JPH05114378A - Scanning electron microscope - Google Patents

Scanning electron microscope

Info

Publication number
JPH05114378A
JPH05114378A JP27553491A JP27553491A JPH05114378A JP H05114378 A JPH05114378 A JP H05114378A JP 27553491 A JP27553491 A JP 27553491A JP 27553491 A JP27553491 A JP 27553491A JP H05114378 A JPH05114378 A JP H05114378A
Authority
JP
Japan
Prior art keywords
circuit
signal
scanning
sample
saw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27553491A
Other languages
Japanese (ja)
Inventor
Atsushi Yamada
篤 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP27553491A priority Critical patent/JPH05114378A/en
Publication of JPH05114378A publication Critical patent/JPH05114378A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a scanning electron microscope which can quickly and accurately perform automatic focusing operations without being affected by the state of patterns of samples. CONSTITUTION:A control circuit 12 controls focusing lens setting circuit 19 to change the excitation strength of a focusing lens 3 step by step. It also feeds saw-tooth-waves from a saw-tooth-wave generation circuit 14 to an addition circuit 11. Horizontal scanning signals and vertical scanning signals added with saw-tooth-waves are fed to deflection coils 2, 3 via drive circuits 8, 10. As a result, electron beams on the surface of samples are repetitively scanned by saw-tooth-waves in the vertical direction at short periods for the duration of a single horizontal scanning signal. Secondary electrons generated from samples 5 are detected by a detector 6 and signals for the detected secondary electrons are fed to an absolute value circuit 17 and then integrated in an integration circuit 18. The integrated signals are fed to the control circuit 12 to perform automatic focusing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動的にフォーカス合
わせを行うためのオートフォーカス機能を有した走査電
子顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron microscope having an autofocus function for automatically focusing.

【0002】[0002]

【従来の技術】走査電子顕微鏡などのオートフォーカス
では、集束レンズの励磁をステップ状に変化させ、各ス
テップ状の集束レンズの励磁状態において、試料の特定
領域を電子ビームで走査し、各走査毎に試料からの2次
電子あるいは反射電子を検出し、この検出信号強度から
信号強度の最大値の時がフォーカス点として、その時の
励磁状態に集束レンズを固定するようにしている。
2. Description of the Related Art In autofocus of a scanning electron microscope or the like, the excitation of a focusing lens is changed in steps, and a specific region of a sample is scanned with an electron beam in the excitation state of each focusing lens in each step, and each scanning is performed. Second, secondary electrons or reflected electrons from the sample are detected, and when the detected signal intensity has the maximum value of the signal intensity, the focus point is set, and the focusing lens is fixed in the excited state at that time.

【0003】[0003]

【発明が解決しようとする課題】上述したオートフォー
カスにおいて、試料上では水平方向に直線的に電子ビー
ムの走査を行っているが、この時、データ収集時のSN
比を良くするために、電子ビームの走査時間を長くする
必要がある。この結果、データの収集に時間が掛り、オ
ートフォーカス全体の動作時間が著しく長くなってしま
う。また、試料上、水平方向にパターンがあるような試
料の場合、電子ビームの走査方向には試料の凹凸部分が
少なく、試料からの反射電子信号や2次電子信号の量が
少なくなり、信号処理を行う上で極めて不利となる。
In the above-mentioned autofocus, the electron beam is scanned linearly in the horizontal direction on the sample. At this time, the SN at the time of data collection is acquired.
In order to improve the ratio, it is necessary to lengthen the scanning time of the electron beam. As a result, it takes a long time to collect the data, and the operation time of the entire autofocus becomes extremely long. Further, in the case of a sample having a pattern in the horizontal direction on the sample, there are few uneven portions of the sample in the scanning direction of the electron beam, the amount of backscattered electron signals and secondary electron signals from the sample is small, and signal processing is performed. It is extremely disadvantageous in doing.

【0004】本発明は、このような点に鑑みてなされた
もので、その目的は、短時間に試料のパターンの状態に
影響されず、正確にオートフォーカス動作などを行うこ
とができる走査電子顕微鏡を実現するにある。
The present invention has been made in view of the above points, and an object thereof is a scanning electron microscope capable of accurately performing an autofocus operation and the like without being influenced by the state of a pattern of a sample in a short time. To realize.

【0005】[0005]

【課題を解決するための手段】本発明に基づく走査電子
顕微鏡は、電子ビームを試料上に集束するための集束レ
ンズと、集束レンズの励磁をステップ状に変化させるた
めの手段と、各励磁状態において試料上の電子ビームの
照射位置を走査する走査手段と、この走査に基づいて試
料から得られた信号を検出する検出器と、該走査手段に
供給される水平走査信号に垂直方向に周期的に変化する
信号を重畳させる機能とを有したことを特徴としてい
る。
A scanning electron microscope according to the present invention comprises a focusing lens for focusing an electron beam on a sample, means for changing the excitation of the focusing lens in a stepwise manner, and each excitation state. In the scanning means for scanning the irradiation position of the electron beam on the sample, a detector for detecting a signal obtained from the sample based on this scanning, and a horizontal scanning signal supplied to the scanning means periodically in the vertical direction. It has a function of superimposing a signal that changes to.

【0006】[0006]

【作用】本発明に基づく走査電子顕微鏡は、例えば、オ
ートフォーカス動作の時、試料上に照射される電子ビー
ムの走査のための水平走査信号に垂直方向に周期的に変
化する信号を重畳させる。
In the scanning electron microscope according to the present invention, for example, during an autofocus operation, a signal that periodically changes in the vertical direction is superimposed on a horizontal scanning signal for scanning an electron beam with which a sample is irradiated.

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は、本発明の一実施例である走査電子
顕微鏡を示しており、1は電子銃(図示せず)から発生
し加速された電子ビームである。2,3は2段偏向コイ
ルであり、2段偏向コイル2,3の夫々には、水平と垂
直方向の偏向コイルが含まれている。4は対物レンズで
あり、対物レンズ4によって細く集束された電子ビーム
は試料5に照射される。6は試料5への電子ビームの照
射によって発生した、例えば、2次電子を検出するため
の検出器である。2段偏向コイル2,3の水平方向の偏
向コイルには、水平走査信号発生回路7から駆動回路8
を介して水平走査信号が供給され、垂直方向偏向コイル
には、垂直走査信号発生回路9から駆動回路10を介し
て垂直走査信号が供給される。また、垂直走査信号発生
回路9と駆動回路10との間には、加算回路11が配置
されている。水平走査信号発生回路7と垂直走査信号発
生回路9からの走査信号の速度(周期)は、コンピュー
タの如き制御回路12によって制御される。加算回路1
1には、スイッチ回路13からの信号も供給されるが、
スイッチ回路13は、制御回路12からの制御によっ
て、鋸歯状波発生回路14からの鋸歯状波信号とゼロ信
号を切り換えて加算回路11に供給する。前記検出器6
によって検出された信号は、水平,垂直走査信号が供給
されている陰極線管16と絶対値回路17に供給され
る。絶対値回路17の出力信号は、積分回路18によっ
て積分された後、制御回路12に供給される。制御回路
12は、対物レンズ値設定回路19も制御しており、対
物レンズ値設定回路19からの信号により、駆動回路2
0は対物レンズ電流を対物レンズ4に供給する。このよ
うな構成の動作は次の通りである。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows a scanning electron microscope which is an embodiment of the present invention, in which 1 is an accelerated electron beam generated from an electron gun (not shown). Reference numerals 2 and 3 denote two-stage deflection coils. Each of the two-stage deflection coils 2 and 3 includes horizontal and vertical deflection coils. Reference numeral 4 is an objective lens, and the sample 5 is irradiated with the electron beam finely focused by the objective lens 4. Reference numeral 6 is a detector for detecting, for example, secondary electrons generated by irradiation of the sample 5 with an electron beam. For the horizontal deflection coils of the two-stage deflection coils 2 and 3, the horizontal scanning signal generation circuit 7 to the drive circuit 8 are provided.
The horizontal scanning signal is supplied via the drive circuit 10 and the vertical deflection signal is supplied from the vertical scanning signal generation circuit 9 via the drive circuit 10 to the vertical deflection coil. An adder circuit 11 is arranged between the vertical scanning signal generation circuit 9 and the drive circuit 10. The speed (cycle) of the scanning signals from the horizontal scanning signal generating circuit 7 and the vertical scanning signal generating circuit 9 is controlled by a control circuit 12 such as a computer. Adder circuit 1
1, the signal from the switch circuit 13 is also supplied,
The switch circuit 13 switches between the sawtooth wave signal and the zero signal from the sawtooth wave generation circuit 14 under the control of the control circuit 12, and supplies the zero signal to the addition circuit 11. The detector 6
The signal detected by is supplied to the cathode ray tube 16 and the absolute value circuit 17 to which the horizontal and vertical scanning signals are supplied. The output signal of the absolute value circuit 17 is integrated by the integrating circuit 18 and then supplied to the control circuit 12. The control circuit 12 also controls the objective lens value setting circuit 19, and the drive circuit 2 is controlled by a signal from the objective lens value setting circuit 19.
0 supplies the objective lens current to the objective lens 4. The operation of such a configuration is as follows.

【0008】通常の2次電子像を観察する場合、まず制
御回路12からの制御により、スイッチ回路13は図中
点線で示すように切換えられる。次に、所望の走査速度
となるよう制御回路12は水平走査信号発生回路7と垂
直走査信号発生回路9を制御し、その結果、所望の偏向
信号が偏向コイル2,3に供給され、電子ビーム1は、
偏向コイルにより偏向を受け、試料5の所望領域を走査
する。電子ビームの試料5への照射に伴って発生した2
次電子は、検出器6によって検出され、その検出信号
は、増幅器15によって増幅された後、走査信号が供給
されている陰極線管16に供給されることから、陰極線
管16には試料の2次電子像が表示される。
When observing a normal secondary electron image, the switch circuit 13 is first switched by the control of the control circuit 12 as shown by the dotted line in the figure. Next, the control circuit 12 controls the horizontal scanning signal generating circuit 7 and the vertical scanning signal generating circuit 9 so as to obtain a desired scanning speed, and as a result, a desired deflection signal is supplied to the deflection coils 2 and 3 and the electron beam is emitted. 1 is
A desired area of the sample 5 is scanned by being deflected by the deflection coil. 2 generated by irradiation of the sample 5 with the electron beam
The secondary electrons are detected by the detector 6, and the detection signal is amplified by the amplifier 15 and then supplied to the cathode ray tube 16 to which the scanning signal is supplied. An electronic image is displayed.

【0009】さて、対物レンズ4のフォーカス合わせを
行う場合の動作を図2,図3の信号波形図を参考にして
説明する。まず、制御回路12は集束レンズ値設定回路
19を制御し、図2(a)に示すように、集束レンズ3
の励磁強度をステップ状に変化させる。更に、制御回路
12は、スイッチ回路13を制御し、図中実線のように
切換えて、鋸歯状波発生回路14からの鋸歯状波を加算
回路11に供給する。この時の各信号波形を図3に示
す。図3(a)は、垂直走査信号発生回路9から加算回
路11に供給される垂直走査信号であり、このステップ
状に変化する垂直走査信号の1周期は、図2(a)に示
した対物レンズ4の励磁強度のステップ状変化の1ステ
ップの期間と一致されている。図3(b)は、水平走査
信号発生回路7からの水平走査信号で、この水平走査信
号は鋸歯状波であり、垂直走査信号の1ステップ毎に1
周期の鋸歯状波が発生されている。図3(c)は鋸歯状
波発生回路14からスイッチ回路13を介して加算回路
11に供給される鋸歯状波であり、この鋸歯状波の周波
数F2 は、水平走査信号の周波数F1 と比較して著しく
速くされている。この図3(c)に示した鋸歯状波発生
回路14からの鋸歯状波と図3(a)に示した垂直走査
信号とは加算回路11によって加算される。水平走査信
号と鋸歯状波が加算された垂直走査信号とは、各駆動回
路8,10を介して偏向コイル2,3に供給される。そ
の結果、試料表面上の電子ビームは、図4に示すように
1水平走査信号の期間、鋸歯状波によって垂直方向に速
い周期で繰り返し走査される。試料5への電子ビームの
照射によって発生した2次電子は検出器6によって検出
されるが、この検出された2次電子信号は、増幅器15
を介して絶対値回路17に供給され、その後、積分回路
18において積分される。積分された信号は、制御回路
12に供給される。制御回路12は、オートフォーカス
のための処理を行うが、その処理の機能ブロック図を図
5に示す。図2(a)に示した対物レンズの励磁強度の
1ステップ毎に、積分回路18によって積分された値
は、信号強度分布作成ユニット21に供給される。この
ユニットでは、図2(b)に示すように、積分された各
信号の強度分布を作成している。この分布から信号ピー
ク検出ユニット22は分布のピークを探し出す。そし
て、フォーカス値検出ユニット23は、分布のピーク点
の対物レンズ値を求める。フォーカス値検出ユニット2
3によって求められた対物レンズ値は、対物レンズ値設
定回路19に設定され、対物レンズの励磁強度が設定さ
れる。このようにして、対物レンズ4のフォーカス合わ
せが実行される。
Now, the operation of focusing the objective lens 4 will be described with reference to the signal waveform diagrams of FIGS. First, the control circuit 12 controls the focusing lens value setting circuit 19, and as shown in FIG.
The excitation intensity of is changed stepwise. Further, the control circuit 12 controls the switch circuit 13 to switch it as shown by the solid line in the figure to supply the sawtooth wave from the sawtooth wave generation circuit 14 to the adding circuit 11. The signal waveforms at this time are shown in FIG. FIG. 3A shows a vertical scanning signal supplied from the vertical scanning signal generating circuit 9 to the adding circuit 11. One cycle of the vertical scanning signal which changes stepwise is one of the objectives shown in FIG. It is equal to one step period of the stepwise change of the excitation intensity of the lens 4. FIG. 3B shows a horizontal scanning signal from the horizontal scanning signal generating circuit 7. This horizontal scanning signal is a sawtooth wave, and is 1 for each step of the vertical scanning signal.
A periodic sawtooth wave is generated. FIG. 3C shows a sawtooth wave supplied from the sawtooth wave generation circuit 14 to the adder circuit 11 via the switch circuit 13. The frequency F2 of the sawtooth wave is compared with the frequency F1 of the horizontal scanning signal. Has been remarkably fast. The sawtooth wave from the sawtooth wave generation circuit 14 shown in FIG. 3C and the vertical scanning signal shown in FIG. 3A are added by the adder circuit 11. The horizontal scanning signal and the vertical scanning signal obtained by adding the sawtooth wave are supplied to the deflection coils 2 and 3 via the drive circuits 8 and 10. As a result, the electron beam on the surface of the sample is repeatedly scanned in the vertical direction at a fast cycle by the sawtooth wave for the period of one horizontal scanning signal as shown in FIG. Secondary electrons generated by irradiating the sample 5 with the electron beam are detected by the detector 6, and the detected secondary electron signal is supplied to the amplifier 15
Is supplied to the absolute value circuit 17 via, and then integrated in the integrating circuit 18. The integrated signal is supplied to the control circuit 12. The control circuit 12 performs processing for autofocus, and a functional block diagram of the processing is shown in FIG. The value integrated by the integrating circuit 18 for each step of the excitation intensity of the objective lens shown in FIG. 2A is supplied to the signal intensity distribution creating unit 21. In this unit, as shown in FIG. 2B, the intensity distribution of each integrated signal is created. From this distribution, the signal peak detection unit 22 finds the peak of the distribution. Then, the focus value detection unit 23 obtains the objective lens value at the peak point of the distribution. Focus value detection unit 2
The objective lens value obtained by 3 is set in the objective lens value setting circuit 19, and the excitation intensity of the objective lens is set. In this way, the focusing of the objective lens 4 is executed.

【0010】上記したように、この実施例では、対物レ
ンズ4の励磁をステップ状に変化させ、そのステップ状
変化の間に試料5から2次電子検出信号を得る場合、試
料5上の電子ビームの走査を水平に直線状に行うのでは
なく、水平への電子ビームの走査の間、速い周期で電子
ビームを垂直方向にも走査しているので、試料表面の形
状(パターン)が水平方向にのみ存在している場合で
も、そのパターンのエッジE(図4参照)に垂直方向に
も電子ビームが走査されるため、オートフォーカスに必
要な十分な強度の信号を得ることができる。また、この
場合、水平走査を速くしても十分な信号が得られる。
As described above, in this embodiment, when the excitation of the objective lens 4 is changed stepwise and the secondary electron detection signal is obtained from the sample 5 during the stepwise change, the electron beam on the sample 5 is changed. Scanning is not performed in a straight line horizontally, but during scanning of the electron beam in the horizontal direction, the electron beam is also scanned in the vertical direction at a fast cycle, so the shape (pattern) of the sample surface is changed in the horizontal direction. Even when only the electron beam exists, the electron beam is scanned in the direction perpendicular to the edge E (see FIG. 4) of the pattern, so that a signal of sufficient intensity necessary for autofocusing can be obtained. Further, in this case, a sufficient signal can be obtained even if the horizontal scanning is accelerated.

【0011】以上本発明の一実施例を詳述したが、本発
明はこの実施例に限定されない。例えば、2次電子を検
出したが、反射電子を検出してもよい。また、垂直走査
信号に鋸歯状波を重畳させるようにしたが、sin波の
発振回路を用意し、この発振回路からのsin波を垂直
走査信号に加算するように構成しても良い。更に、オー
トフォーカス動作を行う際、対物レンズの励磁強度をス
テップ状に変化させたが、対物レンズに接近して補助レ
ンズを設け、この補助レンズの強度をステップ状に変化
させても良い。なお、水平走査信号が鋸歯状波であるた
め、鋸歯状波発生回路14から周波数の低い鋸歯状波を
得、これを水平走査信号としても良い。この場合、水平
走査信号発生回路7は不要となる。そして、制御回路1
2内のメモリーに、観察試料の種類に応じた鋸歯状波の
振幅や水平,垂直走査信号の速度を記憶しておき、試料
交換の際の各回路の初期設定を簡単に行えるようにする
ことは望ましい。更にまた、垂直走査信号に鋸歯状波や
sin波などを重畳する方式は、オートフォーカス動作
だけでなく、オート非点動作やオートコントラスト動
作,オートブライトネス動作の時にも用いることができ
る。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment. For example, although secondary electrons are detected, reflected electrons may be detected. Although the sawtooth wave is superimposed on the vertical scanning signal, a sin wave oscillation circuit may be prepared and the sin wave from the oscillation circuit may be added to the vertical scanning signal. Further, when performing the autofocus operation, the excitation intensity of the objective lens was changed in steps, but an auxiliary lens may be provided close to the objective lens and the intensity of this auxiliary lens may be changed in steps. Since the horizontal scanning signal is a sawtooth wave, a sawtooth wave having a low frequency may be obtained from the sawtooth wave generation circuit 14 and used as the horizontal scanning signal. In this case, the horizontal scanning signal generation circuit 7 becomes unnecessary. And the control circuit 1
The memory in 2 stores the amplitude of the sawtooth wave and the speed of horizontal and vertical scanning signals according to the type of sample to be observed, so that the initial setting of each circuit can be easily performed when exchanging the sample. Is desirable. Furthermore, the method of superimposing a sawtooth wave or a sin wave on the vertical scanning signal can be used not only in the autofocus operation but also in the auto astigmatism operation, autocontrast operation, and autobrightness operation.

【0012】[0012]

【発明の効果】以上説明したように、本発明に基づく走
査電子顕微鏡は、試料上に照射される電子ビームの走査
のための水平走査信号に垂直方向に周期的に変化する信
号を重畳させるようにしたので、短時間に試料のパター
ンの状態に影響されず、正確にオートフォーカス動作な
どを行うことができる。
As described above, in the scanning electron microscope according to the present invention, the signal which periodically changes in the vertical direction is superimposed on the horizontal scanning signal for scanning the electron beam with which the sample is irradiated. Therefore, the autofocus operation and the like can be performed accurately without being affected by the state of the pattern of the sample in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である走査電子顕微鏡を示す
図である。
FIG. 1 is a diagram showing a scanning electron microscope which is an embodiment of the present invention.

【図2】図1の走査電子顕微鏡によるオートフォーカス
動作を説明するために用いた信号波系図である。
FIG. 2 is a signal wave system diagram used for explaining an autofocus operation by the scanning electron microscope of FIG.

【図3】図1の走査電子顕微鏡によるオートフォーカス
動作を説明するために用いた信号波系図である。
FIG. 3 is a signal wave system diagram used for explaining an autofocus operation by the scanning electron microscope of FIG.

【図4】図1の走査電子顕微鏡の制御回路におけるオー
トフォーカス処理の機能ブロック図である。
4 is a functional block diagram of autofocus processing in a control circuit of the scanning electron microscope of FIG.

【図5】試料上の電子ビームの水平走査の状況を示す図
である。
FIG. 5 is a diagram showing a state of horizontal scanning of an electron beam on a sample.

【符号の説明】[Explanation of symbols]

1…電子ビーム 2,3…偏向コイル 4…対物レンズ 5…試料 6…検出器 7…水平走査信号発生回路 8,10,20…駆動回路 9…垂直走査信号発生回路 11…加算回路 12…制御回路 14…鋸歯状波発生回路 17…絶対値回路 18…積分回路 21…信号強度分布作成ユニット 22…信号ピーク検出ユニット 23…フォーカス値検出ユニット DESCRIPTION OF SYMBOLS 1 ... Electron beam 2, 3 ... Deflection coil 4 ... Objective lens 5 ... Sample 6 ... Detector 7 ... Horizontal scanning signal generation circuit 8, 10, 20 ... Driving circuit 9 ... Vertical scanning signal generation circuit 11 ... Addition circuit 12 ... Control Circuit 14 ... Sawtooth wave generation circuit 17 ... Absolute value circuit 18 ... Integration circuit 21 ... Signal intensity distribution creation unit 22 ... Signal peak detection unit 23 ... Focus value detection unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームを試料上に集束するための集
束レンズと、集束レンズの励磁をステップ状に変化させ
るための手段と、各励磁状態において試料上の電子ビー
ムの照射位置を走査する走査手段と、この走査に基づい
て試料から得られた信号を検出する検出器と、該走査手
段に供給される水平走査信号に垂直方向に周期的に変化
する信号を重畳させる機能とを有した走査電子顕微鏡。
1. A focusing lens for focusing an electron beam on a sample, a means for changing the excitation of the focusing lens in a stepwise manner, and a scan for scanning an irradiation position of the electron beam on the sample in each excitation state. Scanning having means, a detector for detecting a signal obtained from a sample based on this scanning, and a function for superimposing a signal which periodically changes in the vertical direction on a horizontal scanning signal supplied to the scanning means electronic microscope.
JP27553491A 1991-10-23 1991-10-23 Scanning electron microscope Withdrawn JPH05114378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27553491A JPH05114378A (en) 1991-10-23 1991-10-23 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27553491A JPH05114378A (en) 1991-10-23 1991-10-23 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH05114378A true JPH05114378A (en) 1993-05-07

Family

ID=17556790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27553491A Withdrawn JPH05114378A (en) 1991-10-23 1991-10-23 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH05114378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671332B2 (en) 2007-05-15 2010-03-02 Jeol Ltd. Autofocus method for scanning charged-particle beam instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7671332B2 (en) 2007-05-15 2010-03-02 Jeol Ltd. Autofocus method for scanning charged-particle beam instrument

Similar Documents

Publication Publication Date Title
JPH07134964A (en) Electron beam device provided with height measuring means for sample
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JP3021917B2 (en) Automatic focusing and astigmatism correction method in electron beam device
US4978856A (en) Automatic focusing apparatus
JP2001235438A (en) Image observation method and scanning electron microscope
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
JPH06243812A (en) Scanning electron microscope
JPH05114378A (en) Scanning electron microscope
JPH1050245A (en) Focusing method in charged particle beam device
JP3114416B2 (en) Focusing method in charged particle beam device
JPH0756786B2 (en) Electron microscope focusing device
JP3101089B2 (en) Brightness correction method for scanning electron microscope
JP3114335B2 (en) Focusing method in scanning electron microscope
JP2000156192A (en) Scanning electron microscope
JP3112541B2 (en) Astigmatism correction method for electron beam device
JP2001006599A (en) Method for controlling electron beam in electron beam device
JPH10172489A (en) Adjusting method of electron beam in scan electron microscope
JP2001110347A (en) Automated focusing method for charged-particle beam apparatus
JPH07161327A (en) Focusing method in charged particle beam
JP3414602B2 (en) Scanning electron microscope and control method thereof
JPH113676A (en) Scanning electron microscope
JPH0831364A (en) Scanning electron microscope
JP3364400B2 (en) Method of adjusting electron beam in scanning electron microscope and scanning electron microscope
JPS62183514A (en) Ion beam lithography equipment
JPH05128989A (en) Scanning electron microscope for observing three-dimensional figure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107