, the threshold value for the binarization processing is set in conjunction with the fluctuation of the luminance level of the backscattered electron image, thereby setting the luminance level and the threshold value. The purpose is achieved by keeping the relationship constant.

【0005】すなわち本発明は、電子ビームを試料上に
走査するための偏向手段と、試料を移動するための試料
移動手段と、前記により検出された画像を記憶する画像
メモリと、前記画像メモリに記憶された画像を処理する
手段と、画像表示手段と、各々を制御する手段を備える
走査電子顕微鏡において、画像から粒子抽出を行う際、
反射電子輝度の0レベルから、ベースとなる輝度レベル
の定数倍をしきい値とすることで、常にベースレベルの
変動に合わせて二値化のしきい値を計算設定すること
で、長時間、試料の広エリアを高精度に粒子抽出するこ
とを特徴とする。
That is, the present invention provides a deflecting means for scanning an electron beam on a specimen, a specimen moving means for moving the specimen, an image memory for storing an image detected by the above, and an image memory for the image memory. Means for processing the stored image, image display means, and in a scanning electron microscope comprising means for controlling each, when performing particle extraction from the image,
By setting the threshold value to a constant multiple of the base luminance level from the 0 level of the backscattered electron luminance, the threshold value for binarization is always calculated and set in accordance with the fluctuation of the base level, so that it can be used for a long time. It is characterized in that a wide area of a sample is extracted with high precision.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施例を図面に基
づき詳述する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0007】図1は、本発明による走査電子顕微鏡の一
例を示す模式図である。図中、1は電子ビーム、2は電
子ビームを試料上で面走査または点,線照射するための
偏向コイルであり、X方向とY方向の偏向コイルを備え
ている。3は試料上に電子ビーム1の焦点を結ばせるた
めの対物レンズ、4は高真空状態に保たれた試料室、5
は試料、6は試料移動手段、6aは試料を装填するため
の試料台である。試料移動手段6は、試料移動のための
回転軸にモータ及びロータリエンコーダを取付けた周知
の構成のXYステージ(試料移動ステージ)からなり、
試料の座標位置を管理できるようになっている。7は試
料から発生する反射電子等の信号を検出する検出器、8
は検出器7からの検出信号をデジタル化し画像データと
して記憶するための画像メモリである。9はマイクロコ
ンピュータ等を用いた制御および処理装置、10は画像
表示装置であり、制御装置9にはマウスやキーボード等
の入力手段11が接続されている。12は試料から発生
する特性X線を検出する元素分析用検出器、13は検出
されたX線のエネルギーにより、元素分析するための制
御部である。なお、この装置は、検出器で得られた反射
電子の電子線電流を検知する機能を備えている。
FIG. 1 is a schematic diagram showing an example of a scanning electron microscope according to the present invention. In the drawing, reference numeral 1 denotes an electron beam, and 2 denotes a deflection coil for scanning the surface of the electron beam or irradiating a point or a line on the sample, and includes deflection coils for X and Y directions. Reference numeral 3 denotes an objective lens for focusing the electron beam 1 on the sample, 4 denotes a sample chamber maintained in a high vacuum state, 5
Denotes a sample, 6 denotes a sample moving means, and 6a denotes a sample stage for loading the sample. The sample moving means 6 comprises a well-known XY stage (sample moving stage) in which a motor and a rotary encoder are mounted on a rotating shaft for moving the sample.
The coordinate position of the sample can be managed. 7 is a detector for detecting signals such as backscattered electrons generated from the sample;
Is an image memory for digitizing the detection signal from the detector 7 and storing it as image data. Reference numeral 9 denotes a control and processing device using a microcomputer or the like, and 10 denotes an image display device. The control device 9 is connected to input means 11 such as a mouse and a keyboard. Reference numeral 12 denotes a detector for elemental analysis for detecting characteristic X-rays generated from a sample, and reference numeral 13 denotes a control unit for performing elemental analysis based on the energy of the detected X-rays. This device has a function of detecting the electron beam current of the reflected electrons obtained by the detector.

【0008】電子ビーム1は、高真空状態に保たれた通
路を通り、偏向コイル2の磁場により偏向され、対物レ
ンズ3で試料5上に焦点を結ばれて試料5上を走査す
る。試料5に電子ビームが照射されると、試料5の形状
を反映して反射電子や二次電子等の試料信号が発生す
る。試料5から発生された試料信号は検出器7で検出さ
れ、画像メモリ8でデジタル変換されて記憶された後、
制御装置9を経て表示装置10で画像を表示する。
The electron beam 1 passes through a path maintained in a high vacuum state, is deflected by the magnetic field of the deflection coil 2, is focused on the sample 5 by the objective lens 3, and scans the sample 5. When the sample 5 is irradiated with an electron beam, sample signals such as reflected electrons and secondary electrons are generated reflecting the shape of the sample 5. The sample signal generated from the sample 5 is detected by the detector 7, digitally converted and stored in the image memory 8,
An image is displayed on the display device 10 via the control device 9.

【0009】ここで特に反射電子信号は、原子番号が大
きくなるに従って輝度レベルが増加するため、その特性
を利用して粒子抽出を行う。例えば、カーボン(C:原
子番号6)等の軽元素ベース中に原子番号の大きな金属
粒子等が散在している場合の例として、図3で示すよう
な反射電子画像が得られる。この図では表現されていな
いが、異なる種類の粒子毎に濃淡をもって表示されてい
る。該当するヒストグラム図(輝度レベルの分布度数
図)は図2のようになり、しきい値(スレシホルド)を
あらかじめ設定しておくことで、白黒の二値化画像を構
成する。即ちカーボンベースとその他の粒子が白黒で表
示され、真に図3のように表示されるようになる。
In this case, in particular, since the luminance level of the reflected electron signal increases as the atomic number increases, particles are extracted by utilizing the characteristic. For example, a backscattered electron image as shown in FIG. 3 is obtained as an example in which metal particles having a large atomic number are scattered in a light element base such as carbon (C: atomic number 6). Although not shown in this figure, different types of particles are displayed with different shades. The corresponding histogram diagram (distribution frequency diagram of the luminance level) is as shown in FIG. 2, and a black-and-white binary image is formed by setting a threshold value (threshold) in advance. That is, the carbon base and other particles are displayed in black and white, and are truly displayed as shown in FIG.

【0010】上記構成した図3の二値化画像上で、粒子
抽出を行い、位置,大きさ等を処理装置9で計算する。
ここで位置計算は、画像上の位置と試料移動ステージ6
上の座標の換算で行う。この応用として、計算した座標
位置に電子ビームを照射し、抽出粒子部から発生する特
性X線を検出器12で検出し、制御処理部13で粒子の
元素分析を自動で行うことができ、更に試料移動ステー
ジ6を組合せることで、広エリアの自動元素分析が可能
となる。
[0010] Particles are extracted from the binarized image shown in FIG. 3 and the position, size, and the like are calculated by the processing unit 9.
Here, the position calculation is based on the position on the image and the sample moving stage 6.
The above coordinates are converted. As an application, the calculated coordinate position is irradiated with an electron beam, the characteristic X-ray generated from the extracted particle portion is detected by the detector 12, and the elemental analysis of the particle can be automatically performed by the control processing portion 13. The combination of the sample moving stage 6 enables automatic elemental analysis of a wide area.

【0011】ところが長時間の粒子抽出を行う際、走査
電子顕微鏡の電子源の変動等による電子ビームの電流量
が低下することがあり、得られる反射電子画像の輝度レ
ベルも低下する。
However, when performing long-time particle extraction, the amount of current of the electron beam may be reduced due to a change in the electron source of the scanning electron microscope or the like, and the luminance level of the reflected electron image obtained is also reduced.

【0012】図4に輝度レベルが低下した場合のヒスト
グラムを示す。ここで従来の二値化方法では、スレシホ
ルドは初期設定した固定値であったため、図5で示すよ
うな二値化画像となり、図3と比べ、正確な粒子抽出が
できないことがあった。これはスレシホルド近傍の輝度
を有する粒子は電子線電流の変動により、粒子が抽出で
きない場合があるからである。
FIG. 4 shows a histogram when the luminance level is reduced. Here, in the conventional binarization method, since the threshold is a fixed value that is initially set, a binarized image as shown in FIG. 5 is obtained, and accurate particle extraction may not be performed as compared with FIG. This is because particles having brightness near the threshold may not be able to be extracted due to fluctuations in the electron beam current.

【0013】以下に本発明実施例の処理について説明す
る。まず図6に示すように、電子ビームOFF時の状態
の反射電子信号を0としたとき、ベースとなる元素(例
ではカーボン)の輝度レベルをAとし、スレシホルド値
をベースレベルAの定数α倍と初期設定する。ここで定
数αは、抽出する粒子の原子番号により任意に設定可能
である。
The processing of the embodiment of the present invention will be described below. First, as shown in FIG. 6, when the reflected electron signal in the state where the electron beam is OFF is set to 0, the luminance level of the element serving as a base (carbon in the example) is set to A, and the threshold value is set to a constant α times the base level A. And initial settings. Here, the constant α can be arbitrarily set according to the atomic number of the particle to be extracted.

【0014】長時間の分析時には、ベースレベルのヒス
トグラムを随時計算し、反射電子画像の輝度レベル低下
時、図7で示すようにベースレベルがA′と低下した場
合にも、α×A′とスレシホルド値が変化するため、確
実な粒子抽出が可能となった。また、原子番号による粒
子の抽出をより細分化するため、図8に示すように定数
α,βを設定可能として、3値化あるいはそれ以上のス
レシホルドも同様に設定可能である。
At the time of analysis for a long time, a histogram of the base level is calculated at any time. Since the threshold value changed, reliable particle extraction became possible. In addition, in order to further subdivide the extraction of particles by atomic number, constants α and β can be set as shown in FIG. 8, and a ternary or higher threshold can be set in the same manner.

【0015】[0015]

【発明の効果】本発明によると、走査電子顕微鏡等にお
いて、試料上の広エリアの画像に基づく粒子抽出による
自動元素分析等の精度が向上する。
According to the present invention, in a scanning electron microscope or the like, the accuracy of automatic elemental analysis or the like by particle extraction based on a wide area image on a sample is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による走査電子顕微鏡の一例を示す概略
図。
FIG. 1 is a schematic diagram showing an example of a scanning electron microscope according to the present invention.

【図2】ヒストグラム上にスレシホルドを設定した状態
を示す図。
FIG. 2 is a diagram showing a state in which a threshold is set on a histogram.

【図3】本発明による走査電子顕微鏡によって得られた
試料像を示す図。
FIG. 3 is a view showing a sample image obtained by a scanning electron microscope according to the present invention.

【図4】輝度レベルが低下した場合のヒストグラムを示
す図。
FIG. 4 is a diagram illustrating a histogram when a luminance level is reduced.

【図5】初期設定したスレシホルドによる二値化画像を
示す図。
FIG. 5 is a diagram showing a binarized image based on an initially set threshold.

【図6】スレシホルドを変更した場合のヒストグラムを
示す図。
FIG. 6 is a diagram showing a histogram when the threshold is changed.

【図7】スレシホルドを変更した場合のヒストグラムを
示す図。
FIG. 7 is a diagram showing a histogram when the threshold is changed.

【図8】3値化した場合のスレシホルドとヒストグラム
を示す図。
FIG. 8 is a diagram showing a threshold and a histogram when ternarization is performed.

【符号の説明】[Explanation of symbols]

1…電子ビーム、2…偏向コイル、3…対物レンズ、4
…試料室、5…試料、6…試料移動ステージ、6a…試
料台、7…検出器、8…画像メモリ、9…制御・処理装
置、10…表示装置、11…入力手段、12…元素分析
用検出器、13…元素分析用制御回路。
DESCRIPTION OF SYMBOLS 1 ... Electron beam, 2 ... Deflection coil, 3 ... Objective lens, 4
... Sample chamber, 5 ... Sample, 6 ... Sample moving stage, 6a ... Sample stage, 7 ... Detector, 8 ... Image memory, 9 ... Control / processing device, 10 ... Display device, 11 ... Input means, 12 ... Elemental analysis Detector 13; control circuit for elemental analysis.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】集束された電子ビームを試料上に走査する
ための偏向手段と、試料から発生する反射電子等の信号
を検出する手段と、試料を移動する手段と、前記により
検出された画像を記憶する画像メモリと、前記画像メモ
リに記憶された画像を処理する手段と、画像表示手段
と、各々を制御する手段を備える走査電子顕微鏡におい
て、画像から粒子抽出を行う際、二値化のためのしきい
値を電子ビームの変動に連動して設定することにより、
長時間、試料の広エリアを高精度に粒子抽出することを
特徴とする電子顕微鏡。
1. A deflection means for scanning a focused electron beam on a sample, a means for detecting a signal such as a reflected electron generated from the sample, a means for moving the sample, and an image detected by the means. In the scanning electron microscope including an image memory that stores the image, a unit that processes the image stored in the image memory, an image display unit, and a unit that controls each unit, when performing particle extraction from the image, By setting the threshold value in conjunction with the fluctuation of the electron beam,
An electron microscope characterized by extracting particles from a wide area of a sample with high precision for a long time.
【請求項2】前記粒子抽出の際、画像を三値化以上に分
類することを特徴とする請求項1記載の電子顕微鏡。
2. The electron microscope according to claim 1, wherein, at the time of the particle extraction, the image is classified into three or more values.
【請求項3】前記粒子抽出により抽出した粒子位置に順
次電子ビームを照射することで、X線等を用いた元素分
析を自動実行することを特徴とする請求項1記載の電子
顕微鏡。
3. The electron microscope according to claim 1, wherein an elemental analysis using X-rays or the like is automatically executed by sequentially irradiating an electron beam to a particle position extracted by the particle extraction.
JP10029513A 1998-02-12 1998-02-12 Electron microscope Pending JPH11233058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10029513A JPH11233058A (en) 1998-02-12 1998-02-12 Electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10029513A JPH11233058A (en) 1998-02-12 1998-02-12 Electron microscope

Publications (1)

Publication Number Publication Date
JPH11233058A true JPH11233058A (en) 1999-08-27

Family

ID=12278189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10029513A Pending JPH11233058A (en) 1998-02-12 1998-02-12 Electron microscope

Country Status (1)

Country Link
JP (1) JPH11233058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155515A (en) * 2005-12-06 2007-06-21 Jeol Ltd Method and device for analyzing particle
JP2014007032A (en) * 2012-06-22 2014-01-16 Hitachi High-Technologies Corp Image processing device, image processing method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155515A (en) * 2005-12-06 2007-06-21 Jeol Ltd Method and device for analyzing particle
JP2014007032A (en) * 2012-06-22 2014-01-16 Hitachi High-Technologies Corp Image processing device, image processing method, and program

Similar Documents

Publication Publication Date Title
US8604430B2 (en) Method and an apparatus of an inspection system using an electron beam
EP0953203B1 (en) Electron beam dose control for scanning electron microscopy and critical dimension measurement instruments
US6635873B1 (en) Scanning electron microscope with voltage applied to the sample
US8044352B2 (en) Electron microscopy
JP4194526B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
CN114113185A (en) Imaging method for realizing zoom scanning of scanning electron microscope
JP2001235438A (en) Image observation method and scanning electron microscope
JP4469572B2 (en) Undercut measurement method using SEM
JP2003229462A (en) Circuit pattern testing apparatus
JPH11233058A (en) Electron microscope
KR20210074995A (en) Image adjusting method and charged particle beam system
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function
JP2633861B2 (en) SEM type inspection equipment
JP3370365B2 (en) Shape observation device
JP3114335B2 (en) Focusing method in scanning electron microscope
JPH1167138A (en) Micro-area observation device
KR20200115028A (en) Charged particle beam apparatus and control method thereof
JPH04112440A (en) Observation device
JPH08250059A (en) Ion beam working device
JPH065612B2 (en) Charged particle beam analyzer
JPH09204892A (en) Focusing method for charged particle beam device
JPH05114378A (en) Scanning electron microscope
JP2000292384A (en) Sample analytical method and electron beam analytical device
JPH04118845A (en) Position-reproducing system for electron beam micro-analyzer
JPH0381940A (en) Evaluation device for semiconductor device in semiconductor manufacturing process